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A b s t r a c t .  Large scale chaos is present everywhere in the solar system. It plays a major 
role in the sculpting of the asteroid belt and in the diffusion of comets from the outer 
region of the solar system. All the inner planets probably experienced large scale chaotic 
behavior for their obliquities during their history. The Earth obliquity is presently stable 
only because of the presence of the Moon, and the tilt of Mars undergoes large chaotic 
variations from 0 ° to about 60 °. On billion years time scale, the orbits of the planets 
themselves present strong chaotic variations which can lead to the escape of Mercury or 
collision with Venus in less than 3.5 Gyr. The organization of the planets in the solar 
system thus seems to be strongly related to this chaotic evolution, reaching at all time a 
state of marginal stability, that is practical stability on a time-scale comparable to its age. 
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1. I n t r o d u c t i o n  

Since the seminal work of Poincar6 (1892-99) on the non integrability of the 
three-body problem and the existence of heteroclinic intersections, complet- 
ed by the results of Kolmogorov (1954) and Arnold (1963a-b), it is known 
tha t  in general, in celestial bodies dynamics,  many non regular motions 
will appear besides the quasiperiodic orbits confined on invariant tori in 
the phase space. In practice, positive Lyapunov exponents,  reflecting the 
exponential  divergence of nearby orbits will be detected during long time 
numerical  integrations of these non regular orbits lying in the chaotic zones. 

As a result of this exponential divergence, a practical limit will arise for 
the possibility of making precise predictions for the motion of these celestial 
bodies. If this limit is much larger than the age of the solar system, the 
motion still could be very well approximated by a regular solution and the 
chaotic behavior will not be sensible. 

On the other case, one needs to give up the program of Laplace which 
was to determine with the ul t imate precision the motion of all the objects 
of the heaven. This may be of no physical consequences if the chaotic region 
where the motions wanders is practically confined in a narrow region over 
the age of the solar system. For a planet, it would just mean for example tha t  
the orientation of the orbit or its position on this orbit is not known. Much 
more impor tant  are the cases of extended chaos, when the diffusion of the 
action like variables is sensible over the considered period. In this case, the 
orbit will explore a large portion of the phase space, and significant physical 
changes may  occur. It could mean changes in semi major  axis, eccentricity, 
or inclination. 

Despite the pioneered work of (Hfinon and Heiles, 1964) in galactic dynam- 
ics, the exhibition of these large scale chaotic behaviors in the real solar 
system is very recent, and most of the work reported here was done in the 
last few years. This leads to a completely new vision of celestiM mechanics 
which in the previous decade was considered in as t ronomy as an old and 
dusty field, uniquely concerned by the determination of more and more pre- 
cise paths for already well known objects. Indeed, until very recently, most 
people assumed that  everything was regular and smooth in the solar system, 
and the motion of the planets was considered as the paradigm of regularity. 

In fact, many  objects in the solar system present large scale chaotic behav- 
ior, and the analysis of their possible evolution over long times changed pro- 
foundly the unders tanding of the evolution of the solar system, inducing also 
many new elements for the understanding of its formation. 
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2. M i n o r  bodies  in t h e  solar  s y s t e m  

The solar system is crowded with a multitude of small objects : asteroids, 
comets, small satellites. Many of them are supposed to be the remains of 
the material of the primitive solar system which did not contributed to the 
formation of the planets. They are of great interest for the understanding of 
the formation of the solar system, as their material should not have changed 
much since the primordial state of the solar system. This leads in the recent 
years to numerous studies on their dynamics, aiming to the understanding 
of their dynamical evolution since the formation of the solar system. 

From a practical point of view, these small bodies can usually be studied 
with simplified models. Their very small masses do not perturb the remain- 
ing part of the solar system and, as we are more interested by their collective 
behavior than by the very precise orbit of a single of them. On the other 
hand, for the same reason, it will be necessary to understand the considered 
dynamics in a global way, in the large part of the phase space which will 
correspond to the numerous possible initial conditions of these small bodies. 

Apart from the review of (Wisdom, 1987b), the papers of (Ferraz-Mello, 
1994, Farinella et al., 1994) can be consulted for an overview of the recent 
developments in the understanding of the Kirkwood gaps in the asteroid 
belt, and the delivery of meteorites to the Earth. The dynamical studies on 
comets have been reviewed in (Fern£ndez, 1994). 

2 .1 .  T H E  C H A O T I C  MOTION OF H Y P E R I O N  

The first striking example of chaotic behavior in the solar system was giv- 
en by the chaotic tumbling of Hyperion, a small satellite of Saturn which 
strange rotational behavior was detected during the encounter of the Voy- 
ager spacecraft with Saturn (Wisdom, Peale, Mignard, 1984). This example, 
which dynamics can be reduced to the perturbed pendulum one, provides 
a simple illustration of the arising of chaotic behavior in the vicinity of a 
resonance. This study will apply more generally to any satellite of irregular 
shape in the vicinity of spin-orbit resonance (Wisdom, 1987a). 

The equations of motion for the orientation of a satellite S orbiting 
around a planet P on a fixed elliptical orbit of semi major axis a and eccen- 
tricity e are given by the Hamiltonian 

y2 3 B - A  a 
H -  2 4 C c o s 2 ( x - v ( t ) )  

where r(t) is the distance from the planet to the satellite, x gives the ori- 
entation of the satellite with respect to a fixed direction (here the direction 
of periapse), y = dx /d t  is its conjugate variable, v is the true anomaly of 
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Figure 1. The position of the satellite S around the planet P is defined by the distance r 
and the angle v from the direction of periapse (true anomaly). The angle x provides the 
orientation of the satellite. 

the satellite, and A <: B < C are the principal moments  of inertia of the 
satellite (Fig. l ) .  The associated equations of motion are 

dy OH dx  OH 

d-~ = - Ox ; dt - Oy 

The unit of time is taken such that  the mean motion n = 1. When  expand- 
ing the Hamiltonian with respect to the eccentricity (e) which is supposed 
to be small, and retaining only the terms of first order in eccentricity, one 
obtains 

y2 ~ cos 2(x - t) + -~-[cos(2x - t) - 7 cos(2x - 3t)] (1) 
H -  2 2 

with a = 3(B - A ) / 2 C .  
If S has a rotat ional  symmetry,  a = 0, and the hamiltonian is reduced to 

Ho = y2 /2 .  The satellite rotates with constant  velocity d x / d t  = yo. When 
the orbit is circular, the problem is also integrable as H0 is reduced to the 
first two terms of Eq. (1). 

y2 C¢ 
H0 - 2 2 c o s 2 ( x - t )  (2) 

This motion will be similar to the simple pendulum motion, with possibility 
of libration of  the satellite around the direction of the planet (spin-orbit 
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Figure P. Su r face  of  s ec t ion  in t h e  p h a s e  s p a c e  of  De imos ,  a smal l  sa te l l i t e  o f  Mars .  
x - t de f ines  t h e  o r i e n t a t i o n  of  t h e  sa te l l i t e  a n d  dx/dt i t s  r o t a t i o n a l  veloci ty .  A sma l l  
c h a o t i c  zone  a p p e a r s  in t h e  v ic in i ty  of  t h e  s e p a r a t r i x  of  t h e  u n p e r t u r b e d  p r o b l e m  (e = 0) 
( W i s d o m ,  1987b).  

resonance occurs), or circulation motion for large values of the initial angular 
rotat ional  velocity of the satellite. 

In the general case, a e  ¢ O, and the hamiltonian H0 of (2) is per turbed by 
the remaining terms of (1). At the transit ion between librational motion and 
rotat ional  motion of the satellites, appears a small chaotic zone. This can 
be observed in a section of the phase space portrai t  of Phobos orientation 
motion when orbiting around Mars (Fig.2). 

When the size of the per turbat ion cee increases, resonant zones cor- 
responding to the various possible resonant terms c o s 2 ( x -  t ) , c o s ( 2 x -  
t), cos(2x - 3t) will overlap (Chirikov, 1979), giving rise to large scale chaotic 
motion. 

This is the case for Hyperion (Fig.3), where a e  ~ 0.039. The resulting 
effect is tha t  the rotat ional  motion of Hyperion is not regular, and it becomes 
impossible to adjust  any periodic or quasiperiodic model to its lightcurve 
(Klavetter,  1989). The consideration of this chaotic motion was necessary to 
explain the observations of Hyperion, and this example demons t ra ted  that  
significant physical phenomenon on the solar system could result from this 
complicated chaotic dynamics. 

It should be noticed that  the models used in these computat ions are of 
two degrees of freedom. In this case, according to KAM theory, invariant tori 
of dimension 2 may  subsist and will divide the phase space. Thus, al though 
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Figure 3. Surface of section in the phase space of Hyperion, an outer satellite of Saturn. 
When the perturbation parameter ~e is large, like in the case of Hyperion, many of the 
resonances overlap, giving rise to a large chaotic zone of irregular motion (Wisdom, 1987b). 

an orbit may  be chaotic, it can be bounded for all t ime by these invariant 
surfaces (Celletti, 1990a,b). In the complete model, the addition of the ext ra  
degrees of freedom leaves place for the possibility of diffusion although this 
diffusion may be extremely small. 

2.2.  T H E  KIRKWOOD GAPS 

The distribution of the asteroids, the minor planets which orbits lay primar- 
ily between Mars and Jupiter,  has puzzled astronomers for many decades, 
since Kirkwood observed in 1867 that  they are not randomly distributed. 
Indeed, when plotting the number  of asteroids against their semi major  axis, 
one can observe gaps and accumulations (Fig.4). Kirkwood noticed that  
these gaps coincide with commensurabilities of mean motion with Jupiter,  
and the extend of the gaps also coincide with the libration zones of the res- 
onances (Dermot t  and Murray, 1983). It was thus thought  that  these gaps 
result from the effect of these resonances, but although the first numerical  
integrations of asteroids placed inside the resonance lead to some increase 
of their eccentricities (Froeschl6 and Scholl, 1977), no satisfying explanation 
was given. Later  on, using a simplified model of two degrees of freedom (an 
averaged planar problem where the asteroid is uniquely submit ted to the 
per turbat ion of Jupiter  orbiting on a fixed ellipse), Wisdom (1983, 1985), 
inspired by the work of Chirikov (1979), managed to integrate the orbits 
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Figure 4. Histogram of the number of asteroids plotted against their semi-major axis 
showing the location of gaps and accumulations. 

approximately over much extended time and showed that  in the vicinity of 
the 3/1 resonance, there exists a chaotic zone which can be easily observed 
in a Poincar~ surface of section of the trajectories,  corresponding to the suc- 
cessive intersections with a plane of fixed argument  of perihelion. An orbit 
s tart ing in this chaotic zone can have a modera te  eccentricity for a long 
time, but  it could enter in some other  branch of this chaotic zone, which 
would lead to a large increase of the eccentricity, sufficient to cross Mars 
orbit. A possible close encounter  with this planet can then expel the aster- 
oid from its primitive orbit. The location and extent  of the chaotic zone 
related to the 3/1 resonance is in good agreement with the 3/1 asteroid 
gap. The unders tanding of this complex dynamics,  which differs very much 
from the ordered motion of the integrable problems, thus allowed to obtain 
convincing explanation for one famous problem of celestial mechanics. 

