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Abstract. We prove that non resonant isochronous symplectic maps in a neighborhood 
of an elliptic fixed point are stable for exponentially long times with the inverse of the 
distance from the fixed point, In the proof we make use of the majorant series method 
together with an idea for optimizing remainder estimates first applied to Hamiltonian 
problems by Nekhoroshev. 
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1. I n t r o d u c t i o n  

The stability analysis of motions in a neighborhood of an equilibrium point is 
very relevant in many branches of physics such as celestial mechanics, accelerators 
theory and classical statistical mechanics. 

The first positive general result for quasi integrable Hamiltonian systems is the 
celebrated Kolmogorov-Arnold-Moser (KAM) theorem [1,2,3] which, in the ease 
of systems with n = 2 degrees of freedom insures stability for all times in any 
region bounded by a preserved two-dimensional torus. However for systems with 
n >__ 3 degrees of freedom the existence of preserved T "  tori does not imply any 
stability result. In fact, as the resonant set is connected and dense in phase space, 
arbitrarily close to any initial condition there are orbits which can get very close to 
any point on the constant energy manifold by moving along resonances (topological 
instability). 

This complex diffusive phenomenon was first pointed out by Arnold [4] who 
gave an explicit example and found that  the time needed for this diffusion was 
exponentially long with the small perturbative parameter. Later a general theorem 
[5] was proved by Nekhoroshev who analized the perturbation theory for quasi 
integrable Hamiltonians of the form H(j, 9, c) = Ho(j) + eV(j, ~), where (j, q0) e 
R n x T n are action-angle variables, ¢ is the (small) perturbation parameter and H0 
is a non isochronous integrable Hamiltonian. By partitioning the phase space into 
resonant and non-resonant blocks and combining resonant and non-resonant finite 
order perturbation theory with suitable remainder estimates, Nekhoroshev proved 
stability for finite but exponentially long times on an open set of initial conditions. 
More precisely he showed that  I I ( t ) -  I(0) 1< e a, for times I t l< exp(eo/e) b, where 
a, e0 and b are positive real numbers. 

Celestial Mechanics and Dynamical Astronomy 47: 333-359, 1990. 
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A similar result had already been obtained 20 years before by J.E. Littlewood [6] 
in the study of the equilateral configuration in the restricted three body problem. 
About this exponentially long stability time his comment is : "while not eternity, 
this is a considerable slice of it". 

Results of this form can be relevant for physics and celestial mechanics [7]: 
clearly the relevant time scale for the stability of the Solar system is not longer 
than the estimated age of the universe. 

Nekhoroshev analysis simplifies when restricted to perturbed isochronous sys- 
tems [8,9,10,11]. In this case one deals with Birkhoff perturbation series and the 
remainder estimates are AN(N!)a¢ N, where A and a are positive constants and N 
denotes the truncation order. The asymptotic character of the series is evident and 
at the optimal truncation order N ~ e -1/a/e one obtains an exponentially small 
remainder which implies an exponentially long stability time. 

In the present work we extend this result to isochronous symplectic maps of 
R 2a. The motivation is twofold : on one side there are important physical systems 
which are naturally modelled by maps, on the other side maps are slightly more 
general than flows and there are relevant technical differences, so that something 
new can be learned analyzing them. As J. Palis and J.C. Yoccoz have proved [12] 
in full generality for smooth diffeomorphisms of compact boundaryless manifolds, 
there exists a large class of maps with trivial "centralizer", that is these maps do 
not embed in smooth flows as their time one map. Therefore the transposition of 
results from Hamiltonian flows to symplectic maps is not immediate. 

Symplectic maps frequently appear in theoretical physics, applied physics and 
celestial mechanics [13,14,15,16]. They are obviously more convenient than flows 
for any numerical experiment and occur as the natural models to describe the 
magnetic lattice of a particle accelerator [17,18,19,20,21] or the magnetic surfaces 
in the toroidal machines for the controlled thermonuclear fusion [22,23,24,25]. 

In the present work we consider a symplectic map of R. 2~ in the neighborhood 
of an elliptic fixed point and analyze the asymptotic properties of the Birkhoff 
series [26,27], using the majorant series method of Cauchy. Such a method was 
first succesfully used by Moser [28] to prove the convergence of the Birkhoff series 
which bring to normal form an area preserving map in the neighborhood of a 
hyperbolic fixed point. 

In the elliptic case we consider, the precise mechanism which determines the di- 
vergence of the series is not precisely known, even though some heuristic arguments 
have been given for area preserving maps [29,30,31]. Here we find that our majo- 
rant series satisfies a functional equation, which seems to be at the origin of the 
N! growth of the power series coefiqcients, even if the small divisors contribution 
is absent. Indeed the same majorant series can be used also to study the normal 
forms of analytic maps of C" in the resonant case [32] where no divisors occur if 
]'2 ~ 1 .  

The generating function 9(z) of the majorant series satisfies the following functional 
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equation 

3g(x) = g(g(x)) + x 2 + 2x g(0) = 0, g'(0) = g"(0) = 1 x • t t  (1.1) 

whose analyticity properties are presently investigated and seem to imply the pres- 
ence of a fractal natural  boundary [33]. A complete understanding of the analytieity 
of g(x) could be the first step towards understanding the analyticity structure of 
the true symplectic transformation which leads to the Birkhoff normal forms. 

Future work will consist in sharpening the estimates, possibly with a computer 
assisted proof, in order to compare them with numerical experiments for maps of 
R 4 where the diffusion can be observed. The extension to the resonant case will also 
be considered : the extension of the present estimates to the resonant normal forms 
is straightforward, while the construction of the interpolating hamiltonian and the 
corresponding remainder estimates are needed to obtain the stability estimate and 
require a further non-negligible technical effort. 
The present work is organized as follows : 

In section 2 we introduce our notations and the equation which formally conju- 
gates a symplectic, isochronous map with its normal form. In section 3 we estimate 
the growth of the Birkhoff series. In section 4 we estimate the remainder and in the 
last section we estimate the iterated remainder, obtaining a bound to the stability 
time. 

