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Abstract. Many applications of Amari's dual geometries involve one or 
more submanifolds imbedded in a supermanifold. In the differential 
geometry literature, there is a set of equations that describe relationships 
between invariant quantities on the submanifold and supermanifold when 
the Riemannian connection is used. We extend these equations to statis- 
tical manifolds, manifolds on which a pair of dual connections is defined. 
The invariant quantities found in these equations include the mean 
curvature and the statistical curvature which are used in statistical 
calculations involving such topics as information loss and efficiency. As 
an application of one of these equations, the Bartlett correction is 
interpreted in terms of curvatures and other invariant quantities. 
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I. Introduction 

In 1985, Amari introduced dual geometries and applied this theory to 
statistical inference in exponential families. The observed geometries of 
Barndorff-Nielsen (1986) are related to Amari's (1985) expected geometries 
and enjoy similar dual geometric structures. More recently, the dual 
geometries have been applied to generalized linear models and quasi- 
likelihood functions (Vos (1987)), statistical models outside of exponential 
families, Gaussian time series models (Amari (1987)), and linear systems 
(Amari (1986)). In many applications of these dual geometries, there is 
interest not only in a single manifold but also in one or more submanifotds 
and how these relate to the supermanifold. In particular, we are interested 
in the relationship between various tensors on the submanifolds and 
supermanifold. For the Riemannian or metric connection that is typically 
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found in the differential geometry literature, these relationships are expres- 
sed by the Gauss formula, Weingarten formula, and the equations of 
Gauss, Codazzi and Ricci. These equations have such an important role for 
the Riemannian connection that they are called the fundamental equations 
for submanifolds (Spivak (1975)). We show here that the Weingarten 
formula and the equations of Ricci and of Gauss take on a slightly 
different form with the dual connections, while the Gauss formula and the 
equation of Codazzi are unchanged. Since these equations have a central 
role in the study of Riemannian connections, their importance may also be 
realized in the study of dual connections and their application to statistical 
manifolds. 

One such application is given for the Bartlett correction, which has 
gained much attention in recent years (e.g., Barndorff-Nielsen and Cox 
(1984), Barndorff-Nielsen and Bl~esild (1986), M~bller (1986) and Barndorff- 
Nielsen and Hall (1988)). Lawley (1956) expresses the Bartlett correction 
using various moments of the score function and higher order derivatives 
of the log likelihood function. McCullagh and Cox (1986) express the 
Bartlett correction in terms of invariant quantities and interpret this 
correction in normal regression theory using the Riemannian curvature and 
the square of the mean curvature. In Section 5, we extend McCullagh and 
Cox's (1986) result for normal theory regression to exponential family 
regression. The curvatures and other geometric quantities used in this 
section will be defined using the dual geometries. We shall use the 
statistical curvature, the mixture curvature, and the second Riemannian 
scalar curvature, each of which appears in other statistical calculations. In 
Section 6, we show that Amari's (1987) approximating local exponential 
family allows us to extend the results of Section 5 to quite general 
statistical families. 

2. Preliminary definitions 

Since the dual geometries can be used in a diversity of applications, we 
give a formal definition of a Riemannian manifold with dual connections. 
It is easily verified that the expected geometries, observed geometries, and 
the geometric structure arising from the aforementioned applications satisfy 
our requirements of a manifold with dual connections. This formal develop- 
ment of dual geometries was first given by Lauritzen (1987). 

We briefly introduce some notation and terminology. A more complete 
description of these terms can be found in Amari (1985) and Lauritzen 
(1987). We consider an n-dimensional Riemannian manifold S and an m- 
dimensional regular submanifold M. Since M is regular, there exists a 
coordinate system (U, th) on S for each p ~ M such that 
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(2.1) 
6 ( p )  = (o, . . . ,o);  4 , ( u )  = ( - 

t h ( u o  M )  = {(xl, . . . ,x",O,. . . ,O):  [xil < e } .  

Any coordinate system that satisfies (2. l) is called a preferred coordinate 
neighborhood. The tangent space of S at p, denoted by Sp, is an n- 
dimensional vector space with canonical basis for 0 

= 0 

A vector field X is a family of smooth tangent vectors {Xp: p e S } where 
Xp ~ Sp. For X to be smooth, we require that X: C®(S) ~ C=(S). 

The Riemannian metric on S is denoted by ((X, Y)) for vector fields X 
and Y; the metric evaluated at p is written ((Xp, Yp)). Vectors in nearby 
tangent spaces are related by an affine connection V, which is any function 
from X(S) × X(S) to X(S)  that satisfies 

Vx(Y+ Z)= VxY+ VxZ, 

GaY= (Xa) + aG V, 

The vector field Vx Y can be interpreted as the instantaneous change of the 
vector field Y in the direction of X. Amari (1985) and Lauritzen (1987) 
describe how V relates vectors in different tangent spaces. 

Since M is a regular submanifold of S, the tangent space of M at 
p, Alp, is a linear subspace of Sp and the metric and connection on S can be 
used to define the corresponding quantities on M. We shall be concerned 
more with vector fields on M than on S, and so we change notation by 
letting X, Y,... represent vector fields on M and )~, Y,... be extensions of 
X, Y,... to vector fields on S. The vector field )~ is an extension of X if 
371~, = X. A metric ( . ,  • ) on M can be defined by 

(2.2) 

because Mp C Sp. The metric defined by (2.2) is called the induced metric 
on M. 

