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A b s t r a c t .  A new canonical  t ransformat ion is proposed to handle  elliptic oscillators, that  
is, Hami l ton ian  systems made of two harmonic  oscillators in a 1-1 resonance. Lissajous 
elements per ta in  to the ellipse drawn with a l ight pen whose coordinates oscillate at the 
same frequency, hence their name.  They consist of two pairs of angle-action variables of 
which the actions and one angle refer to basic integrals admit ted  by an elliptic oscillator, 
namely, its energy, its angular  m o m e n t u m  and its Runge-Lenz vector. The  Lissajous trans-  
format ion is defined in two ways: explicitly in terms of Cartesian variables, and implicit ly 
by resolution of a par t ia l  differential equation separable in polar variables. Relat ions be- 
tween the Lissajous variables, the common harmonic  variables, and other sets of variables 
are discussed in detail.  

K e y  w o r d s :  Dynamics - Hamil tonian  systems - per turbat ions  - reduction - isotropic 
oscillators 
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1. I n t r o d u c t i o n  

We call elliptic oscillators the dynamical systems represented by Hamilto- 
nians of the type 

~'/0 1 2 1 2/ 2 = ~ ( X  + Y 2 ) + ~ w  [x +y2)  (1) 

in a phase space made of the Cartesian coordinates (x, y) and their conju- 
gate momenta (X,Y);  the parameter w is assumed to be strictly positive. 
Perturbed elhptic oscillators with Hamiltonians of the type 

7-/= 7-/0 + eV(x, y, X, Y; ~) (2) 

are among the systems most studied in non-linear dynamics, especially in 
molecular spectroscopy, galactic dynamics and celestial mechanics. 

For the sake of convenience, we look at x and y as the Cartesian coordi- 
nates of a particle in a plane; we take X and Y to be the components of its 
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of its velocity, and we take the independent variable t to stand as a time 
scale. The parameter w may then be interpreted as a frequency measured 
on that  time scale. With those conventions, all identities linking time, co- 
ordinates, velocities and frequency must show homogeneity with respect to 
the dimensional scaling 

(x,y,X,Y,t ,w) ---. (~x,~y,~X/T,~Y/T, Tt,~/r). (3) 

This criterion of homogeneity proves very useful in checking hand and com- 
puter calculations, and this is one of the reasons why, rather than announc- 
ing that  the physical units have been chosen to make w = 1, we accept to 
drag that  parameter along the whole exposition. Besides, as the fourth in- 
stalhnent in these series of notes will demonstrate,  there are circumstances 
where we need to admit that the Lissajous transformation is not simply a 
transformation but a one-parameter family of transformations. 

The Lie derivative associated with 7-/o is the partial differential operator 

Lo : F ~ (r,7-/0) 

mapping F onto its Poisson bracket to the right with 7-/0. The kernel of L0 
is the set ker(L0) of functions F such that Lo(F) = 0; the image of L0, 
the set ira(L0) of functions F of the form F = Lo(G). Normalization of a 
Hamiltonian of type 

U(p,P,e) = ~ e '%/n(p ,P) ,  
n>O 

we recall, is a one-paraaneter fanfily of canonical transformations 

v: (p',P',e) ~ (p,P) 

that  changes ~ into a function 

v#7-l(p',P',e) = 7-l(p(p',P',e),P(p',P',e),e) 

in the kernel of L0. From an operational standpoint,  three critical issues 
must be faced before undertaking a normalization: 

1. one must identify the algebra .,4 of functions involved at any order of 
the normalization; 

2. one must verify that ,4 is the direct sum ker(LoI.A) ~) im(L0]A); 
3. one must prefigure the topological structure subjacent to the orbital 

space after reduction. 
In the Cartesian variables (x, y, X, Y), the Lie derivative associated with the 
elliptic oscillator (1) is represented by the partial differential operator 

0 O _ w 2 (  O O )  Lo = X-~x + Y-~y x - ~  + y - ~  . (4) 
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Thus, when the perturbation is a power series in e with coefficients in the 
algebra T' of real polynomials in ( x , y , X , Y ) ,  the normalization takes place 
entirely within that algebra. To characterize the vector space ker(L01P), 1 
we begin with examining under what conditions the linear form a X  + f lY + 
w ("/x + 5y) is an eigenvector of L0]T'. Clearly, the identity 

Lo(aX + f lY + w'Tz + ~Sy) = A(aX + f lY + ~TZ + wSy) 

is satisfied either when A = iw, 7 = ia and 5 = ifl or when A = - i w ,  
"7 = - i a  and 5 = - i f l  (The symbol i designates here the imaginary unit 
vzL-f). In sum, the combinations X + iwx and Y + iwy are eigenvectors 
for the eigenvalue iw while X - iwx and Y - iwy are eigenvectors for 
the eigenvalue - i w .  To capitalize on this basic property of L0, it seems 
appropriate to introduce the canonical transformation 2 

w = - ~ 2 ( y -  iY lw) ,  
1 

z = - i 

(5) 1 1 
Z = - -~ (X  - iwx),  W = - -~(Y  - i,,y). 

