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Abstract. We introduce a general formalism for linear evolution equations with skew adjoint operators. We 
make explicit the controllability operator as an expansion with respect to eigenfunctions. Using the fact that 
the eigenvalues are purely imaginary, we give sufficient controllability conditions. This approach is 
convenient for studying the asymptotic behaviour of the optimal control. 
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O. Introduction 

The problem of exact controllability for the wave equation has attracted considerable 
interest in recent years, see J. L. Lions [12, 13], I. A. Lasiecka and R. Triggiani [9], R. 
Triggiani [14] and references therein. 

More recently, C. Bardos, G. Lebeau, and J. Rauch [1-4], using high frequency 
analysis, have shown the relation between the geometry of a ray and the exact 
controllability (or stabilization). Roughly, the result is that a necessary and sufficient 
condition of exact controllability is that any ray meets the control region before the 
time T. This result holds true both for Neumann and Dirichlet as well as for the 
Maxwell equation. 

Here, we introduce a general formalism for linear evolution equations with skew 
adjoint operators. We make explicit the controllability operator as an expansion with 
respect to eigenfunctions. Using the fact that the eigenvalues are purely imaginary, we 
give sufficient controllability conditions. They are expressed in terms of 
eigenfunctions, which is natural since we are looking for the asymptotic behaviour or 
the behaviour for large time. In particular, this approach is convenient for studying 
the asymptotic behaviour of the optimal control, a problem considered by J. L. Lions 
[11], and Chin-Hsien-Li [6]. 

Let us briefly describe the main ideas of our approach in the context of finite- 
dimensional spaces. 
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Consider a linear system of the form 

z' + :¢z = ~v, z(0) = q0, 

which is solved by the formula 

;o z(t) = G(t)q) + G(t - s )~v(s )ds  

where G(t) = e -°/r. 

Controllability is linked with the invertibitity of the controllability matrix 

io A(t) = G * ( s ) ~ * G ( s )  ds. 

The state space (space of z) is denoted by ~ ,  which is a complex finite-dimensional 

space of dimension 2N. We assume that ~ = - d *  and that the eigenvalues of d are 

i x / ~  j , - i x / ~ ,  j = 1 . . . . .  N.  This feature will imply an interesting property leading to 
the invertibility of A(t) for large t. 

Let q)J and Cp j be the eigenfunctions corresponding to i x f ~  i , - i , ~ j ,  which form an 
orthonormal basis of 0;~. The operator G(t) is expanded as 

N 

G(t)q~ = 1~ ( ~  e - i ' :@ ~o j + cj ei'/5~' (M), 

where 

N 

q) = ~ ( ~ 0  ~ + cj~J). 
j - - 1  

Then the controllability matrix is expanded as 

(A(t)~p, gp) = (cj e"J":~*(o  ~ + cj e iv:;:~*tpJ) x 
j = l  

N 

x ~ (~ ei , / : : .~*~ ~ + ~ e-"-/::~*~oJ)ds. 
j = l  

This form shows immediately that there is a principal term: 

N 

(A(t)(0, 0) = t ~ cj~L~*q~Jl 2 + (A(t)q), (0), 
j = l  

where ~.(t) involves all other terms. The important remark is that I,~(t)l ~< C 
independently of t. Therefore, if IB*q~Jl 2 does not vanish, one can assert that 

(A(t)q~, q0) >~ (Co t - c l ) [ ( f i ]  2 

and, thus, for t sufficiently large, A(t) is invertible. 
This is the key property that we want to recover in infinite-dimensional spaces. The 

basic difficulty is the following. We may rely on an infinite expansion (i.e. N -+ oo), but 
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this brings in a new parameter  N, and terms must be controlled. Some additional 

features and assumptions are necessary, in particular flexibility of the state space. 

After having developed the general theory, we see how it can be applied to recover 
the known results concerning the wave equation (Dirichlet and Neumann cases). 

In a separate paper, we shall check that it also applies to the Maxwell equation. All 
these results have been derived in the literature, using the methodology of HUM,  
introduced by J. L. Lions. 

Our approach has several advantages. It sheds the light on the fact that 
controllability for large time is a property to be expected for skew symmetric 

operators. The treatment for infinite-dimensional spaces is not as simple as the one 
sketched above. 

Second, we have a general theorem which can be applied in specific cases by 
checking the assumptions. One does not need to redo all calculations for each case. 
Third, it "probably' leads to the smallest time of controllability, since the calculations 
are exact in time (this has not been investigated, though). Besides, the asymptotic 

behaviour of the optimal control is easily obtained, whereas the problem was 
somewhat open for the wave equation. 

Finally, our approach will fit nicely with a finite-dimensional approximation 
(Galerkin method) of the system, which will be the case in numerical approximations. 
It is well known that high frequencies are sources of difficulties in the numerical 
approximation of the wave equation. 