The induced connection V cannot be defined quite so simply. Since V 
is not a tensor, it depends on the vector fields X, Y and we must define 
VxY(p) rather than VxpYp. In order to use V , Y  to define VxY, we must 
check that V ,Y  is the same on M for all extensions )~, Y. Appendix 1 
shows that this is indeed the case, so that we can write VxY as an 
abbreviation for (V*Y)IM without ambiguity. Since (VxY)(p) ~ Sp but we 
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need (VxY)(p)  ~ Alp, we define 

(2.3) VxY(p)  = PM,(VxY(p)), 

where Pup is the orthogonal projection onto Mp. It is easily shown that 
V x Y  defined by (2.3) is a connection on M. Although there are many 
connections that can be defined on a Riemannian manifold, there is only 
one connection that satisfies the following two conditions 

(i) V x Y -  VrX-- X Y -  Y X ,  

(ii) Z(X, Y) = (VzX, Y) + (X, VzY) .  

Any connection satisfying (i) is called torsion-free, and the unique connec- 
tion satisfying both (i) and (ii) is the Riemannian or metric connection. To 
distinguish the metric connection from arbitrary connections we use the 
symbol V °. It can be shown that if ~0 is the metric connection on S, then 
the induced connection V ° is the metric connection on the submanifold M. 
An extension of this result is given in Proposition 3.1. 

So far we have described a Riemannian manifold and submanifold 
with a single connection. A statistical manifold (Lauritzen (1987)) is a 
Riemannian manifold in which there exists a pair of torsion-free affine 
connections V and V* that satisfy 

Z(X, Y) = (VzX, Y) + (X, V* Y) . 

The connections V and V* are called dual connections, and it is easily 
shown that (V*)* = V. One can also show that any torsion-free affine 
connection V has a dual connection given by V*=  2V ° -  V (see, for 
example, Lauritzen (1987)). To emphasize the relationship between these 
two connections, we use the terminology dual connection rather than 
torsion-free affine connection. For a pair of dual connections, it is possible 
to generate an entire family of dual connections (e.g., a-connections of 
Amari 0985)). For our purposes, however, we shall just be interested in a 
single pair of dual connections V and V* and the self-dual connection V °. 

. 

a s  

The Gauss and Weingarten formulas 

It will be useful to write the dual connections on the supermanifold S 

(3.1a) 

(3.1b) 

VxY--  T (VxY)  + _t_ (VxY), 

Vx*Y= T(Vx*Y)+ L(Vx*Y), 
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where -I- ( . )  and _t_ ( . )  are smooth functions such that T (.)ls~ = PM~ and 
2_ (.)ls~ = ( I -  PM~). For o ~ X(S), T (o) and 2_ (o) are called the tangential 

component of o and the normal component of o, respectively. The follow- 
ing proposition shows that the induced connections 

(3.2a) 

(3.2b) 

are dual. 

PROPOSITION 3.1. 

VxY= T (VxY) ,  

V* Y= T (6* Y) 

On M, the connections V and V* defined by (3.2) 
are dual with respect to <., .). Furthermore, the normal vector fields 
h(X, Y) = _L (VxY) and h*(X, Y) = I (6* Y) are symmetric and bilinear. 

PROOF. Making two substitutions into (3.1 a), we have 

(3.3) VxY = VxY + h(X, Y) . 

Replacing X and Y by aX and fl Y, respectively, where a, fl ~ C°°(M), we 
obtain 

(3.4) V~x(flY) = a{(X~)Y + flVxY} 

= {a(Xfl)Y+ a~VxY} + a~h(X, Y) .  

Considering the tangent and normal component of (3.4), we have 

(3.5) V~x(flY) = a(Xfl) Y + aflVx Y, 

(3.6) h(aX, flY) = aflh(X, Y) . 

Since the affine connection VxY is additive in X and Y, i.e., Vx+zY-- 
VxY+ VzY and Vx(Y+ W) = VxY+ VxW, VxY and h(X, Y) are each 
additive in X and Y. Equation (3.5) together with the additivity of VxY 
make V an affine connection on M. The additivity of h(X, Y) and (3.6) 
show that h (X, Y) is bilinear. 

Since 6 has no torsion, we can write 

(3.7) 0 = V x Y -  V r X -  [X, Y] 

= VxY+ h(X, Y ) -  V r X -  h ( Y , X ) -  [X, Y],  

where [X, Y] = X Y -  YX. Grouping the normal and tangential compo- 
nents of (3.7), we have 
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h(X, Y) = h(Y ,X)  

and 

0 = V x Y -  V r X - [ X ,  Y],  

because IX, Y](p) e Mp. These equations show that V has no torsion and 
that h(X, Y) is symmetric. The mappings 

(3.8) p ~ (VxY)p and p ~ h(X, Y)p 

C ~ C ~ are because VxY, 7- ( .)  and 3_ ( . )  are . In (3.8), we write (V~ Y)p 
for V* Y(p) and h(X, Y)p for h(X, Y)(p). The proof for V* Y and h(X, Y) 
follows immediately by substituting V* for V in the preceding argument. 
The connections V and V* are torsion-free, so we need only show they are 
dual. Duality of V and V* is proved from the duality of V and V* as the 
following calculation shows 

x<Y, z> = X'<<K 2>>IM 

= 2>> + <<K 

---- Y, Z>> + <<Y, 

= (VxY, Z> + <Y,V/Z>, 

where X, Y, Z are any vector fields in T(M). [] 

When V is the Riemannian connection, equation (3.3) is called the 
Gauss formula. Proposition 3.1 allows us to extend the Gauss formula to 
any dual connection. Notice that equation (3.3) contains the dual equation 

