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A b s t r a c t .  k-out-of-n systems frequently appear in applications. They con- 
sist of n components of the same kind with independent and identically dis- 
tributed life-lengths. The life-length of such a system is described by the 
( n - k  + 1)-th order statistic in a sample of size n when assuming that remaining 
components are not affected by failures. Sequential order statistics are intro- 
duced as a more flexible model to describe 'sequential k-out-of-n systems' in 
which the failure of any component possibly influences the other components 
such that their underlying failure rate is parametrically adjusted with respect 
to the number of preceding failures. Useful properties of the maximum like- 
lihood estimators of the model parameters are shown, and several tests are 
proposed to decide whether the new model is the more appropriate one in a 
given situation. Moreover, for specific distributions, e.g. Weibull distributions, 
simultaneous maximum likelihood estimation of the model parameters and dis- 
tribution parameters is considered. 

Key words and phrases: Sequential k-out-of-n-system, sequential order statis- 
tics, generalized order statistics, type II censoring, maximum likelihood esti- 
mators, extremal quotient, Weibull distributions. 

i. Introduction 

In many applications, technical systems or sub-systems have k-out-of-n struc- 
ture which has been extensively investigated in the literature. We consider a 
(n - r + 1)-out-of-n system which consists of n components of the same kind 
with independent and identically distributed life-lengths. All components start 
working simultaneously and the system fails, if r or more components fail. A 
(n - r + 1)-out-of-n system of this type  is also called (n - r + 1)-out-of-n:G as well 
as r-out-of-n:F system. Obviously, the life-length of the system is described by 
the r - th  order statist ic in a sample of size n. Results on statistical inference in this 
model  can also be found in the analysis of type  II censoring which is described by 
order statistics (see e.g. Lawless (1982)). However, in some systems the  failure of 
a component  may  more or less s trongly influence the remaining components .  This 
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can be thought of as damage caused by the i-th component failure, 1 < i < r, 
in the system. Thus, a more flexible model, which is therefore more applicable 
to practical situations, must take some dependence among the components into 
account. We suppose that, after each failure, the remaining components possess 
a possibly different failure rate than before; i.e., the underlying failure rate of the 
remaining components is adjusted according to the number of preceding failures. 
For this purpose, the model of sequential order statistics is proposed in Kamps 
(1995a). Therein, a concept of generalized order statistics is introduced contain- 
ing order statistics, sequential order statistics and several other models of ordered 
random variables as particular cases. Moreover, the distribution theory for gener- 
alized order statistics is developed and results with respect to moments are shown. 
For further properties and a detailed discussion of generalized order statistics, in- 
cluding reliability properties, we refer to Kamps (1995b). Well known results for 
order statistics, and by this for corresponding ordinary k-out-of-n systems, are 
contained as special cases. 

In the present paper, we are concerned with statistical inference for ( n -  
r + 1)-out-of-n systems with component damages as described above by means of 
sequential order statistics. Thus we term this structure 'sequential ( n -  r + 1)-out- 
of-n system'. 

In Section 2 we introduce sequential order statistics and summarize some dis- 
tribution theoretical results. Maximum likelihood estimators for the parameters 
in our model are derived in Section 3 and several of their properties are shown. 
Based on these estimators, we present short-cut tests and the likelihood ratio test 
in Section 4 to decide whether or not our proposed model is appropriate for de- 
scribing some (n - r + 1)-out-of-n system. For illustration, we show the results 
of a simulation study. In the last section we are concerned with simultaneous 
maximum likelihood estimation of the model parameters and distribution param- 
eters for specific underlying distributions such as one- and two-parameter Weibull 
distributions. 

2. Sequential order statistics 

We consider a sequential (n - r + 1)-out-of-n system where the life-length 
distribution of the remaining components in the system may change after each 
failure of the components. If we observe the i-th failure at time x, the remaining 
components are now supposed to have a possibly different life-length distribution. 
This one is truncated on the left at x to ensure realizations arranged in ascending 
order of magnitude. In the definition of sequential order statistics we start with 
some triangular scheme of random variables where the i-th line contains n - i + 1 
random variables with distribution function Fi, 1 < i < n. 