Since the work of Wisdom, which applies more specifically to the 3/1 
gap, many  other  studies analyzed the possible chaotic behavior in the vicin- 
ity of other  asteroidal resonances involving more complicated interactions, 
and models of many  degrees of freedom. In particular,  in their analysis of 
the 2/1 and 3/2 resonances, Morbidelli and Moons (1993) needed to take 
into account the spatial problem and the secular resonances due to the slow 



122 JACQUES LASKAR 

i i:  ill I ii:!i;:i 

ii!! I i! : 106 • i: i 

i I i i  !i!!: 
: :ili ~ 

i02 

100 

5 10 15 2O 25 30 35 4O 45 

Initial Semimajor Axis (AU) 

Figure 5. The time survived by each test particle as a function of initial semimajor 
axis. For each semimajor axis bin, six test particles were started at different longitudes. 
The vertical bars mark the minimum of the six termination times. The spikes at 5.2, 
9.5, 19.2, and 30.1 AU, at the semimajor axes of the planets (Jupiter, Saturn, Uranus 
and Neptune), correspond to test particle in librating in Trojan or horseshoelike orbits 
before close encounter. Interior to Neptune the integration extends to 800 Myr; exterior to 
Neptune to 200 Myr. Beyond about 43 AU all the test particles survive the full integration 
(Holman and Wisdom, 1993). 

precess ion of  Jup i t e r ' s  orb i t  unde r  p l a n e t a r y  p e r t u r b a t i o n s .  Moreover ,  using 
the  same mode l ,  t hey  d e m o n s t r a t e d  t ha t  the  over lap  of  the  secular  reso- 
nances  inside the  3 /1  l ib ra t ion  region provides  a m o re  efficient m ech an i sm  
for the  deple t ion  of  this  gap t h a n  the  one original ly p roposed  by  W i s d o m  
(Moons  and  Morbidel l i ,  1994). 

2.3. THE CHAOTIC MOTION OF THE COMETS AND THE DYNAMICS OF THE 
KUIPER BELT 

T h e  as tero ids  are not  the  only  small  bodies  of  the  solar  sy s t em  which can 
be  sub jec t  to  chaot ic  mot ion .  Indeed,  m a n y  c o m e t a r y  orb i t s  are chaot ic .  

W h e n  Hal ley ' s  comet  came to  visit  us in 1985, several  numer ica l  in tegra-  
t ions  were carr ied ou t  to  r e t r ace  its orbi t  over  all the  ex t en t  of  the  observa-  
t ions,  t h a t  is b e y o n d  163 BC,  da te  of  the  mos t  ancient  obse rva t ion  of  this 
come t  (S t ephenson  et al., 1984). Af te r  such a long t ime,  all the  different  
numer ica l  in tegra t ions  showed different behavior ,  and  the i r  accu racy  was 
ques t ioned .  In fac t ,  these  divergences were la te r  on expla ined by  the  analy-  
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sis of Chirikov and Vecheslavov (1989), which demonstrated that  the motion 
of Halley's comet could be chaotic, and thus practically unpredictable after 
29 revolutions. Indeed, it can be shown that ,  due to the perturbat ion of 
Jupiter,  there exists a large chaotic zone for nearly parabolic comets orbits, 
which extends up to the Oort cloud (Petrosky, 1986, Sagdeev and Zaslavsky, 
1987, Natenzon et al., 1990). This chaotic behavior of Halley's comet was 
later on confirmed by direct numerical integration (Froeschl~ and Gonczi, 
1988). More generally, most of the long period comets have chaotic orbits, 
where the chaotic behavior results from repeated close encounters with the 
Planets. 

The existence of the Oort 's cloud could explain the observation of the 
long period comets, but the distribution of the inclination of the short 
period comet lead to the hypothesis of the existence of an other source 
of comets, the Kniper belt, located beyond Neptune close to the planetary 
plane (Kuiper, 1951, Fernandez, 1980)). In order to study this hypothesis, 
and as the integration of the outer solar system becomes accessible to long 
time computations,  many efforts have been conducted recently to under- 
s tand the dynamics of small particles in the outer solar system. From these 
studies, which consist mainly in the numerical integration of thousand of 
massless particle in the outer solar system, it was found that  apart from 
some special locations, like the trojans Lagrangian points of Jupiter (fig. 4), 
there was practically no stable orbits which could last for more than 1 Gyr 
among the outer planets (Duncan et al., 1989, Gladman and Duncan, 1990, 
Holman and Wisdom, 1993, Levison and Duncan, 1993). On the contrary, 
there exist some stable orbits at about 40 AU and further, where some plan- 
etesimal could last for a long time (Levison and Duncan, 1993). Close to 
them, unstable regions exist which will provide from time to time, by chaot- 
ic diffusion, planetesimal which would enter a more internal part  of the solar 
system, and could be captured temporarily into resonance, as a short period 
comet (Torbett  and Smoluchovski, 1990). During some recent observation 
campaign, several of these t ransneptunian objects where observed, at the 
location of the supposed Kuiper belt, at about 40 AU (see Luu, 1994 for 
a review of this search). In this case again, the understanding of the non 
regular orbits, which can thus explore a large part  of the solar system, gave 
some insight of the observed distribution of the short period comets. 

These findings are also in good agreement with the scenario of forma- 
tion of the solar system including a phase where planetesimals are present 
everywhere (Safronov, 1969). Indeed, as it was forecasted by Kuiper, in the 
outer solar system the removal of the planetesimals non accreted to form 
the planets can probably be explained by the gravitational perturbations of 
the large planets while some remaining bodies are actually present in the 
stable regions of the outer solar system where these perturbations decrease. 
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Figure 6. Elliptical elements.  At  any given time, a planet  ( J )  can be considered to move 
on an elliptical orbit ,  with semimajor  axis a and eccentrici ty e, with the sun at one focus 
(O). The  or ientat ion of this ellipse with respect to a fixed plane II, and a direction of 
reference OX, is given by three angles: The  inclination i, the  longitude of the node ~,  and 
the longi tude of perihelion ~v = ~t + w , where w is the argument  of perihelion (P) .  The  
position of the planet on this ellipse is given by the mean longitude ,~ = M + w, where M 
(mean anomaly) is an angle which is proportional to the area OPJ (third Kepler's law). 

3. T h e  c h a o t i c  m o t i o n  o f  t h e  p l a n e t s  

The first studies of chaotic motion in the solar system concerned small 
objects ,  with simplified dynamical models which could often be reduced 
to two degrees of freedom. With  these simplifications, it was possible to 
describe their global dynamics,  and to s tudy their chaotic zones, which gave 
rise to new insight in the organization and evolution of the solar system. But  
chaotic behavior is not confined to the small bodies of the solar system, and 
concern also the main celestial objects ,  the planets. Despite the outs tanding 
work of PoincarS, the discovery of the non regular behavior of the actual  
planets is very recent, as it requested the possibility to s tudy the evolution 
of the actual  solar system over a very long time, which was only achieved in 
the last few years. 

3.1. HISTORICAL INTRODUCTION 

The problem of the stability of the solar system has fascinated astronomers 
and mathemat ic ians  since antiquity, when it was observed that  among the 
seemingly fixed stars, there were also "wandering s t a r s " - - t he  planets. Efforts 
were first focused on finding a regularity in the motion of these wanderers,  so 
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their movement among the fixed stars could be predicted. For Hipparcus and 
Ptolemy, the ideal model was a combination of uniform circular motions, the 
epicycles, which were adjusted over the centuries to conform to the observed 
course of the planets. Astronomy had become predictive, even if its models 
were in continual need of adjustment. 

From 1609 to 1618, Kepler fixed the planets' trajectories: having assim- 
ilated the lessons of Copernicus, he placed the Sun at the center of the 
universe and, based on the observations of Tycho Brahe, showed that the 
planets describe ellipses around the Sun. At the end of a revolution, each 
planet found itself back where it started and so retraced the same ellipse. 
Though seductive in its simplicity, this vision of a perfectly stable solar sys- 
tem in which all orbits were periodic would not remain unchallenged for 
long. 

In 1687 Newton announced the law of universal gravitation. By restrict- 
ing this law to the interactions of planets with the Sun alone, one obtains 
Kepler's phenomenology. But Newton's law applies to all interactions: Jupiter 
is at tracted by the Sun, as is Saturn, but Jupiter and Saturn also attract  
each other. There is no reason to assume that the planets' orbits are fixed 
invariant ellipses, and Kepler's beautiful regularity is destroyed. 

In Newton's view, the perturbations among the planets were strong enough 
to destroy the stability of the solar system, and divine intervention was 
required from time to time to restore planets' orbits to their place. More- 
over, Newton's law did not yet enjoy its present status, and astronomers 
wondered if it was truly enough to account for the observed movements of 
bodies in the solar system. 

The problem of solar system stability was a real one, since after Kepler, 
Halley was able to show, by analyzing the Chaldean observations transmitted 
by Ptolemy, that Saturn was moving away from the Sun while Jupiter was 
moving closer. By crudely extrapolating these observations, one finds that 
six million years ago Jupiter and Saturn were at the same distance from the 
Sun. In the 18th century, Laplace took up one of these observations, which 
he dated March 1st, 228 BC: At 4:23 am, mean Paris time, Saturn was 
observed "two f ingers" under Gamma in Virgo. Starting from contemporary 
observations, Laplace hoped to calculate backward in time using Newton's 
equations to arrive to this 2000 year-old observation. 

The variations of planetary orbits were such that, in order to predict the 
planets' positions in the sky, de Lalande was required to introduce artificial 
"secular" terms in his ephemeris tables. Could these terms be accounted for 
by Newton's law? 