V* Y = V* Y + h*(X, Y) 

by taking V* to be the primal and V its dual. 
In the differential geometry literature (Chen (1984)) when V = V*, 

h ( . ,  • ) is called the second fundamental form of M (the first fundamental 
form is the metric <., • >). Following Amari (1985), however, we call h ( . , .  ) 
the imbedding curvature tensor of M in S for V and h * ( . , - )  is the 
imbedding curvature tensor of M in S for V*. In statistical applications, 
the dual connections used most often are the exponential connections (V)  
and its dual, the mixture connection (V*), so that h ( . ,  .) is the exponen- 
tial imbedding curvature and h*( . ,  • ) is the mixture imbedding curvature. 
Since h(X, Y) is linear in X and Y, h(X, Y) = h(Xp, Yp) depends only on 
Xp, Yp ~ MR and not on their extensions. This implies that for each ~ in 
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_XZ(M) = {2~ ¢ X(S)IM: .~p _L Mp} there exists linear transformations (At)p: 
Mp ~ M v at each p, such that 

(3.9a) <A~X, Y> = <<h(X, Y), ~>> , 

for all X, Y ~ T(M). Of course h*(X, Y) has an A¢* with the properties A¢ 
has for h(X, Y), 

(3.9b) <A~'X, Y> = <<h*(X, Y), ~>>. 

We can write Vx( in its tangential and normal components just as we 
did for Vx Y, 

(3.10a) Vx~ = T (Vx~) + Dx~, 

(3.10b) V*~ = T (V*~) + D*~ .  

We do not introduce a new symbol for the tangential components, T (Vx~) 
and T (V*~), because they are related to A~X and A¢X as Proposition 3.2 
states. Proposition 3.3 justifies the symbolism chosen for the normal 
components, Dx~ and D* (. 

PROPOSITION 3.2. A¢X and A¢*X are each bilinear in X and ~. 
Furthermore, for all Xp ~ Mp and ~ ~ X±(M) 

(3.11 a) 

(3.11b) 

T (Vx,~) = - A~Xp, 

T ~ * ( v ~ A )  = - A,,X~. 

PROOF. Bilinearity of AcX follows from bilinearity of h ( . ,  .) and 
((-, • )) in (3.9a). This implies A,X is only a function of ~p and Xp. Similar 
remarks hold true for A~X. Equation (3.1 lb) is proven as follows 

o = <<~xr, ~>> + <<r, ~*~>> 

= ((h(X, Y),~>> + <Y, T (Vx*~)> 

= (AcX, Y> + <Y, T (V*~)) .  

This proves T ( V ' A ) =  -A¢~Xp. Equation (3.11a) is proven similarly. 
Smoothness (C ~) of T and V imply - A [ ' X  is C ~. Likewise, - A ~ X  is 
C®. i-1 

Before stating Proposition 3.3, we give an informal definition of the 
normal bundle of M. At each p c M, there exists an (n - m)-dimensional 
linear subspace M~ C Sp. If we collect these vector spaces in a smooth 
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manner, the resulting object becomes a manifold called the normal bundle 
on M and is denoted by T±(M).  The manifold formed by using the tangent 
spaces Mp is T(M),  the tangent bundle of M. 

PROPOSITION 3.3. D and D* are Riemannian dual connections with 
respect to the induced metric on T-L(M). 

PROOF. That D(D*) is a torsion-free connection follows from the 
properties of the connection ~'(V*). Also, D(D*) is C ® because V(V*) is 
C °°. The induced metric on T I ( M )  is just ((~, r/)) for all ~, rl~ T±(M).  
Hence, the duality of D and D* follows from 

x (( ¢ , ,t>) = (( x ¢ , ,7)) + (( , * rt)) 

: rl)) + D * r l ) ) .  [] 

For the Riemannian connection, the eigenvalues and eigenvectors of 
A¢ are called the principal curvatures and principal directions for ~, 
respectively. The trace of A¢ is the component of the mean curvature vector 
in the direction of ~. Proposition 3.2 shows that we may extend these 
definitions to any dual connection. 

Substituting (3.1 la) and (3.1 lb) into (3.10a) and (3.10b), respectively, 
we obtain 

(3.12a) 

(3.12b) 

Vx~ = - A g X  + Dx~ , 

V ~  : - AeX + D*~ . 

We shall call (3.12a) and (3.12b) the Weingartenformulas for dual connec- 
tions since they reduce to the Weingarten formula (3.13) when V = V* 

(3.13) Vx~ = - A~X + Dx~ . 

4. The fundamental equations 

The fundamental equations for submanifolds with dual connections 
are statements about the Riemannian curvature tensor R(X, Y) o n  M and 
the Riemannian curvature tensor A~(X, Y) on S restricted to M. The tensor 
R(X,  Y) is defined by 

R(X,  Y)Z  = V x V r Z -  V r V x Z -  VEx.r]Z. 

The definition for /~(X, Y) follows by replacing V with V in the above 
equation. It should be noted that for fixed Xp, Yp ~ Alp, R(Xp, Yp): M p ~  Mp 
and l~(Xp, Yp): S p ~  Sp are linear transformations. For a geometric inter- 
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pretation of this transformation, see Amari (1985). Proposition 4.1 gives 
the fundamental equations for submanifolds. 

