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A b s t r a c t .  
' The stability and capture regions in phase space for retrograde and direct planetary 

satellites are investigated in the frame of the Circular Restricted Three-Body Problem. We 
show that  a second integral of motion furnishes an accurate description for the stability 
limit of retrograde satellites. 

The distribution of heliocentric orbital elements is studied, and possible candidates to 
be temporary Jovian satellites are investigated. 

Previous results, limited to orbits satisfying the Mirror Theorem, are extended in order 
to give a complete set of capture conditions in phase-space. 
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1. I n t r o d u c t i o n  

The outer satellites of Jupiter and Phoebe, the outermost  satellite of Sat- 
urn, share common physical characteristics, resembling asteroids rather than 
natural  planetary satellites. Furthermore, most of them are in non equatori- 
al, elongated and retrograde orbits, being thus unlikely a similar formation 
process as that  of the innermost regular satellites. 

Based upon these facts, astronomers have long thought  that  irregular 
planetary satellites have a capture origin (Kuiper 1961). Triton, the large 
moon of Neptune, is perhaps the largest example of satellite capture in the 
Solar System (Goldreich et at-. 1989). 

Another  interesting application of satellite capture in cosmogony has been 
recently explored by Brunini (1995), who has shown that  capture of plan- 
etesimals as planetary satellites has largely increased the efficiency of the 
accretion process of the outer planets. 

Recent numerical studies have shown that  short-period comets of the 
Jupiter family can be temporarily t rapped as jovian satellites. Examples 
revealing the importance of the dynamics of capture are furnished by P / 
Gehrels 3 (Rickman 1979), P / Oterma which underwent a close encounter 
with Jupiter in 1934-1939 (Carusi et al. 1985), P / Helin - Roman - Crockett 
which will perform a long lasting capture of five revolutions about Jupiter 
(Tancredi et al. 1990) and the recent collision of P / Shoemaker - Levy 9 
after being a Jupiter 's satellite for several orbital periods. 
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The first rather complete description of the stability of irregular satel- 
lites was done by H~non (1970) in the frame of Hill's approximation to the 
Restricted Three-Body Problem (hereafter RTBP).  He treated only those 
orbits satisfying the Mirror Theorem: at the initial instant the minor body 
is at conjunction, and its velocity vector is perpendicular to the Sun-Planet 
line. The initial conditions as stated above produce a symmetric motion 
about both the x axis and the time (Roy and Ovenden 1955). Therefore, in 
this situation a capture is always followed by an escape. 

In a purely gravitational scenario, captures are only of temporary nature. 
It has been proven by Hopf (1930) that  each particle must pass arbitrarily 
close to its initial position in phase space, making zero the probability of 
permanent  capture. In fact, there exist some initial conditions yielding to 
permanent  capture, but they form a set of Lebesgue measure zero. Nev- 
ertheless, the "lifetimes" as temporary satellites may be very large, as the 
initiM conditions approach arbitrarily close to stable periodic orbits (Muri- 
son 1989). 

Since at present Jupiter 's irregular satellites are stable, some other mech- 
anism is required to transform temporary captures into permanent  ones. Sev- 
eral theories involving dissipation of orbital energy have been proposed in 
order to facilitate permanent  captures. Nevertheless, all the non gravitation- 
al theories require a temporary capture as a first step. Because dissipative 
diffusion is in general a slow process, long capture times enlarge the proba- 
bility of decayment to the contition of eprmanent satellite. Is in this context 
were long-lasting temporary captures are of particular relevance. Longer 
capture times are in the regions near to stable periodic orbits around the 
planet, that  lie necessarily close to the boundaries of the stability region in 
phase space, i. e. the region of permanent  satellites. 

In the frame of the Circular Restricted Three-Body Problem, libration- 
point capture may be interpreted as the transfer of a body from one mode 
of motion (heliocentric motion) to another mode (planetocentric motion).  
Thus, satellite capture can be thought as the competition between the prima- 
ry masses for the possession of the particle. As expected in such a boundary 
regime, the structure of phase space is exceedingly complex. 

Carusi and others have studied the phenomena of close encounters and 
temporary captures by means of numerical simulations (Carusi and Pozzi 
1978; Carusi, Pozzi and Valsecchi 1979; Carusi and Valsecchi 1979; 1980a,b), 
whereas the stability and capture regions for retrograde satellites have been 
numericMly explored by Huang and Innanen (1983). 