The problem remained open until the end of the 18th century, when 
Lagrange and Laplace correctly formulated the equations of motion. Lagrange 
started from the fact that the motion of a planet remains close, over a short 
duration, to a Keplerian ellipse, and so had the notion to use this ellipse as 
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the basis for a coordinate system (Fig.6). Lagrange then wrote the differ- 
ential equations that  govern the variations in this elliptic motion under the 
effect of perturbations from other planets, thus inaugurating the methods 
of classical celestial mechanics. Laplace (1772) and Lagrange (1776), whose 
work converged on this point, calculated secular variations, in other words 
long-term variations in the planets' semi-major axes under the effects of per- 
turbations by the other planets• Their calculations showed that ,  up to first 
order in the masses of the planets, these variations vanish. Poisson (1809) 
and Haretu (1885) later showed that  this result remains true through second 
order in the masses of the planets, but not through third order• 

This result seemed to contradict Ptolemy's observations from antiquity, 
but  by examining the periodic perturbations between Jupiter and Saturn, 
Laplace discovered a quasi-resonant term (2Adupi~r- 5ASaturn)in their lon- 
gitudes. This term has an amplitude of 46%0" in Saturn's longitude, and a 
period of about 900 years• This explains why observations taken in 228 BC 
and then in 1590 and 1650 could give the impression of a secular term. 

Laplace (1785) then calculated many other periodic terms, and estab- 
lished a theory of motion for Jupiter and Saturn in very good agreement 
with 18th century observations. Above all, using the same theory, he was 
able to account for Ptolemy's observations to within one minute of arc, with- 
out additional terms in his calculations. He thus showed that  Newton's law 
was in itself sufficient to explain the movement of the planets throughout  
known history, and this exploit no doubt partly accounted for Laplace's 
determinism• 

Laplace showed that  the planets' semi-major axes undergo only small 
oscillations, and do not have secular terms. At the same time, the eccen- 
tricity and inclination of planets' trajectories are also very important  for 
solar system stability• If a planet's eccentricity changes appreciably, its orbit 
might cut through another planet's orbit, increasing the chances of a close 
encounter which could eject it from the solar system. 

Laplace (1784) revisited his calculations, taking into account only terms 
of first order in the perturbation series, and showed that  the system of 
equations describing the mean motions of eccentricity and inclination in a 
planetary system with k planets may be reduced to the system of linear 
differential equations with constant coefficients 

d 
dt 

z1 

zk = 4-2- f [ Ak 
(~ Ok 

. ( k  

z] I 
• i 

• I 

• i 

Ok ] zk I 
Bk I (3)  

• i 

• (k J 
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where z = e exp x/-Z-fw, ~ = sin(i/2) exp V/Z-fa, Ak and Bk are (k, k) matri- 
ces with real coefficients which depends only on the planetary masses and 
semi major axis; Ok is the (k,k) null matrix. Using the invariance of the 
angular momentum 

k 

C = ~ rni~/#iai(1 - e2)cosii (4) 
i=1 

and retaining only the terms of degree 2 in eccentricity and inclination, and 
arguing that the eccentricity and inclination evolutions are decoupled in the 
linear equations, Laplace deduced that the quantities 

k 

i=1 

k 

r n i v ~  sin 2 i i /2 
i=1 

should be constant, and thus there cannot exist polynomial or exponential 
terms in the solutions of these linear equations. Therefore, he deduced that 
all the eigenvalues gi of A and si of B are real and distinct, and the solutions 
of this linear secular system are quasiperiodic expressions of the form 

k 
Zi = E O~ij eigjt 

j = l  

k 

C = E f l i J  eisjt 
j----1 

where oGj and ~ij a r e  complex quantities. The values of the secular frequen- 
cies gi and si, computed in the more complete semi-anMytical solution of 
(Laskar, 1990) are given in table I. 

The variations in eccentricity thus reduce to a superposition of uniform 
circular motions (Fig.7) of frequencies gi and si. The inclinations and eccen- 
tricities of the orbits are therefore subject to only small variations about 
their mean vMues (in fact, this was really established by Le Verrier for the 
whole solar system). It must be stressed that Laplace's solutions are very 
different from Kepler's, because the orbits are no longer fixed. They are 
subject to a double precessionary motion with periods ranging from about 
45 000 to a few million years (table I): precession of the perihelion, which 
is the slow rotation of the orbit in its plane, and precession of the nodes, 
which is the rotation of the plane of the orbit in space. 
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Table I 

Fundamen ta l  frequencies of the  precession mot ion  of the  
solar sys tem (excluding Pluto) .  These  values are taken as the  
mean  values over 20 million years of f rom the  recent  solution 
La90. For the  inner planets,  due to chaotic diffusion, the fre- 
quencies can change significantly with t ime (Laskar, 1990). 

v (" /y r )  period (yr) 

gl 5.596 231 000 

g2 7.456 174 000 

g3 17.365 74 600 

g4 17.916 72 300 

gs 4.249 305 000 

g~ 28.221 45 900 

g7 3.089 419 000 

g8 0.667 1 940 000 

sl - 5.618 230 000 

s2 - 7.080 183 000 

s3 -18.851 68 700 

s4 -17.748 73 000 

s5 0.000 

s6 -26.330 49 200 

sT - 3.005 431 000 

sa - 0.692 1 870 000 

The work of Laplace concerns only the linear approxir.~tion of the sec- 
ular motion of the planets. In modern language, one can say that Laplace 
demonstrated that the origin (planar and circular motions) is an elliptical 
fixed point in the secular phase space which is obtained after averaging over 
the mean longitudes. Later, Le Verrier (1856), famed for his discovery in 
1846 of the planet Neptune through calculations based on observations of 
irregularities in the movement of Uranus, took up Laplace's calculations 
and considered the effects of higher order terms in the series. He showed 
that these terms produce significant corrections and that Lap]ace's and 
Lagrange's calculations "could not be used for an indefinite length of time." 
He then challenged future mathematicians to find exact sohltions, without 
approximations. The difficulty posed by "small divisors" showed that the 
convergence of the series depended on initial conditions, and the proof of 
the stability of the solar system remained an open problem. 

But Poincar6 (1892-99) formulated a negative response to Le verrier's 
question. In so doing he rethought the methods of celestial mechanics along 
the lines of Jacobi's and Hamilton's work. Poincar6 showed that it is not 
possible to integrate the equations of motion of three bodies subject to 
mutual interaction, and not possible to find an analytic solution representing 
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Figure 7. The solutions of Laplace for the motion of the planets are combinations of 
circular and uniform motions with frequencies the precession frequencies gi and s/ of 
the solar system (Table I). The eccentricity e3 of the Earth is given by OP, while the 
inclination of the Earth with respect to the invariant plane of the solar system (i3) is OQ 
(Laskar, 1992b). 

the  m o v e m e n t  of  the  p l ane t s  valid over  an infinite t i m e  in terva l ,  since the  
p e r t u r b a t i o n  series used  by  a s t r o n o m e r s  to  ca lcu la te  the  m o v e m e n t  of  the  
p l ane t s  a re  no t  conve rgen t  on an open  set  of  initiM condi t ions .  

K o l m o g o r o v  (1954)  r e e x a m i n e d  this p r o b l e m  and  d e m o n s t r a t e d  t h a t  in 
a p e r t u r b e d  non  d e g e n e r a t e d  H a m i l t o n i a n  s y s t e m ,  a m o n g  the  non  regu la r  
so lu t ions  descr ibed  by  Poincar~ ,  t he re  still exist  s o m e  quas ipe r iod ic  t r a j ec -  
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tories lying on isolated tori in the phase space. This result was completed 
by Arnold (1963a) who demonstrated that for a sufficiently small pertur- 
bation, the set of invariant tori foliated by quasiperiodic trajectories is of 
strictly positive measure, tending to unity when the perturbation decreases 
to zero. Moser (1962) established the same kind of results for less stronger 
conditions which did not require the analyticity of the Itamiltonian. These 
theorems are known generically as KAM theorems, and have been employed 
in various fields. Unfortunately, they do not apply directly to the planetary 
problem which presents proper degeneracy (the unperturbed Hamiltonian 
depends only on the semi major axes, and not on the other action vari- 
ables related to eccentricity and inclination). This led Arnold to extend the 
proof of existence of invariant tori, taking into account this phenomenon 
of proper degeneracy. He then applied his theorem explicitly to a planar 
planetary system of two planets with a ratio of the semi major axis close to 
zero, demonstrating the existence of quasi periodic trajectories for sufficient- 
ly small values of the planetary masses and eccentricities (Arnold 1963b). 
This result was recently extended to more general planetary systems of two 
planets (Robutel, 1995). 

Arnold's results motivated many discussions; indeed, as the quasiperiodic 
KAM tori are isolated, an infinitely smM1 change in the initial conditions 
can change the solution from being stable for all time, to a chaotic orbit. 
Moreover, as the planetary system is of more than two degrees of freedom, 
none of the KAM tori separates the phase space, leaving the possibility 
for chaotic trajectories to travel large distances in the phase space. In fact, 
several subsequent results demonstrated that very close to a KAM tori, the 
diffusion of the solutions is very slow (Nekhoroshev, 1977, Giorgilli et al., 
1989, Lochak, 1993, Morbidelli and Giorgilli, 1995), and can be negligible 
over very long time, eventually as long as the age of the universe. 

Although the actual masses of the planets are much too large for these 
results to apply directly to the solar system, it was generally supposed that 
the scope of these mathematical results extends much further than their 
actually proven bounds, and until very recently it was generally assumed 
that the solar system was stable over its lifetime, "by any reasonable accep- 
tation of this term". 

In the past few years, the problem of solar system stability has advanced 
considerably, due largely to the help provided by computers which allow 
extensive analytic calculations and numerical integrations over model time 
scMes approaching the age of the solar system, but also due to a better 
understanding of the underlying dynamics, resulting from the expansion of 
the overall field of dynamical systems theory. 
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3.2. N U M E R I C A L  INTEGRATIONS 

The motion of the planets of the solar system has a very privileged status; 
indeed, it is one of the best modelized problems in physics, and its study 
can be practically reduced to the study of the behavior of the solutions of its 
gravitational equations (Newton's equation completed with relativistic cor- 
rections for the most inner planets), neglecting all dissipation, and treating 
the planets as point masses, except in the case of the Earth, where for more 
precise results, one likes to take into account the perturbation introduced 
by the existence of the Moon. 

The mathematical complexity of this problem, despite its apparent sim- 
plicity is daunting, and has been a challenge for mathematicians and astro- 
nomers since its formulation three centuries ago. Since the work of Poincar6, 
it is also known that the analytical perturbative methods which were used 
in planetary computations for nearly two centuries cannot provide good 
approximations of the solutions over infinite time. Moreover, as stated above 
the stability results obtained by Arnold (1963) do not apply to realistic plan- 
etary systems. 

Since the introduction of computers, numerical integration of the plane- 
tary equations appeared as a straightforward way to overcome this complex- 
ity of the solutions, but has Mways been bounded until now by the available 
computer technology. The first long time numerical studies of the solar sys- 
tem were limited to the motion of the outer planets, from Jupiter to Pluto 
(Cohen et al., 1973, Kinoshita and Nakai, 1984). Indeed, the more rapid the 
orbital movement of a planet, the more difficult it is to numerically inte- 
grate its motion. To integrate the orbit of Jupiter, a step-size of 40 days will 
suffice, while a step-size of 0.5 days is required to integrate the motion of 
the whole solar system using a conventional multistep integrator. 