2. No ta t l ons~  s t a t e m e n t  o f  t h e  m a i n  r e s u l t .  F o r m a l  s o l u t i o n  
of  t h e  c o n j u g a c y  e q u a t i o n s  

2. 1. THE MAP 

Consider a map in R 2d, d > 1, defined by 

p' =/(q,p) 
q,=g(q,p), (2.1) 

where (q,p) E R d x R d and f ,  g are real analytic functions with values in R d. We 
assume that  the origin is a fixed point f(0,  0) --- g(0, 0) = 0 and that  the map is 
symplectic, namely the following condition is satisfied 

J = j (2.2) 

where the jacobian matrix .~(q,p) and the matrix J are defined by 

O(f,g) j = (  0 I . )  
.T'(q,p)- O(q,p) -In 0 (2.3) 

where In is the n x n identity matrix. 
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2. 2. C O M P L E X  C O O R D I N A T E S  

According to Birkhoff we introduce the complex coordinates zk = qk + ipk, k = 

1 , . . . , d  and their canonical conjugates Wk = z~ = qk - - i p k  and define z = 

( z l , . . . ,  Zd) and w = (Wl , . . .  , Wd). 

We consider also the complex functions Fk = fk + igk and their conjugates Gk = 
fk  - igk for k = 1 , . . . ,  d. Since the coordinates q,p  are real one is interested only 
in the. w = z* subspace of C 2d where one has G = F*,  namely the map (F, G) as 
a map in C 2d leaves this subspace invariant. 

Assuming that  the origin is an elliptic fixed point, the map F can be writ ten as 

z' = F ( z ,  z*) = e i ' ( z  + ~ [ F ] n ( z ,  z*)) (2.4) 
n = 2  

The following notat ion has been used : e i" = diag (e iwt , . . . ,  e i 'd) ,  

e i ' z  = ( e i " l Z l , . . . , e i ' d Z d )  and [F]n(z ,z*)  denotes the project ion of F on the 

subspace of homogenuous polynomials of degree n. 

In the space C d we use the following norm 

Ilzll = m a x  [z i l  z • C d ( 2 . 5 )  
l~_j~_d 

and the corresponding sphere [Izll < r is indeed a polydisk. 

Given any map G : C ~d --+ C d holomorphic on some closed polydisk Dr  • = 

{(z, w) • C ud I Ilzll -< r, Ilwll _< r } with G = ( G a , . . . ,  Gd), G(0) = 0, we write its 
Taylor series as 

G(z,w) ak (2.6) . ~  Z 1 W 1 • . .  Z d "w d , 

k E N  2d 

where Gk E C d , Gk : ( G ~ , . . . ,  Gdk). 

Its project ion on the subsapce of homogeneous polynomials of order n and of order  
_< N respectively are denoted with 

kl . . . l - . . . -{-k=d=n 

N 

[ a l < N  = N > 1 
n----1 

, n > _ l ,  

(2.7) 

The  same notat ion is used for the projections of holomorphic maps of C 2~ with 
values in C. 
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2.3. DIOPHANTINE CONDITION 

We assume the linear part  of the map (2.4) to be non-resonant ( k .  w = 0 and k E 
Z d =~ k = 0) and fur thermore we require that  the frequencies w satisfy a Diophan- 
tine condition, i.e. for some constants 7 > 0 and 7/> d one has 

le ik'~ - 11 > 7-1lkl  -n for all k e Z a \ {0} (2.8) 

where I kl d = ~j=l  Ik¢ I. Without  loss of generality, in the sequel we will assume that  

7 > 1 .  

2. 4. NORMAL FORMS 

We say that  the map G is a normal form of degree 1 if 

z ,  z * )  = z * )  . (2.9) 

If a~ is non resonant  and the map is symplectic, (2.9) implies that  G is the direct 

product  of rotat ions in the planes z l , . . . ,  zd with variable real frequencies f t  = 
f~(zz*) =_ f~(lzl l2, . . . ,  lzdl 2) such that  OflJ/Opk = Of~k/Opj with pj ~- zjz~ for 

j ,  k = 1 , . . . ,  d. As a consequence 

G(z, z*) = ein(z~')z ,  (2.10) 

We shall denote with Hi the projector  on non-resonant normal forms of degree 1. If 
G is not in normal form then if k C N 2d , Ik] = n, and G~ are the Taylor coefficients 

of its j - th  component ,  1 < j _< d, we have 

{ G ~ ,  if k2m-1 = k2m for m # j and k2j-1 = k2j -4- 1 ; 
(II1G)~, -- 0, otherwise. 

(2.11) 

We say that  a map G is in normal form of degree 0 if 

*) = a ( z , z * )  (2.12) 

If w is non resonant,  the projector  II0 on the non-resonant normal form of degree 

0, acts on a generic map G according to : 

if k2m-1 = k2m for all 1 < m < d; (2.13) 
otherwise. 
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2. 5. N O R M S  

For any map G analytic in the polydisk D~ with a Taylor expansion G = )-~n°¢=1 [G]n 
we consider the following norms [34,35,36] 

II[aJ].ll~ : = r "  ~ Ia~l ,  
k l ' + . . . T k 2 d = n  , ki >O 

+ c ¢  + ~  

IlaYll  : = II[GJl"lI'rn = E II[GJlnll  r ,  ( 2 . 1 4 )  
n = l  n = l  

Ifall  : = m a x  I l a J l l r .  
l ~ _ j ~ d  

The given symplectic map (2.4) is assmned to be holomorphic in a polydisk D~ v 
for some rF. With a simple scaling of the variables z --* z / rF  we obtain a new map 
analytic in the unit polydisk. Scaling with some r <_ rF the following conditions 
can always be fulfilled 

II[F]II]I = 1 [1[F12111 _< 3-T/3'-1 < 1 (2.15) 
II[F]nlll _< 1, n_> 2. 

2. 6. MAIN RESULT 

Under assumptions (2.8) and (2.15) the following exponential estimate for the sta- 
bility of the orbits under iteration of the map F is obtained. 

