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Abs t rac t .  The global semi-numerical perturbation method proposed by Henrard and 
Lemaitre (1986) for the 2/1 resonance of the planar elliptic restricted three body problem 
is applied to the 3/1 resonance and is compared with Wisdom's perturbative treatment 
(1985) of the same problem. It appears that the two methods are comparable in their 
ability to reproduce the results of numerical integration especially in what concerns the 
shape and area of chaotic domains. As the global semi-numerical perturbation method 
is easily adapted to more general types of perturbations, it is hoped that it can serve as 
the basis for the analysis of more refined models of asteroidM motion. We point out in 
our analysis that Wisdom's uncertainty zone mechanism for generating chaotic domains 
(also analysed by Escande 1985 under the name of slow Hamiltonian chaotic layer) is 
not the only one at work in this problem. The secondary resonance Wp -- 0 plays also 
its role which is qualitatively (if not quantitatively) important as it is closely associated 
with the random jumps between a high eccentricity mode and a low eccentricity mode. 

Keywords :  resonance, Kirkwood gaps, perturbation method, chaotic motion, secondary 
resonance 

1. I n t r o d u c t i o n  

The existence of the Kirkwood gaps in the asteroid belt and their unmistakable 
association with resonances has been a puzzling problem in Celestial Mechanics for 
a long time; puzzling and important  because the peculiarities in the distribution 
of asteroids could contain some hidden clues on how the Solar System formed or 
evolved. 

The  natural  satellite systems have also provided a long list of puzzles involving 
origin and evolution of resonances between satellites (see Peale 1986 for a recent 
review). Again, the present orbital configurations together with the evidences, 
recently obtained, of late resurfacing of small icy satellites could contain precious 
information on the physics of the Solar System. 

In both cases, what we need to untangle those clues is a sharp understanding 
of the long term behaviour of trajectories near commensurabili ty in the elliptic 
restricted three body problem. 

Our understanding of the dynamics of this problem has been much improved 
(see Henrard 1988 for a review) by the work of Scholl and Proeschl~ (1974, 1975), 
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Froeschl~ and Scholl (1976, 1977, 1981) and more recently by the work of Wisdom 
(1982, 1983, 1985). 

In particular, Wisdom (1985) proposed a perturbative treatment of the motion 
near the 3/1 commensurability by which one could understand, in an unified way, 
most of the peculiarities found numerically by him and previous authors. 

Unfortunately, Wisdom's perturbative technique is taylored for a particular 
truncated version of the 3/1 resonance and does not apply as such to the 2/1 
resonance or to more precise models of the 3/1 resonance. Henrard and Lemaltre 
(1987) first modified Wisdom's technique to apply it to the 2/1 resonance, then 
proposed a new semi-numerical approach (Henrard and Lemaitre 1986) that did 
for the 2/1 resonance (see also Lemaltre and Henrard 1989) what Wisdom's per- 
turbative treatment did for the 3/1 resonance : explain in a theoretical frame the 
results of numerical integration by Giffen (1973), Froeschl~ and Scholl (opus cited 
above) and Murray (1986). 

The semi-numerical approach of Henrard and Lema~tre is more general and 
can be applied to the 3/1 resonance as well. Even when applied to the 3/1 reso- 
nance truncated at the lowest order, it is not equivalent to Wisdom's perturbative 
treatment and a question immediately arises : how do they compare ? 

This is the main question we would like to answer in this paper. The short 
answer will be : they compare well and both of them compare well with the "real 
world" (personified here by the numerical integration of the truncated differential 
equations). Both of them have their weaknesses (not always the same ones) and 
we do not find one of them to be much better than the other one. 

Of course, the interest of the comparison is not only in the comparison itself. Be- 
yond that, we would like to assess the effectiveness of the semi-numerical approach 
with the idea of applying it later to more refined models of the 3/1 resonance (to 
bring the "real world" closer to the real asteroids). We would like also to sharpen 
the analysis based upon a perturbative treatment by pointing out some aspects 
of it that were not emphasized in Wisdom's treatment. We think that the role of 
secondary resonances is the most important of these aspects. 

The second section describes the Hamiltonian of the truncated (at degree two 
in eccentricities) averaged (over the orbital period) planar elliptic restricted three 
body problem at the internal resonance 3/1. This is the problem on which we can 
compare the two perturbation methods. We describe also briefly the way Wisdom 
transforms the Hamiltonian into a Pendulum-like Hamiltonian (see (9)). We con- 
trast this with the way we propose to transform the Hamiltonian into a simpler 
model Hamiltonian ( Ho in (17)) plus a perturbation ( Hi in (17)). The model 
Hamiltonian we propose is the one of the circular restricted problem but its solu- 
tion already contains part of the effect of Jupiter's eccentricity through a simple 
transformation (16), similar to the reducing transformation we have already used 
in the 2/1 resonance problem (Henrard et al 1986). A first comparison of the two 
methods with numerical results can already be performed at this stage and is 
summarized in Figure 2. It is based upon the identification (proposed by Wisdom) 
of the separatrices of the "fast-degree of freedom" (the pendulum or the model 
Hamiltonian) as the main generators of chaotic motion. 

In Section 3, we perform the first step of our semi-numerical perturbation 
method by introducing the action-angle variables of the model problem and by 
computing the frequencies associated with the angular variables. The computa- 
tion of the frequencies enables us to identify another possible generator of chaotic 
motion : the secondary resonances. They are the main generators of chaotic mo- 
tion in the 2/1 resonance case and we shall see that they have also a role to play 
in the 3/1 resonance case. 
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The description of the semi-numerical per turbat ion method is continued in Sec- 
tion 4 with the description of the first order averaging. A short cut in the deter- 
mination of the generating function enables us to compute very easily a "quasi- 
integral" of the motion at the cost of loosing the full potential  accuracy of the 
method.  Nevertheless a first comparison of the theoretical results with numerical 
integration is satisfactory. 

In Section 5, we present the results of our perturbat ion method under the form 
of surfaces of section for five levels of energy. For three of them comparison can 
be made with similar surfaces of section obtained numerically by the mapping 
technique (Wisdom 1985). Unfortunately, Wisdom gives the theoretical surface of 
section obtained by his perturbat ive method for only one of them and even for 
this one leaves the central area blank (commenting in the text that  the curves are 
distorted there). We find that  the comparison is good in the resonance zone but  
that  the level curves we obtain in the central area are badly distorted. Are they 
more distorted than Wisdom's ones ? We do not know but it is quite possible as 
Wisdom's neighbouring curves represent better  the numerical results than ours. 
We at t r ibute  this defect of our technique to tile approximation we made in the 
determination of the generating function. This approximation is indeed at its worst 
in this region of the phase space. 