All critical issues when normalizing a Hamiltonia~ that  is a power series 
over 7 ) are best addressed in the complex variables ( z , w , Z , W ) .  For, in 
those variables, 

~o = iw(zZ + wW), 

and the Lie derivative becomes the differential operator 

iw(z  0 0 0 0 - Z-y2 + w-y  ). Lo 

There follows immediately that 

Lo(z~ufi Z'YW ~) = iw(a + fl - 7 - 5) z'~wo Z'YwS. (6) 

This identity characterizes the kernel of L0 restricted to the algebra C of 
polynomiaJs in (z, w, Z, W) as the vector subspace generated by the mono- 
mials z~wZZ'YW 8 for which 

a + / 3 - 7 - 5  = 0 .  (7) 

In particular, the mononfials zZ, wW, zW and wZ belong to ker(L01C). 
Furthermore, for n = a + fl + 7 + 6, condition (7) is satisfied only if n is 

1 The symbol L01P designates the restriction of the operator L0 to the set P. 
2 The presence of V~ in (5) may cause minor, but irritating, complications for some 

algebraic processors. In which case, the transition from real to complex variables should 
be expressed as the symplectic linear transformation: 

1 z = ( x - i X / w ) ,  Z = ( X - i w x ) ,  w= ~ ( y - i Y / w ) ,  W = ½(Y- iwy) .  
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even. In which case, setting m = n/2,  we must have that  a + f l  = "7+6 = m,  
hen ce 

( z Z ) ~ ( w W )  f~ when a = '7, 
zC~wZZ'YW 6 = (zZ)"C(wW)~(zW) k when a = '7 + k, 

( zZ) '~ (wW)6(wZ)  k when '7 = a + k. 

Thus is proved that  ker(L0]C) is the subalgebra of C generated by the mono- 
mials z Z ,  w W ,  z W  and w Z  [For another proof see, e.g., (Cushman and 
Rod 1982)]. There follows also that  the normalization, when 1) is a power 
series in e with coefficients in C, is nothing else but a canonical transforma- 
tion 

(z,w,z,w) 

to change (1) into a power series whose coefficients belong to the algebra of 
complex polynomials in z~Z ~, w~W ~, z~W ~ and w'Z  ~. 

Again, according to (6), im(L0]C) is generated by the terms zC'w~Z'YW 6 
whose exponents do not satisfy condition (7). Not only does (6) prove that  
C is the direct sum ker(L01 C) ~ im(L01C), it also supplies a very simple rule 
for building a polynomial G in C such that  Lo(G) = F when F belongs to 
im(L0]C). Normalization in the complex variables (5) turns into an exercise 
in polynonfial algebra. 

Physicists, nonetheless, think spontaneously of a normalization as a sym- 
metrization,  that is, as a way of approximating a Hanfiltonian with a power 
series invariant with respect to the group (sic!) of transformations 

x = ~ ¢ ' ' "  '*" " x 'coswe + (X' /w)s inwe,  
n>on-~°  ( x ) =  

e 7~ 
y = ~ ~.vL0"(y')= y 'coswe + ( Y ' / w ) s i n w e ,  

,,__o ,," (s) 
x = E x ' c o s w e -  w 'sinwe, 

n>O 

en r ntyt~ Y = ~ ' o  ~, )=YIc°swe-wy'sinwe" 
n>O " 

In that perspective, to say that a function F belongs to ker(Lo) is equivalent 
to saying that  it ax]mits (8) as a group of symmetries. 

Normalization has a second, no less important  geometric facet: it is a 
reduction (Meyer 1973; Marsden and Weinstein 1974). In the process of 
normalization from a perturbed to a "symmetrized" integrable Hamiltonian, 
the number of degrees of freedom has fallen by one unit. The paradigm of a 
reduction in traditional mechanics is the elimination of a cyclic coordinate, 
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say p. In which case, the textbooks continue, its conjugate moment  P is an 
integral, and the equations of motion split into 

1. a dynamical system derived from the original Hamiltonian with one de- 
gree of freedom less than the original one because p is to be ignored, and 
P to be held as a parameter,  

2. a quadrature determining the cyclic coordinate p as a function of time. 
Upon analyzing this paradigm more closely from a geometric standpoint,  
one will recognize that  ignoring p and holding P as a parameter  amounts to 
partitioning the phase space into leaves consisting of all states for which P 
has a given value, collecting into classes all points within that leaf which are 
images of one another by the canonical transformations generated by the 
integral P,  and then "reducing" the phase space on each leaf P = constant 
by handling each class-as an individual phase state. 

The Lissajous transformation was invented to set the physicist's intuition 
at ease. Orbits of the elliptic oscillator which, by the way, are exactly the 
orbits of the group (8), are ellipses possibly collapsing to straight line seg- 
ments. Two of the Lissajous variables, L and G, serve to measure the size 
and shape of the ellipses, a third one, g, fixes their position in the plane. The 
fourth one, g, acts as a clock by which to time the journey of the particle on 
its trajectory. The symmetries in (8) correspond to a shift of origin on the g- 
scale. They lead naturally to realize that the equivalence classes introduced 
by the reduction consist of ellipses of a given size at a given inclination in the 
position plane (to be paired, of course, with the corresponding hodograph 
in the velocity plane). The reduced equations tell how, on the average, the 
perturbation affects the length of the axes, and sets them into rotation or 
libration. 

Now that computer algebra is becoming widespread, we speculate that  
the reader is concerned, like we are, about manipulating Lissajous variables 
by symbolic processors. For this reason, we present an explicit definition 
(Section 2). We pay special attention to a number of details which should not 
be overlooked lest we drag extensive calculations into a quagmire of lethal 
complications. This version has been tested extensively with our algebraic 
processor MAO [Deprit and Miller (1986; 1989)] and also with Mathematica 
(Wolfram 1988). Yet, this polished version says nothing to justify the trans- 
formation. We remedy this oversight in Section 3 where, as we did originally, 
we trace the Lissajous transformation back to the Hamilton-Jacobi equation 
derived from the Hamiltonian of an elliptic oscillator. 