PROPOSITION 4.1. Let V be a dual connection on S and V the 
induced connection on M. Let ~ ( . , . )  and R ( . , . )  be the Riemannian 
curvature tensors for  V and V, respectively. Then, 

(4.1) 

(4.2) 

(4.3) 

<(/~(X, Y)Z, W>> = <R(X, Y)Z, W> + (<h(X, Z), h*( Y, W)>> 

- < < h * ( X ,  W), h(Y, Z))), 

(R(X,  Y)Z) z = Dxh(Y, Z) - h(VxY,  Z) - h(Y, VxZ) 

- {Drh(X, Z) - h(VyX, Z) - h(X, VyZ)}, 

<(RD(X. Y)~. t/>> = <</~(X. Y)~. t/>> + <[Ag. A,](X). Y>. 

where R o ( . ,  .) is the Riemannian curvature tensor on TI(M),~ , r /  
x l ( g )  and [A~, A~] = A~A~ - A~A~. 

The proof of Proposition 4.1 is a laborious calculation which we 
postpone to Appendix 2. Notice that equations (4.1)-(4.3) are each a 
statement about J~(X, Y). The Gauss equation (4.1) describes the tangential 
component of the image of a vector Zp ~ Mp under this transformation. The 
normal component of R(X,  Y)Z is given in the equation o f  Codazzi (4.2). 
Finally, the normal component of the image of a vector field ( ~ TZ(M)  is 
described by the equation o f  Ricci (4.3). In the next section we show that 
the Gauss equation is useful in statistical calculations because it relates the 
imbedding curvature tensor and its dual. The role of (4.2) and (4.3) is less 
clear; we present them here for completeness. 

In many applications <</~()~, ~)J~, l~)> = 0 for all )~, Y, Z., I~c X_(S) in 
which case S is said to be flat in the connection V. When S is flat, 
equations (4.1)-(4.3) simplify to 

(4.4) 

(4.5) 

(4.6) 

<R(X, Y)Z, W> = ((h*(X, W), h(Y, Z)>>- ((h(X, Z), h*(Y, W)>>, 

Dxh(Y, Z) - h(VxY,  Z) - h(Y, VxZ) 

= Drh(X, Z) - h(VrX, Z) - h(X, VrZ),  

<<Ro(X. Y)(. t/>> = <[A¢*. A,I(X). Y>. 

respectively. 
It is often useful to have these equations in coordinate form. We use 

a, b, c, d = 1,..., m to index vector fields whose vectors at each p ~ M form a 
basis for Mp, x ,2  = m + I,..., n to index vector fields whose vectors at p 
form a basis for Mp l (the orthogonal complement of Mp in Sp), and 
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a, f l ,7 ,6  = 1 , . . . , m , m  + l .... ,n  to index vector fields that form a basis for 
Sp = Mp + M ~ .  We deno te  these vec to r  fields by Z a , . . . , Z d ~  _X(M), 
Z~, Z~ e _X±(M) and Za,..., Za ¢ _X(S) where Zo = Za when a = a and Z~ = Za 
when x = a. If we use the preferred coordinate neighborhood (U, ~) at p 
and let {&} be the canonical basis for ~, then Za = & while Z~ = _1_ (&). 
The components  of the metric on S are given by 

gap = <<z~, z~>>. 

The components  of the connection V are 

L~ = <<~zoZ~, Z~)) , 

and the components of the imbedding curvature h(Za, Zb) are 

H~bK = <<h(Zo, Z~), Z~>>. 

We can raise or lower indices of these components by multiplying by 
ga~ = (g~B)-', the inverse of the inner product matrix. In particular, 

n 

rfb = Y~ l~br'g y> = P~y'gY'Y. 
y'=l 

In the second equality of  the preceding display, we have used the Einstein 
summation convention, where we sum over the range of an index if it 
appears both  as a subscript and as a superscript. To raise the subscript x 
on Habx we need only multiply by g~'~ since g~O = 0. Notice that 

h(Z,,, Zb) = H~ZK,  

VzoZb = r]bZ~ = rCbZc + H ~ L  , 

where FJb = (VzoZb, Zc')g ~'c. If we let 

Rabcd ---- ( R (  Za,  Z b ) Z c ,  Zd)  , 

( Ro),,b,~,~ = << Ro( Z~, Zb)Z~, Za>> 

be the components of the Riemannian curvature tensors on T(M) and 
Ti(M), respectively, then equations (4.4)-(4.6) become 

Rabcd = ( H~,~Hb¢,~ - H~o~Hb~a)g '~ , 

F~F~s - FLF~a, (4.7) (&HL)  -- ( O b n ~ )  = a ~ a 

tT * H~ " cd 
( R D ) a b ~  = ( H a ~ H ~  - r ~  ~a~Jg , 
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respectively. Notice that - (RD).b~a = (R*).b~ and - Rabca = R*abac. Since 
R.b~a is skew-symmetric in ab, we have 

= Rabdc  • (4.8) Rba~a * 

Equation (4.8) shows that the Riemannian scalar curvature R = gbdgaCRbacd 
is the same in the primal and the dual connection. 

Many of the tensors in this and the previous section occur in statistical 
calculations. The imbedding curvature tensor Hab~ is particularly important 
as are its contractions 

~ 2 = H~o~H~ag~agb~ , 

M 2 =  H~d,:H~gaag b~ " 

The first contraction y2 is called the statistical curvature, while M 2 is called 
the square of the mean curvature. The difference between these two 
quantities, S = M 2 -  yz, has been used by Amari (1985) to describe 
information loss in exponential families and will be used in the next 
section. 

5. Bartlett correction in exponential family regression 

McCullagh and Cox (1986) have given geometric interpretations for 
the Bartlett correction in normal theory regression and the results in this 
section are an extension of their work. We show the Bartlett correction for 
exponential family regression can be written in terms of geometric quanti- 
ties that are used in many statistical calculations. In order to accomplish 
this task, we show how McCullagh's (1987) theory of tensor notation 
relates to the dual geometries. 