Wisdom's three surfaces of section are concentrated on the chaotic area at the 
edge of the resonance zone. We present another surface of section deeper in the 
resonance zone to show how the perturbat ion technique behaves in this regular 
region (Figure 11 and 12). 

For the surfaces of section analysed in Section 5, the chaotic domains generated 
by the crossing of the separatriees and by the secondary resonance have merged 
together and it is difficult to assess their relative importance. We show and com- 
ment in Section 6 a case (obtained by decreasing the value of the eccentricity of 
Jupiter)  where they are separated. As pointed out by Wisdom (1985), the sepa- 
ratr ix crossing mechanism generates more chaos but nevertheless the secondary 
resonance chaotic layer is qualitatively important  as it is responsible in this case 
for the random jumps between a high eccentricity mode and a low eccentricity 
mode. 

2. T h e  a v e r a g e d  p l a n a r  e l l ip t i c  p r o b l e m  fo r  t h e  3 / 1  r e s o n a n c e  

The Hamiltonian of the restricted three body problem can be written (see, for 
instance, Szebehely 1967)" 

1 - / . t  1 7 1 ~  
H = - 2---a-- - / z  { I ~ -  ~1 r'3 } (1) 

where (1 - / z )  and p are the reduced mass of the primary (the Sun) and secondary 
(Jupiter),  a (resp. a' ), ~'(resp. ~ ) the semi-major axis and position vector (relative 
to the Sun) of the test particle (resp. of Jupiter).  We are considering here that  the 
Hamiltonian function (1) is expressed implicitely in the usual modified Delaunay's 
elements (A,p,L,  P )  where the quantities L , P are the momenta  respectively 
conjugated to the angular variables A , p : 

A = mean longitude of the particle , L = V/~ - / l ) a  , 
p = - ( long i tude  of its pericenter ) ,  P = L(1 - x/1 - e~).  

(2) 

The  Hamiltonian is also a function of the time through its dependence upon 
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the mean longitude ,V of Jupiter.  In case of a 3/1 resonance 

a n '  - n '-" 0 ( 3 )  

between the unper turbed mean motion of the test particle n = [(1 --I*)/aa] 1/2 

and the mean motion of Jupiter  n' = a 'a/2 it is useful to introduce the Poincar~ 
resonance variables 

tr -- [ 3A ' -  A + 2p] /2 ,  S - P ,  
u = - [ 3 A ' - A + 2 p ' ] / 2 ,  N = 2 L + P - 2 x / ( 1 - / t ) a * ,  (4) 

where a* is the "exact  resonance" value:  a* - [(1 - / 0 / 9 ]  1/3 , and to average the 
Hamiltonian (1) over the remaining fast variable which is essentially the time. This 
averaging is not just  a rough approximation of the first order in # but  can be jus- 
tiffed in terms of a transformation of coordinates from the osculating coordinates 
(4) to a set of "averaged" coordinates (~, ~, S, N )  (see, for instance Message 1966). 
In order to keep the notations as simple as possible, we shall drop the superscripts 
of the averaged variables and note them also (a, u, S, N)  . 

The  averaging transforms the time dependent Hamiltonian (1) into a time- 
independent one. When expanded in powers of the eccentricities (e ,e ' )  and the 
difference ( a - a * )  and written in terms of the canonical variables, this Hamiltonian 
reads 

H = C ( N - S )  u + A ' S  

where the numerical coefficient C 
coefficients (A', D', F',  E' ,  G') are 

C = -1 .623564 ,  
D I = - 0 . 8 6 3 1 5 8 p  
E '  = 2.656407/* 

The unper turbed (when # = 0 

b =  

F '  = -0 .181477# ,  
G' = 0.198705p. 

) frequencies o f t h e  angular variables are 

- a  = 2 c (  g - S) 

+ 2 D ' S  cos 2tr + 2F'e '~ cos 2u 

+ e ' V ~ [ E '  cos(~ - u) + G' cos(~ + u)] 

+ . . .  (5) 

is of the order of unity and the other numerical 
of the order of the mass-ratio tt : 

A' = - 0 . 4 1 0 1 3 9 #  , 
(6) 

(7) 

from which it is obvious that  the first three periodic terms in the per turbat ion 
(terms in 2a , 2v , a - v ) have the same unper turbed frequency while the last 
term (the secular term in a + u ) has a zero unper turbed frequency. 

Of course, unper turbed frequencies are only first approximations but  it is rea- 
sonable to assume, at least as a first guess to be confirmed a posteriori, that  two 
natural  time scales drive the motion : the time scale of tr (the resonant angle time 
scale) and the time scale of tr + v = p - p' (the perihelion time scale). This is of 
course on top of the orbital time scale that  we have averaged out. 

To take advantage of this observation, Wisdom (1985) proposes to regroup the 
terms with the resonant angle time-scale into one cosine term modulated by the 
perihelion time-scMe. Of course, this is possible because all these terms have the 
same unper turbed frequency. Introducing the canonical variables 

= v/ cos(o " + v ) ,  7/= v sin(a + v ) ,  
¢ = A = - S ) ,  (8) 



MOTION NEAR THE 3/1 RESONANCE 103 

brings the Hamiltonian (5) under the form 

H = 4 C A  2 + 0 ' . 4  cos(¢  - 79) + + + G'e'G 

with 

(9) 

D,`4co879 = D,(Gu _ qu) + e 'E'G + 2F ' e  'u , (10) 
DIAsin79 = 2DIGrl + d E I q  . 

The restoring torque .4 can also be written under the more symmetric form (see 
Henrard 1988) 

.42 = [(G - X1) u + q2][(G - Xu) 2 + r] z] (11) 

where X1 and Xu are the roots of the quadratic equation 

D ' X ~  + e ' E ' X i  + 2F '  e '2 = O. (12) 

The variable restoring torque .4 is the product of the distances in the plane 
(G, q) to two particular points on the G-axis : 

X1 - -  0.143e' = 0.007 , (13) 
Xu = 2.934e' = 0.141 . 