1. A General Framework 

l. 1. N O T A T I O N  

Let V,, H be two Hilbert spaces, with the usual set up V c H = H '  c V', each space 

being dense in the next one with a continuous injection. 
We consider the operator A such that 

( A v ,  b)  = ((v, ~)), Vv, ~e V. (1.1) 

with the usual notation (( . )), ( . ) for the scalar product in V,, H and ( . ) for the 
duality between V and V'.* 

We introduce the domain of A in H defined by 

D A ---- {re  V] Aver t }  (1.2) 

which is structured as a Hilbert space with the norm 

IlvllD~ = IAvl (1.3) 

and A is an isometry from D A into H, and V into V', since the norm of V' is 

IP~IIv, = IIA 1~11. (1.4) 

*For  Hilbert spaces different from V, H we shall indicate explicitly the space in the norm notation; I le will 
represent the norm of the Hilbert space F, 
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We thus have the following sequence 

t D A C  V ~ H = H ' c  V ' c D ,  4, (1.5) 

each space being dense in the next one with continuous injection. Note that A is also 

an isometry from H into D~. 

1.2. THE CHANGE OF PIVOT SPACE 

In the previous set-up, the space H is a pivot space. We shall need also a different set 

up where V' becomes the pivot space. Recall that V' is a Hilbert space for the scalar 

product 

((~, r/))v, = ((A- 1~, A-  lq)) 

<A 1~, ~> (1.6) 

and H c V', H being dense in V', with a continuous injection. We identify V' and its 

dual (which implies that this dual is now different from V). In this set-up, the dual of H 

becomes D~, since any linear continuous functional on H can be written as 

h ~ ( h ,  A-t~)  where ~ D ~ ,  which coincides whenever ~e V' with ((h, O)v', hence we 

can write 

H ~ V' c D~, (1.7) 

where it must be understood that V' coincides with its dual and D] is the dual of H. 

To find the dual of V in this set up, we need to further introduce the space 

AA = {re V, A v e  V}, (1,8) 

provided with the norm IIv[IA = I[AvHv. Then A is an isometry from hA into V. 
Considering its dual A] when the pivot space is H, one can complete (1.5) as follows 

A a = D a = V = H = H '  = V' = D]  c A) (1.9) 

and A is an isometry from V' into A). 
Now when we identify V' with its dual, A] appears as the dual of V, and we have 

t t V c H = V' = Oa = Aa. (1.10) 

The notation prime does not represent duality any more. To summarize ifh ~ H, ~ ~ D] 

we have 

<h, ~>H,D'~ = (h, A -  ' ~) (1.11) 

and if v s K (~  A~ we have 

(v, (}v,A;, = <v, A-1(>. (1,12) 

1.3. THE OPERATOR ,~ 

We shall now consider the product space 

J{' = H x V' (1.13) 
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which is identified with its dual. This means that  in each component  a different 

identification is made, H and its dual for the first component  and V' and its dual for 

the second component .  We thus have by construct ion fff = Jt¢'. 

Next we set 

~ - = V × H ,  ~ " = D A × V  

and according to Sections 1.1 and 1.2, 

t ~"' = V' × D~, ~/"  = D a × A a, 

Moreover,  A is an isometry from ~ into Yf, Y'" into "/~-' and W into ~ ' .  By A applied 

to a vector 

we clearly mean 

A z =  A z 2 "  

We have the sequence 

each space being dense in the next one with cont inuous injection. We notice the 

duality products 

(z ,  rt)~,~', = ( z l ,  t l l ) +  (z2, A lq2), 

( z, tl) ~t ,~ -, = (Az, A -  lq)j¢ , 

= (Az l ,  A - l q l )  + (z2, A - l r l 2 > .  

We next define the operator  ~ / a s  follows 

and we have the properties 

,~,' e ~ ( ~ ;  ~ ) c~ ~w(~-; ~ )  c~ ~ ( J g ;  ~ ") c~ ~(~ ' - ' ;  ~ ' ) .  

We can check that d is skew symmetric, namely 

J *  = _ , ~ .  

For  instance, let ~0 e # ,  ~ ~ V ' ,  we must  check that 

which amounts  to checking that 

which is easy, using (1.13), (1.14). 

(1.t4) 

(1.15) 

(1.16) 

(1.17) 
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We can also check that 

((,~/z, 7z)) F = -((z, ~¢~))v, Vz, ~ 6 ~  (1.18) 

where (~,  F) is, respectively, the pair ( ~ ,  ~);  (U, our); (o~, U'); (U', ~" ) .  
The operator s#' is monotone in ~ ,  J r ,  ~ ' ,  ~W' and maximal monotone since the 

equation 

.ei'z + z = f, z e ~ ,  f e F  (1.19) 

has one and only one solution whenever the pair (5 e, F) is as above. 
By application of the Hille-Yosida theorem (see, for instance, H. Brezis [-5]), one 

can solve the differential operational equation 

dz 
- -  + ~ , ' z  = 0 ,  z ( 0 )  = ~0 ( 1 . 2 0 )  
dt 

with q ~ E ~ =  ~P, ~/r, ~ ,  U,,  respectively, and the solution belongs to 
C°([0, oo); ~ ) n  C1([0, ~); F), where F =  SF, j r ,  $~', W' ,  respectively. 

1.4. THE GREEN O P E R A T O R  

From (1.19) it follows that we can write z(t) = G(t)~o and 

G(t)~ (~(Se; Y'), with ~ = ~]r, -//', j r ,  j r , .  