First, we show how exponential family regression can be viewed as a 
statistical manifold. Let Y-- (Y1,..., y , ) ,  be a random vector with density 
from a given exponential family of density functions S, 

Usually, the components yi are independent and each marginal density 
belongs to the same exponential family so that any density p e S can be 
written as 

/1 
H i p = p ( y ;  O) = i = l f ( y  ;oi), 

where f ( y l ;  0 ~) is a univariate exponential family with natural parameter 
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oiE ~1. For the exponential families commonly used in practice (e.g., 
generalized linear models), we find that t/i is the identity function and that 
the parameterization 0 = (01,..., 0")' typically defines a homeomorphism ¢b0 
between S with the weak topology and a space homeomorphic to R". 
When S is a regular minimal standard exponential family, 4)o is homeo- 
morphic on its image. A weaker set of sufficient conditions to ensure that 
~b0 is a homeomorphism are given in Theorem 8.3 of Barndorff-Nielsen 
(1978). Using qb0, the topological space S becomes a manifold that we also 
call S. 

For each realization yi of Y', we observe k covariates i , x i x~,.., k and 
denote the n x k covariate matrix by X. (In this section and the next, 
vector fields will not be denoted by X or Y as they were in Sections 2, 3 
and 4, so there will be no conflict of notation.) The exponential regression 
hypothesis states that the random vector Y has density with natural 
parameter 

(5.1) 0 = L ( p , X ) ,  

where L ( . , . )  is a known function and fl = (f l l , . . . , f lm)t  is a column of 
unknown parameters. For a generalized linear model, k = m and L(fl ,  X )  = 
_L(Xfl) for another known function _L(- ). In many applications, L ( . ,  X) or 
_L(. ) is a 1-1 immersion so that the set of all densities satisfying (5.1) can be 
made into a regular submanifold 

M = {p e S: ¢ko(p) = L(f l ,  X)}.  

To define a metric on Sp it is sufficient to consider the canonical basis 
{aip= a/ao;lo(p)}'/for o. Corresponding to each basis vector aip there exists a 
random variable a~,l = ad(0; Y)lo=~,(p) where l (O;y)= logf (y ;  0) is the log 
likelihood function. The random variable Oipl is called the 1-representation 
for aip (Amari (1985)). The metric can now be defined as follows 

(5.2) (( O oo, Osp)) = E ( O ipl Ojpl ) . 

The components of the metric with respect to the basis {dip} are given by 

gu = g o ( p )  = E ( a , d o j d )  , 

the components  of the expected Fisher information matrix for the para- 
meter 0. When 1(0; Y)  is a smooth function of 0 g, then Oil becomes a 
smooth vector field and the metric defined pointwise by (5.2) is also 
smooth. 

We also use the 1-representation to define a pair of dual connections 
on S. If (Vo, Oj) (1) is the l-representation for Vo, Oy, then 
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(g'o, oj)(') = oia;z(o'; Y9 - £.(oio;t). 

The components  of this connect ion are given by 

(5.3) t~ijk = ((Va, Oj, Ok}} = E(OiOjlO,l) . 

Notice that  rUk is a funct ion on S and that  the expectat ion and derivatives 
in (5.3) are evaluated at the same p o i n t p  ~ S. The componen t s  of the dual  
connect ion are given by 

(5.4) r ~  = Pok + T~jk, 

where Tu, = E(OilOylOkl) is known  as the skewness tensor for S. The first 
connection/~0k is called the exponential  connect ion and its dual  ~ is the 
mixture connection.  It is a simple calculation to show that  ~ defined by 
(5.4) is dual  to r/jk (Vos (1987)). Lauritzen (1987) discusses further proper- 
ties of the tensor with components  T~jk and its characterization of statistical 
manifolds. 

The metric ( . ,  .)  on Mp and the connect ion V on T ( M )  are the metric 
and connect ion induced f rom the cor respondingquan t i t i e s  defined on the 
supermanifold  S. The fl parameterizat ion on M defines a coordinate chart 
(~bp, M )  so that  

0 
Or = 

O K  

is the canonical  basis field for ft. Derivatives with respect to fl will be 
represented with subscripts r, s, t, u , . . . .  For  a fixed p0 e M, we can define a 
coordinate chart  with a canonical  basis vector field that  extends {&} to a 
basis vector field {Op} on all T(S) ,  such that  {Op} = {0r, &} for p = 1,..., n, 
r = 1,..., m and x = m + 1,..., n and <<Or, &>>p0 = 0. In other  words, {&} is a 
basis for M~,  the or thogonal  complement  of Mpo in Sp0. The components  of 
the metric and dual connect ions on M with respect to {0r} will be denoted 
by g,s, F,,,, F,*, respectively. For  notat ional  simplicity we have not written 
O,.po and &po for the natural  basis vectors in Spo. The context  will determine 
whether 0, is vector in Mpo or a vector field on M. 

Having placed a pair of dual  geometries on exponent ia l  family regres- 
sion, we are now ready to consider the Bartlett correction. We consider the 
log of the likelihood ratio statistic 

w(p0) = 2{t(p; r )  - z(p0; r )}  

to test H0: fl = ]?0 where fl0 = ~bp(p0) and we have wri t ten l(1~; Y) for  
l(c~o(4fpl(fl)); Y). Under  appropriate regularity conditions, w(flo) has asymp- 
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totically the chi-squared distribution with m degrees of freedom when 
fl = fl0. The expectation of w(flo) can often be written as 

Et~°(w( f l ° ) )=m ( l + b(fl°) + O(n-2) ) 

By dividing w(flo) by the Bart le t t  correct ion,  (1 + b(~o) /n ) ,  the approxi- 
mation to the chi-squared distribution is improved, often to O ( n  -2) 
(Barndorff-Nielsen and Hall (1988)). 