With respect to the (¢, A) degree of freedom (the degree of freedom correspond- 
ing to the resonant angle time-scale), the Hamiltonian (9) is the Hamiltonian of a 
pendulum. The frequency of its stable equilibrium 

~M1 = [8C D'  ̀ 4] Uu - 3.348[/1.4] l/u (14) 

is representative of its time-scale. 
The time scale of the (G,q) degree of freedom is more difficult to pinpoint 

but, looking at the differential equations governing it, we can estimate its basic 
frequency as : 

wu = #" max[G, q, e ' ] .  (15) 

The initial guess that  the two time-scMes are well-separated is thus confirmed 
(their ratio is approximatively pUu ,.~ 0.03 ) except of course in the vicinity of the 
peculiar points (13) and in the vicinity of the separatrix of the pendulum. Wisdom 
proposes then to consider the Hamiltonian (9) as a one-degree-of freedom Hamil- 
tonian in (¢, A) , the coefficients of which vary slowly with time as (G, 7/) follow 
its orbit, and to use the adiabatic invariant theory together with the analytical 
formulae for the motion of the pendulum to further average the problem over the 
fast time scale (the time scale of the resonant angle). 

The straightforward application of the adiabatic invariant principle (see Hen- 
rard 1989 for a review) to this case is not completely satisfactory. Indeed the 
small parameter which measures the first order invariance of the action should 
be estimated not only by the normalized time derivatives of the "parameters" ,4 
and 79 (here / t  l/u -~ 0.03 ) but also by the square root of the normalized second 
time derivatives of these parameters (here #1/4 ~ 0.18 because the motion in G, r/ 
depends upon the resonant angle time scale). 

An alternate, more rigorous, derivation of the technique has been proposed by 
Wisdom (1985) and later on formalized by Koiller el al (1987). It is based upon 
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the extension to two degrees of freedom of the one-degree-of freedom canonical 
t ransformation to the action-angle variables of the pendulum. As the "parameters"  
.,4 and P of the pendulum depend in a rather involved way upon the (~, r/) degree 
of freedom, this extension is not straightforward and only approximate formulae 
(of first order in #1/2/A ) have been proposed. 

The per turbat ion method that  one of us has proposed for the 2/1 resonance 
problem (Henrard and Lemaitre 1986) and that  we wish to develop now in the 
context of the 3/1 resonance is actually very close to this last technique. It may be 
summarized by the aphorism : Let us not try to embrace the full problem at once. 
Let us define a model problem which would be of course as close as possible to the 
full problem but such that  the interdependence of the two degrees of freedom is 
simple enough that  action-angle variables can be defined easily for the two degrees 
of freedom. 

In order to achieve this, we have to come back to the Hamiltonian (5) and 
propose instead of (8) the canonical transformation (where (x, M)  are the momenta  
respectively conjugated to (y, u) ) 

• = 2v cos  = V57cos + e'cosu, 

y 2v/2-Rsin r = ' " = x / ' ~ s i n  cr - 2-~-r e' s m u ,  (16) 

A' M - N - ~ - f + ~ - ~ , e ' V ~ c o s ( a + u ) + M E % ' ~ 2  
- -  2 ' ,  2D' ,' " 

This transformation,  which is related to the rotat ion in phase space introduced 
by Poincar$ (1899) in the context of the secular per turbat ion of planets and by 
Sessin and Ferraz-Mello (1984) (see also Wisdom 1986, Henrard et al 1986) in 
the context of first order resonance is surprizingly useful. It introduces in a very 
simple way a kind of "free eccentricity" ( ~ instead of vZ2-ff ~ e ) together 

with a kind of "forced eccentricity" E' ,, (~--b-Te) . We shall call the angular variable 
(r + u) the "recentered argument of the perihelion" because of its analogy with the 
angular variable ~r + u = p - p' . By this, we can take into account at small cost a 
substantial part  of the per turbat ion due to the eccentricity of Jupiter .  Indeed the 
transformation (16) reduces the Hamiltonian function (5) t o :  

H = H0 + H1 - 4.19153 10 -6 , 
Ho = C ( M -  R) ~ + A M +  2DRcos2r ,  (17) 

H1 = G e ' v ~ c o s ( r  + u) + 2Fe '2cos2u 

with 
C = -1.6235638 , A = -0.410139/1 , 
D = -0.863158# F = +0.840424/~ , (18) 
G = -0.432405p . 

If we compare (17) with the original Hamiltonian (5) , we see that  we have 
eliminated the large term in E p c o s ( a -  v) . In order to compare the "model" H0 in 
(17) with the Hamiltonian (9 ) ,  we compute in the new variables (16) the periodic 
term of the pendulum 

D'.A cos(¢ - ~') = 2DRcos  2r + 2Fe '~ cos 2u .  (19) 

It appears that  we have included in H0 a much simplified version of this term 
(2DR cos 2r is actually independent of the other degree of freedom) at the cost of 
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rejecting part of it (the 2Fe  '2 cos 2v term) in a "perturbation" function H1 • This 
cost is almost negligible. Indeed, the other perturbative term, Ge'v/2-~ cos(r + u) , 
although it is long periodic, contains also small short periodic variations (as we 
have pointed out earlier while discussing the application of the adiabatic invariant) 
and these variations are usually larger than the term 2Fe  '2 cos 2u . 

The model problem H0 is now very simple. It is a one-degree-of-freedom model 
depending upon a parameter M (the perturbation will of course make M vary 
with time). It is actually the I-Iamiltonian corresponding to the circular restricted 
problem although by the reducing transformation (16) it takes into account part 
of the perturbation due to the eccentricity of Jupiter. It has been analysed in 
detail by Borderies and Goldreich (1986) and by Lema~tre (1986) in the context 
of the adiabatic invariant theory. Trajectories of this problem for typical values of 
the parameter M are given in Figure 1 in the phase space plane z = 2x/~cos r , 
y = v / ~ s i n  v . 

Fig. 1. Typical phase portrait of the Hamiltonian H0 in the plane -¢r~co~r , v ~ s i n r  . 

The first figure is for M < - D / C  , the second one for -D/C<M<D/C and the third one for 
D/C<M . The resonance zone is shaded. 

Let us point out the existence of separatrix orbits, doubly asymptotic to unstable 
equilibria. These separatrices divide the three dimensional space (x, y, M) into 
three zones. An internal  zone inside the smallest separatrix for M > D / C  (marked 
I in Figure 1). An external zone outside the largest separatrix for M > - D / C  
(marked E in Figure 1) to which we add the full (z, y) space for M < - D / C  and 
a resonance zone in between the separatrices (shaded in Figure 1). 

These separatrices play the same prominent role in our analysis as the separa- 
trices of the pendulum in Wisdom's analysis. They will act as generators of chaotic 
motion. 