The Jacobi constant C has been frequently used as a criterion for stability 
(Bailey 1972; Heppenheimer 1975; Brunini 1995) as stated in the theory of 
forbidden and permit ted regions of motion (Szebehely 1967). Hunter (1967) 
and H~non (1970) have shown that  in fact this is true for direct orbits, 
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whereas retrograde orbits have been found to be stable for much smaller 
values of C than the one corresponding to the inner libration point. 

In this paper,  special a t tent ion is paid to the question of the stability 
limit and the origin of chaos for retrograde satellites. Possible candidates 
to be captured as jovian satellites are also discussed in section 3 and the 
distribution of capture times is briefly analyzed in section 4. 

The generalization of the previous results characterizing completely the 
phase-space covered with capture-escape orbits is outlined in section 5. In 
section 6 we discuss the consequence of considering the problem in the frame 
of the elliptic RTBP which is more suitable to be applied in Solar System 
problems. 

The last section is devoted to conclusions. 

2. T o p o l o g y  o f  t h e  p h a s e - s p a c e  

H~non (1970) studied the stability problem in satellite motion by means of 
Hill's formulation, which is an approximation to the circular RTBP when 
the mass ratio is near zero, i. e. well suited to satellites in the Solar System. 
The equations of the Hill's problem in rotat ing coordinates may be found in 
H~non (1969). They  allow a Jacobi integral whose expression is: 

T = (C - 3)# -3/2, (1) 

where C is the usual Jacobi constant of the RTBP (Moulton 1914) and tt is 
the mass ratio. In Hill's equations, the planet is in x = y = 0. 

The circular RTBP, when limited to the plane case, is a system of two 
degrees of freedom with one integral of motion. The motion is thus confined 
to a three-dimensional manifold immersed in the four dimensional phase 
space, suitable to be investigated by the surfaces of section method,  which 
is one of the most powerful tools for revealing the properties of the phase 
space. The conventional choice for the surface (H~non 1970) is: y = 0, that  
is the (x, ~) plane, considering only intersections in the negative direction, 
i. e. with ~) < 0. 

Even for the plane circular case, the space of initial conditions to explore 
is fourth dimensional. Thus, restricting the initial conditions to satisfy the 
Mirror Theorem reduces it to two. 

For T = 5 (Figure 2 in HSnon 1970) the transfer between heliocentric 
orbits and planetocentric orbits is not possible. Points with x < 0 represent 
re t rograde satellites, whereas direct orbits are in the x > 0 region. At the 
resolution of the figure, quasi periodic trajectories appear to exist almost 
in all the accessible region. Retrograde and direct orbits are all stable. For 
values of T > 5 the picture is qualitatively similar. 
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For Jacobi constants smaller that  the one corresponding to the inner 
libration point (i.e. for T = 4.326749...), however, the situation changes 
drastically. For the sake of clarity, the cases of direct and retrograde satellite 
orbits will be analyzed separately in the next sections. 

2.1. D I R E C T  O R B I T S  

Surfaces of section for direct orbits were computed by H~non for a sequence 
of the Jacobi  constant  in the range T = 5 to T = 4.35. For T = 4.4 (Fig. 
4 in H~non 1970) we see that  the elliptic fixed point has given birth to a 
period 8 cycle, manifested by 8 stability islands. The main periodic family 
bifurcates, and consequently, a hyperbolic fixed point appears.  This unstable 
periodic orbit gives rise to the chaotic sea exhibited in Figure 5 of H~non's 
paper,  which displays the surface of section for the case T = 4.35. Never- 
theless, direct orbits can not escape from the planet sphere of influence on 
account tha t  the Hill's curve is closed near the second libration point. For 
T < 4.326749... the central region of the accessible phase space is open in 
the x direction, and the third body can escape. This is what  happens in 
general, as the chaotic sea occupies almost all the available phase space. 
Regular orbits are found to fill a small region of phase space. We therefore 
conclude that  escape (and therefore capture)  of direct satellites is intimate- 
ly associated with chaotic motion, and that  the Jacobi constant  is a useful 
stabili ty criterion for direct orbits. 

Murison (1989) has paid special at tention to the sequence of bifurcations 
of periodic orbits. He has computed very accurate surfaces of section for 
the R T B P  in the case # = 0.01. The most interesting surface of section 
is shown in his Figure 8c, where the oscillations between the stable and 
unstable manifolds and a subsequent homoclinic tangle are shown. Chaotic 
regions associated with hyperbolic points are interspersed between island 
elliptic points. The main feature of the satellite island s t ructure  is tha t  they 
are self-similar. 