Moreover, 

[[G(t)q~HF ---- H(ollv, with V -- "t ~, our, ~ ' ,  ~1/", 

which implies that G(t) is a continuous semigroup of contractions on F. We may next 
check that G(t) is a group and, more precisely, 

G ( - t ) =  G 1( O = JG(t)J, 

where 

Moreover, consider the equation 

d~ 
- -  - -  + . 4 " ~  = 0 ,  ~(T) = ~, ( 1 . 2 1 )  

dt 

and we can easily check by differential calculus that 

(z(T), ~)a~ = (~0, ((0))o~, Wp, ~9 ~ ~*. (1.22) 

This formula extends to (0, qJ in Jg and also 

(z(T), ~>~-j-. = ((o, ~(0)>~-~- (t.21') 

if qJ~ ~ ~, ~0 e "/.=' or ~ Y~', q~E~ ~. 
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Therefore, ~(0) = G*(T)~, if ff E ~", iF, Y'°'. Because of(1.17) ~'(0)= G-l(T)q/. Hence, 
we have 

G - ~(t) = G*(t) E c~(~;  ~ )  n £,q~("//~; ~ )  c~ 'Z,e(~/~"; ~"). (1.23) 

Since (1.21) extends to q~e~",  ~ c ~¢/" and q~e~", ~ E~¢", respectively, and since 
from (1.17) 

] l G ( t ) ~ 0 1 1 ~ , - - I I q ~ l l u  ' 

and similarly 

IlG*(t)Olt ~' = II~il~." 

we also deduce 

IIG(t)q~l[~ = II~oll,~, IIG*(t)011~ = II~'ll~ (1.24) 

and 

G- ~(t) = G*(t)e ~ ( ~ " ;  ~") ~ 5°('/~; ~ ' ) .  (1.25) 

1.5. E1GENVALUES AND EXPANSION FORMULA 

We consider the complexified versions of #", ~'~, ~ ,  ~:-', .¢¢F', which is natural in the 
context of spectral analysis, and look for the eigenvalues of .4 .  At this stage, we need 
the additional assumption 

the injection of V into H is compact. (1.26) 

This implies, together with the properties of A, that there exists a sequence 
0 < 21 < 22 ~< ... ~< ,Z n < --. 2 n T + oo of eigenvalues of A, such that 

Awj = 2jwj, wj~AA, [wj[ n = 1 (1.27) 

and w; is an orthonormal basis of H, whereas w j / x ~  J, x /~iwj  are, respectively, 
orthonormal bases of V and V'. Note that (1.26) also implies 

the injection of H into V' is compact. (1.28) 

Therefore 

the injection of ~t into ~ is compact (1.29) 

It follows that the spectrum of d is discrete and, as easily checked, the eigenvalues 

are i , ~ v  and - i ~ v  (the spectrum is purely imaginary). 

The eigenvector corresponding to i ~  is 

,(w,> 
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and that corresponding to - ix/ /~j  is 

1 ( wj 
(o s 

and it is easy to check that the sequence q~J, ~J forms an orthonormal basis of ~ .  

Similarly, q ) J / ~ ,  g#J/x//~ forms an orthonormal basis of ~ and ~ q ~ ,  x//~j~ ~ 
forms an orthonormal basis of ~". 

The spectrum of N* = - d  is also i , , ~ ,  - i x / ~  ~ and c? ~ corresponds to i ~ ,  

whereas q~J corresponds to - i ~ .  
We can give a representation formula for the solution of (1.20). If the initial 

condition is written as 

qo = ~ (?jqo j + ciOJ), (1.30) 
J 

where 

cj = (qh ~oJ).~r. (1.31) 

The solutions of (1.19) is then 

z(t) = ~ (~j e-~, /~  ~o ~ + cj e~'f~'(o ~) 

= 2 R e ~ c j  ei'f~'/(o j. (1.32) 
J 

2. D y n a m i c  Sys tems  - Controllabil i ty Operator  

2.1. NONHOMOGENEOUS DIFFERENTIAL OPERATIONAL EQUATION 

Let us consider the analogue of (1.20) with a right-hand side, namely 

dz 
- -  + sCz =f(t);  z(0) = ~o, (2.1) 
dt 

where ~oe~ = ~¢/, ~t ", ~'f, ~ '  and f e  C1([0, T];F) with F = ~U, ~f, ~,r,, ¢¢F'. 
Then (2.1) has a unique solution z s C1([0, T]; F) ~ C°([0, T]; ~e) given explicitly by 

fo z(t) = a(t)~o + G(t - s ) f ( s )ds .  (2.2) 

Now (2.2) extends to f e LI((0, T); F), and defines a function z in C°([0, T] ;F)  (note 
that ~ is replaced for F). If F is, respectively, ~ ,  ~ ,  ~ ' ,  then dz /d t  E L1((0, T); E) with 
E = ~¢f, ~,p', :/g ' 

2.2. CONTROLLED SYSTEM 

Let ~//be a Hilbert space (the space of controls) which we identify with its dual. We 
consider an operator 

~ ~ ~(~ ' ;  ~() (2.3) 
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and the dynamic system 

dz 
d t  + ~¢z = My, z(0) = cp (2.4) 

where v(. )~ L2oc(0, oo; ql). Pick ~p ~ ,  then according to (2.2), Equat ion (2.4) has a 
unique solution z(. ) in C°([0, T] ;  ~ ) ,  VT > 0, given by the formula 

;o z(t) = G(t)q~ + G(t - s)~3v(s)ds. (2.5) 