Before going further, it may then be worthwile to check whether the separatriees 
fall in the right place: i.e. in the chaotic region as determined numerically by 
Wisdom. Figure 2a (rasp. Figure 2b) shows the intercepts of the separatrices (see 
the seeond and third frames of Figure 1) of our model Hamiltonian H0 (rasp. 
of Wisdom's pendulum) with the "representative plane" (a, e sin~) which is the 
junction of the two "representative half planes" used by Wisdom (1983-1985) and 
Murray and Fox (1984). 

This plane is defined as the intersection of the phase space (y,x,  u, M) with 
the hyperplane u = a'/2 and the hyperplane x = 0 . This plane is mapped on 
the plane (a, e sin e) through the inverses of the transformations ~16), (4) and (2). 
Notice that ,  for x = 0 , the sin~r may take only the values +1 or - 1  . Hence 
the value of e may be read directly from the diagram as the absolute value of the 
ordinate e sin a . 
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Fig. 2. The traces of the separatrices in the representative plane (a, e sin tr). Figure a 
is for the separatrices of the model problem H0 and Figure b for the separatrices of the 
pendulum (equation (9)). The initial conditions of chaotic trajectories (as determined 
numerically by Wisdom 1983) are shown shaded. Also shown in Figure 2a as dashed 
curves are the locations where the main secondary resonances are expected (see Section 
3). Note that the internal zone is to the right of Figure 2a, the external zone to the left 
and the resonance zone in the middle. 

The agreement is good although not perfect. Quite surprizingly the separatrices 
of H0 (Figure 2a) may look as a bet ter  "backbone" to the chaotic region than the 
separatrices of the pendulum (Figure 2b). 

Also shown in Figure 2a (as dashed curves) are the main secondary resonances 
as computed in Section 3. We shall see later on that  they are at the same time the 
center of islands of regular motion (at the bo t tom of Figure 2a) and the generator 
of chaotic motion (at the top of Figure 2a). Here also the agreement is good. The 
secondary resonances as predicted by our perturbat ive method fall nicely in the 
two prongs of regular motion at the bot tom of Figure 2a and help to explain the 
existence of these two prongs. At the top of Figure 2a, the secondary resonances 
mark the boundary  of the chaotic region. 

3. A s e m i - n u m e r l c a l  p e r t u r b a t i o n  m e t h o d  : T h e  f r e q u e n c i e s  

Let us introduce action-angle variables for the one-degree-of-freedom Hamiltonian 
H0 (see (17)). Action-angle variables are usually introduced by means of a gener- 
ating function, but, except in very simple cases, this leads to implicit expressions 
and complex integrals which cannot be solved analytically. We prefer to introduce 
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them in the following way which leads directly to a semi-numerical implementation 
(see t tenrard and LemMtre 1986). Let 

y = Y ' ( y o , t , M ) ,  (20) 
z = X ' (yo , l ,M)  

be the solution of the differential equations associated with the Hamiltonian H0 in 
the phase space y = 2x/~s in  r ,  z = x / ~ c o s  r .  The  solution is a periodic function 
of the time t of period T(yo, M) and depends also upon the initial conditions 
(z = 0, y = Y0) and the parameter  M . In general we should allow for both initial 
conditions (z0, Y0) to be considered but in the context of the 3/1 resonance we can 
and we will always choose x0 = 0 . 

The  action-angle variables can then be defined and numerically est imated by 

27r 1 I T  ,OYI ,OX I. 
¢ = - ~ - t ,  J = - ~  Jo ( X - - ~ - Y - - ~ - ) d t .  (21) 

The action J is computed as a function of y0 and M in (21). This function 
can be numerically inverted to write, by substitution, the solution (20) under the 
form : 

u = r ( ¢ , J , M ) ,  
= X ( ¢ , J , M ) .  (22) 

This is a one-degree-of-freedom canonical transformation depending upon a pa- 
rameter  M . But we wish to consider M as the momentum of a second degree of 
freedom. The  extension of (22) to a two degree of freedom canonical t ransformation 
leads to 

y = Y ( ¢ , J , M ) ,  

x = X ( ~ b , J , M ) ,  (23) 
u = m + p ( ~ , , J , M ) ,  
M = M 

with 

fo¢ (OX OY OX OY 
P = 0M 0M 0¢')  de ' .  (24) 

Details about  the properties of the function p are given in Henrard and Lemaitre 
(1986). In general a function of (J, M)  should be added to the expression (24) but  
this function vanishes here (as it vanished in the problem investigated in Henrard- 
LemaRre 1986) because of symmetries of the problem. It is enough to recall here 
that  the function p can be evaluated numerically at the same time that  the solution 
(20) is computed by integrating simultaneously the variational equations, and that  
a proper choice of the initial conditions for the variational equations makes the 
function p a 27r-periodic function of ~b . 

We have insisted on the fact that  the transformation (23) can be computed 
numerically at any point. The  same is true for its derivatives (see t tenrard  and 
LemaRre 1986). This is because we want to stress the point that  is it as useful 
from a practical point of view as an analytical expression (except that  it may take 
more computer  time depending on the complexity of the analytical expression to 
which it is compared).  

But we shall see that  actually the per turbat ion scheme can be arranged in such 
a way that  we shall never need to evaluate the transformation. 
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Substituting (23) into the Hamiltonian (17) we find : 

K = Ko + K1 , 
Ko(J, M)  = Ho(Y(¢ ,  J, M) ,  X ( ¢ ,  J, M),  M ) ,  
KI(J ,  M, ¢, m) = H1 (Y(¢,  J, M),  X ( ¢ ,  J, M),  m + p, M ) .  