DEFINITION 2.1. Let ~ j )l<_i<_n,l<j<_n-i+l be independent random vari- 

ables with (Y;i))l_<j<n_i+l ~ Fi, 1 < i < n, where F 1 , . . . ,  Fn are strictly increas- 

ing and continuous distribution functions with Fl1(1)  < . . .  < F,71(1). 
Let X} 1) = yj1), 1 _< j _< n, X! 1) = min{X} 1),...,X~(1)}, and for 2 < i < n 

let X ( i ) =  F~-I (Fi (Y; i ) ) (1  - F i ( X ( i - 1 ) ) ) +  Yi(X( . i -1))) ,  X ( i ) =  min{X~i), 1 <_ j _< 
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n - i + 1}. Then the random variables X ! I ) , . . . ,  X! ~) are called sequential order 
statistics (based on F1 , . . . ,  F~). 

( i - - i )  of the minimum in line i - 1, we obtain the Given the realization Zl,n_i+ 2 

conditional distribution of the random variables X~ ~) for 1 < i _< n. Since Y1 (i) 

and X,  (i-i) are independent, we have 

P(X[  i) ~ t I X~ i-l) ~- 8) .-~ P Fi(} z(i)) ~_ ~_-Fi-~) J 

_ Fi(t) - Fi(s)  _ Gi( t  I s), say. 
1 - Fi(s)  

Thus we describe our modified (n - r + 1)-out-of-n-system as follows: 

Consider a triangular scheme ~,,j ) l<i<n,l<j<n-i+l of random variables 
/~,(i)x ( i -1)  \ 

where the ~,j  )l_<j<_~-i+l are iid according to Gi(. I z l ,n-i+2),  1 <_ i < n, 

z(O) 1,n+l  = --CO. 

After the occurrence of the i-th failure in the system at time ,(i) (i.e. ~l,n--i+l 

the realization of the sample minimum in line i), the next failure time is modelled 
as the minimum in the sample ~(i+I) (i+i) ~1 , . . . ,  Z~,~_i of iid r.v.'s with distribution 

z (~) function Gi+l(" I 1,n-i+lJ" 
At this point the question arises as to whether we can obtain the distribution 

theory of sequential order statistics and their properties by analogy with ordinary 
order statistics which have been extensively investigated in the literature (see e.g. 
David (1981)). In the general setting of Definition 2.1, the model of sequential 
order statistics turns out to be too extensive to establish analogous properties as 
found in the case of ordinary order statistics. 

ASSUMPTION. In the following we restrict ourselves to a particular choice of 
the distribution functions F1 , . . . ,  F,,, namely 

(2.1) Fi(t)  = l - ( 1 -  F ( t ) )  a~, 1 < i < n, 

with some absolutely continuous and strictly increasing distribution function F 
and positive real numbers a l , . . . ,  an. Let f be the corresponding density function. 

From (2.1) we have a i .  ~ as the failure rate of the underlying distribution 
in line i of the above triangular scheme. 

LEMMA 2.1. (cf. Kamps (1995b), p. 62) Let X ( 1 ) , . . . , X ( .  n) be sequential 
order statistics based on (2.1). Then the joint  density funct ion of the first r se- 

quential order statistics X ! I ) , . . . ,  X !  ~) is given by 

(2.2) "x~l) x¢~) j . . . . . . .  ( x i , . . . ,  zr)  
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(n - r)! ~J (1 - F(xj))mJ f(xj) 

• (1 - F ( x ~ ) ) ~ ( ~ - ~ + l ) - l f ( x r ) ,  

X l  ~ " '"  ~ Xr~ r ~_ n~ 

with rnj = ( n - j  + l ) a j - ( n - j ) a j + l  - 1 ,  l ~ j < _ n - 1 .  

Ordinary order statistics (for the description of ordinary (n - r + 1)-out-of-n 
systems) are contained in the model of sequential order statistics in the distr ibution 
theoretical sense. Choosing r -- n and a l  . . . . .  an  in (2.2), we obtain the 
joint density function of the order statistics XI,~ _< . . .  _< Xn,~ based on iid 
random variables X 1 , . . .  ,Xn  with distr ibution function 1 - (1 - F )  ~1 (see e.g. 
David (1981)). 

3. Maximum likelihood estimation for arbitrary distributions 

Let us consider s > 1 independent and identically distr ibuted observations of 
some sequential (n - r + 1)-out-of-n system leading to the set of da ta  

(Xij)l~i~_s,l~_j~_r, Xil <_ "'" ~_ Xi~, 1 < i < S. 