McCullagh and Cox (1986) give the following invariant expression for 
b(flo) in the Bartlett correction 

(5.5) 
/ 

b(flo) -~ 2-~ = (3p13 + p23 -- 3p4) 
1 2  

1 -1 rs ,,,,~ 
+ -~- m v' v tzv~t.s, - v~,,, - 2Vr, s,,,), 

The first three quantities, p~3, p~3 and ,04, are multivariate generalizations of 
the univariate measures of skewness (p~) and kurtosis (p4) .  The v's in the 
last term, call it c(flo), are defined in terms of the cumulants of the 
derivatives of the log likelihood and are tensors, For non-linear normal 
theory regression, McCullagh and Cox (1986) show that c(flo) reduces to a 
simple expression involving the Riemannian scalar curvature and the mean 
curvature. We extend their regression example to allow for error structures 
from an exponential family. 

We begin by relating the notation of McCullagh and Cox (1986) to the 
tangent vectors in Sp0. By equation (24) in McCullagh and Cox (1986), 

(5 .6 )  U, = Od = Ol(fl; Y )  U,.s = Orasl = ,o2l(fl; Y )  
O y  ' o,e'o,e" 

so that U~ is just the l-representation for the basis vector O, and U,s - E(U~s) 
is the 1-representation for Va,O~. Substituting from equation (5,6) into the 
expression following (24) in McCullagh and Cox (1986), we have 

nxr = E(Ur) = E ( d d )  = O,  

nX,s = E(U, , )  = E(O,ad )  = - g , , ,  

(5.7) nxr., = cov( U, U,) = E(adO,l )  = g , , ,  

n~c,,,, = c o v  ( U , ,  Us,)  = E(O,lasa,l)  = F ,  tr , 

nX~.s.t = cum (U,., Us, Ut) = E(OdO.dOd) = Tr~, , 
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where the first equality in each line of (5.7) is the definition given in 
McCullagh and Cox (1986). These authors also use the following tensors 

Vr = Ur and V,s = Urs -  ~raUa, 

where 

flras = a b K a b r , ( 1 )  F a K ' b, r s =  ~J I rsb = rs , 

and a = 1,..., m. Notice that V,s = 2_ (U~s) so that Vrs = V,s - E(U~s) is the 
1-representation for h(Or, 0,) and fl,~Ua = Fi~Ua is the 1-representation for 
Va,O~. 

We are now ready to interpret the invariant quantities in the Bartlett 
correction. The v's in the last term of the Bartlett correction are n-~ times 
the cumulants of Vr and V~; in particular, 

(5.8) 

nVr, s = COY ( V r ,  Vs) , 

nVrs, tu = c o y  ( Vrs, Vtu) , 

nv, ,s , ,u = c u m  ( V,,  Vs, Vtu) , 

and the matrix inverse of Vr, s is V ~'s. From the second equation in (5.8), we 
see that 

(5.9) nvrs.,. = E( V.s, V,.) 

= ( ( ( h ( O r ,  as), h(O,, 0,,))> 

= H r ~ g ~ z ~ H t .  , 

where H~O~= h(Or, ds) so that H~ are the components of h(dr,&) with 
respect to {OK}. The trace of the exponential imbedding curvature H ~= 
g~SH~ gives the components  of the exponential mean curvature vector 
H = H~O~ e Alp. There is not complete agreement on terminology in this 
case; some authors (Spivak (1975), p. 96) call m - l H  the mean curvature 
vector. The quantity 

(5.10) - 1  r s  t , u  rs / u z r r K r r 3 .  x 
n v'  v v,,tu = g  g trlr, n,,)gK~ 

= HKH~gKa 

= IIHll 2 = M 2 

can now be interpreted as the squared length of the exponential mean 
curvature vector. While 
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-1  r, sl)t,u~) rs t lJTTKrT2 2 (5.11) n v ,~,~ = g g tl,tt1,~g,~ = y , 

where y 2 is the statistical curvature. 
We have one more term to consider, namely 

(5.12) nv~,s,,, = cum (Vr, Vs, V~,) 

= E ( V r V M L V ~ )  

= T, tKH,]. 

Using equation (5.4) we can express Tp,~ as 

where the components  are with respect to {Op} = {Or, OK} with p = 1,..., n, 
r = 1,..., m and x = m + 1 .... , n. Recall that we chose {dp} such that (Or, d~)po 
= 0 SO that 

Trs~=H~s~-H~*~,  

where H,*~ is the imbedding curvature tensor in the mixture connection 
which is dual to H,s~. 

Making this substitution into equation (5.12) we obtain 

(5.13) *X 2 X 2 
nVr.s,,u = H;~ H , , g ~ a -  H;,H,ug~x. 

We can make the same definitions for the mixture connection as for the 
exponential connection so that H *~= g'SHr*K are the components  of the 
mean curvature vector for the mixture connection. Equat ion (5.13) can be 
contracted to give 

(5.14) n-lvr 'SVl"UVr,  s, tu = M 11 _ M 2 

where 

(5.15) M 11 = H*~H~g~a = <H*, H> . 