(25) 

This Hamiltonian is now almost ready for the application of a classical pertur-  
bation theory, having a main part  K0 which depends only upon the momenta,  and 
a periodic per turbat ion part  K1 • 

We say "almost ready" because we have still to check whether the two "unper-  
turbed" frequencies 

OKo OKo 
~ 1 -  c3J ' ~ -  O M  (26) 

are in resonance or not. 
These frequencies are easy to compute along any t ra jectory of the model prob- 

lem H0 • We have 

~ I ( J , M ) - 2 7 r  w2(J ,M)  = 1 f i T OHo 
T ' F Jo at (27) 

where T is the period of the t ra jectory labelled by the value of J and M . 
We show in Figure 3 the curves w~/wl = constant, not in the plane (J, M)  which 

is not very suggestive but  in the "representative plane" (a, e sin 6r) . 
Figure 3 is obtained by parametrizing by their semi-major axis and eccentricity 

the points on the axis x = 0 (for different values of M ). Then these points 
are taken as initial conditions of orbits of the model Hamiltonian H0 (see Figure 
1) along which the expressions (27) are evaluated. Notice that  we do not have to 
evaluate explicitely the action-angle transformation (23). We just  have to integrate 
numerically the periodic orbits, find their period, and evaluate an integral along 
them. This integral can be evaluated by appending to the differential equations in 
x and y a third equation : 

OHo 
-- cq M ( y , x , M ) =  A + 2 C M - C ( x  2-4-y~) . (28) 

The value of w~ is then the end-value of z divided by the period T . 
The  first thing we notice in Figure 3 is the discontinuity between the three zones 

(internal, resonance and external).  Indeed the transformation (23) to action-angle 
variables is singular along the separatrices. The singularity is a logarithmic one 
(see Henrard 1989 for an analysis) so that  we have to come very close to the 
separatrices for things to go really bad, but the singularity exists and is such that  
the transformation (23) looks more like three separate transformations each one 
acting in a separate region of the phase space. 

The frequency w= , which is the mean motion of the angular variable u is small 
in the resonance zone. Indeed, as r librates in this zone, the mean motion of u is 
the mean motion of the recentered perihelion (as in Section 2, we call recentered 
perihelion the angular variable r +  u; the true perihelion is given by p - p '  = a + u). 
On the other hand, in the internal and external zones, the angular variable r 
circulates and the mean motion of u is equal to the mean motion of r plus the 
mean motion of the recentered perihelion. Hence w2 is close to the absolute value 
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-0 

O. 

-0. I 

0.47 0.48 a 0.479 0.481 a 

Fig. 3. The ratio of frequencies in the representative plane (a,  e sin ~r). The plane is di- 
vided into three zones by the trace of the separatrices (heavy dashed curves) of the model 
problem Ho • The level curves are from the left to the right co2/Wl =o.99, 0.9s, o.97, o.96 
(in the external  zone), aJ2/aJ1 =0, o.o25, 0.05, o.o75, o.1 (in the resonance zone) and 
w~/aJ1 =-1.05,  -1.04, -1.03, -1.02 (in the internal zone). Figure 3b is a close-up of 
the shaded region of Figure 3a and shows for the external zone the level curves : 
a~/~Ol =1.1, 1, o.99, 0.gs, 0.97~, 0.971, 0.97, o.96 (from the right to the left and then 
up and down beyond the saddle point).  For the resonance zone, the level curves 
w2/~01 =o.5, 0.4, 0.3, o.2, 0.1, 0 (from the left to the right) and for the internal zone, 
the level curves a~2/~o 1 =-1 .5 ,  -1.4, -1.3, -1.2 (from the left to the right). The curves for 
which c02/w I --  0 (in the resonance zone) or u~2/w I = 1 (in the external zone) correspond 
to zero mean motion of the recentered perihelion and are shown dashed. 

of  ~o 1 , the  m e a n  m o t i o n  of  r (which  is the  same  as the  m e a n  m o t i o n  of  ~b ). T h e  
change  in s ign be tween  the  in t e rna l  and  e x t e r n a l  zones reflects  the  change  of  s ign 
of  the  m e a n  m o t i o n  of  r . 

T h e  m e a n  m o t i o n  of  the  reeen te red  per ihe l ion  can then  be recoved by  the  for- 
m u l a  

~op = ~2 + i z ~ l  (29) 
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where i~, the index of the zone is set at 

i z =  0 
i~=  1 
iz = - 1  

in the resonance zone 
in the internal zone ,  
in the external  zone .  

(30) 

From Figure 3, it appears  that  the mean motion of the recentered perihelion 
vanishes along two curves, one completely in the resonance zone and the other 
one par t ly  in the resonance zone and par t ly  in the external  zone. These curves are 
shown as dashed curves in Figure 3 and are reproduced in Figure 2a. Along these 
curves we expect a resonance phenomenon as we have indicated at the end of the 
preceeding section. The  s t ructure  of this resonance phenemenon will be revealed 
in the surfaces of section computed in the next section. 

As wl becomes smaller close to the separatrices (the period of the orbits becomes 
larger), the ratio wp/Wl becomes larger, and we may expect other, secondary reso- 
nances between these two frequencies. As a mat te r  of fact the innermost level curve 
in the resonance zone of Figure 3a corresponds to a commensurabi l i ty  ~p/wl  - 1/2. 
But  as these secondary resonances are squeezed along the separatrices,  they cer- 
tainly overlap and they do not reveal themselves as separate  resonances but as a 
layer of chaotic motion. This is one way of explaining in this context tha t  the sep- 
aratrices act as generators of chaotic motion. Another  way, which leads natural ly  
to es t imates  of the size of the layer and of the diffusion coefficient inside the layer, 
rely on est imates of the change in the adiabat ic  invariant due to the crossing of 
the separatr ix.  We shall come back on this later on. 

We are now in a position to compare qualitatively the behavior of the 3/1 
resonance with the behavior of the 2/1 resonance as it has been analysed by 
Henrard-Lemai t re  (1986) and Lema~tre-Henrard (1989). 

In the 2/1 resonance, the separatrices of the model problem (a modification of 
the circular restricted problem as it is here) were found also to match  closely one of 
the layer of chaotic motion discovered numerically by Murray (1986) and confirmed 
by Wisdom (1987). Similarly a curve along which wp vanishes was found in the 
representative plane and this curve runs also along-and close to the separa t r ix  
curve. This curve was identified with another  layer of chaotic motion in Murray ' s  
diagram. 

But the cause of the largest layer of chaotic motion in the 2/1 resonance was 
found to be secondary resonances between the two main frequencies. These sec- 
ondary  resonances are standing alone far away from the separa t r ix  curve while we 
have just  seen tha t  in the 3/1 resonance they follow closely the separa t r ix  curve. 

In retrospect ,  this could have been expected. The  point is tha t  in a first order 
resonance, like the 2/1 resonance, the separat r ix  curve is discontinuous. If  sec- 
ondary resonances follow it (as they do), they have to "bridge the gap" between 
the two pieces of the separa t r ix  curve and thus s tand alone to form a ra ther  large 
layer of  chaotic motion. In a paradoxal  way, it is the absence of separatrix which 
is responsible for the largest area of chaotic motion in the 2/1 resonance while 
in the 3/1 resonance, the secondary resonances are always kept in line by the 
separatrices.  