A number of authors before us, e.g., (Braun 1973; Kummer  1976; 
Churchill et al. 1978) have proposed elements which, in their opinion, were 
better suited than the common harmonic ones to map the orbital space af- 
ter reduction. As a hel l) in relating the Lissajous variables to other sets, we 
present in fifll the formulas needed to express our variables in terms of the 
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usual harmonic variables (Section 4). 
Lissajous variables serve as cylindrical coordinates on the orbital spheres 

after reduction. In that regard, they grant privileged status to a particular 
great circle on such spheres, and to the diameter perpendicular to it. In 
Section 5, we build two variants of the Lissajous transformation with a view 
of determining different systems of cylindrical coordinates on the reduced 
orbital spheres. 

2. Explicit Definition 

The Lissajous transformation 

A : (g,g,L,G;w) ~ (x,y,X,Y): D ---* tt 4 

is defined in the domain 

n = [0,27r[x[0,27r[x{L > 0} x {IGI _< L) (9) 

by the equations 

jL cos(e + g) - f~'v~-~ C cos(e - g), 
+ G 

x = V---YL--~ _ _  

iV 
F - - -  

+ G sin(e + g) + I L ~  G sin(g - g), 
y = V 2  w 

Ox lw(L+G) sin(g.+g)+lw(L2G)sin(g_g), X : ~ , d - - :  
Ol 2 

Y =w~-~ = 

(10) 

Should we be of a mind to satisfy the scaling requirement (3), we would 
assign to L and G the dimensions length 2 time -1 of an angular momentum; 
the angles e and g would, of course, be dimensionless. 

On account of the conditions in (9), we introduce a function a(L,G,w) 
and a function b(L,G,w) (optionally, both with the dimension of a length) 
such that 

L= ½w(a 2+b 2) and G = w a b  with a > 0 .  (11) 

Then, if we set 

s = ½(a T b) and d = ½ ( a -  b). 

we find that 

---- 1 ~ ~(L + C,) and ~d~ = I ( L _  C), 
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and we remove the irrational expressions from (10). As a result, it proved 
very convenient, especially when the calculations are done by computer, to 
introduce the Lissajous transformation in the form 

X ---- 

y = 

Z - -  - 0 f l  

Y - -  ca 

s cos(g + g) - d cos(g - e), 
ssin(g + g) - d s i n ( g -  Q, 

s s in (g+  g / + d s i n ( g -  g)), 

., cos(9 + d cos(g- e)). 

(12) 

The Lissajous transformation is everywhere regular in the domain defined 
by the conditions (9). Indeed, singularities occur solely at the points where 
the partial der iva t ives  

Os Os 1 Od Od 1 

OL - O--G - 4ca---s' OL - OG - 4 w d '  (13) 

are infinite, which happens only for s = 0 or d = 0, hence outside the domain 
specified in (9). Inside (D), however, the determinant of the Jacobian matrix 

o(x,y,x,Y) 
O ( I , g , L , G )  

is found to be equal to 1. Given a quadruple (x, y, X, Y) in the regularity 
domain, one obtains its Lissajous coordinates as follows: 

1. one calculates the actions L and G from the formulas 

caL = ½ ( X  2 + y 2  + ca'2(x2 + y2 ) ) ,  G = x Y -  y X ;  

It is worth noting that, if (x,y) are position coordinates and (X,Y),  
velocity components of a particle, then, according to the preceding for- 
mula, G is the angular monmntunl of that particle per unit of mass. 

2. then one computes the auxiliary quantities 

2cas = ~/2ca(L + G), 2cad = k / 2 w (  L - G); 

3. finally, using the relations 

2ws sin(g + g) = w y  - X ,  

2cas cos(e + g) = cax + Y, 
2wdsin(g - g)  = X + w y ,  

2wd cos(g - g)  = Y - w x ,  

one determines the angles e and g without ambiguity. 
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Formulas in step 1 of the inversion process gives a hint  as to the funda- 
mental  role the following quadrat ic  forms 

1 y2 w2(x2 3- y2)) 10 = 4--~ ( X2 3- 3- = 

I1 = 4---~1 ( y 2 _  X 2 3-¢v2(y2_ x2)) = 

(wW + zZ), 

2(ww - zZ), 
1 

+.,2xy) = -¼(zW + wz), I2 = - ~ ( x Y  
(14) 

~ (  ~1  W2 W2(Z 2 W2)) ' J1 - X 2 "4- y2  _ W2(X2 3- y2)) __ (Z 2 "4- - + 

- ~ i w ~ ~ ( ~  ~2)) J2 = ( xX  3- yY)  - 4~ (Z2 3- 3- 3- . 

play in the s tudy of the Lissajous t ransformat ion and of its relations with 
other  sets proposed to analyze per turbed  elliptic oscillators. 

The frequency w has been introduced here and there throughout (14) so that, if 
one adheres to the dimensional conventions summarized in (3), all these quadratic 
forms have the dimension legnth 2 time-1 of an angular momentum per unit of mass. 
Note also that, in contrast to the first four quadratic forms whose role has long been 
recognized in the theory of the elliptic oscillator [see, e.g., (McIntosh 1959)], the 
last two forms do not seem to have ever been mentioned. 