2.3. EXACT CONTROLLABILITY 

Consider the controls of the form 

v(s) = ~*G(s)( ,  

where ~ s ~ .  Then the corresponding z(t) can be written as 

= G(t){q~ + A(t)~}, 

where 

fo A(t) = G*(s)~N*a(s)  ds 

will be called the controllability operator*. Clearly A(t)e 5 ~ ( ~ ;  Jr) .  
If for some t, we can solve the equat ion in 

~0 + A(t)~ = 0, 

then z(t) = 0 and the system is brought  to a standstill. 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

2.4. BILINEAR FORM 

Using the representation formula (1.32) we can give an explicit formula for A(t). Let 
~, ~'~ jut-, and 

cj = c`/(0 = (~, ~o`/), ~`/= c`/(C) = (C, ~o~), 

then we associate to the controllabili ty opera tor  the bilinear form on W defined by 

2,(~, ~) = (A(t)~, O,se 

; o ( ~  )~ds .  = 4 Re[ci ei'f~vs~*gpJ], ~ Re[~ k eixf~sN*0 k] (2.10) 

The bilinear form )~t is symmetric but not coercive in general in ~ .  

*It corresponds to the usual controllability operator of the pair (.~/*, ~ ' ) = ( - d ,  .~). 
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3. General Results on the Controllability Operator 

3.1. EXTENSION OF A{t) 

We are interested in further properties of A(t) and of F(t) = A(t)/t (in particular, its limit 
as t ~  oo), as well as invertibility properties. We shall first extend A(t) and F(t) as 
follows. 

PROPOSITION 3.1. A(t) and F(t) extend as operators 6 ~a(~-,; ~ , )  and L~q(~'~; ~).  

Let ( e  ¢ "  and a~=aj(0=((( ,  x / ~  q~))~ -,. If ( ¢ ~  then a~=cj/x/~j and Proof w e  

have 

= ~11(11~", Z Icjl 2 = ½I~17,. 
J J 

Similarly, we can state that 

~ l e j l  z = ½11(11~. 
. i  

We write (2.10) as 

= ) ' d ~ Im[aj ei'/~'J'~*~J], ~ Re[~ k e"f)~SN*q) k] ds ~ 4 

(v ' - )  = 4 Im[a~ ei./O~*&~], ~ Re[~k e"/~"~*~o k] . -- 

--4(~Im[ai~*OJ],~Re[Ck~*Ok])~u+ 

(3.1) 

(3.2) 

hence 

+ C  Z I m [ a j p  j ] . ~ R e F a k 0  k ] ~ +  

+ C .fo ~/Im[aj c i'fikS O r] ~¢ ~ I m [ ~ c k  ei'/~"s 0 k] ~ ds 

~ I~,l ~) [ ~ l ~  ~) + ~.Xlo, l ~ Z ~ l ~ l ~  ~'~ 

<~ C(t + 1)ll(lly"ll~'ll~ 
and the desired result is obtained. [] 

We state the immediate corollary: 
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COROLLARY 3.1. We have 

IIA(t)ll~(,~:.~v) <~ Ct, 

NA(t)lfm(, ': ,  ')~< C(t + 1), (3.3) 

IIA(t)ll<m(r : ,  )~  C(t + 1), 

Remark 3.1. It is clear that if A(t) is invertible for t o, it is invertible for any t/> to. 
For some type of problems (like plate and Schr6dinger equations), A(t) will be 
invertible for any time t > 0, or never invertibte, E. Zuazua [-15], G. Lebeau [10]. 

3.2. APPROXIMATION 

PN~ = 

Since also 

N 
PN( = ~', ( a j ~ P  j + a j ~ - ~ M ) .  

j = l  

Let P~ be the projector on the subspace o f ~  "~ generated by q~J, ~J, j  = 1 . . . . .  N, hence 

N 
( c S  + ~/nJ). 

j = l  

PN is also a projector in ~F" and in ~t ". We shall denote 

;,,(~, E) = ( r ( t )C,  ~) = 7 ( t ,  g). (3.4) 

We have the 

LEMMA 3.1. On has the estimate 

17,(~. ~) - Y,(PN(, PN~)[ <<- ~ + I(I .  I1~11 ~- (3.5) 

Proof We write 

~,(~, 0 - ~,(P~, P ~ )  = 7,(~ - P ~ ,  0 + 7~(P,,~, ~ -  P ~ )  

) = 4t f ]  \ j = s +  1 Re[c, e i~/''~s~*Oj], ~k Re[0\ e i'/~sN*q~k] ~z/as + 

ds = I + II. + -t j=a Re[cj eiV'/w~f-~*~J], k=N+J, Re[ha ei~S~*(Pk]/4/ 

Operating as in the proof of Proposition 3.1, we have 

( I 
• \ / = N +  1 , _ ~ / t . j  ~ C/ 

t j :N+ I  L ( 2 j  , _J' k ¢/ 

+ - Im e v,-Jse~*q~J , ~ Im[x/~k? k eiv ~/&,~s~.o~ ] ds 
t ,JO \ j = N + I  " "]l 
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and it follows that 

I I1~<~ + I(I~IIClI~. 