T H E O R E M  . Let p, = 2/(497), and p _< p,(3e) -(9+s). I f  Ilzoll <_ p/2 and 
zt = F(Zt- l ,Z~_]) ,  t E Z, t  _) 1, then IIz, ll < (1 + ~ ) p  for all t <_ T, where 

2. 7. O U T L I N E  O F  T H E  P R O O F  

The proof of the theorem consists of four steps. 
First (section 2) one considers the formal solution of the functional equation con- 
necting the given map with its normal form. The existence of a symplectic solution 
was proved in reference [27]. 
In the second step (section 3) the norms of the homogeneous polynomials defin- 
ing the conjugat ion function and the normal forms are estimated up to a given 
truncation order N using Cauchy's method. 
In the third step (section 4) a bound is given for the norm of remainder of the 
functional equation in a disc D~. 
In the fourth and last step (section 5) the iterations of the map are considered and 
related to the iterations of the normal form through an "iterated remainder" whose 
norm is estimated. The optimization in N of the remainder norm in Dr/2 and the 
requirement that  it is also smaller than r /2  gives the final Nekhoroshev estimate 
once the result is tranformed back from the normal coordinates to the initial ones. 
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2. 8. THE FUNCTIONAL EQUATION 

The key point of the proof is the transformation through a change of coordinates 
close to the identity 

z = ~(~,(*)  = ( +  E l f i n ] , ( ( , ( * )  (2.17) 
n > 2  

of the given map F to a new map which is still symplectic but in normal form 

(' = u ( ( ,  (*) = d a(¢¢) ( .  (2.18) 

The obvious reason is that  the iterations of (2.18) are trivial. Formally the problem 
is solved by the functional equation 

F ( 4 ( ( ,  (*),  4" ( ( ,  (*))  = ~ ( ~ a ( ¢  ¢ ) ( ,  ¢ - ~ a ( ~ . ¢ ) ( , ) .  (2.19) 

Since no analytic solutions are known to exist in a neighbourhood of the origin we 
replace (I' and ~t with polynomials of order < N, namely with [q~]<N and [~]_<N, 
which are determined by requiring that  the functional equation is still satisfied up 
to order N. As a consequence we replace (2.19) with 

[ F o [~]<N -- [~]<N o ~t~l<~ In = 0 2 _< ~ < N ,  (2.20) 

where we have adopted the compact notation (FoO)(( ,  (*) = F(O(( ,  (*), q'* ((, (*)) 
and (~ o e ia)(( ,  (*) = ff~((eift(('(*), (*e-in(( ' ( ' ) ) .  For n > N the functional equa- 

tion is no longer satisfied and one is left with a remainder RN which is a sum of 
polynomials of degree > N + 1 

RN : = F o [~]_<N -- [~]_<N o eital- <~ . (2.21) 

For n < N, let us introduce the linear operator A defined by 

(2.22) 

and notice that  the relation between U and [f/]_<N is 

[v]n = [eit"l- <~ (]~. (2.23) 

It is convenient to remark that  the null space of A is the space of nornlal form of 
degree 1 and for later convenience we write explicitly that  

II , [U] ,  -- [Uln, (2.24) 

H , A [ ~ ] ,  = 0.  (2.25) 
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2.9. THE RECURRENCE 

We can extract an explicit recurrence ~om equation (2.20) according to 

[V]n.-}-/\i¢]n~-- [S]n, (2.26) 

where [S]n is defined by 

IS]. = IF o [~]_<N -- [¢]_<N o eitn]S ~']. + A[¢] .  + [U].,  (2.27) 

and manifestly depends only on [F]k, [~]k and [U]k with 1 < k < n - 1. 
The solution of the recurrence is obtained by projecting the equation (2.26) on 

the subspace of normal forms of degree 1 and its complement according to 

[u ] .  = n ,  I s ] .  

A(1 - = (1 - H1 ) [S ] . ,  

(2.2s)  

(2.29) 

The linear operator A, (which commutes with Hi)  can now be inverted since its 
null space is the space of normal forms and we write 

(2.30) 

The explicit expression of the r.h.s, reads 

! 

( A : I ( x  --  II1)[sJ]n)(~'~*) = E [ei(wl(kl--k2)'T"'-i'wd(k2d-l--k2d)) -- eiwi]--I 
kl+...Tk2d=n 

S~zf lz; k ' . . .  z~ ~d-'z~ k'" 1 <_ j <_ d 
(2.31) 

where in the sum ~'-]~' the coefficients for which the square bracket vanishes, namely 
kl -- k2 , . . . , k2 j -1  -- k2j + 1,. . . ,k2d_l = k2d, are excluded. 

2. 10. S I M P L E C T I C I T Y  

We notice that  the normal form components of the transformation IIl[@], are 
undetermined and at the same time the recurrence does not garantee that  [(I)]<N 
and [U]<_N are symplectic, namely that  equation (2.2) is satisfied up to order N. 

For area preserving maps d -- 1, one can determine H1 [(I)]_<g by imposing that  
the H0 projection of the jacobian of (I) vanishes at any order. It is then proved that  
[(I)]_<g and [U]<N are symplectic up to order N so that  [~]_<N turns out to be real 
[27]. 
For d > 1 the HI[(I)]<N is overconstrained and a direct construction is not work- 
able. However using a symplectic generator, the existence of a solution H1 [(I)]<_g, 
symplectic up to order N was proved [27]; as a consequence the existence of a nor- 
mal form [U]<N symplectic up to order N is also proved, and the reality of [~]_<N 
follows. 
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Moreover the functional equation (2.19) has a solution (0, U) with U in normal 
form according to (2.18) also if we impose that • verifies a condition weaker than 
symplecticity. Actually it is straightforward to see that if the couple (~, U) satisfies 
the equation (2.19), the couple (~', U) where we have defined 

g2' = e iE(¢¢*) o @ (2.32) 

with E (~* )  real, is also a solution. This is a trivial consequence of the fact that 
the maps in normal form commute with all the rotations in the coordinate planes. 
It is also possible to prove that in this way we obtain all the possible perturbative 

solutions of eq. (2.19). 
If the initial transformation • is symplectic, then one can easily see that the 

new trasformation ~I '' satisfies the Poisson brackets 

{O'J,o'*J} = 1 j = 1...d (2.33) 

where 
a a a a 

{ ' } = a¢, a~: a~,* oG ' 
(2.34) 

s = l  

We recall that if the functions E satisfy the relations OEJ/Opk = OEk/Opj with 
pj = ( j ~  for j,  k = 1 , . . . ,  d then the transformation @' is a real symplectic map. 