2.2. R E T R O G R A D E  O R B I T S  

We have computed surfaces of section for retrograde orbits in the RTBP,  in 
the case of # corresponding to Jupiter 's  vMue. 

For Jacobi constants greater than the one corresponding to the first 
collinear point (C = 3.03844...), regular trajectories fill practically all the 
accessible phase space. In addition, a new phenomenon is noted: the possi- 
bility of collisions and close encounters with the planet. 

A frequent end-state  of captured satellites is a collision onto the planet 
surface. Therefore, we have paid special at tention to the conditions for col- 
lision orbits in the case of Jupiter.  The region of phase-space full of collision 
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Figure 1. Surfaces of section for retrograde satellite orbits 
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Figure 2. Surface of section f o r  # - -  9 . 5 4  × 10  - 4 .  D a r k  zones represent chaotic orbits. The 
z o n e  between the chaotic region and the solid line corresponds to collision orbits. 

orbits ( r j  ~_ R p ,  where r j  is the distance between the particle and Jupiter, 
and Rp is Jupiter's radius) is represented as the white area, between the 
solid lines, in the surfaces of section of Figure lb and Figure 2. They are all 
retrograde orbits and are placed just in the boundary of the stability region. 
It thus suggests that collision is the mechanism preventing retrograde orbits- 
from escape, forming a separatrix between the two types of regime: helio- 
centric and planetocentric motion. 
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Figure 3. A typical direct-retrograde chaotic orbit. This satellite plows alternatively into 
the chaotic seas of direct and retrograde motion about the planet. 

For C less than 3.025, KAM tori are surrounded by a chaotic region, and 
escape is then possible, as the chaotic regions extends up to initial condi- 
tions corresponding to heliocentric orbits. Collision orbits separate regular 
and chaotic regions in phase space. It suggests, at first sight, tha t  chaos in 
re trograde motion would be originated by close encounters. Nevertheless, the 
chaotic region merges with the chaotic sea corresponding to direct orbits. 
The orbits of this region are alternatively direct and retrograde. Such a class 
of orbits is shown in Figure 3. 

The stability region for retrograde orbits was explored in the space of 
initial conditions belonging to the Mirror Theorem. 

As in some previous papers (Huang and Innanen 1983), we have defined 
a satellite as being stable if it is able to survive for more than 1000 orbits 
around the planet without escaping from the planet sphere of influence. The 
stable regions are shown in Figure 4. 

Dark points represent regular regions, whereas blank spaces correspond 
to capture-escape regions. We see that  regular orbits exist at almost all val- 
ues of the Jacobi constant.  Open circles are initial conditions corresponding 
to collision orbits. This diagram is somewhat different that  the one comput-  
ed by IIuang and Innanen (1983) because they have erroneously used the 
diameter  of Jupiter,  ra ther  than its radius, as the collision criterion. 
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Figure 4. Dark dots: stable region. Open circles: collision orbits. 
Full line: theoretical stability limit. 

2.3. A N A L Y T I C  D E R I V A T I O N  OF  T H E  S T A B I L I T Y  L I M I T  

A first approximation to the limit of stability for re t rograde orbits has been 
given by Huang and Innanen (1983). They have shown that  at the distance 
to the planet 

r ,,~ 0.84# 1/3, (2) 

the total  acceleration in the rotat ing frame falls to zero. 
For the case of Jupiter  r = 0.084, that  should be compared with the 

stability boundary  of Figure 4. 
A more accurate description of the stability limit for re t rograde orbits 

may be stated on rigorous dynamicM grollnds as follows: For regular orbits, 
a second uniform integral confines the mo t ion  to an invariant manifold, 
equivalent to a two dimensional torus in phase space. Such a second integral 
of motion, besides the Jacobi constant,  was formally found by Contopoulos 
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(1965) and Bozis (1966). Proceeding as in the two-body problem, we may 
write the angular moment  integral as 

]0 '(  1 x y - y x - r  2 = C 2 - # ( 1 - p )  y r3 32 d t. (3) 

The last integral in this expression exhibits small oscillations around a 
mean value, whose main frequency is half a planet year. The amplitude of 
the oscillations is in general small (Benner and McKinnon 1995). Neglecting 
this term, we may write, in usual polar coordinates: 

C2 = r2~ + r 2. (4) 