The project LONGSTOP (Carpino et al., 1987, Nobili et al., 1989) used 
a CRAY computer to integrate the system of outer planets over 100 million 
years. At about the same time, calculations of the same system were carried 
out at MIT on a parallel computer specially designed for the task over 
even longer periods, corresponding to times of 210 and 875 million years 
(Applegate et al., 1986, Sussman and Wisdom, 1988). This latter integration 
showed that the motion of Pluto is chaotic, with a Lyapunov time (the 
inverse of the Lyapounov exponent) of 20 million years. But since the mass of 
Pluto is very small, (1/130 000 000 the mass of the Sun), this does not induce 
macroscopic instabilities in the rest of the solar system, which appeared 
relatively stable in these studies. 
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3.3. CHAOS IN THE SOLAR SYSTEM 

The numerical integrations can give very precise solutions of the trajecto- 
ries, but are limited by the short stepsize necessary for the integration of 
the whole solar system and it should be stressed, that until 1991, the only 
available numerical integration of a realistic model of the full solar system 
was the numerically integrated ephemeris DE102 of JPL (Newhall et al., 
1983) which spanned only 44 centuries. 

My approach to to this problem was different, and more in the spirit 
of the analytical works of Laplace and Le Verrier. Indeed, since these pio- 
neered works, the Bureau des Longitudes*, has traditionally been the place 
for development of analytical planetary theories based on classical perturba- 
tion series (Brumberg and Chapront, 1973, Bretagnon, 1974, Duriez, 1979). 
Implicitly, these studies assume that the motion of the celestial bodies is 
regular and quasiperiodic. The methods used are essentially the same ones 
which were used by Le Verrier, with the additional help of the computers for 
symbolic computations. Indeed, such methods can provide very satisfactory 
approximations of the solutions of the planets over several thousand years, 
but they will not be able to give answers to the question of the stability of 
the solar system over time span comparable to its age. This difficulty which 
is known since Poincar~ is one of the reasons which motivated the previously 
quoted long time direct numerical integrations of the equations. 

However, the theoretical results of Arnold (1963) supported the idea that 
it may have been possible with the help of computer algebra to extend 
very much the scope of the classical analytical planetary theories, but this 
revealed to be hopeless when considering the whole solar system, because of 
severe convergence problems encountered in the Birkhoff normalization of 
the secular system of the inner planets (Laskar, 1984). This difficulty which 
revealed to be inherent to this complicated system led me to proceed in two 
very distinct steps: a first one, purely analytical, consists on the averaging 
of the equations of motion over the rapid angles, that is the motion of the 
planets along their orbits. Indeed, from all the achievements of classical 
celestial mechanics obtained since the XIXth century, it could be forecasted 
that no severe problems would occur during this first step involving only 
possible resonances among the orbital motion of the planets. 

This averaging process was conducted in a very extensive way, without 
neglecting any term, up to second order with respect to the masses, and 
through degree 5 in eccentricity and inclination, conducting to the truncated 
secular equations of the solar system on the form 

* The Bureau des Longitudes was founded the 7 messidor year III (june 25, 1795) in 
order to develop Astronomy and Celestial Mechanics. Its founding members were Laplace, 
Lagrange, Lalande, Delambre, Mdchain, Cassini, Bougainville, Borda, Buaehe, Caroch$. 
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= + + Cs( , (5) 
dt 

where a = ( z l , . . . , z s , ~ l , . . . , ( s ) ,  and A is similar to the linear matr ix  of 
Laplace (eq. 3); O3(a, ~) and 05(c~, ~) gather  the terms of degrees 3 and 5. 

The system of equations thus obtained comprises some 150000 terms,  
but  it can be considered as a simplified system, as its main frequencies are 
now the precessing frequencies of the orbits of the planets, and no longer 
comprises their orbital periods. The full system can thus be numerically 
integrated with a very large stepsize of about 500 years. Contributions due to 
the Moon and to the general relativity are added without difficulty (Laskar, 
1985, 1986). 

This second step, i.e. the numerical integration, is then very efficient 
because of the symmetr ic  shape of the secular system, and was conducted 
over 200 millions years in just  a few hours on a super computer .  The main 
results of this integration was to reveal tha t  the whole solar system, and more 
part icularly the inner solar system (Mercury, Venus, Ear th ,  and Mars), is 
chaotic, with a Lyapunov t ime of 5 million years (Laskar, 1989). An error of 
15 meters  in the Ear th ' s  initial position gives rise to an error of about  150 
meters  after 10 million years; but this same error grows to 150 million km 
after 100 million years. It is thus possible to construct  ephemerides over a 
10 million year period, but it becomes practically impossible to predict the 
motion of the planets beyond 100 million years. 

This chaotic behavior essentially originates in the presence of two secular 
resonances among the planets: ~? = 2(g4 - g3) - (s4 - -  s 3 ) ,  which is related to 
Mars and the Ear th ,  and a = ( g l - g h ) -  (st - s 2 ) ,  related to Mercury, Venus, 
and Jupiter  (the g~. are the secular frequencies related to the perihelions of 
the planets, while the si are the secular frequencies of the nodes (table I)). 
The two corresponding arguments  change several times from libration to 
circulation over 200 million years, which is also a characteristic of chaotic 
behavior (fig. 8). It should he stressed that  these two combinations of fre- 
quencies were not chosen in a random way. In fact, the frequency analysis 
(Laskar, 1990) of the numerical solutions of the secular system showed that  
these combinations appear with a large ampli tude in the very first terms 
of the inner planets solutions. Indeed, as soon as one goes fur ther  than the 
linear model, they need to be taken into account.  

When these results were published, the only possible comparison was the 
comparison with the 44 centuries ephemeris DE102, which already allowed 
to be confident on the results by comparing the slopes of the solutions at 
the origin (Laskar, 1986, 1990). At the time, there was no possibility to 
obtain similar results with direct numerical integration. In fact, part ly due 
to the very rapid advances in computer  technology, and in particular to the 
development of workstations, only two years later, Quinn et al. (1991) were 



134 JACQUES LASKAR 

2x 

o 

-2~ 

-4= 

-6 

-8 E 

I 
, , , . ,  , , 

h 

1 
~,i .~./~. ~,, 

i, , !i ~, . . . . . . . .  i , : , , ' , . ,  i ~!,, ~ 
-200 -150 -100 

5a 

8~ 

-50 0 50 100 150 

time (Myr) 
(~; - ~ ; )  - ( ~ ;  - ~ i )  

200 

6K 

-4 rc 

-2 '/~ 

°.t 

i I 

• r '  

- - 2  . . . . . . . .  

-200 -150 -100 -50 0 50 100 150 200 

time (Myr) 

F i g u r e  8. The secular resonances O = 2(g, - g 3 )  - (s, - s 3 )  and ~r = (gl  - g s ) -  (El - s2).  
From -200  Myr to +200, the corresponding argument present several transitions from 
libration to circulation (Laskar, 1992a). 

able to publish a numerical integration of the full solar system, including the 
effects of general relativity and the Moon, which spanned 3 million years in 
the past (completed later on by an integration from -3Myrs to +3Myrs). 
Comparison with the secular solution of (Laskar, 1990) shows very good 
quantitative agreement (fig. 9), and confirms the existence of secular res- 
onances in the inner solar system (Laskar et al., 1992a). Later on, using 
a symplectic integrator directly adapted towards planetary computat ions 
which allowed them to use a larger stepsize of 7.2 days, Sussman and Wis- 
dom (1992) made an integration of the solar system over 100 million years 
which confirmed the existence of the secular resonances as well as the value 
of the Liapunov exponent of about 1/5 Myrs for the solar system. 

3.4. PLANETARY EVOLUTION OVER ~,/[YR 

The planetary eccentricities and inclinations present variations which are 
clearly visible over a few million of years (fig. 9). Over 1 million years, the 
perturbat ion methods of Laplace, and Le verrier (see section 3.1) will give a 
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Figure 9. The eccentricity of the Earth (a) and Mars (b) during a 6 Myr t imespan centered 
at the present. The solid line is the numerical solution QTD (Quinn etal. 1991), and the 
dot ted line the integration La90 of the secular equations (Laskar, 1990). For clarity, the 
difference between the two solutions is also plotted (from Laskar, Quinn, Tremaine, 1992). 

good account of these variations which are mostly due to the linear coupling 
present in the secular equations. They involve the precessional periods of the 
orbits, ranging from 45 000 years to a few million years (Table I). Over sev- 
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Figure 10. Computed evolution of the eccentricity and inclination of Mercury with respect 
to time from -200 to +200 million years. On each curves one can see a rapid variation, 
with periods of about 100 000 years which should correspond to the regular part of the 
solution as described by Laplace, and a slow variation which reveals the diffusion resulting 
from the chaotic dynamics (adapted from Laskar, 1992a). 

era] hundred million years, the behavior of the solutions for the outer planets 
(Jupiter, Saturn, Uranus and Neptune) are very similar to the behavior over 
the first million years, and the motion of these planets appears to be very 
regular, which was also shown very precisely by means of frequency analysis 
(Laskar, 1990). 

For the Earth,  over such time span, the chaotic effect will induce a lost of 
predictability for the orbit. The additional change of eccentricity resulting 
from the chaotic diffusion is moderate and may be estimated to about 0.01 
for the Earth (Laskar, 1992a,b). The most perturbed planet is Mercury, the 
effects of its chaotic dynamics being clearly visible over 400 million years 
(Laskar, 1992a,b) (Fig.10). 

It should be stressed that  the exponential divergence of the orbits revealed 
by  the computat ion of the Lyapunov exponent result mostly from the change 
from libration to circulation of the resonant precession angles, which induce 
after some time a total indeterminacy of the precessional angles of the orbit, 
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that is its orientation in space. The eccentricity and inclination (which are 
action like variables) variations due to the chaotic diffusion are much less 
rapid, and an important question is to estimate their wandering over the life 
time of the solar system. 

3.5. THE CHAOTIC OBLIQUITY OF THE PLANETS 

Instabilities of another sort also manifest themselves in the motion of the 
solar system's planets. These motions are not present in the orbits, but 
rather in the orientation of the planets' axes of rotation. Because of their 
equatorial bulge, the planets are subject to torques arising from the gravi- 
tational forces of their satellites and of the Sun. This causes a precessional 
motion, which in the Earth's case has a period of about 26,000 years. More- 
over, the obliquity of each planet-- the angle between the ecluator and the 
orbital plane--is not fixed, but suffers a perturbation due to the secular 
motion of the planet's orbit. Over one million year period, this variation is 
only I1 .3  degrees around the mean value of 23.3 degrees. This may not seem 
like much, but it is enough to induce variations of nearly 20 percent in the 
summer insolation received at 65 degrees north latitude (fig. 11). According 
to Milankovitch theory (see Imbrie 1982), the amount of additional heat 
received during the summer at high latitudes is an important factor in cli- 
mate studies, as it melts ice accumulated over the winter and prevents the 
ice caps from extending their reach. When this insolation is not sufficient, 
the ice cap extends, inducing a general cooling of the temperature on Earth, 
and eventually leading to an ice age. Weak variations in the Earth's obliq- 
uity are therefore a determining factor in regulating the climate enjoyed by 
the Earth over the last several million years. The quaternary ice ages consti- 
tute significant climatic changes, but were not so severe as to permanently 
change the conditions for life on the Earth's surface. 