When we replace @' with its expansion up to order N in eq. (2.32) and (2.33) 
and project the resulting equations respectively with l'I 1 and H0, observing that 
II0O@/O( = 0H, (I'/O~, we obtain the relations 

111 [(I:~'J]N = i ~ j [~J ]N  _,  "-]- I I1 [(x~J]N -.{- .... (2.35) 

o n ,  [¢% + ~ t n ,  [¢*% = 

n - - ,  d 0 ~ i  O ~ * i  0 
= 11o Z ~ - ~ [  ]'b~[ 1"+'-' + o~-~ -['~'1' ['~*'1"+1-' 

/=2 s = ,  
(2.36) 

where [EJ]u-,  is an arbitrary real function. The equation (2.35) means that the 
immaginary part of III[~J]N can be choosen arbitrarily. Then we estimate the 
remaining coefficients 111 [~J]N by means of eq. (2.36) together with the constraints 

0~---~I1, [~iln = Ha [q'*']. (2.37). 

which remove completely the freedom left in the choice of the symplectic transfor- 
mation • according to (2.35). This completes the construction of the final pertur- 
bative solution of the conjugation equation. 
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3. E s t i m a t e  o f  t h e  n o r m  of  t he  B i r k h o f f  
series coeff ic ients  

3. 1. PRELIMINARIES 

In order to obtain an estimate of the norms I1(1 - 111 )[~] n I[1 and II [ u ] .  [11 for n < N 
we use the conjugation equation, namely (2.27), (2.28) and (2.30); in order to 
estimate IIHI[~]~II the simplecticity conditions (2.36) and (2.37). 
Since the composition of holomorphic functions or polynomials frequently occurs, 
we state the following result whose proof is straightforward and is left to the reader. 
Let P and Q be two maps : C 2d ~ C d holomorphic in a neighborhood of the 
origin and such that  P(0) = Q(0) = 0; for the composed map Q o P the following 
estimate holds 

II[Q 0 P]n[ll ~ ~ [[[Q]sl[1 E 
s=l m l + . . . + m 6 =  n 

m j  >_1 

I][P]m, H1 . . .  H[PIm.[[1 . (3.1) 

In order to bound the r.h.s, of equation (2.31) using the diophantine condition (2.8) 
it is convenient to introduce the notation 

= 27(n + 1)0 (3.2) 

so that  

max ]e i ( `~l (k ' -k2)+' ' '+'°d(k2d- ' -k~d))  - e i ' j  1-1 < a---2-~ (3.3) 
k l - } - . . . + k 2 d m n , k i ) ' O  - -  2 

and consequently from (2.28) and (2.30) we have 

II[U]nlll ~ IllS]nil, ~ ~nll[S]nlll 

I1(1- rI1)[~].l[1 _< ~ll[S]nlll. z~  

(3.4) 

(3.5) 

since an > 1. 

3. 2. THE INDUCTION 

The estimates on the norms of [U]n and [ff], are obtained with an inductive pro- 
cedure. A central role is played by a numeric sequence {#n} which satisfies the 
following recursion 

n - - 1  

~n = E/ -Zs  E ]Zm 1 . . . / - tm. .  (3.6) 
s=2 m l + . . . + m ~ = n  

m j  >1 
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#1 = #5 = 1 (3.7) 

L e m m a .  With the above de~nitions and assuming that (2.8) and (2.15) are 
satisfied, we have  

I I [U]l l l ,  = 1 I I [u ] . l l l  < ( 3 a g ) ~ - 2 f f -  2 < n < N 

I1[0].11, = 1 I1[¢].11, _< ( 3 a N ) n - 2 # n  2 < n < N. 

(3.s)  

(3.9) 

Proof. The proof  is by induction. 
The s ta tement  is true for n = 2 since [S]2 = [F]2 and the subspace of normal  forms 
is empty  for polynomials  of  even degree so that l[[Ul211x = 0 and from (2.16) and 

(3.5)  one has I1[¢1=11, -< 1. 
If n > 2 we suppose  (3.8) to be satisfied at any lower order namely  I1[¢1'11, -< 
(3a~)l-2#t and II[gltll~ _< ( 3 o g / - = ~  for 2 _< I < n _< N.  Starting from the defini- 
tion of IS]. (2.27) and using (3.1), we find 

x .  ~ ~ l l [ S ] . l l ,  _< ~. I I [F] . I I ,  
n - - 1  

-4- drn E [l[Y]s[ll E 

S--~2 m l + . . . + m ~  = l l  

raj >_1 

n--1 

+ E [][(I)]s[]l E 
S = 2  ml +..,+m.,, = n 

m,/ _>1 

II [¢M II1 " II[¢]m. I1' 

II[Ulm, 111".. IliUM Iti" 

(3.10) 

By the inductive  hypotesis  and using (2.15) we obtain 

n - - 1  

x o - < - ° + ' o Z  ~ (3"N)n-2'+"m)~m, • • ~m. + 
s = 2  m l + . . . + m , = n  

mj >_1 
n - - 1  

+ O'n E(a~N)S-2#s E (3CrN)n-2s+k(m)#rat ...#m, <-- 

$=2 l l l  l _}_ . . j f .  rgt s = r e 

(7 n 

rn~ kl 

( ) 1 + 2(3~N)(~-~) Z ~  Z ,m, . . . .m. 
s----2 m l + . . . _ b m s . =  n 

mj >1 

(3.11) 
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In the above equations k(m) denotes the number of indices mj which are equal to 
1, since the estimates (3.8) at order 1 and higher orders are different. Taking into 
account that  0 < k(m) _< s - 1 because of the costraint ml + . . .  + ms = n, and 
using the recurrence (3.6) for the #s we have 

Xn <- an(1 -{- 2(30"N)(n-3)pn) 
i ] 

<_ (3aN)(n-2)pn + 3pn(3aN)(n-3) ~ #n(3aN) (n-2) 
(3.12) 

since lZn(3O'N) (n-2) > 1. 
From (3.4) and (3.12) the inequality (3.8) follows. 

From (3.5) and (3.12) we obtain II(1 - II1)[ff],lll _< ½Pn(3aN) ("-2). As a con- 
sequence in order to show that  (3.9) is also satisfied we have to prove that  
IlII1[¢],111 < ½#n(3aN) (n-2). This is achieved using the symplecticity conditions 
(2.34) and (2.35). 