That  is, we suppose knowledge of all the times of failures of components during 
the life-length of the system which we describe by sequential order statistics based 
on (2.1). Let 

be the corresponding random variables. 
Then the likelihood function is given by 

(3.1) L ( a l , . . . , a r ; x i y ,  l < i < s ~ l < j < r )  

i=1 j = l  

S 

• I - [ ( 1  - F ( X ~ r ) ) ~ ( n - ~ ÷ ~ - l f ( x ~ )  = L ( ~ e , . . . ,  ~ ,  Y),  
i = l  

say, 

and we obtain 

L E M M A  3.1• The maximum likelihood estimators of 0 : 1 , . . . ,  OLr are 

( n( , s log 1 -  F(Xil and 
O~1 - -  n i = 1  

--1 

, s log U 1 - F(xi , j -1)  ] 
a j -  n - j + l  \ i=1 

, 2 < j ~ r .  
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PROOF. We express the logarithm of the likelihood function in (3.1) in terms 
of the hazard function 

h(t) = f ( t ) / ( 1  - F(t))  

and the cumulative hazard function 

H(t)  = - log(1 - F(t))  : 

r ± 
n! E l ° g a J  nal  H(Xi l )  l o g L ( a l , . . . , a r , F )  = slog ( n -  r)~ + s 

j----1 i = 1  

T 8 

- E ( n -  j + 1)aj E ( H ( x i j )  - H(x i , j -1) )  
j = 2  i = 1  

T 8 

+ E l°g hCx ,) • 
j = l  i = 1  

s 8 
For brevity, let 2i=1H(Xil) = A1 and • i = l ( H ( x i j ) - H ( x i , j _ l ) )  = Aj ,  2 <_ j <_ r. 
Since 

and 

log aj  = log aj/o~; + log a~ < a j / a ;  - 1 + log a ; ,  
r T 

s E a j / a  ~ = E ( n - j  + 1 )a jA j  
j = l  j = l  

E log a ;  = - log (n - r) ------~. E log Aj 
j=l j=l 

we obtain 

± (1)±± 
l o g n ( a l , . . . , a r ,  F)  < - s t  - s log Aj  + logh(xi j )  

j=l j=l i=1 

= kO(xij, F) ,  say, 

with equality iff a j  = a~, 1 < j < r. 

In the case of ordinary order statistics, similar MLE's result in the following 
situation (see Sarkar (1971)): The components of a series system are independent 
and exponentially distributed with possibly different parameters and the MLE's 
of these parameters are based on independent copies of the respective components 
under type II censoring. 

In order to prove helpful properties of the MLE's a~, 1 <_ j < r, we make use 
of the following theorem (see Kamps (1995b), p. 81). 
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THEOREM 3.1. L e t  X ,  (1), . . . ,  X(, '~) be sequential order stat ist ics based on 
(2.1) with F ( x )  = 1 - e -~ ,  x >_ O. Then the random variables 

noL1X! 1) a n d  (n - j + 1)oej(X! j) - x ! J - 1 ) ) ,  2 < j <_ n, 

are iid according to F .  

THEOREM 3.2. The M L E ' s  ~ , . . . , ~ *  given in Lamina 3.1 have the follow- 
ing properties: 

(i) a~, ,or r a r e i n d e p e n d e n t a n d ( ~ j  ~"~OLj( 1 s , <<_ r, • "" * * ~-]i=1 Vii) -1 1 j < where 
the (Vij)i , j  are iid with P ( V n  <_ x) = 1 - e - x ,  x > O. 

(ii) E(c~)  t~ ( s -k - l ) ! ,  ,k - ~(saj). , i f  k <_ s - 1; hence E ( ( ~ )  = ~_A_(~s_l 3, s > 1 

(i.e. is asymptotically unbiased), Var( i) = (~-1)2(~-2) j ,  s > 2, MSE(a~)  = 
s+2 O~2 (s-1)(s-2) j '  8 > 2, 1 < j < r .  

(iii) The statist ic ( ( ~ , . . . ,  (~ )  is sufficient for  ( a l , . . . ,  a t ) .  
(iv) The sequences of est imators ((~;)sE~ are strongly consistent  (1 < j < r).  

(v) c~ is asymptotically  normal  ( A N ) ,  1 < j < r; i.e. v/s(o~/o~j - 1 ) d  

Af(0, 1). Moreover,  we have v / ~ a j / c ~ ( 1  - c~j/a~) d A / ( 0 ,  1). 

PROOF. 