The  six functions in (14) are not independent•  As one can readily check, 

On the  other hand,  the identities 

det 0(Io, 11, J1, J2 )  = 1.213, det 0(11,12, J1, J 2 )  = lo11, 
o(x,u,x,Y) o(x,u,x,Y) 

show that  the Jacobian matr ix  

O(Io,ii,I2,i3,Ji,J2) 
a ( x , y , X , Y )  

is of rank four. Therefore one can express these forms in terms of four in- 
dependent  variables. Indeed, replacing the Cartesian variables by their ex- 
pressions in terms of the Lissajous variables yields the formulas 

lo = 1  ~L, I1 = wsdcos2g, J1 = wsdcos2g, 
(15) 

-[3 = ½G, 12 = wsd sin 2g. J2 = wsd sin 2e. 

From these identities there results tha t  the Lissajous variables are deter- 
mined unambiguously  from the Cartesian variables as follows: 
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L = 210, cos 29 - 

G = 2/3, sin 2g - 

Inversely, we find that  

1 / 2 _  I1 ~ V  L cos 2g, G 2 

12 = ½¢L2-G2sin2g,  

I1 

/2 

g l  
cos 2g = . r2]'~-~-~_ r2 ' 

V - O  -3 

J2 
sin 2g - 

j ,  = ½ ,/L2 - a2  cos2e,  

J2 = 1 ¢ L  2 _ G 2 sin 2g. 

The functions 11,/2 a n d / 3  determine a transformation 

(x, y, X, Y ) ,  ~ (Ia, 12, 13) 

mapping the three-dimensional sphere 

S3(L) : X 2 + y2  + j ( x  2 + y 2 ) =  2~L 

in the phase space (wx,wy, X , Y )  onto the two-dimensional sphere 

s : (L)  : + + iI  = ¼L: 

(Hopf 1931). In that  perspective, it is interesting to note that  G and 2g ap- 
pear as cylindrical coordinates on S2(L): G is the elevation above the plane 
( /1, /2)  whereas 2g is the longitude reckoned in that  plane from the axis 
/1. We shall show in Section 5 how to modify the Lissajous transformations 
in order to obtain different cylindrical coordinate systems on the sphere 
S2(L). The issue is not without importance considering that ,  for a normal- 
ized per turbed elliptic oscillator, the reduced phase space is parti t ioned into 
a collection of spheres S2(L). 

At present, though, we shM1 show how the Lissajous transformation 
stands out as the one most intimately related with the geometry of an orbit 
for the elliptic oscillator. From putt ing (12) in the form 

x = u c o s g -  vs ing ,  X = U c o s g -  Vs ing ,  
y = u s i n g  + vcosg,  Y = U s i n g  + Vcosg ,  

after introducing the intermediate quantities 

u = b cos g, U = ~a Ou/Og = -wb sin g, 
v = a s i n g ,  V = wOv/Og = wacosg, 

we make clear that ,  in the space (x, y, X, Y), when b ~t 0, the curves (L = 
constant,  G = constant,  g = constant) consist of pairs of ellipses: 
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- one ellipse " t ( L , G , g )  in the coordinate plane (x ,y) ,  centered at the 
origin with semi-axes of length [b[ and a along the u- and v-axes re- 
spectively, the u-axis of symmet ry  being inclined at an angle g over the 
x-axis; 

- and one ellipse r(L, G , g )  in the momen t  plane (X, Y), likewise centered 
at the origin with semi-axes of length w[b I and w a  along the U- and V- 
axes respectively, the U-axis of symmet ry  being inclined at an angle g 
over the X-axis. 

These curves, as Lissajous (1849) demons t ra ted  in his laboratory,  are pre- 
cisely the  figures drawn by a light point  whose Cartesian coordinates are in 
harmonic  vibration at the same frequency, hence the name  we have given 
the t ransformat ion.  
The  geometric  model  explains why the Lissajous t ransformat ion is singular 

when either s = 0 or d = 0, tha t  is equivalently, when [b I = a. For, in tha t  
case, both  ellipses 3' and F being circles, the inclination g is unde tenrdned .  

When  b = 0, then s = d = a / 2  and 

x = -  a s i n g s i n e  = a c o s ( g - F T r / 2 ) s i n g ,  

y = a cos g sin e = a sin(g -t- r / 2 )  sin g., 
X = - w a  sin g cos g = w a  cos(g -t- ir/2) cos g, 
Y = w a  cos g cos g =- uaa sin(g -t- 7r/2) cos g.. 

Thus  the ellipses 7 ( L , 0 , g )  collapse into straight line segments of length 2a 
centered at the origin and inclined over the x-axis by an angle g -F 7r/2 while 
the ellipses F(L,  0, g) reduce to line segments of length 2wa,  likewise centered 
at the origin and inclined by the same angle over the X-axis.  

Let us now assume that  the space on which the Lissajous t ransformat ion 
acts is a symplectic manifold,  and tha t  the Cartesian variables define a chart 
in which all mutua l  Poisson brackets (x ,y) ,  etc., are zero save ( x , X )  and 
( y , Y )  supposed to be equal to 1. By straightforward differentiations, one 
checks readily that  subst i tu t ing the definitions (10) in those Poisson brackets 
does not  alter their values. In other words, the Lissajous t ransformat ion is 
canonical. 

It nfight be worth noting,  incidentally, how using (12) ra ther  than  (10) 
simplifies the evaluation of Poisson brackets. Indeed, on account of (13) for 
any functions p and q in the Cartesian variables, 

( p , q )  = 

So are circumvented complications arising from square roots. 
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Y 

g 

X 

Fig. 1. Geometric meaning of the Lissajous variables. 

That  the Lissajous transformation is not a Mathieu - -  or gauge-free 
transformation - -  results from the differential identity 

X dx + Y dy - L de - G dg = d J2. 