3. 3. S I M P L E C T I C I T Y  C O N D I T I O N S  

Taking the norm of (2.36) and taking into account (2.37) we obtain 

n--1 d 

,, -< z 
1=2 s = l  

(3.13) 

Since II , [Oi]n((  = 0,(*)  = 0 it is not difficult to see that I1~-~¢ n,[~ilnlll 
IIn1[~%111, and eq. (3 .13) then  reads 

> 

n - 1  d 

Ilnl [¢]n]11 < E E l(n + 1 --/)H[Olt[ll [[['I']n+l-,l[, 
/=2  s = l  

n--1 

= d E l(n -t- 1 -/)ll[~]lll~ll[~]n+l_lllX . 
l = 2  

(3.14) 

Using our induction hypothesis II[¢],lll ~ (3aN)t-2#l for 2 < l < n -- 1 we obtain 

n--1 l(12 + 1 - l) 
IlIIl[~]nlll < d(3°'N)n-2 E 3aN Izl#.+,-t (3.15) 

l = 2  

In order to obtained the desired result, all that  we need to prove is 

l/Zn+l--I ~ E [dmt . ' '  /~mt 

ml+.. .+mt=n 

mj >1 

(3.16) 
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which follows immediatly recalling that  #1 = 1, and 

d ( n + l - l )  1 d ( n + l - l )  < 1 d ( n - 1 )  < 1 d 1 
3aN 2 3 - ) , (N+ l ) ,  - 2 3 - ~ 1 )  d - 2 3 ( N + l )  d-1 < 2 (3.17) 

345 

1 n--1 

1--2 m l + . . . + m j = n  

m s >1 

and finally one has 

# , m ' " P m ,  = (3aN) '-2~-~ (3.18") 

where 

I1[¢].111 _< iiHl[¢].ill + li(1 - H1)[¢].1[1 _< ( 3 a N ) ' - 2 V .  • 

This completes the proof. 

3 . 4 .  F I N A L  E S T I M A T E S  

The bounds which will be used in the next sections depend on estimates on the 
# , .  These are considered in the Appendix A. Here we simply report the result 

# .  < (n!) 3. (3.19) 

We point out that  the result (3.19) could be sharpened becouse a numerical analysis 
of the sequence shows that  #n _< C'(n!).  By (3.2) we can write 

< [6~(g + 1).] ("-2) N(3°) < [6~(N + 1)(9+,)] "-2 (3.20) (3~N)(--:)(n~) 3 

The final estimates can therefore be written as 

I1[U]1111 = 1 II[U],ltl < A "-2 2 < n < N (3.21) 

II[(I)]nlll ~- 1 ]l[(I)]nH1 < A n-2 2 < n < N, (3.22) 

A = 6 7 ( N + 1 )  9+~ A > 2 .  35 (3.23) 

The lower bound to A holds also when 9 + ~ is replaced with 3 + 7?; this exponent 
would appear in (3.20) if the n! estimate to #n, suggested by numerical evidence 
replaces the proved (n!) s bound. The 2 • 35 lower bound to A will systematically 
be used, so that  the final results will hold under the substitution 9 + 77 --~ 3 + 
once the n! bound to ft ,  is proved. 

where (3.2) has been used and the constraints 7 > 1, 77 k d have been taken into 
account. As a consequence (3.13) and (3.14) yield 
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3. 5. INVERSE TRANSFORMATION 

Together with the transformation [ff]<N one has to consider the inverse transfor- 
mation 62, which exists in a neighbourhood of the origin due to the Inverse Function 
Theorem, and is defined by the functional equation 

([~]<N o 62)(z,z *) = z. (3.24) 

From (3.24) we obtain the series solution for 62 which at order n < 2 reads 

[6211 = ~ [62]2 = - [~ ]~  ===¢" 11162],11, -- 1 H[6212]Ia _< 1 (3.25) 

and at higher orders gives a recurrence, which, through (3.1) leads to recurrent 
inequalities for the norms 

n--1 

11162].lll _< I1[~].lll + ~ I[[~].11, 
am2 ra l+ . . .+m,=n  

m~ _>1 

11162]m, II, ..... 11162]m, 1ll (3 .26)  

setting II[~].ll, = 0 if n > N. Therefore using (3.22) we obtain 

n - 1  

11162],11, -< A "-2 + ~ A'-2 E 
0=2 ml+...+m~'=n 

mj >>1 

11162]~,11, ..... It[62]m. ll, • (3.27) 

It is convenient to scale the norms 11162]-[11 introducing the sequence y .  defined by 

H[62]lH1 = Yl = I ,  H[62]nl[1 = A n - 2 Y .  for n _> 2 (3.28) 

By the same arguments used to prove (3.11) we find that  that  the sequence y .  
satisfies the recurrent inequalities 

n--1 
1 

y, <_ 1 + ~ Z Z Y,,, ..... Ym. wi th  n > 2 (3.29) 
s----2 ml.+....@ms_~n 

raj  >1 

initialized by yl -- 1, y2 < 1. 
We introduce a new sequence {~)n } bounding from above the {Yn } and defined by 
the recursion 

91 = ~)2 = 1 ,  

n--1 

~n = ~ ~ ~m, ..-~m. for~ > 2 (3.30) 
s~-2 ml..}......bmamn 

mj >_1 
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The sequence {On} is analyzed in Appendix A where we obtain the result 

!/, _< !}~ -< - ~ ( 7  "-~) for all n > 2 .  (3.31) 

Finally from (3.28) and (3.31) we obtain the desired estimate for I1[~]-II1 which 
reads 

{ I1[~1.111 : 1, i f n  = 1,2 (3.32) 

I1['~1.111 <- ~ (7A) "-2 , with n > 2. 

4 .  E s t i m a t e  o f  t h e  r e m a i n d e r  n o r m  

According to (2.21) the remainder RN gives a nonvanishing contribution at orders 
n >_ N + 1 and we can write 

[RN]. = [Fo[~I<N--[~]<_NOei[~I<-N¢] for n > N. (4.1)  
t . . l  n 

In order to bound the norm of the remainder we need first to estimate the norms 
II[ft],~lll with n < N using the estimates of II[U],,II1 obtained for n < N in the 
previous section and then bound II [e-D]_~ N14]-II1 for any value of n. 

4. 1. BOUNDS TO 

The definition (2.23) implies that  [ft]___N is determined by [U]<_N namely 

~je i[gtil<N(¢'<') ~- [uJ]<_N(~,~ *) -6 0(1~1 N) where j = 1 , . . .  , d ,  (4.2) 

and the relation can be inverted according to 

i ( [ a J ] _ < N ( ~  • 4 * )  - -  wJ) = in 1 -6 \ ~.~ - 1 + 0(1~1 N) (4.3) 

where the logarithm is evaluated according to the expansion ln(1 + x) = 
_ V -oo (-~)' 

.d..~ s =  1 s 

The following inequality is obtained by (3.1) 

i:l X 
S 

s = l  
rrt i + . . . + B ~ t  = n  

,~j >l 

where we have taken into account that  

[[ v q < N ( ¢ , ¢ * ) e  - i ~  
- Cj 

I I [U ]m l+ l l l ,  . . .  I I [ U ] m , + l l l l ,  (4.4) 