The full equations of precession are presented in (Laskar et al., 1993a, 
b, Laskar and Robutel, 1993). In fact, in order to understand the dynamics 
of the problem, the very small terms of these equations can be neglected, 
although they are taken into account in the numerical computations. In the 
following simplified equations, we shall also neglect the eccentricity of of the 
Earth and the Moon as well as the inclination of the Moon. This will provide 
a simple but realistic form for the equations of precession which will allow 
the curious reader to check directly most of the computations. Using the 
action variable X = cos s, where s is the obliquity, and the precession angle 
¢, the hamiltonian reduces to 

H ( X , ¢ , t )  = l a x 2  + v f l  - X2(A(t) sine + B(t) cos ¢) 
2 

(6) 
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Figure 11. Changes in obliquity (a) and insolation at 65N (Aa = 120 °) (b) computed in 
the presence of the Moon from -1Myr to O, and for 1 Myr after its suppression at ~ = 0 
(Laskar et al., 1993a). 

where 
3 C - A 1  

- 2 c (nSmM + n m®) (7) 

A and C are the momentum of inertia of the planet (we assume that B = 
A), u its rotational angular velocity, n M  and n o the mean motions of the 
Moon and the Sun (around a fixed Earth), m M  and m® their masses. The 
expression 

A(t)  + iB(t)  ~ 2~-~ 

where ~ = s i n i / 2  e ~ depends only on the change of inclination of the 
Earth with respect to a fixed plane and is given by the already computed 
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Table  II  

Quas ipe r iod ic  a p p r o x i m a t i o n  of A + i B  ob t a ined  by f requency  analysis  of 
the  E a r t h  o rb i ta l  solut ion over 18 Myr.  T h e  12 M a j o r  t e r m s  are l is ted as 
well as a smaller ,  well i sola ted t e rm,  due  to t he  p e r t u r b a t i o n  of J u p i t e r  

13 and  Sa tu rn .  A + i B  ~ ~ k = l  ake~(~kt+¢k) ( the  ak  are expressed  in yr  - 1 )  
( f rom Laskar  et  al., 1993b).  

k ~k ( " / y r )  ~k × 10 8 ¢ , ( ° )  

1 s3 -18.8504 1.616070 151.724 

2 s4 -17.7544 0.691588 199.002 

3 -18.3016 0.478868 176.641 

4 s6 -26.3302 0.340738 37.294 

5 s l  -5.6128 0.274325 270.479 

6 -19.3997 0.286930 305.514 

7 s2 -7.0772 0.237068 9.899 

8 -19.1251 0.165838 46.398 

9 -6.9564 0.132989 199.316 

10 -7.2037 0.112089 176.470 

11 -6.8283 0.108391 233.037 

12 -5.4892 0.080168 289.422 

13 s6 -- g~ + g~ -50.3021 0.001043 120.161 

solution of the solar system from (Laskar, 1990). Although the motion of 
the solar system is chaotic, for qualitative understanding of the behaviour 
of the solution, it is convenient to use a quasiperiodic approximation of this 
quantities over a short time span of a few millions of years (table II): 

N 

A(t) + iB(t)  ~ ~ ~ke i(~k*+¢k) . 
k = l  

With this approximation, the hamiltonian now reads 

N 1 

H = 2 a X  2 + x / l -  X2~-~ ak sin(t~kt + ¢ + ¢ k )  (8) 
k = l  

which is the hamiltonian of an oscillator of frequency aXo, perturbed by a 
quasiperiodic external oscillation of small amplitude ([ak[ < <  1). We will 
thus obtain a resonance, when ¢ ~ aX0 = acose0  = 50.47"/yr will be 
opposite to one of the frequency t~k. 

When limited to a single term (N = 1), this Hamiltonian is integrable 
(Colombo, 1966). On the contrary, when (N > 1), a simple application of 
Chirikov overlap criterion Mready allows to forecast the existence of chaotic 
zone for the obliquity. 

In the frequency decomposition of the A ( t ) +  iB(t)  planetary forcing 
term, there exists a periodic term of small amplitude related to perturbations 
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exerted by Jupiter and Saturn and of frequency s 6 - - g 6 n t - g 5  = -50.30207"/yr ,  
which could enter into resonance with the precession frequency. 

In order to see the effect of this resonance, we slightly changed the val- 
ue of the dynamical ellipticity (C - A / C )  of the Earth,  keeping fixed its 
angular momentum.  This is what can happen for example during an ice age, 
where the redistribution of the ice changes a little the dynamical ellipticity 
of the Earth.  The integration of the obliquity of the Earth in this small 
resonance showed and increase of the maximum obliquity of the Earth of 
about 0.5 degrees. This small term could thus be of great importance in the 
computat ion of the past insolation of the Earth (Laskar et al., 1993b). 

After investigating the effect of this small resonance, we investigated the 
global dynamics of the obliquity of the Earth,  by means of frequency map 
analysis (Laskar, 1990, 1993a, Laskar et al., 1992, Dumas and Laskar, 1993). 
Briefly speaking, for a Hamiltonian system with n degrees of freedom close 
to integrable H(J~, ~i) = Ho(Ji)+EHI(Ji ,  8i), we shall construct numerically, 
the frequency map 

FT : R n x R ~ R n 

(9) 
(J, r)  ~ ~,(J, r )  

which associates to the action like variables (Ji)i=l,n and to the starting 
time r ,  the frequency vector (vi)~=l,n obtained numerically with a refined 
Fourier analysis of the solution of initial conditions (Ji, ~io) over the finite 
t ime interval [r, r + T ]  (the initial phases 8i(0) = 8i0 are fixed to an arbitrary 
value). 

The regularity of the trajectories can then be monitored by the analysis 
of the frequency map (9), which allows also to make refined estimates of 
the chaotic diffusion of the orbit in the phase space. Indeed, the frequencies 
(vl)i=l,,~ can be thought  as the "best" action variables obtained locally for 
the given initial condition. 

In the case of the present 1 + 15 degrees of freedom problem, we fix 
r = 0, and as the orbital motion of the solar system is not supposed to be 
perturbed by the orientation of the planets, the frequency map will reduce to 
a R ~ t t  map. The regularity of the motion will then be studied directly 
by looking to the regularity of the frequency curve giving the numerically 
determined precession frequency for various values of the initial obliquity. 

This analysis, which was performed for every 0.1 ° in obliquity over 18 
million years shows immediately that  the obliquity of the Earth is presently 
stable, but reveals also the existence of a very large chaotic region, ranging 
from 60 ° to 90 ° (fig. 12) (Laskar et al., 1993b). 

We are far from this chaotic region, and the changes of obliquity of the 
Earth remains small (23.3 ° i 1.3°), but if the Moon were not present, the 
value of the precession constant a would be roughly divided by 3 (as for the 
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Figure 12. Stability of the rotation axis of the Earth in presence of the Moon. A different 
numerical integration of the precession equations is made over 18 Myr for each value of the 
initial obliquity of the Earth ranging from 0 to 125 degrees by 0.] degree stepsize. For each 
integration, the minimum, mean, and maximum values of the obliquity are retained (b). A 
frequency analysis is also performed in order to determine precisely the averaged precession 
frequency of the Earth over this 18 Myr time span. The regularity of the frequency map 
(a) reflects the regularity of the motion. In particular, an extended chaotic zone is clearly 
visible from 60 ° to 90 °. (Laskar et al., 1993a). 

ocean  t ides,  the  M o o n  accounts  for  ~ 2 / 3  in a ,  and  the  Sun for ~ 1 /3 ) .  T h e  
precess ion f r equency  will also be divided by  3, and  will be in r e sonance  wi th  
the  p e r t u r b a t i o n s  due  to  the  mo t ion  of  the  orb i ta l  p lane  of  the  E a r t h .  Even  
more ,  m a n y  resonances  over lap,  giving rise to  an e x t e n d e d  chaot ic  zone.  

We inves t iga ted  the  global  s tabi l i ty  of  the  precession of  the  E a r t h  for  
m a n y  values of  its r o t a t i o n  speed ~, (it should be  n o t ed  t h a t  t he  d y n a m i c a l  
e l l ipt ic i ty  C - A / C  is p r o p o r t i o n a l  to  u2), and  found  t h a t  for  all p r imord ia l  
r o t a t i o n  per iod  rang ing  f rom 12 h to  a b o u t  48 h, t he  E a r t h  ob l iqu i ty  would 
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Figure 13. Withou t  the  Moon, the chaotic zone revealed by the analysis of the  frequency 
map  over 18 Myr (a) extends  from 0 ° to ~ 85 °, for a period of rotat ion of the Ear th  of 
about  20 hours (Laskar et al., 1993a). 

suffer very large chaotic variations, from nearly 0 ° to about  85 ° (figs. 13, 
14), which would probably lead to terrible climate variations on its surface 
(Laskar et al., 1993a, Laskar 1993b) (typical changes from nearly 0 ° to about  
60 ° can occur in less than 2 Myr, while transition to higher values of the 
obliquity should take a much longer time). 