We next write II as follows 

4;0( II = -  ~ Re[c~ei'j~Js.~*O'], 
t 1=1 k = N + l  

hence, 

Ittl ~ < c I q .  I1~'11, • 

and the desired result has been proved. 

Similarly we prove the following lemma. 

LEMMA 3.2. We have the estimate 

ALAIN BENSOUSSAN 

Re[~/~k Ck e / '~ ,~*  ~ k ] J'~ ds, 

c 
I~',(~, ~) - v,(P~C, PN~)I ~< + II~ll~,. IIfll,., + t i l l .  I1~1[,-,. 

Proof Since A is an isometry between ~ and ~ ,  we have 

II~ll~, = IA~I~ = 2~ 221QI 2. 
J 

Considering the terms I and II defined in the previous lemma, we write 

4 f ~ (  ~ - d I m l  ~ k -  ei-/~s~*(pk~ ds 

= 4t ~=s+l~ Re[cj ei '~J~*0J ], ~ Im ~ ei'~'~tN*0 k ~ - 

Ck * - k  4 (  kj=N+, ~ Re[c/°~*O'] '~ Im - - ~  ¢P + 
l N / ~ k  ql 

4fo  ( ~ Im[-c/x/~je'J'~J~'CP'], ~ [ ? ~  " " - ] )  + - ' ~ Im e"fiT~'*~o k 
t j = N + I  4/ds 

and from (3.7) we easily deduce 

- -  1 I1~'11,". I~1 ~< + I1~11 ~, 

[] 

(3.6) 

(3.7) 
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We then write, in a similar manner,  

II = Re[cj ei'/;'~tN*(pi], ~ Im ?~ ei',/~'~*(o k - 

t \j=l k = N + l  d]"}[ 

/ ./~- 

-~-~(j~l I m [ c j ~ ' * O J ] '  k=N+ ~ , Re [~k "*ok ' ] ' ]  + l _ Z k  /,/',, 

hence 

c c 1 c 
IIII ~< ~ I~1.,/I1~'11 ~" +--&~ t I1~11 ~-II~'ll.,~ + ~ I1~11~ I1~'11~, 

hence, (3.6) obtains. [] 

3.3. CONVERGENCE OF F(t) 

Let us introduce the bilinear form on o~ 

7(~, ~) = 2 ~  Re cj~sl~*qfil 2 
J 

O, 
then 

F e  ~(~ ' f ;  ,~)  c~ ~ ( / " ;  ~ )  c~ 2#(~"'; ~-~'). 

We clearly have 

c 
It'(,', 0 - 7(PN~, PNOI <~ ,f12---~ I~l.,~ IIClI,. 

c 
17(5, ~) - 7(PN(, PN~)I <~ - - I I~ l l ,~  I1~'11 ,-,. 

Moreover, we can state that 

6N 
Ig't(PN~, PN~') -- ?(PN(, PN~)[ <~ T I(I.,~ IJ(Ir~ 

aN 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

(3.12) 
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These relations are easily obta ined because we are now in the finite-dimensional 

case (see discussion of the Introduction).  No te  that  the bound 6N depends on N and 

tends to + oo as N tends to + oo. 
We next state the following convergence result. 

T H E O R E M  3.1. One has the property 

F(t)~ ~ F~ in ~ ' ,  V( in ~",  (3.13) 

F(t)(--* F~ in ~ ,  V( in ~V', (3.14) 

F(t)~ ~ F~ in Jut'~, V( in ~ .  (3.15) 

Proof. Let us first prove 

F(t)( --* F (  in ~'-', V( in J~r ~. (3.16) 

Indeed, let ~'e "/", and consider 

~',(~, ~) - ";(~, ~') : 7,(~, ~') - ~,(PN~, pNC) + 

+ )'t(PN~, PN~) -- 7(PN(, PN~) + 7(PN~, PN~) -- Y((, ~), 

F rom (3.5), (3.9), and (3.11) we deduce 

I~',(C, g) - 7(C, ~')1 ~< \ x / ~  ~ t)ICI~II~II, 
and (3.16) follows easily. 

To  prove (3.13), note that  for ~ in~/"~', Pu(e.;,~ and tends to ( in ~ ' ,  as N--+ oo. We 

can write 

F(t)( - F (  = F(t)(( - PN() + F(t)eu( - FPu( + F(Pu(  - 0 '  

Since IIF(t)ll~(y";s ')~<K, we deduce 

ItF(t)( - Z ~ l l ¢  ' ~< cll( - P N ¢ I I ,  ' + t l ( F ( t )  - F)PN¢I[ ~-' 

and the result follows f rom (3.16). 
A similar p roof  holds for (3.14), using L e m m a  3.2, (3.10) and (3.12), and proceeding 

as above. N o w  (3.15) is easily deduced f rom (3.14). [ ]  

3.4. SUFFICIENT C O N D I T I O N  FOR EXACT C ONT R OLLABILITY 

Instead of the equat ion of exact controllabil i ty (2.9), we shall consider the equivalent  

form 

F(t)( + q~ = 0. (3.17) 

Clearly, i f (  is a solution of (2.9), then t( is a solution of (3.17), so it suffices to work  

with (3.17). We want  to characterize the ~0 so that  (3.17) has a solution. Natural ly,  the 
less regularity is required on if, the fewer condit ions will be imposed  on q~. 
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So we require ~ to be in ~"', and the p rob lem amounts  to characterizing the range of 

F(t). 