The jacobi integral may also be written in polar coordinates (Moulton, 
1914): 

C = i.2 -I- r20  2 - (1 - p ) ( r  2 -I- 1/r , )  -t- p(r~ 4- 1 / r 2 ) .  (5) 

Combining these two equations, we can eliminate ~ getting thus an expres- 
sion for the limiting radius for regular orbits (we shall not write this rather 
complex expression here, which is only an algebraic exercise). In Figure 4, 
the theoretical limit (solid line) may be compared with the empirical sta- 
bility limit for retrograde orbits. The agreement is remarkably good up to 
C ~ 3.024. The disagreement for C > 3.024 is originated by the presence 
of collision orbits. These orbits have a small angular momentum,  and the 
integral term in the right hand side of eq. (3) can no longer be neglected. A 
first order approximation of this integral, might furnish a better description 
of the stability limit for retrograde orbits. Such an approximation may be 
found in the paper by Bozis (1966). 

3. H e l i o c e n t r i c  o rb i t a l  e l e m e n t s  

The results of the previous sections, suggest that  captured satellites, such 
as Jupiter 's irregular ones, originated in regions of chaotic motion about 
the Sun. In this section, we briefly discuss the possible candidates to be the 
progenitors of Jovian irregular satellites. 

Sufficiently long time after a particle has escaped from Jupiter, its helio- 
centric orbital elements might be taken as the final elements (i.e.stables for a 
long time). We have thus computed heliocentric (a, e) elements for a sample 
of 5000 test escaping particles in the circular RTBP, Jupiter and the Sun 
being the primaries. The elements were computed at the instant 100 jovian 
years after escape. They are shown in Figure 5. 

This figure should be compared with those obtained for the elliptic RTBP 
(Figure 1 of Huang and Innanen; 1983). The smM1 eccentricity of Jupiter 's 
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Figure 5. Heliocentr ic  o rb i t a l  e lements  of e scape -cap tu re  bodies  for the  Jup i te r -Sui t  case. 

orbit is the reason for the fairly good concordance of both two distribu- 
tions. The points in Fig. 5 are approximately distributed along two curves. 
The motion being chaotic, no other uniform integral of motion exists and 
therefore, these curves must necessarily be curves of C = c o n s t a n t .  

Histograms of a and e are shown in Figure 6a and 6b respectively. We see 
tha t  the semiaxes distribute in three well definite spikes. The first one corre- 
sponds to a = 3.95 AU, which is very near the 3 : 2 mean motion resonance 
with Jupiter,  whereas the clusters at 7.3 and 8.6 AU are associated, though 
not exactly, with the 2 : 3 and 1 : 2 exterior mean motion resonances. The 
reason of these accumulations remains to be investigated. 

The histogram of eccentricities reveals tha t  the preferred eccentricity of 
capture is ~ 0.3. The reason on this fact is tha t  this eccentricity corresponds 
to close approaches with Jupiter  of particles whose semiaxes are near the 
accumulations in 3.95 AU and 7.3 UA. 

It is instructive to compare the distribution of the semiaxes and eccentric- 
ities shown in Fig. 5 with those of the actual asteroids and short-period and 
intermediate-period comets. They are plotted in Figure 7 where the curve 
for C = 3 is also plotted. Among asteroids, some Hilda's overlap with this 
curve. However, they are protected against capture because of the nature  
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of their resonant motion. We may conjecture tha t  the present asteroids of 
the Hilda group are survivors of a more dense primordial population. Most 
of them were probably captured by Jupiter in the past the only steroids 
remaining are those protected by their libration motion. 

Short period comets of the Jupiter family are plotted as open circles in 
Fig. 7. We observe that  most of them are distributed very near the curve 
corresponding to capture conditions. Nevertheless, this diagram should not 
be taken too rigorously, as we have neglected the orbital inclination, which 
in fact decreases the probability of capture (Carusi and Valsecchi 1979). 

4. C a p t u r e  t i m e s  

Capture  times are defined as the number of orbits around the planet before 
the particle escapes into motion around the Sun. If the initial conditions are 
those satisfying the Mirror Theorem, the motion is symmetr ic  with respect 
to the t ime and the x axis. In this situation, if the particle starts its motion 
in the sphere of influence of the smallest mass #, the capture t ime is then 
twice the t ime elapsed before escape. 