4. A s e m l - n u m e r i c a l  p e r t u r b a t i o n  m e t h o d  : T h e  a v e r a g i n g  

As we have recognized tha t  the combination of frequencies wp = ~ +i ,  wl vanishes 
on some curves (see previous section) and fur thermore  is ra ther  small in most  of the 
domain of interest, we shall again change variables to introduce the corresponding 
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angular variable. Let us consider the canonical transformation : 

¢ = ¢ ,  • = J -  i~M, (31) 
q = m + i ~ ¢ ,  Q = M ,  

where, by (30), the quantity iz is equal to zero in the resonance zone, to one in the 
internal zone and to minus one in the external zone. We could call the variable q , 
the "pseudo-perihelion". It differs from the recentered perihelion by short periodic 
terms only. 

By the Lie transform method,  a first order per turbat ion theory of the Hamil- 
tonian (25) consists in defining a canonical transformation from the phase space 
(~, q, qJ, Q) to the averaged phase 
which is 

OW 
O~ 
OW 

space (~}, q, @, Q) , the first order expression of 

OW 
, q - -  q 

%% (32) 
f f = ~ + - -  O , = Q + - -  

0 ¢  ' Oq 

The generating function W is considered as a small quanti ty (together with its 
partial  derivatives) and is defined by the partial differential equation 

(OIt'o~ OW (OKo) OW =K~(J,M,¢,q- i~zb)- f (~(J ,M,q)  --g-i-, + --yO- (33) 

The function/~'~ is the new Hamiltonian in the "averaged" variables (¢,  q, ~ ,  Q) 
and is itself defined as the average of KI over the "fast" angular variable ¢ : 

fQ = ~ IQ (J, M, ¢, q - iz ¢) d e .  (34) 

We cannot, in general, average over the pseudo-perihelion because its unper- 
turbed frequency, 

OKo OKo OKo 
- -  - - -  + i~  - -  ( 3 5 )  
OO OM OJ 

is close to zero. 
An approximate solution W' of (33) can easily be found by ignoring the small 

term in (OKo/OQ) 

W' ~OKo t [ ¢  
= ( - - ~ - ) -  J0 [K1 - fQ] d e .  (36) 

The  exact solution W of (33) differs from this approximation W p by terms of 
the order of [[(1 r-f- it 0Ko~t 0Ko ~-~ - -  l~lJt OO /t 0S ) . This is actually the principal source of error 
in our per turbat ion scheme. It could be avoided by Fourier-analyzing the function 
K 1 ,  but it simplifies so much the computations (see (37) below) that  we felt it is 
worth it. 

Indeed, if we now evaluate the transformation (32) at ¢ = 0 , we find that  all 
derivatives of W vanish except the derivative with respect to ¢ which takes a very 
simple form. The  function ~ ( ¢ ,  q, kO, Q) which is an (approximate) integral of the 
problem because the new Hamiltonian f(1 does not depend upon its conjugate 
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Fig. 4. Level curve of the quasi-integral ~ on one sheet on the surface of section 
¢=0 , H=-2.10 -s projected on the plane (~,7]) . The thick curve is the trace of the 
separatrix surface. 

variable ¢ (at least to the first order), takes when evaluated at ¢ = 0 ,  the simple 
form 

.OKo 1 
9 ( O , q , 9 , Q )  = J -  L M +  ( - f i t ) -  [KI ( J, M,  O, q) - fQ  ( J, M,  q)] . (37) 

In order to draw Poincard's diagram on the surface of section (H  = h0, ¢ = 0) , 
all we need is to be able to evaluate the function (37) at any point of the surface 
of section. 

Pick a point on the surface of section, which we shall parametrize by the values 
of ~ and r / (see (8)). The  definition of the surface of section (¢ = 0) makes x = 0 

ee (16)) and we can deduce the corresponding values of y and v .  The  value of 
is then extracted from the equation H = h0". 

For the initial conditions (x = 0, y ) ,  we compute the periodic orbit of the model 
problem H0 , together with the integral J (see (21)). The  period of the orbit is 
equal to 27r(OKo/OJ) -1 . The value of g l  is just  the value of H1 (see (17)) at the 
initial point. It remains to evaluate f£1 from (34). 

Taking into account that  

I(:1 = e ' G ( x c o s v -  ys inu)  + 2Fe '2 cos2u (38) 

= e'G[x cos(q + fi) - y sin(q + tJ)] + 2Fe 'u cos 2(q + fi) 

with 
t5 -- p(¢,  J, M) - / 2  ¢ (39) 
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where p has been defined in (24), we find easily tha t  

K1 = ,-S'l sin q + 02 cos 2q.  (40) 

The terms in cos q and sin 2q have disappeared from K1 because of the symmetr ies  
of the periodic orbits  of the model problem H0 (which are such tha t  x(~b) = 
- z ( - ~ b ) ,  y(~b) = y(-~b) and/3(~b) = - ~ ( - ~ b )  ) and the coefficients of the remaining 
terms are : 

S--~" e 'a  fcT (z sin ~ + y cos ~) dt 
- -  T o r ~  ' ( 4 1 )  
= J0 (cos2 )dt. T 

Indeed ~b is just  a scaled avatar  of the time. We have now all the pieces to compute  
the integral (37) if we take into account that ,  when ~/, = 0 , q = m = v . 

0.2 

0. 

- 0 . 2  

- 0 . 2  O. 0 .2 R 

Fig. 5. Same surface of section as in Figure 4 but obtained by numerical integration. 
The chaotic trajectory was computed for 4.106 years, the regular trajectories for 1.106 
years. 

We show in Figure 4, the level curves of the function ~ (see (37))  on the surface 
of section ( ~b = 0 , H = -2 .10  -2 ). 

The  first thing we notice is the discontinuity accross the thick curve. This last 
one is not a level curve of the integral but the trace on the surface of section 
of the separa t r ix  surface we discussed in Section 3. Indeed, as we have seen, the 
angle-action t ransformat ion (23) is singular along this separa t r ix  surface and so is 

. The  adiabat ic  invariant theory (the application of which is not s t ra ightforward 
in this context as we have mentioned but which can still be used as a guide-line) 
tells us tha t  when an orbit  approaches the separa t r ix  along a given level curve, the 
action ~ experiences a (small ?) random jump.  The  succession of j umps  at each 
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crossing of the separatrix does eventually dissolve all the level curves crossing the 
separatr ix into one large chaotic domain. We have shaded in Figure 4 the area 
containing the level curves which cross in this way the separatrix. This is done by 
simple inspection of the figure. 