Equation (5.15) shows that M 11 can be interpreted as the inner product of 
the mean curvature vector in the exponential  connection and the mean 
curvature vector in the mixture connection. The first superscript of M 1~ 
indicates the number of terms in the inner product  that come from the 
exponential  connection; the second superscript indicates the number f rom 
the mixture connection. Although n-lv"'vS'Uvr,~,,u does not appear in (5.5), 
this contraction of Vr, s,,u can be written in terms of geometric quantities, 
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n-lllr,~lps,  Ulyr, s, tu = 711 __ ?2 , 

where ?11 rT I t *  rs tu x). = r ~ r t , , a g  g g . In (5.18) we see that ? l l  ?2 appears in an 
invariant expression for the Bartlett correction. 

Making substitutions from (5.10), (5.11) and (5.14) into (5.5) we have 

(5.16) c(f lo)  = ~ m  (2?2 + M2 - 2Mll )  " 

When the error distribution is normal, (5.16) must reduce to n ( M  2 - 2 R ) /  

4m, the expression for the Bartlett correction given by McCullagh and Cox 
(1986). To see this, we can use the Gauss equation (4.7) 

R, , , ,  ( H , ~  H,*~ * ~ = - Hr,~H;ua)g , 

s ince/~, , ,  = 0 for exponential families. Multiplying both sides by grSgtU w e  

find 

(5.17) R rs tu 11 711 = g g  R~ , , .=M - . 

Substituting (5.17) into (5.16) gives 

(5.18) c(f lo)  = ~ { ( M  2 - 2R) + 2(y 2 - ? 1 1 ) }  , 

Equations (5.16) and (5.18) are not the only invariant expressions for 
c(f lo)  in terms of statistical geometric quantities. Amari  (1985) defines a 
quantity S,~,, = HrsKH, u~ - Hr ,~H,~  whose contraction 

(5.19) = gr~g,U~,~,, = M 2 _ ? 2 ,  

we call the second Riemannian scalar curvature since S = R for the self- 
dual connection. Substituting (5.19) into (5.16), we obtain 

(5.20) n 
c(fl0) = ~ m  ( - 2 S +  3M 2 - 2 M l l ) .  

For normal error distributions S =  R, so the second Riemannian scalar 
curvature is an extension of the scalar Riemannian curvature. Another 
interpretation for S follows from (5.19). Efron (1975) originally defined y2 
only for l-dimensional submanifolds. In this special case y2 = M 2, so that 
both 72 and M 2 are multi-dimensional generalizations for the original 
statistical curvature that Efron defined for one dimension. The second 
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Riemannian  scalar curvature is simply the difference between these two 
extensions. Vos (1987) considers S and its relationship to R and R ~°1, the 
scalar Riemannian  curvature in the metric connection.  

6. Bartlett correction in statistical manifolds 

Having given a rather detailed discussion of the Bartlett correction in 
exponential  family regression, it is now a fairly simple matter  to extend this 
interpretat ion to statistical manifolds outside the exponential  family. We 
consider a set of n-dimensional  distributions 

M =  {p(y;fl):  fl ¢ , ~ } ,  

where y --  (y l , . . . , yn) ,  E R n and ._~ is homeomorph ic  to R '~. We also assume 
that  the parameter izat ion is such that  M becomes a smooth  manifold.  We 
shall not require that  p ( y ; f l )  come f rom an exponential  family, nor shall 
we require that  M be a submanifold of some larger manifold of distribu- 
tions. Rather,  we approximate  M at a point  p0 e M with a curved exponen- 
tial family )~r(p0), called the local exponential  family (Amari  (1987)). Since 
we only consider  the local exponential  family at p0, we can write ~ t  for 
M(po) wi thout  possibility of confusion. 

In order to define )~, we shall require the r andom variables 

U~ = Ur(po) = Orllp,, 

and 

Or, = Urs(Po) = (O,.O~l + grs)l~o, 

where flo = ~bp(p0), l is the log likelihood function,  and grs = - E(&sl)  is the 
Fisher informat ion matr ix for fl0. We assume that  span { U,s} has dimension 
m2 = m ( m  + 1)/2 and that  the d imension of span{Ur, Us,} is m + mz. 
Following Amari  (1987), we define an exponential  family at po that  
depends on an (m + m2)-dimensional natural  parameter  0 with components  
0 i 

g = {q: q(y;  0) = p(y;flo) exp { o i u i  - ~//(0)}} , 

where Ui = Ur if i = r < m and Ui = Urs if i is in the range m + 1,..., m + m2. 
For  values of i larger than  m, we assign a value to each ordered pair rs 
where r _ s. Finally, we define the approximat ing local exponential  family 
at p0 

= {/~ ~ g:/~(y;fl ')  = q(y;  O(f l ' )} ,  
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which is indexed by the parameter  fl' so that oi(fl  ') = ( f i r_  flO)' when 
i =  r < m and oi(f l  ') = ( f l ' -  f l o ) ' ( f l ' -  rio) s when i >  m + 1. Notice that  
/~(y;fl') =p(y ; f l o )  when f l '= f lo  and that Or= U, and O,s= U,s where /.7,= 
a; log/~ = a/of f  r" log/~ and On = a;a; l o g p  at fl' = flo. 