3. I m p l i c i t  D e f i n i t i o n  

It is t ime now we explain how we came to the definition (10). Originally 
it was obtained in the manner  familiar to specialists of classical mechanics 
from a generat ing function that  is a complete solution of a partial differential 
equation. Since the original derivation has been in private circulation for 
some time now, it will make for clarity if we retrace our steps. 
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Passing from Cartesian to polar variables by the canonical transformation 

0 
x = rcos~ ,  X = R c o s ~ -  -- sin~, 

r (16) 
0 

y=rs in~ ,  Y =Rsin~+--cosv~, 
r 

we change the Hamiltonian (1) into the function 

' /  O~ ] 7-/0=~ R 2 + 7  +~2r~ ; 

then, as we adopt the method of Poincar6 (1893, vol. 2, pp. 315-342) rather 
than that of Hamilton and Jacobi, we look for a function S - S(r, O, L, G) 
and a function/C - /C(L ,  G) which satisfy identically the relation 

1 [ (OS~ 2 1 (OS~ 2 ] 

We adopt /C = w L; by virtue of this selection, L is restricted to be > 0. 
Furthermore, we separate the coordinates r and ~ by setting 

S = a ~  + W(L ,  G, r). 

Under these assumptions, )42 is to be determined so as to satisfy the relation 

1 [ (~rW)2 G2 ] -~ + - ~  + w2r 2 = wL. 

For )4; we select the quadrature 

W = d~ 

whose integrand is such that 

Q - Q(r, L, G) = 2wL - ¢o2r 2 -- G 2 / r  2, 

the lower limit P = P(L, G) being a root of the equation Q = 0, i.e., such 
that Q(P, L, G) = O. 

Clearly, the quartic equation Q = 0 has real roots if and only if L 2 >__ G 2. 
In which case, with the functions a and b of L and G defined in (11), we 
factorize Q into the product 

0) 2 
Q = - - ( a  2 _ r2)(r 2 - b2). 

r2 

For the lower limit P we choose the root b. 
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The  t r ans fo rmat ion  genera ted  by S is deduced from the implicit  equat ions  

R - Or - ' v~----L - w . f -~ ,  

os (17) OS fb r d~ 
@ -  o ~  - G, g - -~--~ - O -  G r~v/- ~ .  

The  quad ra tu re  giving g is performed by in t roducing  an angle E ( L , G , r )  
such tha t  

r 2 = a 2 sin 2 E + b 2 cos 2 E ,  (18) 

and the quad ra tu re  giving g, by in t roducing  an angle f ( L ,  G, r) such tha t  

1 sin 2 f cos 2 f 
r2 - a ~  + b------ Y -  (19) 

Then ,  af ter  a few e lementary  manipula t ions ,  the implicit  equat ions  yield 
t ha t  

~ =  E and g =  ~ ) - f .  

There  remains  now to check tha t  the t r ans fo rmat ion  is identical  to the 
one defined in Section 2. The  proof  is easy as far  as the coordinates  ( x , y )  are 
concerned,  bu t  sl ightly more in t r ica te  for the velocities ( X , Y ) .  From (19), 
we deduce t h a t  

r 2 b 2 
r 2 sin 2 f = a 2 - r 2 b 2 a 2 _ r 2 

a2 _ b2 and cos 2 f = a2 _ b2 ; 

in these expressions, we subs t i tu te  (18) to obta in  tha t  

r 2 s i n  2 f = a 2 sin 2 E and r 2 cos 2 f = b 2 c o s  2 E ;  

finally, since E = e, we find tha t  

r sin f = a sin g and r cos f = b cos g. 

In t roduc ing  these expressions in (16) will reproduce the  first two equat ions  
in the  explicit  definit ions (10). As for the velocities, we begin by observing 
tha t  

Q = w 2 ( a2 - 52) 2 
a2b2 r2 sin 2 f cos 2 f 

hence the value for the radial  momen t  

a 2 _ b 2 f -  
R ~/Q = ~v-------7--r sin f cos f .  

a o  
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A few algebraic manipulations will then yield the identities 

0 a 0 
Rsin f +--cos  f w-~rcos f = wacosg=w-~rs in  f ,  

0 
R c o s f - - - s i n f  = 

r 

b 0 
-W-ra sin f = -wbs in  e = w-~r cos f .  

The same way as we just did for the coordinates, we introduce these expres- 
sions in (16), and we recover the last two equations in the system (10). 

4. H a r m o n i c  Variables 

We undertake now to relate the Lissajous variables to the elements hi therto 
most often used by physicists in dealing with elliptic oscillators. 

At the outset of Section 3, we took advantage of the fact that  the har- 
monic oscillators composing an elliptic oscillator are in 1-1 resonance. In 
that  case, the rotations 

x = x' cos e - y' sin e, X = X '  cos e - Y' sin e, 
y = x' sin e + y' cos e, Y = X '  sin e + Y' cos e, 

leave the Hamiltonian (1) invariant, hence the angular momen tum G is an 
integral. The Lissajous transformation suits well the dynamics of the ellip- 
tic oscillator by rMsing this integral to the condition of an action variable 
next to the energy 0., L. By contrast,  Poincar6's harmonic variables shift the 
emphasis to a different group of symmetries,  one that  is shared not only by 
elliptic oscillators but  by any couple of harmonic oscillators whether  they 
are in resonance or not. This is the group made of pairs of rotations 

x = x ' c o s e ' - ( X ' / w ) s i n e ' ,  y =y ' cose" - (Y ' /w) s ine" ,  
X = wx' sin e' + X' cos e', Y = wy' sin e". + Y' cos e", 

separately in the Lagrangian planes (x, X)  and (y, Y) with amplitudes e' and 
e" respectively. They stem from the fact that  the Hamilton-Jacobi equation 
for the elliptic oscillator is separable in Cartesian variables. 