(i) Let X ! I ) , . . . ,  X (n) be sequential order statistics based on Fi = 1 - (1 - 

F)  ~ ,  1 < i < n. Then ( -  log(1 - F ( X ! I ) ) ) , . . . ,  - log(1 - F ( X ! n ) ) ) )  has the same 

distr ibution as sequential order statistics Z (1 ) , . . . ,  g~ n) based on G = 1 - ( 1 -  G) ~ 
w h e r e G ( x ) = l - e  - x , x > O .  

Applying Theorem 3.1, we obtain the assertions since Z! 1), Z! 2) - Z O ) , . . . ,  
Z(. n) - Z !  n - l )  are independent and n o q Z  (1) ..~ (n - j -4- 1)(~j(Z. (j) - Z ( j - l ) )  ~ G, 
2 < _ j < n .  

1 s (v) Since s ~-~i=1 V/j is AN( l ,  ~), we use the t ransformation g(x)  -- o~j/x to 
obtain that  (~; is A N ( a j ,  (~2/s) (eft Serfling (1980), p. 118). 

In Theorem 3.2(i) it is shown that  (~ is dis t r ibuted as 1 /T  3 where the random 
variable Tj is gamma distr ibuted with parameters  s and s - c~j; i.e., its density is 
given by 

(S~j)  s t S - l e - S a j t  f T ' ( t )  -- ~ ) ) !  t >_ O. 

The distr ibution of a~ is known as inverted gamma distr ibution which is used as 
a prior density in Bayesian analysis (cf. Bain (1983)). 

4. Short-cut tests 

Given some sequential (n - r -4- 1)-out-of-n system and a set of da ta  as in 
Section 3, we have to choose an appropriate  model. Following, we present two 
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short-cut tests in Subsections 4.1 and 4.2 and we consider the likelihood ratio test 
in Subsection 4.3. These tests provide procedures for testing the hypothesis 

H : O ~ l : ' " : a r  

against the alternative 

A : 3i # j ,  i, j E { 1 , . . . , r } ,  such tha t  a~ ¢ aj  

at the level of significance a. 
Hence, if the hypothesis is rejected, then the model of sequential order statis- 

tics is adequate and ordinary order statistics should not be used to describe the 
system. If there is some prior information about the possibly common value a0 of 
a l , . . . ,  a~, then we may be interested to consider the hypothesis 

/ ~  : O~1 = " ' "  = O~r = 0~0- 

In Subsection 4.4 we propose a suitable level a test. 
The MLE's a~ , . . .  ,a* of a l , . . . , a r  are independent and inverted gamma 

distributed with parameters s and s . a j ,  respectively (see Theorem 3.2(i)). In the 
following tests we use the random variables ~ , . . . , / 3 *  defined by 

~ = s / a ~ ,  l <_j <_r, 

which are independently gamma distributed with parameters s and aj,  respec- 
tively. Under the hypothesis H (or/:/),  j3~,. . . ,  ~3~ are identically distributed. 

4.1 Test A 
Let /~,r _< .-- _< /~*,~ be the order statistics corresponding to 3~,- . . , /3".  

Reject hypothesis H,  if the ratio ~,~//~*,~ is too small, i.e., if 

< c 

where c is determined by 

* $ 

P H ( ~ l , r / ~ r , r  ~ C) : 0~. 

Now we have to compute the critical value c. We may use a representation of 
the joint density of the minimum Xl,r and the maximum X~,~ in the sample 
X1,. •., X~ of nonnegative iid random variables with distribution function F and 
density function f (cf. David (1981), p. 10) 

f X l ' ~ ' X r ' r ( X l , X r )  = ?~(I" -- 1)(F(xr) - F(x l ) )~ -2 f ( x l ) f ( x~ ) ,  x l  < xr, 

to obtain the density of the ratio Xl ,r /Xr ,r  

// fxl'~/x~'~(z) = r(r - 1) (F(y) - F (y z ) ) r -2 f ( y ) f ( y z ) ydy ,  z E (0, 1). 
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If F(0) -- 0, then interchanging the order of integration yields 

S0 x P ( X l , ~ / X r , r  <_ x )  = f x ~ , ~ / x ~ , ~ ( z ) d z  

// = 1 - r f ( y ) ( F ( y  ) - F ( y x ) ) ~ - l d y .  

Applying this formula to 3~,~ and 3*x, we find 

r - 1  ) r (c~e_CZ _ e _ z )  
- ~ . ,  

(s 1)! \ i=0 
z s - l e - Z d z .  