- I] n 1 -- I I [ U q n + l l l ]  ~ I I [G ]n+ l l l l  • (4.5) 
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Using the estimate (3.21) for II[U].II1, equation (4.4) becomes 

I ' [ ~ ] n l ' l < _ ~ ' ~ l A n - s ( : - : )  

.=x (4.6) 
oo A_(,_ 0 1) ~-a / l \ ,~_a 

__ A " - I E  U - f f , ( r ~ -  = [ A e . )  , 
o = 1  

n - - 1  where the binomial coefficient ( , -1)  is the number of terms of the sum E 

(see Appendix A). 
By a similar procedure, using (4.6) we find 

1 

s = l  mt +...+m,=n 
m i __1 

~-~ 1 / . .t . ' ,--*( ) (4.7) __ ( A e a )  n - 1  
< ~ s - 1  s=l 

/ t x n-1 ~ 1 ,, ~ \ - 0 - 1 )  
- L - ~ a e x )  ( n - 1 ) s - l = B  n-I < [Ae-Z) (s 1)! 

a = l  

where 
B =  A e x p { 1 / ( A e ~ ) +  1 / A } .  

From (3.23) it follows that 

2 . 3  5 < A < B < 2 A  

rnt +....+rns=n 

(4.s) 

(4.9) 

4. 2. R E M A I N D E R  E S T I M A T E S  

In order to estimate the remainder I[RN[]r we first notice that 

(4.10) 
and recall that I[[¢].111 = 0 for n > N,  so that the following inequality is obtained 

n - 1  

II[RN]-II, ~ Y~ H[F]sII1 
s = 2  ml+...+m,=n 

m j  >1  

N 

8 = 1  m l + . . . + m s =  n 

m~ _>] 

i[[O]m, ll~ .... II[¢]m. ll* + II[F]-II~ 

[ei[al~N(]ml 1 . . . .  [ e i [ ~ l ~ N ~ ] m "  1 

(4.11) 
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Using the estimates(2.15), (3.22) and (4.10) we obtain, with the same manipulations 
used in (3.11) 

H[RN]nH1 <_ d n-3  ~ + 1 + B n-3 + S n-2  . 

s = 2  s = 2  

(4.12) 

Recalling that ,,-1 n-1 2n-1 ( 8 ) = taking (4.9) into account, we find for n - 1 > 
N>_2 

II[RN]nI[1 _< 2 "-1 (A "-3 + B "-3) + 1 + B ~-2 

( 2 2 1  1 )  (4.13) 
< ( 2 B )  ~-~ + ~ + ~-~ + _< ( 2 B )  n-~  

Then we have immediately 

1 co 1 ( 2 B r )  N+I 1 
HRN][~ --< (2B) -----~ ~ ( 2 B r ) n  = (2B)  2 1 - 2 B r  ' for r < ~--~. (4.14) 

n = N + l  

4. 3. A N E W  R E M A I N D E R  

In order to compare the normal form dynamics and the true dynamics the trans- 
formation • = [ ~ ] ~  must be applied to both members of the equation 

F o [~]<N = [~]<N o ~ i [~ ]<N¢  + R N ,  (4.15)  

obtaining 

G : = • o F o [~]<_N = J [ a ] < u  + h N .  (4.16)  

where/~N is the new remainder defined by 

R ~  : =  • o ([~]_<~ o e / [ a l < - ~  + R ~ )  - ¢ o [~]_<N o A a ] < - ~ ¢ .  (4.17) 

In order to estimate the new remainder we first evaluate the norms of the functions 
F, • and ~ respectively. 

4. 4. S O M E  E S T I M A T E S  

Using (2.15) we immediatly have 

T 
HFIIr < r < r r  = 1, (4.1S) 

- 1 - - r  

using (3.22) we obtain 

II[~]<~llr < r + - -  
?.2 

1 - A r  
r < r~ = 1/A (4.19) 
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and finally using (3.32) we get 

147 r2 7At 
[[kv]Ir < r + r 2 + ~ 1 - 7A-'-----~ r < r~, = 1/(7A). (4.20) 

One can notice now that  the composition kv o F o  [(I}]g N is well defined if we choose 

1 
r _< 9---B (4.21) 

Indeed from (4.19) it follows 

and from (4.18) 

1 (~ 1 )  1 
II[~']_<NIIr _< II[~]_<NII~ _< ~ + ~-~ < 8---~ (4.22) 

1 1 
l i fo [~]_<N lit < [[FIIII[Vl_<NII, _< [[F]]~ ~ 8 B ~ - I  < 7-A " (4.23) 

We wish also to check that  

~In fact using (4.14) and (4.22) we have 

1 
with r < - - .  (4.24) - 9B 

1 (~ 1 ) 1 9 (2 )  N+I 1 
8--~ + ~ - ~  + 4 - - ~  ~ 8---~ 

(4.2~) 

where we have used N > 2 and ei[ft]<N( ~ = 1, which is a consequence of the 

reality of the frequency f~. 

4. 5. N O R M  O F  T H E  N E W  R E M A I N D E R  

In order to bound/~N we have to use a Cauchy estimate. If f is analytic in Dp and 
g, h are analytic in Dr with r < p then 

IIf o (g + h) - f o gll,- ~ IIflll,a,l.÷llhll.÷~llhllr 
E 

(4.26) 

provided that  IIgllr + Ilhllr + ~ _< p. The proof is given in appendix B. 
As a consequence letting p = [][~]_<gI[r + [IRN]I~ and choosing still r < 1/(9B) we 
have p < 1/(SB), see (4.25), and consequently 

(4.27) 
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Since we must  have p + c < r ,  = 1/(7A) we choose 

1 1 1 15 1 1 
c -  l12B ~ p + c <  l12--B + 8B l12B < 7-B < ~ = r ' ~  (4.28) 

A straightforward calculation using (4.20) gives 

18 
II~}lp+, < ]1¢2]1 ~, < (4•29) 

- . 2 B  - 112B" 

from (4.27), (4•29) and (4.9),(4•13) we obtain the estimate of II/~Nllr Finally 

I}RNIIT < 1811RNIIr < 18 _ _ 4B 2 (2/3r) N+' < (4Ar) N+I. (4.30) 

5. T h e  N e k h o r o s h e v ' s  E s t i m a t e  

5. 1. ITERATED REMAINDERS 

Here we first write a recurrence for the remainders of the map i terated t < T times. 
I terat ing once the function G defined by (4.16) we obtain 

where /~N(2) is the sum of the two terms between square brackets• By induction 
we easily have 