From Poincar6's standpoint,  this means that  the partial differential iden- 
t i ty 

] 
is satisfied by choosing/C = w(@ + ~)  while decomposing 8 into a sum X+:Y 
whose components should verify the partial differential identities 

Ox / +w2x2 = 2wO' \ ~ y /  +w2y 2 = 2w~. 
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For X we choose the quadra ture  

X = 2wO - -  0 . , ' 2X 2 dY:. 

An elementary integrat ion yields immediate ly  that  

N = 2~ arcsin + =x v -w2x 2. 
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But ,  by in t roducing the function ~'(*, x) such tha t  x = ~-6-/w sin ¢', we get 
the simpler expression: 

X = ¢ ( ( +  cosCsin¢) .  

The  solution A" is to be used as the generator of a canonical t ransformat ion 
(¢, ~)  ~ (x, X)  defined by the implicit equations 

OX OX 
X =  ¢= 

Ox ' Oct'  

or, since 

OC 1 i w O( sin( 
- co~4 2-~' and 0 I ' -  2 ~ c o s ~ '  

by the implicit  equations 

X _ 
OX OX 0¢ 
o - - ; -  - 

OX O,V O( 
¢ - 0¢b - ( + c ° s ( s i n C +  0 ( 0 ~ -  ~" 

In a similar manner ,  we at tach the harmonic  elements ¢ and • to the 
Cartesian coordinates y and Y. In sum, without  having had to in t roduce 
a t ime dependent  characteristic,  as would have happened  had we resorted 
to Hanfil ton-Jacobi formalism [see, e.g., (Pars 1965, pp. 279-281)], we obtain 
the classical canonical t ransformation 

# : (¢, ¢ ,  (I), ~)  , , (x ,y ,X,Y)  

defined by the equations 

= sin O, 

X = v % - ~ c o s ¢ ,  

y = v/V~-/~osin ¢,  

Y = ~ - - ~ c o s  ¢.  
( 2 0 )  



216 ANDRl~ DEPRIT 

Upon substituting these values for Cartesian variables in the quadratic forms 
(14), we obtain the formulas expressing the Lissajous variables in terms of 
the harmonic variables, namely 

1 ((I) ~- ~l/), I 0 = l L = ~  

/3 = ½G= v/~-~ sin(¢ - ¢), 

I1 = wsdcos2g = ½(ko - ¢),  
(21) 

12 = wsd sin 2g = - ~ cos(¢ - ¢), 

J1 = ~ d c o s  2e = ½(¢ cos2¢ + ~ cos2¢), 

J'2 = wsdsin 2e = ½((I) sin 2¢ + ko sin 2¢). 

From the preceding formulas, we deduce that 

: +  sin( - ¢), 

dv'~ = i 1~(¢h + ko) - ~ - - ~  sin(¢ - ¢), 

1 ~sd = ~/1(¢2 + ~2) + ~¢~  cos2(O- ¢). 

These formulas complete the conversion from harmonic to Lissajous vari- 
ables. 

For as long as perturbed elliptic oscillators have been studied has it been 
felt that the usual harmonic variables are not the best suited for the problem. 
Time and again new coordinates are proposed. Finding the correspondences 
among these sets is somewhat intricate. The preceding analysis points to a 
systematic way of cutting through the complications: consider the set made 
of the Hopf variables I0, /1,  12, 13, the quadratic forms J1 and ,/2 and the 
functions 

K1 = ~___(y2 _ Z 2 _ a)2y2 + w2x2),  K3 = l ( x X  - yY) ,  

K2 = - ~ - ( X Y - w 2 x y ) ,  K4 = ½(xY + yX) ,  

and express these 10 forms in one set of variables and then in the other. 
There will usually result enough relations to determine unambiguously one 
set of variables in terms of the other. We shall apply this methodology in the 
next section while introducing two variants of the Lissajous transformation. 

The complexity of the conversion fornmlas (21) masks the simple relation 
that exits between the Lissajous transformation A and the Poincar6 trans- 
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formation #. To establish that link, we introduce two elementary canonical 
transformations: 

1. a : (g',g', L', G') ,  ) (¢, ¢, (I), ~)  defined by the equations 

¢ ~,+g, ,  (I) = I , = 7(L + G'), 

¢ = e l _ g , ,  ~ =  1 ~(L - G ' )  

2. X : (x, y,X, Y), ) (p, q, P,Q) defined by the equations 

1 ( X )  
P = ~  Y -  

q = - - ~  y+ , 

It is readily seen then that 

(X °A)#(p) = (#°a)#(P)  = ' l ?  
+ G' 

V Cd 

- -  G '  
(X ° A)#(q) = (#oa)#(q) = 

1 
P = + 

1 
Q : 

- -  sin(e' + g'), 

- -  s i n ( t '  - g ' ) ,  

(XOA)#(P) = (#oa)#(P) = Cw(L' +a ' )  cos(~' + g'), 

(xoA)#(P)  = (#oa)#(Q) = C w ( L ' - a ' )  cos(~ ' -g ' ) .  

Thus is proved that X ° A = # o a, or that the diagram below is commutative. 