Since each term in the Bartlett correction depends only on the first 
and second order derivatives of the log likelihood, we can interpret each 
term using the approximating local exponential family ~t. In particular, 
the scalars p~3, p223 and p4 are the multivariate measures of skewness and 
kurtosis for the curved exponential family _)~t. Furthermore,  since V,~ is 
defined using only /.Jr, U,,, and the expectations of these random variables 
at fl' = fl, V,~ is the 1-representation for the exponential  imbedding curva- 
ture of M in S. If we assign a value x from m + 1,..., m + m2 to each rs 
where r < s, then V~ spans the 1-representation for JI~tA, the orthogonal 
complement  of )~¢p0 in Spo. We can write V,~ = H~V~ so that H~ are the 
components of the exponential imbedding curvature of .~¢ in ~. Hence, 

(6.1) nv,~.,, coy (Vr,, V~,) ~ = = H;~H,.gK~ , 

where ga~ = cov (V~, V0. Furthermore,  if we let T, .... = cum (Ur, Us, V~), 
then 

(6.2) nv,.,,,, = cure (U., Us, V,,) 
K 

= H l u T r ,  s,,,: 

K , 
- -  e , , , (  ng , ,  - nr , ,O .  

The last equality follows from the definition of H,~*, the components of the 
mixture imbedding curvature. Notice that equations (6.1) and (6.2) are 
identical to (5.9) and (5.13), except that H;~ and H, *~ are now the imbed- 
ding curvatures of 2Q in ~. Since the Bartlett correction involves p(3, if2, p4 
and contractions of (6.1) and (6.2), we see that for a general statistical 
manifold the Bartlett correction takes the same form as for exponential 
family regression (equations (5.16), (5.18) and (5.20)). The only difference 
is that the scalar curvatures M 2, 7 2, S and R and the invariants M ~1 and ))11 
describe how the approximating exponential family M is imbedded in S. 

7. Conclusion 

The dual geometries can be applied to a variety of situations and when 
these geometries are used in statistical inference a number of curvature 
tensors and other invariant quantities arise. In order to relate these 
quantities we have derived the fundamental  equations for statistical sub- 
manifolds. To illustrate how these equations can be utilized, we have 
considered the Bartlett correction for which we have given an invariant 
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expression using curvatures that describe how a statistical submanifold is 
curving in a supermanifold. Each term in this expression is some contrac- 
tion of the exponential imbedding curvature and/or  its dual. The exponen- 
tial imbedding curvature as well as its contractions, the statistical curvature 
and the square of the mean curvature, appear in many statistical calcula- 
tions. The Gauss equation for statistical submanifolds is useful because it 
relates these imbedding curvatures to the Riemannian scalar curvature. The 
extension of this result beyond exponential family regression is a simple 
matter if one uses Amari's (1987) local exponential family. 
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Appendix 1 

PROPOSITION AI.1. I f  .,g and ~" are extensions to S o f  the vector 
fields X and Y on M, respectively, then V*~I~, is independent o f  the 
extension. 

PROOF. In the following, we will use a canonical basis {0,}7 on S and 
a canonical basis {0a}~' on M, so that g = )7,i0i and X-- X=O~ for smooth 
component functions ~ i  and X a. Notice that Oi "~ 0a even when i = a. Since 
Alp C Sp, there is a linear mapping B(p) with components B~(p) at each p 
such that 0~p = Bi(p)Oip. As a function on M, Bia ¢ C**(M) for all i, a and 

(AI.I)  ~ i I M :  BgX 

a i since f~iOilM= XaOa]M = X Bg,&lu. Writing ~ and ~ in terms of the 
canonical basis on S, we obtain 

(A1.2) = (g'o, J)oj + g ' ? J % , o j .  

From (AI.1) and (A1.2), we see that 

[ ]  

Appendix 2 

PROOF OF PROPOSITION 4.1. Recall that X, Y, Z ~. T(M) and/~( . ,  • ) 
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is the curvature tensor of S defined by 

~(x, Y)z = ~ z -  ~y~xZ- ~Ex, n z .  

Substituting from the Gauss formula (3.3) we find 

~(X ,  Y )Z  = Vx(VrZ + h(Y,  Z)) - Vr(VxZ + h(X, Z)) 

- (Vtx.rlZ + h([X, Y], Z)) 

= R(X,  Y)Z  + h(X, VrZ) - h(Y,  VxZ) - h([X, r] ,  z)  

+ Vxh(Y,  Z) - Vrh(X, Z ) ,  

where R ( . , - )  is the curvature tensor of M. Now, substituting from the 
Weingarten formula (3.12a) we obtain 

lit (A2. l) R(X,  Y )Z  = R(X,  Y )Z  - A~r,z)X + Ah(x,z)Y 

+ h(X,  VrZ) - h ( r ,  VxZ) - h([X, Y], Z) 

+ Dxh(Y,  Z ) -  Drh(X, Z ) .  

Equation (A2.1) immediately gives us the equation of Codazzi (4.2) since V 
is torsion-free; the equation of Gauss (4.1) follows by taking W~ T(M)  
and applying equation (3.9b). 

Finally, we use the following calculation 

((/~(X, r)~,/7)> = ((VxVr~, t/)) - ((VrVx~, t/>> 

- <<~cx, Y~, ,1>> 

= - ((Vx(A¢* Y), r/>> + ((VxDr~, r/>> 

+ <<~y(A~*X), ,~>> - <<~YDx~,,~>> 

- <</~x, n ~,  t/>> 

= - ((h(X, A~ Y), ~I)> + ((h( Y, A~X), t/>> 

+ ((DxDr~, r/>> - ((DrDx~, r/>> 

- <</~x, n ~ ,  t/>> 

= - (A,M~ Y, X> + (A,M¢*X, Y) 

+ <(R,)(X, Y)~, t/>>. 

The equation of Ricci (4.3) follows from the last equality upon noting that 
the symmetry of h(X,  Y) in (3.9a) and (3.9b) implies 
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<A~A~ ~ X> = (A~ Y, A~X> = ( ~ A~ A~X> . [] 
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