We notice also in the resonance zone (outside the separatrix curve in Figure 4), 
that  the level curves take on the characteristic shape of a first order resonance, 
with a maximum of @ at around (~ = 0.3, r / =  0) and a saddle point at around 
(h ~ = -0 .15 ,  7; = 0) This is the secondary resonance w = 0 (see (29) )  and, as we 

ave mentioned at the end of Section 2, it is the cause o~?an island of regular motion 
(around the maximum of @ ) and the generator of chaotic motion surrounding it 
(in the vicinity of the saddle point). 

Figure 5 shows the same surface of section but  this time obtained by numerical 
integration of the equations of motion corresponding to the original Hamiltonian 
(17). 

The agreement is excellent. The  regular trajectories are well represented by the 
perturbat ive analysis. The  chaotic domain is well predicted by the rules of thumb 
we have just  mentioned (crossing of the sepatrix and vicinity of the saddle point). 
Compare the shaded area of Figure 4 and the chaotic orbit of Figure 5. 

sin J 

0.2 

O. 

-0.2 

.47 0.48 a 

Fig. 6. Level c u r v e s  ~ H = - 2 . 1 0  - 5  , - 1 . 2 1  1 0  - 5  , - 4 . 2 2  1 0  - 6  , - 3 . 0 4  1 0  - 6  , 5 . 1 0  - 6  o n  the 
representative plane (a, e sin a ) .  Notice how these level curves look like hyperbolae. The 
highest level shown ( 5.10 -6 ) is at the top and bottom and the lowest one ( -2.10 -5 ) on 
the left and right. Also shown as a shaded domain are the initial conditions of chaotic 
orbits as determined numerically by Wisdom (1983). 
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- / I . 2  0 .  9 . 2  × 

Fig. 7. Level curves if= constant on 
the surface of section ¢-P=~ and 
AH------2.10 -5 . The thick curve is the trace 
of the separatrix surface. 

- 0 , 2  l ) .  0 . 2  

Fig. 8. Same as Figure 
A H _ - - - - 1 . 2 1  1 0  - 5  . 

7 for 

5. S u r f a c e  o f  s e c t i o n  : C o m p a r i s o n  w i t h  W l s d o m ' s  r e s u l t s  

In order to illustrate his perturbat ive technique, Wisdom (1985) chooses a surface 
of section slightly different from the one we have defined in Section 4. 

First, in the definition of the surface of section, he chooses a different expression 
of the Hamiltonian than the expression H (see ( 5 ) )  to which his per turbat ion 
method applies. This expression A H  of the Hamiltonian differs from H in that  
the two body term (the first term in (1 ) )  is not t runcated as in (5). This is slightly 
inconsistent but does not make much difference. Secondly, the surface of section 
is not defined by ~b = 0 (or 2r = 7r ) but by ¢ - 7 9  = 7r (see (9 ) ) .  Again this does 
not make much difference except when R is small (see (19)) .  

In order to compare our results with Wisdom's results, we have modified the 
scheme described in the preceeding section. The initial conditions (~, 77, M, u) of 
points on Wisdom's surface of section are computed by using A H  instead of H 
and are then mapped by numerical integration onto our surface of section ( ¢ = 0 ) 
where we can evaluate the quasi-integral ~ . 

Before going further,  it may be useful to describe the topology of these two 
dimensional surfaces of section, embedded in a four dimensional phase space. We 
present in Figure 6 the trace of the surfaces A H  = constant onto the representative 
plane (a, e sin a) . Notice that  the representative plane corresponds to the ~-axis 
( q = 0 ) of the surface of section in Figures 4 and 5. 

Let us consider that  the condition ¢ = 0 defines a three dimensional space 
parametr ized by (~, r/, a) . The  representative plane is then a section r /=  0 of this 
space and the surfaces of section A H  = constant are approximately the hyper- 
boloids obtained by rotating Figure 6 around an axis parallel to the "a ' - ax i s  and 
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0 . 2  

- 0 . 2  

U,2 O. 0 . 2  × - 0 . 2  I). 0.2 

Fig. 9. Same as Figure 7 for Fig. 10. Same as Figure 
A H = - - 4 . 2 2  1 0  - e  . A H = - - 3 . 0 4  1 0  - e  . 

7 for 

passing through the center of symmet ry  of Figure 6. 
When A H  is smaller than about  - 4 . 2  10 -6 , the hyperboloid is a two-sheeted 

hyperboloid.  Each sheet is disconnected from the other one and possesses a one-to- 
one project ion on the (~, r/) coordinate plane. Following Wisdom, we have chosen 
in Figures 4 and 5 to map  only the left sheet, the one on the side of the external  
orbits. We are then missing all the internal orbits which remain for all t ime on 
the right sheet but  we do encounter the resonance and chaotic orbits which cross 
al ternatively the two sheets. In any case, the orbit  which crosses one sheet draws 
on it a pa t te rn  disconnected from the pat tern  it may draw on the other sheet and 
the topology of this pa t te rn  is preserved by projection on the (~, 7/) coordinate 
plane. 

But the si tuat ion is different when A H  is larger than - 4 . 2  10 -6 . The  hy- 
perboloid is then a one-sheeted hyperboloid and the two pat terns  are no longer 
disconnected. 

At the same time, the projection of the surface of section on the (~, r/) plane 
shows a forbidden region (the hole in the hyperboloid).  

If  we cut the hyperboloid along the b o u n d a r y o f  the forbidden region and project  
only the left-side of it on the (~, q) plane, the invariant curves may not close (par t  
of them may be traced on the right side of the hyperboloid).  If  we choose to project  
both  sides of the hyperboloid,  curves may cross each other al though they do not 
cross on the hyperboloid itself. It  is the projection of a curve on the left side which 
crosses the projection of a curve on the right side. 

Such surfaces of section are perfectly valid and have been used by many  authors  
but  of course their interpretat ion may be more difficult and sometimes confusing. 
We always have to remember  that  what  we see on a d iagram is only a projection 
of a surface which may not be topologically equivalent to a plane. 

Wisdom criticizes the use of such surfaces of section by Giffen (1973), Scholl and 
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Fig. 11. Same as Figure 7 for AH:5.10 10 -~ . The thick curve is no longer the trace of 
the separatrix surface but the boundary of the forbidden zone. 

0.2 

0. 

-0 .~  

- 0 . 2  O. 0 . 2  ~3 

Fig. 12. Same surface of section as Figure 11 but obtained by numerical integration. 