Without  further assumptions ,  little can be said. We shall see that  interesting results 
can be derived from the following assumpt ions  

z',(ff, if) t>/~llffl12, -,, v f f ~ , / ~  > 0,  (3 .18)  

at least for t large enough, and 

C0 
]?~*qgJ12 ~> )7j.j' (3.19) 

Note  that  (3.19) implies at once f rom (3.8) that  

7(~, ~) 7> 2Co~  lajl 2 = Co]b~lb~ , (3.20) 
3 

and, thus, the same proper ty  as (3.18) is true for ),(~, 0. F rom (3.18), it follows that  

7,~/'~(~, ~) is a norm in ocf, not equivalent  to that  of ,Z{, nor  to that  of ~"'. We complete  
the space Y{ with this norm and obtain  a Hilbert  space denoted ~¢/[ (whose dual is 
denoted by ~//,). 

We obtain the following inclusions 

~ m ,/l'~ m J{  ~ ~/_/[ ~ ~t °'. (3.21) 

C r (~ . , t Therefore, F(t) e ~(, , / / ,  ; ~ :/"/t) and has an inverse F - ~(t) e ~ (oh '  t, ~//,). It follows that  if 
~p e,//~, there exists a unique solution of (3.17). F rom the inclusion (3.21), we deduce 
that  it is sufficient to pick ~p in "/', hence, we have the following proposi t ion.  

P R O P O S I T I O N  3.2. I f  (3.18) holds, then there is exact controllability o f  the system 
(2.4) for  qo in ' t  [] 

3.5. C O N V E R G E N C E  O F  F l(t)  

Let ~9 e ~ , and denote p, the unique solution of 

F(t)p~ + ~p = O, Pt e.J//~. (3.22) 

In a similar way, we can solve ( thanks to (3.19)) 

Fp + ¢p = 0, p ~ . / / ' ,  (3.23) 

where . / / '  will be Hilbert  space defined as ./1~, with F(t) replaced by F. 

In fact, (3.23) has an explicit solution. Considering the formula  (3.8), we deduce 

( ~ ,  (p~) 
i ,~ ,~0 j l  2 . (3 .24)  

~.j = (p ,  ~ J )  - 

We notice that  

C j_j __ 
0 / =  X ~ j ~  j 

2j ]~*~Jl  2 
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and, therefore, by (3.19) 

q~J 

Since q} e "/'°, we verify by this estimate that  p is well defined in ~ '  (in fact, we know 

a little bit more, p e ~/ ' ) .  The explicit formula (3.24) allows us to check the following 
regularity result. 

L E M M A  3.3. I f  ~o~~' ,  then p e , , ~ ,  hence F - 1  c 5a(~/¢/; ;;~). 

Proo f  If ~o ~ "#  then Z 221(~p, ~M)] z < oo. But (3.24) implies Icil ~ c02i[(q} , ~M)[, hence 
Z [cj[ 2 < ~ ,  which implies that p e a ~ .  [ ]  

We are now in a position to prove the following theorem. 

T H E O R E M  3.2. Assuming (3.18), (3.19), then we have 

Pt ~ P in Y'-' as t --, ~ (3.25) 

P r o ~  We begin with the weak convergence. Since we have 

7,(P,, p,) + (~o, p,)~-.~-, = O, 

we deduce from (3.18) that tlP, II~" ~< C. 

Therefore, we can extract a subsequence converging weakly to some a in Y/~'. N o w  

since F(t)pt + q} = 0 for ~ in Y/', we have 

(p , ,  r ( t )~ )  + (~o, ~) = 0. 

From (3.14) we can pass to the limit, as t ~ oo, to obtain (a ,  F~)  + (q}, ~) = 0, 

hence, Fa  + {p = 0. Therefore 

0 -- },(a - p, a - p) >/eolla - Pll 2-', 

hence, a = p. By the uniqueness of the limit, the weak convergence of the whole 

sequence is obtained. 
We next prove the strong convergence. It is done in two steps. 

Strong convergence when ~9 ~ ~;-. In that case we know that p e Yg, hence, f rom {3.15) 

F(t)p -+ Fp in Jud. (3.26) 

Next we have 

3,,(p, -- p, p, -- p) = -- (q}, p,)  + 2(q~, p) +(F(t)p, p) 

--+0 

hence, from (3.18}, IIP~ - P l I ¢ "  ~ O. 

General case. Let q} e "/~, and ~o ~ in #" ,  such that q}U --+ q} in *", as/~ --+ 0. Let p,~ be the 
solution of (3.22) with q9" instead of {p and, similarly, pu the solution of  (3.23), for q}U. 



THE GENERAL THEORY OF EXACT CONTROLLABILITY 

We can write 

But 

l ip,  - o i l , ,  ~ l ip,  - p~ll  + lip," - p ' l l  + l ip"  - p l l .  
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(3.27) 

hence, 

therefore from (3.27), 

liP, - P[I~ '  <<- cll~p - ~0"11, + lip," - pJ'lly, 

and from the first part,  the desired result easily follows. The p roof  has been 
completed.  [ ]  

R e m a r k  3.2. In practice, we are interested by p, and not by p. But p, will be 
computed  through a numerical  procedure whose purpose  is to invert F(t). Since p is an 

approx imat ion  of p, for t large, and can be compu ted  very easily, then it provides a 
way of checking that  the numerical  approx imat ion  used to compute  p,, whatever  it is, 

is correct. It is enough to check it for large t and it should lead to an approx imat ion  
of p. 