In much the same way as described above for the Earth,  we studied the 
stabili ty of the axial orientation of all the principal planets of the solar 
system. Mercury and Venus are special cases, s ince--no doubt  because of 
solar tides acting over t ime-- the i r  rotat ional  speeds are now very slow. Venus 
also possesses a trMt that  has long intrigued astronomers:  it does not ro ta te  
in the same direction as the other  planets, or in other words, it is upside 
down. 
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Figure 14. The zone of large scale chaotic behavior for the obliquity of The Earth (without 
the Moon) for a wide range of spin rate. The precession constant ~ is given on the left in 
arcseconds per year, and the estimate of the corresponding rotation period of the planet on 
the right, in hours. The blue region corresponds to the stable orbits, where the variations of 
the obliquity are moderate, while the orange and red zone is the chaotic zone. Indeed, the 
chaotic motion is estimated by the diffusion rate of the precession frequency measured for 
each initial condition @, a)  via numerical frequency map analysis over 36 Myr. In the large 
chaotic zones visible here, the chaotic diffusion will occur on horizontal lines (a is fixed), 
and the obliquity of the planet can explore horizontally all the red orange zone. The extend 
of the chaotic zone should even be larger, when considering the diffusion of the orbits over 
longer time scale. With the Moon, one can consider that the present situation of the Earth 
can be represented approximately by the point of coordinates e = 23 °, ~ = 55 "/yr, which 
is in the middle of a large zone of regular motion. Without the Moon, for spin period 
ranging from about 12h to 48h, the obliquity of the Earth would suffer very large chaotic 
variations ranging from nearly 0 ° to about 85 °. This figure summarizes the results of 
about 250 000 numerical integrations of the Earth obliquity variations under the whole 
solar system perturbations for various initial conditions over 36 Myr. (Laskar and Robutel, 
1993, Laskar, 1993b). 
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Figure 15. (a) Frequency map analysis of the obliquity of Mars over 56Myr. 1000 inte- 
grations of the obliquity of Mars have been conducted over 56 Myr for various initial 
conditions. A large chaotic zone is visible, ranging from 0 ° to 60 °. In (b), the power spec- 
t rum of the orbital forcing term A(t)  + iB(t) is given in logarithmic scale, showing the 
correspondence of the chaotic zone with the main frequencies related to Venus and Mer- 
cury. (c) Maximum and minimum values of the obliquity reached over 56Myr. (d) Actual 
variations of the obliquity over 56 Myr for a selected orbit. (adapted from Laskar and 
Robutel, 1993). 

It was generally assumed that Venus was formed upside down--or  at 
least with its rotational axis in its orbital plane, since then dissipative effects 
arising from solar tides, core-mantle interactions, or from atmospheric tidal 
forces due to the Sun could bring it into an upside down position (Goldre- 
ich and Peale, 1970, Dobrovolski, 1980). Indeed, this was considered as a 
constraint on the models for the formation of the solar system, which would 
then require a "stochastic phase" at the end of the formation process, with 

moderate number of large impacts by massive objects in order to obtain 
the desired orientation of this planet (e.g. Dones, and Tremaine, 1993a) We 
have shown instead that, even if Venus started with a rotational speed simi- 
lar to the Earth's, and in the same direction, the presence of a large chaotic 
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zone in its obliquity could subject it to severe tilting, bringing its rotat ional  
axis very nearly into its orbital plane. The dissipative effects just  described 
could then bring it into its present position, where ul t imately it might be 
stabilized as its rotat ion slowed further.  

The situation for Mercury is slightly different. As is the case for Venus, 
we do not know Mercury 's  primordial rotat ional  period, but  it is enough 
to assume it was shorter  than 300 hours to assure that ,  in the course of 
its history, Mercury underwent strongly chaotic variations in its obliquity, 
ranging from 0 to 90 degrees in the space of a few million years (Laskar 
and Robutel,  1993). As with Venus, the continued effects of tides could then 
slow its rotat ion,  causing it to right itself and end up in its present position 
(Peale, 1974, 1976). 

Mars is far from the Sun, and its satellites Phobos and Deimos have 
masses far too small to slow its rotation,  so tha t  its present rotat ional  period 
of 24 hours 37 minutes is close to its primordial rotat ional  period. Mars '  
equator  is inclined 25 degrees with respect to its orbital plane, and its speed 
of precession, 7.26 seconds per year, is close to certain frequencies of motion 
of its orbit (Ward, 1974, Ward and Rudy, 1991). Moreover, variations in 
the inclination of Mars '  orbit are considerably stronger than those of the 
Ear th .  It follows that  variations in its obliquity over a period of one million 
years are also much stronger than the Earth 's ,  and Ward has found obliquity 
variations on the order of +10 degrees about a mean value of 25 degrees. 
These variations bring about strong climatic changes on Mars '  surface, and 
certain surface structures seem to bear witness to these changes. 

Our computat ions (Laskar and Robutel, 1993), and numerical results 
obtained by Touma and Wisdom (1993), provide evidence that  the motion 
of Mars '  rotat ional  axis is chaotic. This has two consequences. First, as it is 
also the case for the orbital motion of the inner planets, it is not possible to 
predict the orientation of Mars '  axis for periods longer than a few million 
years. 

But more important ,  the obliquity of Mars is subject to much larger 
variations than those predicted by Ward, ranging from about  0 to 60 degrees 
in less than 50 million years (fig. 15) (Laskar and Robutel, 1993). Models 
of the past climates of Mars need then to be reviewed in light of these new 
results. In particular,  the large obliquity possibly reached for this planet 
will lead to higher t empera ture  on its surface which may then allow the 
possibility of liquid water on its surface (Jakosky et al., 1993). 

On figure 15, obtained by frequency map analysis, it is clear tha t  the size 
of the chaotic zone of the obliquity ranges from 0 ° to about 60 °, and these 
values are actually reached during numerical integrations over less than 50 
Myrs, but  it can also be seen that  the chaotic zone is divided into two main 
boxes: one is essentially related to secular resonances with Venus, and the 
second one with Mercury. The diffusion in each of these boxes is rapid, while 
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the passage from one box to the other one is more difficult. This explains why 
Touma and Wisdom (1993), as they performed only a very limited numbers 
of integrations, were not able to see this transition and found only limited 
variations of Mars obliquity from 11 ° to 49 °. 

The existence of this large chaotic zone in the orientation motion of Mars 
also removes some constraints from models of solar system formation,  since 
Mars '  obliquity cannot be considered primordial, and its present orientation 
which is very similar to the Earth 's ,  is purely due to chance. 

On the other  hand, our investigations showed that  the obliquities of the 
outer  planets are essentially stable. It is thus not possible to explMn like that  
the very large obliquity of Uranus (98°), but  it should be investigated if a 
chaotic behavior sufficient to lead to such an obliquity could have occurred 
during the formation of the solar sy s t em,  at a t ime when it was supposed 
to be much more massive. 

These results show that  the situation of the Ear th  is very particular. The 
common status  for all the terrestrial planets is to have experienced very 
large scale chaotic behaviour for their obliquity, which, in the case of the 
Ear th  and in absence of the Moon, may have prevented the appearance of 
evoluted forms of life. It is presently difficult to say exactly what  would be 
the climate on the Ear th  with very large values of the obliquity, and even 
more with the possibility of drastic changes in the Ear th  orientation within 
a few million years, as no realistic models have yet been constructed taking 
into account these new results. But  it is important  to realize that  up to now, 
it was generally assumed that  in a planetary system similar to our, the planet 
located not too close to the sun, in which case runaway greenhouse effect may 
occur, and not to far from it in order to prevent runaway glaciation (Hart ,  
1978), would be very similar t o  the Earth.  Our s tudy demonst ra ted  that  this 
"reasonable hypothesis" is wrong, and that  in the case of the Earth,  we owe 
our relative present climate stability to an exceptional event: the presence 
of the Moon. While many results since the acceptance of heliocentrism have 
tendency to show that  our Earth should be very common in the Universe, 
the present findings go in the opposite direction. 

Moreover,  the presence for the Ear th  of such a large satellite as the Moon, 
still puzzle astronomers,  and the currently mostly accepted scenario for its 
origin relies on a non generic event: a large body, of the size of Mars, formed 
at the same time as the other planets enter in collision with the Earth,  
the subsequent accretion of the resulting debris forming the Moon (see the 
review of Stevenson, 1987). Indeed, if we accept that  our presence on the 
Ear th  is correlated to the existence of the Moon, there is no problem for 
accepting an improbable scenario for the formation of the Moon, as soon 
as it does agree with all other physical and chemical constraints.  Moreover, 
we may accept even more improbable models, if they be t te r  agree with the 
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present observations. As a result, this may reduce the chances of finding 
extraterrestr ial  civilizations similar to ours around the nearby stars. 

3.6. P L A N E T A R Y  EVOLUTION ON C Y R  TIME SCALES 

If the motion of the solar system were close to quasiperiodic, tha t  is close 
to a KAM tori in the phase space, then it could be expected that  some 
bound on the possible diffusion of the orbit over 5 Gyr  would result from a 
Nekhoroshev like theorem (e.g. Niederman, 1994). In fact,  as it was shown 
in (Laskar, 1990), although the system reduced to the outer  planets may  be 
considered as close to a KAM tori, the full solar system evolves far from a 
KAM tori, and diffusion of the action like variables (eccentricity and incli- 
nation) can occur. The natural  question is thus to es t imate  this diffusion. 
Let us remind that  in contrast  to two degrees of freedom systems,  where 
the diffusion may be bounded,  in such a many degrees of freedom system 
(15 independent  degrees of freedom for the secular system),  there exist no 
results on the existence of invariant set which will bound the evolution of 
the system on infinite time span. 

One may  be tempted  to integrate the motion of the solar system over 5 
Gyr,  tha t  is over its expecting time life. For direct numerical integrations, 
this can be considered as an interesting challenge as it is still out of reach of 
present computer  technology, but  it should be stressed, that  by no means it 
can be considered as the description of the evolution of the solar system over 
5 Gyr. Indeed, because of the exponential divergence with a Lyapunov time 
of 5 Myr,  after about  100 Myr  the computed solution will be very different 
from the real solution followed by the actual  solar system. Such a solution 
still present sonie interest,  as it gives one of the possible behavior of the 
solar system, but  it is much more impor tant  to obtain some description of 
the chaotic zone where the solar system evolves. In particular,  it is more 
interesting to es t imate  the speed of diffusion in this chaotic zone. For such a 
goal, a single integration of the solar system over 5 Gyr will not be sufficient. 

Quite surprisingly, we can use integrations over even longer time span, 
which will act as scouts exploring this chaotic zone. We can also send mul- 
tiple of these explorers with very close initial conditions, in order to reach a 
larger port ion of the phase space which can be at ta ined by the solar system 
in 5 Gyr. 

Doing this kind of search, it becomes obvious that  we need to be able 
to integrate very rapidly the equations of motion for the solar system, and 
the present work analyzed the results of many such numerical integrations, 
totalling an integration time larger than 200 Gyr. 