Froeschl~ (1974,  1975) and Froeschl~ and Schol l  (1976,  1977, 1981).  He m o t i v a t e s  
his use o f  a different surface ( ¢ - • - ~r ) by the fact  that  it projects  bet ter  on  
the  (~, 7;) plane.  Indeed it does  for the  part icular values  o f  A H  he inves t igates  but,  
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for A H  larger than -2 .72  10 -6 , the same phenomenon occurs and the projection 
of the surfaces of section ¢ - P = ~r on the (~, T/) plane presents also a forbidden 
zone (see Figure 11). 

We show in Figures 7 to l l ,  the level curves ~ = constant on the surface of 
section ¢ - P = ~- for the values of A H  shown in Figure 6. 

The first value is the one used in Figure 4. Comparison of Figure 4 with Figure 
7 shows that  the two surfaces of section are very similar. 

The  next three values are the same as the one used by Wisdom (1985) and 
Figures 8, 9 and 10 should be compared with the numerically integrated surfaces 
of section (Figure 9, 10 and 11 of Wisdom 1985). Figure 9 can also be compared 
with Wisdom's theoretical surface of section (Figure 12 of Wisdom 1985). 

The comparison is rather  good in the resonance zone (outside the thick curves 
which represent the separatrix surface) but our level curves in the external zone 
(inside the thick curves), especially in Figure 9 and 10, are badly distorted and do 
not approximate the curves obtained by numerical integration. We at t r ibute  this 
to the fact that  for these values of the energy and in this region of the phase space 
the errors due to the approximate character of the generating function (36) are 
overwelming. Indeed ~ve are there well inside the shaded region of Figure 3 where 
the approximation ~op 0 is very bad and where the values of (OKo/OJ) is small 
(of the order of 0.005 and smaller). 

Wisdom's perturbat ive method suffers also in this region from the smallness of 
.4 and he states that  the curves "becomes distorted". As he does not represent 
them in his Figure 12 (the corresponding area is left blank), we cannot decide 
whether his perturbat ive method represents bet ter  this region than ours. This is 
not unlikely as the shape of the small island (just outside the thick curve on the 
left) is bet ter  represented in his Figure 12 than in our Figure 9. 

We show also in Figure 11 a surface of section which lies deeper in the resonance 
zone ( A H  = 5.10 -6 ). The  separatrix surface does not cross this surface of section. 
The secondary resonance wp = 0 is also absent. The causes of chaotic behavior 
have disappeared and all the trajectories are regular. This is confirmed by the 
results of the numerical integration shown in Figure 12. Notice in Figure 12 how 
the innermost invariant curve stops on the boundary of the forbidden zone to 
reappear further away. We are missing there a piece of the invariant curve which 
is on the other side of the hyperboloid. 

6. T h e  t w o  g e n e r a t o r s  o f  c h a o t i c  b e h a v l o u r  

We have explained in Section 5 why we believe that  the chaotic behaviour found in 
this problem comes from two distinct sources : the slow crossing of the separatrices 
of the model problem H0 (called slow Hamiltonian chaos by Escande (1985) or zone 
of uncertainty by Wisdom (1985)) and the separatrices of the secondary resonance 
~l(e = 0 (Chirikov's separatrix layer). For the surfaces of section we have analysed, 

two chaotic domains have merged together so it is difficult to determine which 
is the more important .  From a surface of section corresponding to a problem with 
A' = G' = 0 (see (5)), Wisdom (1985) concludes that  the Chirikov separatr ix layer 
of the secondary resonance is not important.  

The question may also be addressed, in a more natural  way, by decreasing the 
value of the eccentricity of Jupiter.  If we take e ~ = 0.026 (the minimum value 
reached by the eccentricity of Jupiter),  the two domains of chaoticity separate (or 
almost separate) from each other as shown in Figure 13. Figure 13b which is a 
detail of Figure 13 is composed of five different trajectories. To the left a chaotic 
t ra jectory associated with the secondary resonance wp = 0 (integrated for 107 
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years). In the middle a group of three trajectories integrated for 2.10 6 years, two 
of them are chains of islands and the middle on shows a slight chaoticity. This 
pattern is one of a set of canlori just after dissolution and a slightly smaller value 
of e' should show there a set of regular orbits. To the right of the diagram, a 
chaotic orbit associated with the crossing of the separatrix of the model problem 
(integrated for 10 7 years). 
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F i g .  13 .  Numerically integrated surface of section ( ¢ = 0  , H = - 2 . 1 0  - ~ )  w i t h  e I ----0.026 . 

Figure 13b is a d e t a i l  of Figure 13a and is commented in the text. 

From this example, we can appreciate that indeed the chaotic sea associated 
with the separatrix of the model problem covers a larger area than the Chirikov's 
stochastic layer of the secondary resonance. Nevertheless the last one does exist 
as a separate entity and furthermore it is from a qualitative point of view the 
important one. Indeed it is the one that shows the random jumps between a high 
eccenlricily mode and a low eccenlricily mode that were so puzzling when first 
discovered by Wisdom but were later explained (Wisdom 1985). The other chaotic 
layer (the slow Hamiltonian chaotic layer) remains in the low eccentricity mode. 

7. C o n c l u s i o n s  

In the line of Wisdom's perturbative technique for the 3 /1  Jovian resonance (Wis- 
dom 1985), Henrard and Lemaitre (1986) have described a semi-numerical ap- 
proach for the 2/1 Jovian resonance. This semi-numerical approach when applied 
to the problem considered by Wisdom (the averaged truncated planar elliptic 
problem) is not equivalent to the original perturbative technique of Wisdom. 

In this paper we have improved a technical point of Henrard and Lemaitre semi- 
numerical approach and compared it with the results of the original perturbative 
technique of Wisdom and with results obtained by numerical integration. The 
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Fig. 14. Theoretical surface of section corresponding to Figure 13. 

comparison is in general satisfactory even though we have identified a weak point 
of the method (see in Section 4 the comment after (36)). 

The  fact that  the semi-numerical approach reproduces the main features de- 
scribed by Wisdom for the truncated (at order 2 in eccentricities) elliptic problem 
at the 3/1 Jovian resonance, is an indication that  it is worth applying to other 
resonances or to more refined model of the 3/1 resonance as we plan to do in the 
near future. 

Our comparison of the two methods and the description of our results may 
also he of interest by pointing out some aspects of the problem which were not 
emphasized in Wisdom's t reatment .  The role of secondary resonances is the most 
important  of these aspects. In other resonance problems or as we have indicated 
in the same problem but with a smaller value of the eccentricity of the perturbing 
body its role may be prominent.  
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