V°( t+ l )  ~- a°(t) oV-~- (eit[~2]<-Nf-Jr-RN(t)) 0 (ei[f~]-<N;n t - l~N)  -~ (5.2) 

= ci(t+l)[al<Nff + RN(t + 1) 

where we define the remainder after t + 1 

Since/~N is defined in a disc Dr with r < 

1 

iterations as 

RN) -- (eit[ft]<-N~) 0 (¢i[ft]<N¢)] 

I/(9B) and afor t ior i  for 

r < - - <  - 

- 1 8 A  - 9 B '  

(5.3) 

(5.4) 
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the next remainders will be defined in smaller domains, namely R N ( t )  will be 
defined in D.,_, where rt is a decreasing sequence on which we require that ,  for 
instance, rT = r/2.  
As a consequence we can choose 

r r r t  r 
- -  ~ = r - -  ~ r T  = - -  (5.5) r o = r ,  r l = r  2T '  .... r t = r , _ l  2T 2 T ' " "  2 

We use now the Cauchy estimates (4.26) in order to evaluate the norm of -~N(t). 
The norm of the first term in (5.3) is bounded by 

<_ ~- II~"ta]-'"Cll~,+l)R,,ll+, II/~NII,, = "' + e + flhNll~, II/~NIIr, 
(5.6) 

Of course we must impose that  rt + }lRgl]r, + ~ _< ~,-1. A possibility is to choose, 
taking into account (4.30) 

~ ' - ~  - "' IIRNII~, < IIRNII~ < (4At) N+' < rt-1 - rt (5.7) e =  2 - - - 2 

With this condition the 1.h.s. of equation (5.6) is bounded by 2r t -1 / ( r t -~  - 
r~)[I/~N[Ir. By (5.5) we have also 

RN(t) o (¢tnl_<,,( + RN) ~, _< IIRN(t)ll~,+,,n,~,,~, -< IIRN(t)II~,_, (5.s) 

Combining the last results finally we obtain 

IIRN(t + 1)11., < 2rt_l r-~t-l_ rt IIRNIIr + II/~(t)ll~,_, = 

= 2(2T - t + 1)llRNIIr + IIR~(t)ll~,_l 
(5.9) 

The recurrent inequalities are immediatly solved and one obtains 

IIkN(t)ll~,_, _< [~ + ( 2 T  + 1 ) ( t -  1) t(t-2_ 1)] 2II/~NI]~ _< 4TZlI/~N]I~ (5.10) 

f o r 2 < t  < T .  

5. 2. M I N I M I Z A T I O N  O F  T H E  R E M A I N D E R S  

The optimization is obtained by choosing for any fixed r satisfying (5.4) a truncation 
order N = N which makes the remaninder I]RYl]r minimum. For this purpose it is 
convenient to rewrite H/~N [[~ as follows; recalling (4.30) and (3.23) 

IIRNllr _</ (N,  r) - (4Ar) N+I = (N + 1) 9+" N ~ 2 (5.11) 



N E K H O R O S H E V  E S T I M A T E  FOR N O N  R E S O N A N T  S Y M P L E C T I C  M A P S  353 

where we have defined 
1 

r ,  = 247" (5.12) 

The inequality (5.4) now reads 

r_ 
_< ~ ( N  + 1) - 9 - ' .  (5.13) 

r ,  

The minimum of f (N,  r) is obtained for N = 29 where 

I_A_ 

= - - 1 (5.14) 
e 

and the corresponding value of f is 

f(29, r) = exp [ - ( 9  + ~7)1 ( ~ )  9-~' ] (5.15) 

We observe that  writing (5.14) as 

L = (19 + 1) - 9 - ,  (5.16) 
r.  

condition (5.13) is trivially satisfyed for any .N >_ 2. Indeed we have only to in- 
sure that  the minimum effectively occurs for f o r / ~  > 2. This gives the only true 
constraint on r which reads from (5.14) 

> 2 ==v r < r_______:. (5.17) 
- -  (3e)9+~/ 

5. 3. ADDITIONAL CONSTRAINTS 

Let us observe now that equation (5.7), which bounds II/~NII~ in order that  the 
compositions occuring in the remainders AN(t) are well defined, now reads 

(5.18) f(l~,r) < 4T 

We should also notice that the image by the map eit[u]-<g~ + AN(t) of a point in 
D~/2 is well defined for any t <_ T and will remain confined in Dr  if we require 
that  the norm of the remainder -~N(t) does not exceed r/2.  This is essentially the 
stabili ty condition which, according to (5.10) can be written 

r r 
II/~N(t)H~,_ , < 4T2f(29,r) < ~ : : ~  f ( f i - , r )  < ...... 1 < t < T (5.19) 

_ _ _ 8T 2 

Condition (5.19) fixes the optimal stability time T : ~ E D~/2 ~ ~t E D~ 1 < t < T 

T = 1 8 f ( ~ r , r  ) -- v~exp [~ (~) (5.20) 
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5. 4. FINAL STABILITY CONDITION 

Now for any fixed N the stability condition is fulfilled if any orbit with initial point 
z C Dp/2 remains up to time T in a disc Dp, , with p~ > p, namely that  zt E Dp, 
for t < T. If we consider the image ( , . . . , ( t , . . . , ( T  of the orbit z , . . . , z t , . . . , Z T  by 
the t ranformation ~,  then the previous statement becomes : that  ~ E D~/2 implies 

Ct c D r ,  f o r t  < T .  
We have seen above how to fix T so that  r '  = r. Let us now recall that  

fig o F °(t) o [0]_<N ---- e - t [ f t ] - < N (  -1- R N ( t )  (5.21) 

and that  

and also that  

IICII = I1 11  < 49 p for p < 1 - 48 2 - 7--A = r .  (5.22) 

145 1 r~ 
_ r '  for r '  < - (5.23) 

Ilzll = I[[O]<NI]~' -< 144 - 2A 2 

Le us choose now 

which implies 

Introducing the variable 

the optimal stability time T : 
given by 

provided that  

r 49 p 

2 48 2 
r' = r ( 5 . 24 )  

P' = 145r' < (1+ ~-4) - ( 5 .25 )  

48 2 (5.26) 
p, = ~-~r, - 493' 

z EDp/2 =* zt cD(1+~)p 1 <t  <Tisobviously 

T = 7  f f~exp[9_ t_ r ] [~ (~ )9 -~ ]  (5.27) 

p _< P* (5.28) 
(3e)9+,J 

According to (5.4) the choice (5.24) implies p < 4s 1 • 1 - ~6 ~ - 7-~ so that  the conditions 

to apply (5.22) and (5.23) are obviously satisfyed. 