The ratio of the smallest and the largest order statistic from a sample of 
size r has been considered earlier in the literature. Gumbel and Keeney (1950) 
call it the extremal quotient and study its asymptotic distribution with respect 
to r for symmetrical, continuous and unlimited parent distributions. They use 
extreme value theory along with the fact that the minimum and the maximum are 
asymptotically independent. We do not use this method here since the number 
of components is usually small. Corresponding tables are given in Gumbel and 
Pickands (1967). 

Muenz and Green (1977) show representations of the distribution functions of 
arbitrary ratios of order statistics based on an absolutely continuous and strictly 
increasing distribution function F. In particular, we find 

So 1 P ( X l , r / X ~ , r  <_ x )  = 1 - r (t  - F ( x F - l ( t ) ) ) r - l d t .  

In terms of D~,~ and D*,~ we again obtain the above expression. 
Table A shows critical values for (~ = 0.01, 0.05, 0.1 and several values of r 

and s. 

Table A. Values of (~-quantiles c in Test A. 

(~ ---- 0.01 a = 0.05 (~ = 0.10 

s r----2 r----3 r----2 r----3 r----2 r----3 

1 .0050 .0022 .0256 .0114 .0526 .0235 

2 .0432 .0273 .1041 .0647 .1565 .0964 

3 .0903 .0641 .1718 .1196 .2334 .1606 

4 .1334 .1006 .2256 .1666 .2909 .2124 

5 .1710 .1340 .2690 .2064 .3358 .2547 

6 .2038 .1639 .3051 .2404 .3722 .2900 

7 .2326 .1906 .3357 .2698 .4026 .3202 

8 .2581 .2147 .3621 .2957 .4285 .3464 

9 .2809 ,2365 .3853 .3186 .4510 .3694 

10 .3014 .2564 .4058 .3391 .4708 .3898 
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4.2 Test B 
Since, under the hypothesis H,  ~3~,...,/9* are iid gamma random variables, 

it is near at hand to use 
r 

j = l  

as a test statistic which has a beta  distribution on (0, 1) with parameters s and 
(r - 1)s. The density of B is given by 

1 z S - l ( 1  - z) (r-1)s-1, z • (0, 1). 
f S ( z )  = B(s,  ( r -  1)s) 

Thus, reject hypothesis H,  if either B is too small or too large, i.e., if 

B < cl or B > c2 

where Cl and c2 are determined by 

PH(B <_ Cl) = a /2  and PH(B > c2) = a /2 .  

4.3 Likelihood ratio test 
The likelihood ratio procedure for testing H against A is based on the statistic 

Q = sup L(al,...,ar,F)/ sup L ( a l , . . . , a r ,  F). 
O~1 ~ ' " ~ ( ~  r O/1~ . . . IO~ r 

With the notations and the representation of q/(xij, F)  in the proof of Lemma 3.1 
and noticing that the supremum in the numerator of Q is attained at 

we obtain 

a l  . . . . .  a r  = s r /  E ( n  - j + 1)A5, 
j = l  

Q = ) ( n -  j + 1)A 5 • ( n -  j + 1)A i 
j----1 

Under hypothesis H, Q1/(r~) is distributed as the ratio of geometric and arithmetic 
mean of iid gamma variables W1, . . . ,  Wr with density function 

1 
fw1 (w) - - -  wS- le  -w, w > 0 : 

(S -- i)! 

Q1/(r ) ~ w 5  • 
j=l 
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The statistic - ~ log Q appears in the computa t ion  of maximum likelihood es- 
t imators of the parameters of gamma distributions. Tests and confidence intervals 
for these parameters  are also based on Q. However, the exact distr ibution of Q 
is very complicated and thus chi-square approximations are used for large sample 
sizes (see Bain (1983)). In our situation, the role of the sample size is taken up 
by the parameter  r which is usually small (cf. Subsection 4.1). Since numerical 
calculations using the approximations shown in Bain (1983) lead to inaccurate and 
therefore unsatisfactory results, we do not show a table of critical values here. 

4.4 Test C 
If we consider hypothesis /} with some fixed 0/0 > 0, then we propose to 

accept the alternative, if the range/3",~ -/3~,~ of the random variables B~, . . . , /3* 
is too large, i.e., 

- > ¢/0/° 

where c is determined by 

P (9;,r - > c / 0 / o )  = 0 / .  

Applying a formula for the distribution function of the range (cf. David (1981), 
p. 12) we obtain 

p ~ 
- < c / 0 / o )  

r fo°° ( Zi~o i s-1 (z~_e)i~ - (s - 1)! e-  ~. - e -(z+c) 
i=0 i! ] 

v- -1  

r--1 

zS-le-Zdz 

(s - 1)! e -c ( r -1 )  \i----0 ~ 
j=s-i -S 

zS-le-Zrdz. 