Initial conditions causing long captures are near the stability boundaries 
of phase space, and are associated with families of periodic orbits. As a 
consequence of this fact, the small-scale s t ructure of capture times exhibits 
the same bifurcation sequence and self-similarity pa t te rn  as the periodic 
orbits (Murison, 1989). It is worth noting that  there exist short lived orbits 
tha t  are also periodic about both masses. Interesting examples of these class 
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Figure 7. Distribution of actual asteroids (dots) and short period comets (circles) 

are shown in Szebehely (1967, Fig. 9.24(b) ) for the part icular case of # = 
1/81.45, i. e. very near the Ear th-Moon system. These class of periodic orbits 
are strongly unstable.  

5. C o m p l e t e  se t  o f  c a p t u r e  c o n d i t i o n s  

As far as we know, all previous papers on satellite capture deM with partic- 
ular sets of initial conditions, i. e. those satisfying the Mirror Theorem (Roy 
and Ovenden 1955). However, in order to est imate the probabil i ty of satellite 
capture,  the complete set of conditions leading to capture is required. 

A first a t t empt  to resolve this problem has been carried out  by Brunini 
et al. (1995). 

In this paper,  the massless particle has been initially placed on a straight 
line normal to the Sun-planet direction 

x = x 0 =  1 - p - l A p  (6) 
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Figure 8. Capture initial conditions for the Jupiter-Sun case. Open triangles: direct orbits. 
Dark triangles: retrograde orbits. Collision orbits separate direct and retrograde orbits. In 
this figure C =- 3.024. 

where the value 1.1 - though arbitrary - guaranties the particle being ini- 
tially outside the planetary sphere of influence (Danby 1988), since p is the 
distance between second libration point L2 and the planet: 

p = _ + 

3"3" "'" 
(7) 

In fact every heliocentric particle to be captured by the planet must 
necessarily pass through x = x0. Given C, the only degree of freedom left is 
that of the direction of the velocity vector, defined by the angle with respect 
to the Sun-planet line, c~, which may take values in the interval ( -90  °, 90°). 

For given C and #, the initial conditions leading to capture cover the inte- 
rior of a region in the (y, c~) plane as the one shown in Figure 8, referred to 
as the "capture domain". Open circles correspond to direct orbits, whereas 
dark circles represent retrograde satellites. The empty area between retro- 
grade and direct satellites are collision orbits. Brunini et al. (1995) have 
performed a great number of numerical simulations, characterizing capture 
conditions in terms of # and C, and also generalizing these results to the 
3D case. 
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6. C a p t u r e  condi t ions  in t h e  ell iptic R T B P  
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The main difficulty to study the problem in the frame of the elliptic RTBP 
is that an integral of motion, equivalent to Jacobi's, does no longer exist, 
and the convenient reduction of the degrees of freedom of the system is 
not allowed anymore. Since the Jacobi integral is not conserved, a particle 
crossing the plane x = x0 with conditions belonging to the"capture domain" 
for a given value of C, could never be captured because of the shrinking of the 
neck around the second lagrangian point. Conversely, particles that would 
not be captured in the circular case could be captured when the planetary 
orbital eccentricity is considered. 

As expected, these particles come from a thin bounding ring in the cap- 
ture domain. 

The net effect of the eccentricity of the primaries is the erosion and con- 
sequently the reduction of the stability region. Some numerical simulations 
(Brunini et al., 1995) have also revealed that the size of the stability region 
is properly scaled by the pericentric distance of the secondary rather that 
the orbital semimajor axis. 

These results, though not conclusive, may be useful from a statistical 
point of view, guarantying that capture domains in the circular and actual 
cases will not differ much in the Solar System. A similar argument may be 
applied to capture times. 

7. Conc lus ions  

In this paper, we have made a revision of the main known aspects of the 
problem of satellite capture. In addition, we have shown that chaos for ret- 
rograde satelhtes is not originated in close encounters, but to an overlapping 
of capture conditions with those corresponding to direct motion about the 
planet. The chaotic regime at large values of the Jacobi constant is popu- 
lated by a mixture between direct and retrograde chaotic orbits. Collisions 
play the formal role of separating direct and retrograde satellites. 

Regular retrograde satellites exist for almost any value of the Jacobi con- 
stant, and the persistence of the angular momentum integral is the effective 
mechanism preventing from escape in this case. 

We have also shown possible ways to generalize the results in order to 
characterize complete sets of capture conditions in phase space. 

The effect of the eccentricity, in the range of interest for Solar System, 
does not affect much the results, at least from the statistical point of view. 
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