A 
(e',g',L',G') ) ( x , y ,X ,Y )  

# 

(¢, ¢,  (I), ~) , (p,q,P,Q) 

(N. B. Except for a swap of coordinates (p,q) with moments (P,Q), x o A 
is the transformation that Ferrer et al. (1990) attribute to Vorob'ev and 
ZaslavskiL 

5 .  Variants  

The Lissajous transformation, we have noted in Section 2, defines a 
map of cylindrical coordinates on the sphere S2(L) involving the plane 
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(I1,/2) and the axis/1 as its reference elements. With the transforma- 
tion 

A ' = X o A = # o a :  ( t ' , g ' , L ' , G ' ) ,  , ( x , y , X , Y ) ,  

we hold a different map of cylindrical coordinates on S2(L), one in 
which the plane (/2, Ia) and the axis I~ constitute the reference ob- 
jects. This we can see most easily by substituting the equations of the 
transformation 

x = ~ / L ' ;  a__.____~ ~ sin(g' + g'), 

y ~/~'sin(e-g'), 
x = ~/~(L' + a')cos(e + g'), 

z = ~/~(L'-  a') cos(e'-  g') 

into the Hopf's quadratic forms. A simple calculation will thus show 
that 

I0 = 1 ¢ 1 12 1 t2 - a'  os29 ', = -a' co 2e ', 

= - ~ G ,  / 3 =  - - sin2g', / ( 4 = -  - sin2g ~. 

So it appears that G ~ measures the elevation above the plane (h , /3 )  and 
that 2g ~ serves as the longitude in that plane as reckoned from the axis 
/2. This change of reference elements is the effect of the transformation 
)/which it is readily checked transforms the function Ia into the function 
- /1  while it sends h onto - / 3  and h onto h .  

Expectedly, these properties of the coordinates (G, g) or (G', g') stem 
from commutativity properties of the transformations A and A' them- 
selves. 

Any smooth function F ( x , y , X , Y )  may serve as the generator 
of an infinitesimal contact transformation AF : (x, y, X, Y) , 
(x', y', X', Y') to be defined by the equations 

z'  = z + e ( z , F )  = x + eLF(x),  X '  = X + e ( X , F )  = X + eLF(X) ,  

y ' = y + e ( y , F )  = y + eLF(y), Y '  = Y + e (Y ,F )  = Y + eLF(Y) ,  
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the operator LF designating the Lie derivative associated with F, i.e., 
the derivative in the direction of the vector field 

O F  OF O F  OF 

Ox ' Oy ' O X '  OY"  

By exponential continuation, AF gives rise to a canonical transforma- 
tion 

A F :  ( x , y , X , Y ) ,  , ( x ' , y ' , X ' , Y ' )  

defined by the equations 

x' = (expeLF)(X)= E ~" " 
n>O " 

~n L n [ 

n>0 

, , _ , , _ ,  ( e x °  ¢l,r CX  " X'  = = E 
n>O '11,. 

~n f n  [ y ~  
Y '  = ( e x p e L F ) ( Y ) =  Y]~ -~..'-'F, , .  

n>O " 

(N. B. AF is known in some quarters of celestial mechanics as the Lie- 
Hori transformation generated by F.) 

The canonical transformation A0 = A~, 0 is already mentioned in (8). 
The transformation A1 

X Y 
x ' = x c o s c - - - s i n ~ ,  y'  = y cos c + - -  sin ¢, 

03 03 

X '  = X cos c + 03x sin ¢, Y '  = Y cos ¢ - 03y sin c 

generated by 11 is similar to it in that it imparts a rotation in both 
Lagrangian planes (y, Y) with amplitude e, except that  the rotations in 
(x, X) and (y, Y) are of opposite sense. The transformation A2 = A&, 

Y X 
x' = x c o s ~ + - - s i n e ,  y~ = y c o s ~ + - - s i n ~ ,  

03 O2 

Y~ = Y cos ~ - 03x sin e, X '  = X cos c - 03y sin ~, 

defines a rotation in the plane (x, Y) paired with a rotation with same 
amplitude and same sense in the plane (y, X). Finally, as one should 



220 ANDRt~ DEPRIT 

expect when the generator is the angular momentum,  A3 = AI3 is the 
usual pair of rotations, 

x' = x cos e + y sin e, X '  = X cos c + Y sin c, 

y' = y cos e - x sin e, Y' = Y cos e - X sin e, 

in the plane of coordinates and in the plane of moments.  

These considerations can facilitate our understanding and conse- 
quent extension of the concept of a Lissajous transformation. They 
lead naturally to enquire about the effect some of these mappings have 
on the Lissajous variables. The main conclusions are encapsulated in 
the accompanying diagrams. 

(x,y,X,Y) 

(e,g,L,G) 

Ao(~) 
(x', y', X I, yI) 

(g+e,g,L,G) 

(x, y, X, Y) 

g, L, a) 

A~(~) 
(xt, yl, X', yI) 

(t,g+e,L,G) 

It is readily checked, indeed, that  

- changing the mean anomaly g into g + e amounts to applying the 
transformation A0 to the Cartesian variables; 

- changing the argument  of pericenter g into g + e amounts  to ap- 
plying the transformation A3 to the Cartesian variables. 

Analogous behavior for the transformation A' translates into similar 
diagrams. 