The distr ibution of the range obviously depends on 0/0- Thus,  if we consider the 
distribution of the ratio (3*,r - 3~,r)//3~,~, e.g., a0 drops out which amounts  to 
using the extremal quotient as test  statistic (see Subsection 4.1). 

Table C shows critical values for 0 / =  0.01, 0.05, 0.1 and several values of r 
and s. 

4.5 Simulation study 
The following simulation s tudy illustrates the use of our model and of the 

above tests. We generated 20000 experiments with s = 50 iid copies each of a 
sequential 2-out-of-3 system [1-out-of-3 system] based on the s tandard exponential 
distribution (F(x) -- 1 - e -~, x > 0) and a l  -- 1, a2 --- 2 [0/3 ---- 2] (i.e. F l (x)  -- 
1 - e -x  and F2(x) -- F3(x) = 1 - e-2X). 0/{, a~ [and 0/~] are the MLE's  of 0/1, 
0/2 [and aa]. If we assume, for comparison, tha t  we observe outcomes of ordinary 
2-out-of-3 systems [1-out-of-3 systems] based on an exponential  distr ibution with 
parameter  A, then A* = 2/(1/0/~ + 1/a~) [A* = 3/(1/0/~ + 1/a~ + 1/0/~)] is the 
corresponding MLE. 
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Table C. Values of a-quantiles c/o~o in Test C. 

a=0 .01  a = 0 . 0 5  a = 0 . 1 0  
s r = 2  r = 3  r = 2  r = 3  r = 2  r : 3  

1 4 .6052  5.2958 2.9957 3.6761 2.3026 2.9697 
2 5 .9902  6.8675 4.1130 5.0055 3.2718 4.1672 
3 7 .0598  8.0774 4.9686 6.0224 4.0104 5.0798 

4 7 .9704  9.1057 5.6926 6.8826 4.6329 5.8495 
5 8 .7793 10.0185 6.3327 7.6434 5.1816 6.5287 
6 9.5155 10.8488 6.9132 8.3335 5.6780 7.1435 
7 10.1963 11.6165 7.4483 8.9699 6.1346 7.7095 

8 10.8329 12.3341 7.9472 9.5635 6.5597 8.2368 
9 11.4330 13.0107 8.4166 10.1221 6.9591 8.7324 

10 12.0025 13.6527 8.8612 10.6513 7.3369 9.2014 
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Table 1. 

MLE 2-out-of-3 system 1-out-of-3 system 
emp. mean emp. variance emp. mean emp. variance 

a~ 1.0193 0.0214 1.0195 0.0212 

a~ 2.0416 0.0890 2.0385 0.0864 

~ - -  - -  2.0407 0.0864 
A* 1.3475 0.0206 1.5104 0.0170 

Table 1 shows the empirical means and the empirical variances of the MLE' s  
a~, a~ [a~] and A* based on the da ta  of 20000 simulation steps. 

For the sequential 2-out-of-3 system the hypothesis  H (ordinary model) was 
rejected in favor of the alternative A (new model) in 93.4% of the experiments 

by Test A as well as by Test B (a  = 0.05) which are equivalent tests in the case 
r = 2. For the sequential 1-out-of-3 system H was rejected in 94.8% and 98.0% of 
the experiments by Test A and Test B, respectively (a  -- 0.05). 

5. Maximum likelihood estimation for specific distributions 

In the si tuat ion described in Section 3 we are now concerned with specific 

distr ibution functions F .  We consider simultaneous MLE' s  of a l , . . . ,  a r  and the 
distr ibution parameters.  We star t  with a simple exponential  family. 

Let F be given by 

(5.1) F ( t )  = 1 - e -~'g(~), t >_ 0, 

with A > 0 unknown and some increasing and differentiable function g on [0, ec) 
satisfying g(0) = 0 and limt-~oo g(t) = oc. 
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The particular cases g(t) = t ~, /~ > 0, and g(t) = log(ta), a > 0, correspond 
to standard Weibull (exponential, ~ -- 1) and Pareto distributions, respectively. 

Putting the above distribution function F in • (see the proof of Lemma 3.1), 
we obtain that the upper bound • is independent of A. Hence there is no finite 
MLE of A and we find 

LEMMA 5.1. In the case of (5.1) the MLE's  of 5j  = Aaj,  1 ~ j <_ r, are 
given by 5~ = ) ~  with a~ as in Lemma 3.1; i.e. 