In order to achieve this task, the secular equations of the solar system were 
used, after some simplifications (]askar, 1994). Indeed, the initial secular 
system consisted into about  150000 polynomial terms,  but  many of them 
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Figure 16. Numerical integration of the averaged equations of motion of the solar system 
10 Gyr backward and 15 Gyr forward. For each planet, the maximum value obtained 
over intervals of 10 Myr for the eccentricity (a) and inclination (in degrees) from the 
fixed ecliptic 32000 (b) are plotted versus time. For clarity of the figures, Mercury, Venus 
and the Earth are plotted separately from Mars, Jupiter, Saturn, Uranus and Neptune. 
The large planets behavior is so regular that  all the curves of maximum eccentricity and 
inclination appear as straight lines. On the contrary the corresponding curves of the inner 
planets show very large and irregular variations, which at test  to their diffusion in the 
chaotic zone.(Laskar, 1994) 



LARGE SCALE CHAOS AND MARGINAL STABILITY IN THE SOLAR SYSTEM 149 

are of very small amplitude. It was thus possible to suppress them, and to 
reduce the system to only 50 000 terms, conserving the symmetries which 
were present in the equations. Doing that, only about 6000 terms need really 
to be computed during the evolution of the second hand member of the 
equations, and the computations could be achieved on an IBM RS6000/370 
workstation at a rate of about 1 day of CPU time per Gyr, without any 
significant loss in the precision. Moreover, the numerical integration of the 
secular system has been improved, and the stepsize reduced to 250 years, 
which allowed the best precision. As we want to understand the dynamics 
of this secular system, it is actually necessary to make the integration with 
great accuracy. The secular system is an approximation of the real equations 
of motion, but the understanding of the global dynamical behavior of this 
system will provide a lot of information on the original system. 

Some first integrations were conducted over 25 Gyr (-10 Gyr to + 15 Gyr) 
(fig. 16). It may seem strange to try to track the orbit of the solar system 
over such an extended time, longer than the age of the universe, but one 
should understand that it is done in order to explore the chaotic zone where 
the solar system evolves, and after 100 Myr, can give only an indication 
of what can happen. On the other hand, if there is a sudden increase of 
eccentricity for one planet after 10 Gyr, this still tells us that such an event 
could probably also occur over a much shorter time, for example in less than 
5 Gyr. In the same way, what happens in negative time can happen as well 
in positive time. 

In order to follow the diffusion of the orbits in the chaotic zone, one 
needs quantities which behave like action variables, that is quantities which 
will be almost constant for a regular (quasiperiodic) solution of the system. 
Such quantities are given here by the maximum eccentricity and inclination 
attained by each planet during intervals of 10 Myr (Fig. 16). 

The behavior of the large planets is so regular that all the corresponding 
curves appear as straight lines (Fig. 16). On the contrary the maxima of 
eccentricity and inclination of the inner planets show very large and irregular 
variations, which attest to their diffusion in the chaotic zone. The diffusion 
of the eccentricity of the Earth and Venus is moderate, but still amounts 
to about 0.02 for both planets. The diffusion of the eccentricity of Mars is 
large and reaches more than 0.12, leading to values higher than 0.2 for the 
eccentricity of Mars. For Mercury, the chaotic zone is so large (more than 
0.4 ) that it reaches values larger than 0.5 at some time. The behavior of 
the inclination is very similar. 

Strong correlations between the different curves appear in figure 16. 
Indeed, as the solar system wanders in the chaotic zone, it is dominated 
by the linear coupling among the proper modes of the averaged equations 
(eq. 3), which induces a very similar behavior for the maximum eccentricity 
and inclination of Venus and the Earth. This coupling is also noticeable in 
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the solution of Mars. On the other hand, an angular momentum integral 
exists in the averaged equations, and explains why when Mercury's maxi- 
mum eccentricity and inclination increase, the similar quantities for Venus, 
the Earth and Mars decrease. Thus it appears that ,  despite the small values 
of the inner planets'  masses, the conservation of angular momentum plays a 
decisive role in limiting their excursions in the chaotic zone. Thus the same 
argument which allowed Laplace to "prove" the stability of the solar system 
in the linear approximation (see section 3.1) appear to be indeed primordial 
for limiting the wandering of the Earth 's  orbit in the chaotic zone, and thus 
achieving practical stability over the age of the solar system. 

3.7. ESCAPING PLANETS 

At some time, Mercury suffered a large increase in eccentricity (fig. 16) 
rising up to 0.5. But this is not sufficient to cross the orbit of Venus. The 
question then arises whether it is possible for Mercury to escape from the 
solar system in a time comparable to its age. A first a t tempt  to answer 
this was made by slightly changing the initial conditions for the planets. 
Indeed, because of the chaotic behavior, very small changes in the initial 
conditions lead to completely different solutions after 10ffMyr. Using this, 
only one coordinate in the position of the Earth was changed, amounting to 
a physical change of about 150 meters (10 -9 in eccentricity). The full system 
was integrated with severM of these modified solutions, but led to similar 
(although different) solutions. In fact, it should not be too easy to get rid of 
Mercury, otherwise it would be difficult to explain its presence ~in the solar 
system. 

I thus decided to guide Mercury towards the exit. A first experiment was 
done for negative time: for 2 Gyr, the solution is left unchanged; then, 4 
different solutions are computed for 500 Myr, in each of which the position 
of the Earth is shifted by 150 meters, in a different direction (due to the 
exponential divergence, this corresponds to a change smaller than Planck's 
length in the original initial conditions). 

The solution which leads to the maximum value of Mercury's eccentricity 
is retained up to the nearest entire Myr, and is started again. In 18 of such 
steps, Mercury attains eccentricity values close to 1 at about - 6  Gyr when 
the solution enters a zone of greater chaos, with Lyapunov time ~ 1 Myr, 
giving rise to much stronger variations of the orbital elements of the inner 
planets. A second solution was also computed in positive time, with changes 
in initial condition of only 15 meters instead of 150 meters. As anticipated, 
this led to a similar increase in Mercury's eccentricity, this t ime in only 13 
steps and about 3.5 Gyr (fig. 17). 

While the eccentricity increases, the inclination of Mercury can change 
very much but the computat ion of the relative positions of the intersection 
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Figure 17. Orbit of the solar system leading to very large values for the eccentricity of 
Mercury, and possibility of escape at -6.6 Gyr and +3.5 Gyr. The plotted quantities are 
the same as in Fig. 16, except for Mercury, where minimum eccentricity and inclination 
over 10 Myr are also plotted. During all the integrations, the motion of the large planets 
is very regular (Laskar, 1994). 

of the orbits of Mercury and Venus with their line of nodes demonstrated 
that the orbits effectively intersect at about 3.5 Gyr. At this time, the two 
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planets can experience a close encounter which can lead to the escape of 
Mercury or to collision (Laskar, 1994). 

For very high eccentricity of Mercury, the model used here no longer 
gives a very good approximation to the motion of Mercury, but  in the real 
system the addition of the extra  degrees of freedom related to semi-major 
axes and longitudes, will probably lead to even stronger chaotic behavior,  
as in general, addition of degrees of freedom increases the stochastici ty of 
the motion. When  one examines the results of direct numerical integrations 
of asteroids in secular resonances (see for example Farinella et al., 1993), 
one can see very often that  at the beginning, one can assist to a similar 
increase in eccentricity due to the secular resonance, but  after some times, 
when the eccentricity is high enough, the per turbat ions  related to mean 
motion resonances become very important ,  and large scale chaos related to 
mean motion resonances occurs, resulting from overlap of the mean motion 
resonances, which induces a large diffusion of the semi major  axis. Most 
probably,  the natural  scenario for an escape of Mercury will be of this type  
and for high eccentricities the complete solar system should be much less 
stable than the secular system, where the semi-major axis are frozen. 

Similar computat ions  were made for Mars and the Earth,  but  did not lead 
up to now to an escaping solution. For the Earth,  the maximum eccentricity 
reached after 5 Gyr is about  0.1, while for Mars, the eccentricity at ta ined 
about  0.25 after 5 Gyr. Wi th  such a high eccentricity, Mars comes very 
close to the Earth,  and it may be possible to find some escaping solution 
for Mars when considering the complete equations, but  it should be noted 
that  the search for the escaping solutions of Mars, in positive time uniquely, 
necessitated about  100 numerical integrations, each of them over 500 Myr. 
This is obviously out of reach of direct numericM integration with present 
computer  technology, and a mixed solution should be envisaged, where most 
of the increase of eccentricity is made with the secular equations, and the 
final part  with direct numerical integration. 

3.8.  ]~V~ARGINAL STABILITY OF THE SOLAR SYSTEM 

The existence of an escaping orbit for Mercury does not mean that  this 
escape is very likely to occur. In fact, the solution computed  here which 
lead to an escape was very carefully tailored, by selecting at each step one 
solution among 4 or 5 equivalent ones. The result obtained here is a result 
of existence for an escaping orbit ,  but  does not tell us the probabili ty for 
this escape to occur. The computat ion of an est imate of this probabil i ty 
would require to follow more completely all the studied orbits,  and also most 
probably to take into account the full equations in order to be accurate.  From 
the present computat ion,  it can be thought that  this probabil i ty is small, 
but  not null, which is compatible with the present existence of Mercury. 



LARGE SCALE CHAOS AND MARGINAL STABILITY IN THE SOLAR SYSTEM 153 

Figure 18. Estimates of the zones possibly occupied by the inner planets of the solar 
system over 5 Gyr. The circular orbits correspond to the bold lines, and the zones visited 
by each planet resulting from the possible increase of eccentricity are the shaded zones. 
In the case of Mercury and Venus, these shaded zones overlap. Mars can go as far as 1.9 
AU, which roughly corresponds to the inner limit of the asteroid belt. 

Wi thout  speaking of escaping orbits, the very large diffusion of the inner 
planets orbits is very striking. Even after the discovery of the chaotic behav- 
ior of the solar system, and despite the results of (Laskar, 1990) where esti- 
mates of the diffusion were already computed by means of frequency analy- 
sis, many people assumed tha t  the chaotic diffusion in the solar system was 
very small. Here it is clearly demonstra ted tha t  for the inner planets, it is 
not the case. More, for the inner planets, the excursion of the eccentricity 
and inclination variables seems to be essentially constrained by the angular 
momentum conservation which explains tha t  when the maximum eccentric- 
ity of Mercury increases, the maximum eccentricity of Venus, the Ear th  and 
Mars decreases. This is quite surprising, when considering tha t  most of the 
angular momentum comes from the outer planets. In fact, the outer planets 
system is very regular, and practically no diffusion will take place among 
the degrees of freedom related to the outer planets. 

On figure 16, it appears that  the less massive planets are subject to 
the largest variation of eccentricity. This becomes obvious when considering 
that  these variations are essentially bounded by the angular momentum 
conservation, which for each planets is proportional to rnv/-d , where m is the 
mass of the planet, and a its semi major  axis. 

If for each planet, we consider the maximum diffusion of the eccentricity 
observed over 5 Gyr (fig. 18) during similar numerical experiments as for 
Mercury, we find tha t  Mercury's eccentricity can go sufficiently high to allow 
Mercury's  orbit to cross the orbit of Venus, Venus and the Ear th ' s  eccentric- 
ity can go up to 0.1, and Mars as high as 0.25. Apart  from some small place 
in between Venus and the Earth,  or the Ear th  and Mars, all the inner solar 
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system is swept by the planetary orbits, and the small planets (Mercury and 
Mars) are the planets which present the largest excursions. Practically, we 
can conclude that the inner solar system is full. That is there is no room for 
any extra planet. Indeed, even if there are some place which seems not to 
be possibly reached in 5 Gyr, an additional planet orbit will most probably 
intersect one of the already existing ones. If we add a large planet, of the 
size of the Earth or Venus, its orbital elements will not vary much but it will 
induce strong short periods perturbations. On the contrary, a small object 
will suffer large orbital variations, as it will not be much constrained by the 
angular momentum conservation. In this case, encounters with the already 
existing planets is very probable. 