4. Controllability for the Wave Equation with Dirichlet Conditions 

4.1. NOTATIONS 

Let f~ be a smooth  bounded  domain  of R", and F = eaf~. We shall take 

H = L 2 ( ~ ) ,  V=Ho~(f2), V ' = H - X ( f ~ )  and A = - A .  

Then DA = H 2 c~ H~. 

Let N = r?/~h,, where v denotes the ou tward  unit normal .  We have N E ~(DA; Lz(F)). 

We pick ~a' = LZ(F) and define 

~ v = ( A - 0  N - v )  (4.1) 

and ~ e c~a(o~,,; ~ ) .  It is easy to check that  

• ~ . v A - l z t ,  if z =  e o,~¢'. 

Considering the basis ~0 j and 0 j, we deduce 

1 1 ?wj 
~ * q O  j = , /~* ( [? J  - -  

x/2  2i ~, • 

(4.2) 

(4.3) 
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4.2. VERIFICATION OF THE ASSUMPTIONS OF THEOREM 3.2 

Knowing  that  wj satisfies 

f,, 2 1, - A w i  = 2jwj, W, lr = 0, wj = (4.4) 

we first state the following lemma. 

L E M M A  4.1. Let qs(C~(R")) ", then we have 

fr  ~wj OWk i?v 0v q ' v d F  

~ [C'?W,~Wk(~q~ Oq~,)_divq. Dwj, DWk_q,['). OWk . OwJ)ld x 

(4.5) 

Proof. We multiply (4.4) by q,(SWk/C~X,) and per form integrat ion by parts. Invert ing 
j and k and adding up, the desired result follows. [ ]  

We apply (4.5) with q = m and with re(x) = x - x o. We deduce 

f r C~W~ ~?w~ 8v 8v m ' v d F  

= (2 - n ) , , /~ , , /~k  6ik -- m, k4.iw.igx=+ ZkWk~x~)dx" (4.6) 

In particular,  

\ (~v ] m .  v dF  = 22;. (4.7) 

We have used the fact deduced f rom (4.4) 

f Dwj.l)wk = ~ 6 j k .  dx 

Let R(xo) = supx~r Im(x)t, then m, v <~ R(xo), hence, f rom (4.7), 

f 2:,, \ ~,, ) d r  > RtXo~ 
Together with (4.3), it follows immediately that (3.19) holds with Co = ~R(xo). 

We next check (3.18). First, from (2.10) and (4.3), we have 

A,((, ~) = 2 ~ f r  ~ Re(aj d~'~, g#J 2 8v a s d F ,  (4.8) 

where we have set #j  -= wj/ ,~j .  We then state the following proposi t ion 

P R O P O S I T I O N  4.1. The property (3.18) holds. 
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Proof. We have from (4.8) 

)"(~' ~) > R(.~o) my Re(a) e i'/7~js)-ffv-v ds dF. 

Now from (4.6) 

X = fo [ mv ~ Re(aa e iv'Ts) O#j 2 d s  d F  
j r  lJ & I 

=(2-n)fi~[Se(a~ei',/~J~)[2ds- 

t ,.f~.,s ^ dx - 2 fo fo m,[E. Re(a, e ),~jw~][~Re(akei"/~")~.~] ds 

fo = (2 - n) Y, IRe(aj eiv'~)[ 2 ds + Y. 
J 

Then 

' d ei,/q.~s g¢v Y = 2  fo fn m= Re [ids (~ a' ei"~JSw')[ Re [~ ak ~x~] dx ds 

=-fo2m,{,mIE ' e' 'a#q • a~ R e  ak ~x,j- 
-ImI~a, walReI~ak~l}ds- 

-2fof m~Im[~ageiv'~Swj]Im[~a~e"/"~sc~wk] ~x~J dx ds. 

Therefore 

;o fo X = (2 - n) ~ IRe(aj ei'/~'Js)12 ds + n Y~ IIm(aj ei'~,~)12 ds - 
J 

-(~Imajwj)(~Re(ak)#x,/jdx" 

n -  1 ~ 1 2 Im 2 e2ix/~t) _ = t ~. lajI 2 + - - ~  ~ ] ( I m  aj  - -  a j  
. !  

-2ffm={(~Im(ajei'f~'~'~t)wj)(~Re(a~ei.f&t)O¢vo~ ) - 
R (~'Vk - ( ~  Im a,%.)(~ e(aO ~ ) }  dx. 
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(4.9) 
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Collecting the results, it follows that 

1 

4 ( L  0 > R(---~o){t - ~o - e,~'(Xo)}ll~ll, z ' ,  

where 14xo)= sup_~n Ix - xo[, and the desired result follows. 

ALAIN BENSOUSSAN 

(4.1o) 

[ ]  

4.3. ADDITIONAL RESULTS 

In fact, in the present context, one can even say that 

.~/; = ~,~'. (4.11) 

This follows from the following proposition. 