Ol 1 : - -  g X i l  and 
n 

aj  n - j + 1 g(xi j )  - g(xi , j -1 

- 1  

, 2 < j < r .  

Following, we consider (5.1) with an additional shift parameter. 
Let F be given by 

(5.2) F(t )  = 1 - e -x(g(t)-u), t ~__ g--l(?~), 

with A > 0, T/E • unknown and some increasing and differentiable function g on 
[g-l(~), oc) satisfying limt_.o~ g(t) = ec. 

The particular cases g(t) = t and g(t) = log(ta), a > 0, correspond to two- 
parameter exponential and Pareto distributions, respectively (cf. Varde (1970) for 
g(t) = t and r = 2). 

LEMMA 5.2. In the case of (5.2) the MLE's  o f t  and 5j  = £aj ,  1 <_ j <_ r, 
are given by 

7 * =  min g(xi l ) ,  
l < i < s  

O~ 1 • - -  g X i l  - -  and 
n 

aj  n - j + 1 g(xi j )  - g(xi , j-1 

- 1  

, 2 < j ~ r .  

Moreover, the statistic (~/*, &~,. . . ,  5*) is su~c ien t  for (~/,)~al,-.., Aar). 

PROOF. Since ~ < minl<i<sg(xil)  and L ( a l , . . .  ,c~r,F) increases with re- 
spect to 7/for all fixed a l , . . . ,  a t ,  we conclude that ~/* = minl<i<s g(xi l )  following 
the argument of Lawless ((1982), p. 127) and Epstein ((1957), p. 20) in the case 
of type II censoring described by ordinary order statistics. 

Putting ~/* in the likelihood function L ( a l , . . .  , a t ,  F),  the assertion follows 
by analogy with Lemma 5.1. 
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Finally, we consider two-parameter Weibull distributions with g ( t )  = t ~ in 
(5.1) and we aim at determining simultaneous MLE's of A a l , . . . ,  Aar and/3. The 
Weibull distribution is frequently used in statistical models, and a variety of papers 
can be found in the literature dealing with parameter estimation. For MLE in type 
II censoring, i.e. based on ordinary order statistics, we refer to, e.g., Cohen (1965), 
Harter and Moore (1965), Pike (1966), McCool (1970), Rockette et  al. (1974) and 
Lawless ((1982), Ch. 4.1). Usually, the case s -- 1 is considered in the literature. 

Let F be given by 

(5.3) F ( t )  -~ 1 - e -)~tz, t >_ O, 

with A,/3 > 0 unknown. 
However, in turns out that in general there is no explicit solution for the MLE 

of/3. This problem also arises in the classical case (cf. Lawless (1982), p. 143 and 
the references above). To show the existence and the uniqueness of a MLE of 
we use the following auxiliary result which is of interest in its own. 

LEMMA 5.3. Le t  a l , . . . , a s ,  b l , . . . , b s  ¢ R w i th  ai >_ bi, 1 < i < s, a n d  let 

$ 

s ( k )  = ° '  - k -- 0, 1, 2. 

T h e n  we  have  
S(2).  S(0) - $2(1) + $2(0) > 0 

wi th  equal i ty  i f f  ai = bi f o r  all 1 < i < s. 

PROOF. With 

and 

A i  = ((a 2 + 1)e a~ - (b 2 3,_ 1)eb~)(e a, _ ebb) 

B i  = (a i e  a~ - biebi) 2, 1 < i < s,  

we find that 
A i  >>_ B i  iff (e ~ -b~  - 1) ~ _ (ai - b~)2e a~-b~. 

The latter is seen to hold true for all ai >_ bi with equality iff ai = bi. 

Then the Cauchy-Schwarz inequality yields 

2 

with equality iff ai --  bi for all 1 < i < s and hence the assertion. 

THEOREM 5.1. F o r  a d i s t r ibu t ion  f u n c t i o n  F as in (5.3) we  obtain:  
(i) F o r  s = 1 there  is no  M L E  o f /3 .  
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(ii) If  s >_ 2 and maxa<k<s xk~ > minl<k<s xkl, then a unique MLE /3* of 
exists, and it is given by the solution of the likelihood equation 

(5.4) 
8 

r / ~ + E E l o g x i j  
i----1 j = l  

- -  , /3 

j = 2  i=1 

- -  X E 2//31 l o g  xi l  = 0 .  

i=1 i=1 

8 

E (x~ log xij - x~j_ 1 log Xi , j -1  ) 
i=1 

The MLE's 5~ of Sj = M~j, 1 <_ j < r, are determined according to Lemma 5.1 

with g(t) = t ~* . 