The variations which are reported in fig. 17 are the maximum variations 
observed over 5 Gyr, and not the most probable variations, but the addition 
of an extra planet will most probably increase very much the diffusion by 
increasing the numbers of degrees of freedom, and these maximum possible 
variations can probably be considered as good estimates of the probable 
variations over 5 Gyr in the eventuality of this addition of an extra planet 
in the inner solar system. It thus becomes interesting to speak of marginal 
stability when considering the solar system. Maybe there were some extra 
planets at the early stage of formation of the solar system, and in partic- 
ular in the inner solar system, but this led to so much instability that one 
of the planets (probably among the smallest ones, of the size of Mercury or 
Mars) suffered a close encounter, or a collision with the other ones. This lead 
eventually to the escape of this planet, and the remaining system gets more 
stable. Indeed, this is what was observed when Mercury was suppressed in 
the numerical simulation, after the crossing of Venus orbit. Quinlan (1993) 
also observed similar results on experiments conducted on examples of plan- 
etary systems with the full equations over shorter time scales. In this case, 
at each stage of its evolution, the system should have a time of stability 
comparable with its age, which is roughly what is achieved now, when ones 
finds that escape of one of the planets (Mercury) can occur within 5 Gyr. 

4. D i s c u s s i o n  

4.1. STABILITY OF THE SOLAR SYSTEM 

The Lyapounov time of 5 Myr for the solar system (Laskar, 1989), as well 
as the existence of secular resonances of large amplitude in the inner solar 
system demonstrates that the motion of the solar system is not regular, and 
cannot be approximated by a quasiperiodic trajectory over more than 10 
to 20 Myr. Moreover, it will be practically impossible to make any precise 
prediction for the evolution of the solar system beyond 100 Myr, due to 
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the exponential divergence of the orbits. Thus, we are far from the regular 
solutions, whose existence was exhibited by Arnold. 

Nevertheless, this result applies more specifically to the inner planets 
(Mercury, Venus, Earth and Mars). Although the outer planets (Jupiter, 
Saturn, Uranus and Neptune) are perturbed gravitationally by the inner 
planets, this perturbation is small, and the induced effect of their chaotic 
motion will only generate a small diffusion of their trajectories. For a plan- 
etary system restricted to the outer planets, and even more for the Jupiter 
-Saturn couple, it still should be possible to obtain rigorous (in the math- 
ematical sense) stability results along the lines described by Arnold and 
Nekhoroshev, although this will necessitate specially adapted version of the 
theorems. 

In their integrations of the outer planets system, Sussman and Wisdom 
(1992) have reported Lyapounov times ranging from 3 to 30 Myr. This 
result needs to be taken cautiously as it seems to be very dependent of 
the numerical procedure they used to integrate the equations. Moreover, as 
the Lyapounov time of the secular system seems to be much larger, these 
instabilities should be related to the fast orbital motion of the planets, and 
not to the slow precession of the orbits. They probably involve very high 
order mean motion resonances whose amplitude will be very small, and no 
physical consequence will result. The orbits of the outer planets should still 
be confined to very narrow regions over the age of the solar system. 

For the secular system, the problem is very different. The main frequen- 
cies are of the order of 100 000 years. The Lyapounov time of 5 Myr (which 
is also of the same order as the libration period of the identified main secular 
resonance) is only equal to 50 times the fundamental periods of the motion, 
which explains why this can lead to large scale chaotic behavior. Indeed, 
we have seen that all the inner planets experience significant chaotic diffu- 
sion over billion years timescale, and the existence of an escaping orbit for 
Mercury demonstrates that the solar system in not stable, even when con- 
sidering the strongest meaning of this word, that is the possibility of evasion 
or collision of the planets. 

However, although the solar system is not stable, it can be considered 
as marginally stable, that is strong instabilities (collision or escape) can 
only occur on a time scale comparable to its age, that is about 5 Gyr. 
We have exhibited an escaping or collisional orbit for Mercury in less than 
3.5 Gyr (Laskar, 1994). For Mars, the large diffusion of its orbit can drive 
the eccentricity to about 0.25, and it still should be checked, using the full 
equations of motion in order to add the possibility of instabilities related to 
the mean motion, whether this could also lead to a collisional orbit with the 
Earth. 

On the other hand, the orbits of Venus and the Earth, because of their 
larger masses, their linear coupling, and because of the angular momentum 
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conservation constraint, seem to be practically confined only to small devi- 
ations from their presents path. These two planets, although their orbits 
are not close to quasi periodic, can thus be considered as stable over the 
age of the solar system, without regard to the possibilities of collision with 
Mercury or Mars. 

4 . 2 .  C O N S T R A I N T S  ON T H E  F O R M A T I O N  OF T H E  SOLAR SYSTEM 

This new vision of the evolution of the solar system over its age also induces 
some changes in the dynamical constraints for the formation models of the 
solar system (Harris and Ward, 1982). 

In particular, the recognition that the solar system is in a state of marginal 
stability suggests that the organization of the planets in the solar system 
(often quoted as the Titius-Bode law), and more particularly of its inner 
part, is most probably due to its long run orbital evolution, and not unique- 
ly to its rapid (less than 100 million years) formation process. We have shown 
that the inner solar system is full from 0 AU to about 2 AU, which coincides 
with the inner edge of'the asteroidal belt. Some extra inner planets may have 
existed, but their existence then gave rise to a much more instable system, 
leading to the escape or collision of one of the planets, the remaining part 
then being much more stabilized. Indeed, this is what was observed in our 
numerical computations, after the simulation of the escape of Mercury. In 
particular, these findings show that minor bodies in the inner solar system 
will probably not be able to survive for a very long time. This result is impor- 
tant for the understanding of the formation of the solar system, as it tells 
us that the solar system at the end of its formation process may have been 
significantly different from the present one, and has then evolved towards 
the present configuration because of the gravitationnal instabilities. It still 
should be very interesting to investigate this point further using simulations 
with the addition of an extra planet, but many features have already been 
deduced here from the present computations. 

On the other hand, the outer system is very stable, but the long time 
recent numerical integrations (see section 2.5) also demonstrate that the 
outer solar system is full, that is most of the objects introduced in this 
system will escape on time scale much shorter than 5 Gyr. Apart from some 
special locations, like the Jupiter Lagrangian positions, stable zones only 
begin at about 40 AU, where several objects were recently founded. 

Moreover, by showing that none of the obliquities of the inner planets 
are primordial (section 3.5), we have removed one of the constraint on the 
formation models for the solar system. We have also proven the stability of 
the obliquity of the outer planets, since the solar system is in its present 
state, but instabilities may have existed during the formation of the solar 
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system, when the planetary disk was supposed to be more massive, and it 
is of great  interest to s tudy the possibility of such a scenario. 

As was discussed in section 3.5, we have established the possibility of 
a strong correlation between our existence and the existence of the Moon, 
which should leave the possibility to accept an improbable scenario for its 
formation,  if it properly accounts for the other  physical and chemical obser- 
vations. The models for the formations of the Moon thus need to be reeval- 
uated in this scope. 

4.3. G E N E R I C  P L A N E T A R Y  SYSTEMS 

One may be now tempted  to answer to the question of what  will be a generic 
planetary system ? 

Such a question is of course delicate to answer, after having only stud- 
ied our solar system stability, but  the observation that  our solar system is 
in a s ta te  of marginal stability, that  is practical stability on a t ime scale 
comparable  to its age, can be a clue for answering this question. 

Indeed, I would like to suggest that  a planetary system will always be in 
this s ta te  of marginal stability, as a result of its gravitational interactions. 

In particular,  a planetary system with only one or two planets should be 
excluded, because it will then be much too stable*, or more precisely, if it 
does exist, it would be crowded with asteroids everywhere which would be 
the original remaining planetesimals, not ejected by planetary per turbat ions .  

On the other hand, if the formation process is such that  there exist some 
large outer  planets, and some small inner planets, after 5 Gyr,  the small 
inner planets will still be subject  to instabilities similar to the present ones 
in the solar system, and thus so will be their obliquities. 

It should indeed be noted that  if a planet evolves at about  1 AU from a 
solar type  star,  that  is in good condition to have liquid water  on its surface, 
then its precession frequency will depend essentially on its rotat ion period 
and will thus be similar to the one of the Earth in absence of the Moon 
(fig. 14). Thus if the precessing frequencies of this planetary system are of 
the same order as those of our solar system, this planet will have a large 
probabil i ty to be subject  to very large chaotic variations for its obliquity. 

Moreover,  in order to have an orbital stability comparable  to the one 
of the Earth,  a terrestrial planet probably needs to have a sufficiently large 
mass, otherwise it could be subject  to orbital variations similar to the ones of 
Mercury or Mars, which would induce even larger variations of its obliquity. 

These considerations show that  it may not be so easy to find around a 
nearby star another planet with a similar orbital  and rotat ional  stabil i ty as 
the Earth,  s i tuated at a distance from the central star allowing the existence 
of liquid water.  

* T h i s  resu l t s  f rom some  work in progress  with P. Robu te l  
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4.4. EPILOGUE 

JACQUES LASKAR 

Many fundamental  problems still remain in order to clarify the questions 
raised here on the genericity of our solar system and of the Ear th  orbital 
and rotat ional  stability. Some concern the formation of the planetary system; 
in part icular the understanding of the origin of the rotat ion of the planets 
(Dones and Tremaine, 1993b, Lissauer and Safronov, 1991) appears as a 
crucial point for the analysis of the stability of their orientations. As impor- 
tant  will be possible improvements on the understanding of the response of 
the planets a tmosphere  behavior under insolation forcing. The direct obser- 
vation of another  planetary system, which may occur in the near future,  
should also provide impor tant  elements for answering these questions, but  
it should be stressed that  improvements of the present theoretical knowledge 
of the global dynamics of planetary systems can also provide very impor tant  
constFaints on the possible organization of planetary systems. 

Most  of the results on the planetary orbits presented here rely on the 
analysis of the secular equations of the solar system, and not on the complete 
equations.  This was the price to pay for allowing a more global approach 
on the problem of the stability and long t ime evolution of the solar system. 
Some integrations of the full equations are still welcome, but  it is doubtful  
tha t  these future integrations will change much the global landscape of the 
dynamics of the solar system port rayed here. 
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