This concludes the proof of the main theorem. 
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A p p e n d i x  A : Proof of (3.19) and (3.31) 

Let #l  = #2 = 1, and #n ,  n > 2 be recursively defined by 

n--1 

s=2 k l W . . . W k , : n k i > l  

(A.1) 

L e m m a  A1 For a/I n > 1 
#,, <_ (n!) 3 (3.19) 

P r o o f .  By induction we assume that  (3.19) holds for 1 _< j _< n. First  of all we 
remark that  

m a x  k , ! . . ,  k~! = ( n -  s + 1 ) ! .  (A2) 
kl +... + k,,.=n,l ~_k l ~...k~ 

In fact this is true if s = 1 and by induction on s 

max k l ! . . ,  ks+l! < max (j! max k l ! . . ,  ks!) 
~1 +-..+~,+t =- -- l<_j<n--s kl +...+~, =--J l_<kt_<...<k,+l m.h<..._<k* 

< max 
l<_j~n-s 

j ! ( n  - j - s + I)! _< ( n -  s)!.  

On the other  hand the number card(s ,n)  of terms in the sum ~h+ . . .+W=n  is 
given by the binomial coefficient 

n - 1 )  (n  - 1)! 

s - 1 = (s 
(A3) 

as follows immediately by induction on 1 < s < n : 

- 

c a r d ( s + l , n ) =  E c a r d ( s ' n - J ) =  n - j - 1  n - 1  
j=l j=l s - I s 

F r o m  (A2) and (A3) follows that  

n--1 n--1 
~tn ~-~ E (s!)3 E (]gx ' )3""(ks!)3 -~ E ( s ' ) 3 ( :  - ~ )  ( ( n - s  ~-1)!)3 

s :2  kl + . . . + k s : n  k i>l  s=2 
n-1 

= (n - I)! E(s!(n- s + i)!)2s(n - s + I) 
s~2 

so that  (3.19) is proved if one shows that for all n >_ 3 

n--1 
E ( s ! ( n  - s + 1)!)2s(n - s + 1) < (n!)2n.  (A4) 
8--2 
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As s! (n  - ,s + 1)! ,2 < s < n - 1 has its maximum for s = 2 one has 

s!(n - s + i)! < 2(n - 1)! (Ah) 

n - - 1  while the sum ~-'~=2 s (n  - s + 1) can be explicitly computed 

n - - 1  

n [ ' n  1 ) ( n + 4 )  6]. (A6) E s ( n - s + l ) =  g ( - 
s----2 

By (Ah) and (A6) we finally obtain 

n - - 1  
n 

~ ( s ! ( .  - s +  1)!)2s(n - s + 1) _< (2(n - 1)!)2 ~ [ ( .  - 1)(n + 4 )  - 6] < (~!)~ 
s----'2 

for all n > 3, i.e. (A4). This completes the proof of the lemma. 

We now consider the sequence recursively defined by 

rt 

Yl = 1 ,  Y n = E  E Yk,...Yk, f o r n 3 > 2  (A7) 
s=2  kl  + . . . + k ~ = n  , ki>_l 

L e m m a  A2 For edl n > 1 

!)n --< 4 7~-1 .  (3.31) 

P r o o f .  The formal power series 

+ c ~  

g(z) = ~ ~ . z - ,  (AS) 
n----1 

where z E C, solves the functional equation 

(~(z))2 
g ( z ) -  f - g - ~ ; )  + z .  (Ag) 

Let w = g(z); w is a root of the quadratic equation w 2 + z(1 - w) = (1 - w ) w  from 
which one has immediately 

1 + z - ~ / 1  + ( z  2 - 6 z )  
w = g ( z )  = 4 

The first singularity of g(z )  is at z = 3 - 2v/2 and the series will converge for 
instance for Izl < 1 < 3 - 2v/2 and using Cauchy's theorem we have 

Yn-<7 n max lg(z) l< 3 n 
Izl_<l/r _ #7 . 
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A p p e n d i x  B : P r o o f  o f  ( 4 . 2 6 )  

L e m m a  B3 Let  f be analytic in the  po lyd i sk  D O and g, h be analy t ic  in Dr  wi th  

r < p. T h e n  

Ilf o (g + h) - f o gll~ < Ilfilngll~+tlhllr+~ [Ihlt~ (4.26) 
C 

prov ided  that Ilgll~ + Ilhllr + ~ < p. 

P r o o f .  Let z E D~ be fixed and let G ( z , t )  : = f ( t ( g ( z )  + h (z ) )  + (1 - t )g ( z ) ) ,  

so that  

f ( g ( z )  + h ( z ) )  - l ( g ( z ) )  = -~a(z,t)at. 
By the s tandard Cauchy theorem for one complex variable we can evaluate the 
derivative of G with respect to t by integrating over a small circle around t. Fol- 
lowing [36] we introduce 

G ( z , t , s )  : = f ( ( t  + seiX)(g(z)  + h(z) )  + (1 - t - se iX)g(z))  

so that  

If 

1 27r  ^ 

: (9 (2 )  + h(z) )  - : (~(~))  = ]o ]o C(z,t:~_)2~e,~ ~xet  . (B1) 

C 
= J@l~ (B2) 

then G(z, t, s) is well defined for all z E D~ and its norm as an analytic function of 
z is bounded by the norm of f uniformly as (t, s) vary in [0, 1] × [0, 27r]: 

IL0(.,t,~)ll~ ~< Ilfllllgl,r+Hh,t~+~. (B3) 

By taking norms on both sides of (B1) and using (B3) we have 

/0/0 /0 'd' 
1 2,~ i iG( . , t ,~ ) l l rdxd  t <_ Ilfllllallr+llhllr+~ - -  

l lf  o (g + h) - f o gilt < 2rrs s 

From the definition (B2) of s one finally obtains 

IIfo (g -4- h) - f o gll~ ~ Ilfllllgll~+llhllr+~ Ilhll~ 
C 

N o t e  a d d e d  in p roof i  The estimate (3.19) can be actually replaced by /zn  < 
8n - l (n  - 1)! as proved recently by one of us (A.B.) in an unpublished work. There- 
fore the final stability estimate (2.16) can be improved by replacing 9 + r/ with 
3 + ) / .  
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