PROOF• Differentiating ~(xij ,  F) (see the proof of Lemma 3.1) with respect 
to /3  leads to the necessary condition (5.4). 

(i) In the case s = 1, the condition simplifies to 

r 

J~ kO(xij,F) = r / /~ -  E ( l o g x l j - l o g x l , j _ l ) / ( ( x l j / x l , j _ l )  f~ - 1 ) = 0 .  
j = 2  

Since o~kO(xij,F) > ~ for/3 E (0, cx)), there is no solution of this equation. 

(ii) Let s _> 2. Then  we have 

lim J~qY(xij, F)  = co and 
~-*0 

lim :--~kO(xij,F) = ~ ~-~ (log2ij  - max logxkj)  < 
f~--* co j = l  i----1 

(cf. Pike (1966) and McCool (1970) in the case of type II censoring). 
Moreover, k0(xij, F)  is a convex function with respect to/3,  since 

0 2 

0/3 2 
- - ~ ( x ~ ,  F )  

--2 

= - r s / ~  2 - s 2 - x ~ , j _ l  

j:-2 

• (x~ log 2 x~j - x~j_ 1 log 2 xi,j-1) (x~ - xi , j_l)  

-- x logxij  -- x~j_ l logxi , j_l  
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--2 

- - 8  X 

)) log x~l _< 0 

applying L e m m a  5.3. Equal i ty  holds iff x i j  = X l l  for all 1 < i < s and 1 <_ j _< r.  
Thus  the assertion follows. 

Evident ly  there  is no MLE of ~ in the case s = 1, since then  r + 1 parameters  
are to be es t imated based on r observations. 

Acknowledgements 

The  authors  are grateful to the referees for their  helpful and construct ive 
remarks and suggestions. 

REFERENCES 

Bain, L. (1983). Gamma distribution, Encyclopedia of Statistical Sciences (eds. S. Kotz and N. 
L. Johnson), Vol. 3, Wiley, New York. 

Cohen, A. C. (1965). Maximum likelihood estimation in the Weibull distribution based on 
complete and on censored samples, Technometrics, 7, 579-588. 

David, H. A. (1981). Order Statistics, 2nd ed., Wiley, New York. 
Epstein, B. (1957). Simple estimators of the parameters of exponential distributions when sam- 

ples are censored, Ann. Inst. Statist. Math., 8, 15-26. 
Gumbel, E. J. and Keeney, R. D. (1950). The extremal quotient, Ann. Math. Statist., 21, 

523-538. 
Gumbel, E. J. and Pickands III, J. (1967). Probability tables for the extremal quotient, Ann. 

Math. Statist., 38, 1541-1551. 
Hatter, H. L. and Moore, A. H. (1965). Maximum likelihood estimation of the parameters of 

gamma and Weibull populations from complete and from censored samples, Technometrics, 
7, 639-643. 

Kamps, U. (1995a). A concept of generalized order statistics, J. Statist. Plann. Inference, 48, 
1-23. 

Kamps, U. (1995b). A Concept of Generalized Order Statistics, Teubner, Stuttgart. 
Lawless, J. F. (1982). Statistical Models and Methods for Lifetime Data, Wiley, New York. 
McCool, J. I. (1970). Inference on Weibull percentiles and shape parameter from maximum 

likelihood estimates, IEEE Transactions on Reliability, R19, 2-9. 
Muenz, L. R. and Green, S. B. (1977). Time savings in censored life testing, J. Roy. Statist. Soc. 

Set. B, 39, 269-275. 
Pike, M. C. (1966). A method of analysis of a certain class of experiments in carcinogenesis, 

Biometrics, 22, 142-161. 
Rockette, H., Antle, C. and Klimko, L. A. (1974). Maximum likelihood estimation with the 

Weibull model, J. Amer. Statist. Assoc., 69, 246-249. 
Sarkar, T. K. (1971). An exact lower confidence bound for the reliability of a series system 

where each component has an exponential time to failure distribution, Technometrics, 13, 
535-546. 

Settling, R. J. (1980). Approximation Theorems of Mathematical Statistics, Wiley, New York. 
Varde, S. D. (1970). Estimation of reliability of a two exponential component series system, 

Technometrics, 12, 867-875. 