(x,y,X,Y) 

(g',g',L',G') 

Ao(O 
(x', y', X', Y') 

A I 

(l' + e, g', L', G') 
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( x , y , X , Y )  

A I 

(i ' ,g' ,L' ,G') 

A,(O 
, (x', y', X I, Y')  

A I 

(t', g' + e, L', a')  

Under what circumstances would one wish to perform the normal- 
ization of a perturbed elliptic oscillator in the variables (g, f ,  L ~, G ~) 
rather than in the Lissajous variables? It depends on what the phase 
flow turns out to be on the reduced orbital spheres. In the regions where 
it looks like a circulXtion about diameter /1 = Is = 0, the Lissajous 
variables are likely to be the best suited because the angle g through its 
secular variation will measure the rotation or circulation index about 
the equilibria at /3 = -t-L~2. By the same token, should the reduced 
phase flow look on the whole as a circulation around an equilibrium at 
the extremities of the axis I1, one might find it more convenient to op- 
erate in the coordinates (g,  g', L',  G') rather than in Lissajous variables 
irrespective of their intuitive or geometric meanings. 

Just as the Lissajous transformation can be modified to insure commu- 
tativity with A1, it can be turned around to make of the plane (/3, h )  
and of the axis /2 the reference elements of a cylindrical map on the 
reduced orbital spheres S~(L) .  The key factor in the conversion is the 
canonical transformation £ : (x, y, X, Y),  , (p, q, P, Q) for which 

p = y, q = - X / w ,  P = Y,  Q = wx.  

Its action on the Hopf quadratic forms has the desired effect because 
it converts 13 into -12 (besides changing 12 into -13 and I1 into -11). 
We compose the Lissajous transformation A with ~ to make the trans- 
formation 

A " = ¢ o A :  , (x ,y ,X,Y)  

defined by the equations 
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• / L "  + G" g,,) ~/L" - G" 
x = V  ~w sin(g"+ + V  

+c" ,/v'-c" 
Y = 2w sin(i" + - V 

i X = w(L"_ a")  cos(l" + g") + 

s i n ( i " -  g"), 

sin(~" - g"), 

cos(t"- g"), 

cos(l"- g"). 

That the transformation A" establishes the angle g" as the longitude 
in the plane (13, 11) reckoned from the axis 13 can be readily seen from 
the formulas below in which the Hopf's quadratic forms are expressed 
in terms of the doubly primed variables. 

1o : 1L" 

1 ("~11 12= ~ , 

_ 1 , ,2 2 g " ,  11 - - ~  ~/L - G "2 cos 

13 = 1 ~/L,,2 _ G,,2 sin 2g", 

= 1 tt2 COS 2g": K1 -~  ~/L - G ''2 

1 .2  s in  2~". K3 = ~ / L  - G "2  

The conmmtativity diagrams below will make clear how the variant A" 
differs in nature from the Lissajous transformation and the mapping 
A'. 

(x,y,X,Y) 

I A" 

(e", g", L", G") 

Ao(O 
, X '  (~',¢, ,Y') 

All 

) (e" -4- e, g", L", G") 
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(x ,y ,X ,Y)  

(t", g", L", G") 

^~(~) 
, ( x ' ,  y', X', Y~) 

A" 

) ( i ' l ,g"+e,L",G") 

One will often start the analysis of a perturbed elliptic oscillator in 
the Lissajous variables. Not unfrequently will it turn out that,  in some 
regions of the parameters, the flow for the averaged system is a rotation 
about one of the axes h ,  I2 or /3. One woud then be well advised to 
take advantage of that  situation by adopting the appropriate variant 
of the Lissajous variables. Skipping that transposition usually ends 
up complicating considerably the algebraical developments at higher 
orders. Take for instance (Ghikas 1989) 

v = Z(x 4 + ¢ )  + 2ax:y: +  (x6 + ¢ )  + 3 z y (x: + 

It has been found that,  the terms of degree 6 beong omitted, this per- 
turbed elliptic oscillator after normalization is degenrate, i.e., admits 
non isolated equilibria in the following three cases: 

1. when a = 0, in whi& case the general flow corresponds to a dif- 
ferential rotation about the Ii-axis, all points on the great circle 
I, = 0 being stationary. The Lissajous variant A ~ would be more 
approirate in this case; 

2. when a = 3/3 because ten the averaged flow is that of rotation 
about the I2-axis with all points oil the great circle /2 = 0 being 
equilibria. One should use the variant A" rather than the Lissajous 
transformation A. 

3. when a = fl since then the flow is a differential rotation about Ia 
which leaves the creat circle Ia = 0 invariant. There is no reason 
here for changing variables. 

Having chosen the most convenient variables, one can then pursue the 
analysis to the sixth degree in x and y to ascertain how the additional 
perturbations remove the degenracies. With the miminmm amount of 
algebraic developments, one will be able to establish, for instance, that 
the averaged system is in roation about the/z-axis  only when a = 3' = 
0, that it is in rotation about the I2-axis only when a = 3fl and ~, = 55, 
and, finally, that it is in rotation about the/a-axis  only when a = fl 
and ~, = 5 (Deprit and Ferret, 1990). 
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6. C o n c l u s i o n s  

There is a close analogy between the Delaunay and the Lissajous trans- 
formations. Both are intimately tied to a class of geometric figures 
and the way one parametrizes their equations. Much like the Delau- 
nay transformation offers the most intuitive way of handling perturbed 
Keplerian systems, so does the Lissajous transformation in regard to 
perturbed elliptic oscillators. It is reasonable to relate intrinsic char- 
acteristics of the unperturbed orbits and the effects of perturbations. 
This gives the physicist a high degree of control over the parameters 
of the system and direct information, for example, over the causes of 
bifurcations. 

Parts II and III in this series of communications will show how to 
use the Lissajous transformation for normalizing perturbed elliptic os- 
cillators, and what kind of global information they readily bring out 
after averaging. 
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