P R O P O S I T I O N  4.2. We have the estimate 

;o,(L 0 <~ c(t + 1)ll(ll~ ,. (4.12) 

Proof We shall use (4.5) with q = h, such that h, v = 1, which can be found. Hence, 

we can state 

&, gv dF  

-h=~x/)qWJ~xG+ x/~kW k CgX, j ]  dx. (4.13) 

We deduce 

x K e l a  k e v *, ) ~ - ]  dx ds 
OX a/I 

fofo - 2 div h Re(a~ e'~)Dw~ dx ds -  

= ).] + 22 + 23. (4.14) 

We check easily that 

I)~1, IX,~l ~< ct 2 lajl 2" 
J 

For  23 we operate as in the p roof  of  Proposi t ion 4.1 (see the t reatment  of  the last 

integral) to derive the desired result. [ ]  
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4.4. INTERPRETATION 

Let us interpret the dynamic system (2.4) with the operators  A = - A  and M given by 

(4.1). We write 

and obtain 

-' - = ( - A )  1N'v, z2 ~'1 z2 ' - -  Az  I - - -0 ,  

zl(0) = ~ol, z2(0) = ~02, 

z 1 ~ C([0, T]; L2), z2~C(O , T; H-1). (4.15) 

If we set z 2 = q ,  t h e n  z~ = - ( - A ) - l r / ' ,  then we have 

( - A ) - l r / ' '  + q = - ( - A ) - I N * v ,  

q(0) ---- Y0 = CP2; q '(0)  = Yl = Aqgl,  

q~C([0,  T]; H - l ) ;  ( - A )  lrt'~C(O, T; LZ); 

( -A)-1~/"eL2(0 ,  T; H 1) (4,16) 

and ~/is 'formally' the solution of 

q" - Aq = 0, 1/I z --- v, r/(0) = Yo, q'(0) = y~. (4.17) 

Indeed we use the fact that the functions in L 2, g, = - ( - A ) -  1N'v, are formally the 
solution of -A~O = 0, ~, [r = v. 

From Proposit ion 3.2, it follows that there exists exact controllabili ty if ~01, ~o 2 e "/,, 

hence, Yo eL2 and Yl • H - 1 ,  with v(. )eL2(0, T; L2(F)), for some convenient T The 
control  is explicitly given by (2.6), hence, from 4.2, we easily check that 

?0 
--- ~ ,  (4.~8) 

where 0 is the solution of 

O"-hO=O, Olx = O, 

0(0) = ( - A ) - ' ( I ,  0'(0) = ( - A ) - 1 ~ 2 ,  (4.19) 

where 

~ = ( ! t ] ~ H - 1  x (H2 c~ Ho~) ' 
\~,2/ 

is the solution of A(T)~ + ~p = 0. 

This is exactly the result given by ' H U M '  (cf. J. L. Lions [12]). 
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Applying formulas (3.24), we get for the limit p 

~/'-/~)'J [(wj/x/-~q, Yl) + i(wi, Yo)] 
aj lawj/Ovi2 

hence, 

(.,) 
P =  P2 

is given by 

(w~, Yo) p~ = - 2 ~ ,~ • lawj/~vl2 w;, 

hence, also, 

(wj, y~) 
( - A ) - l p a  = 2 ~ 2 j  i~wj/c~v[2 wjen~, 

( - A ) - l p 2  = - 2  ~ 2j (wj, Yo) 
• lawj/Ovl 2 wJ eLz" 
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(4.20) 

(4.21) 

4.5. AN ADDITIONAL REMARK 

Consider the case when the domain D is star-shaped with respect to Xo, hence, we have 

m. v >~ 0. (4.22) 

We modify the operator ~ ,  defined in (4.1), and then follows 

,~v=((-A)- lN;[v(mv) l /2]) ,  (4.23) 

hence, v has first been multiplied by (my) 1/2. The operator N * e  ~(J#; ~ )  reads 

x/2 0 
,#*z = (my) ~Tvv[(-A) lzl]. (4.24) 

The bilinear form (2.10) becomes 

Z r ( f f ' ~ ' : 2 ; o f r m v R e [ ~ a i e i ' / ~ : ~ ] R e E ~ t J e i " / ~ : S f v i ~ d s d F ' o v  J (4.25, 

Note that (4.10) is changed into 

2,(~, ()/> (t - Co - ct#(Xo))ll([l~ '. (4.26) 
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Note that from (4.7) 

l fF 1 122'~oJ12 = ~ f  rnV\ov ,  ] d F = ~ .  

Therefore, the bilinear form 7(~, ~') on ? : '  defined by (3.8), becomes extremely 
simple, namely 

),(~, ~') = 2 ~ Re a~fij = ((~, ~'))~., (4.27) 
J 

and, thus, F = ( - A )  -1, 

Formulas (4.21) are then replaced by 

( - -A)- lpl  =( - -A)  lyl.  (--A)-lP2 = --Yo. (4.28) 

5. C on t ro l l ab i l i t y  for  the  W a v e  E q u a t i o n  with  N e u m a n n  C o n d i t i o n s  

5.1. NOTATION 

We consider here the situation 

H = L2(~), V = HI(~), A = - A  + I, 

associated with the Neumann boundary condition. Hence, 

~"Y F 

The eigenvectors wj are defined by the equation 

- A w j  + wj = ),jwb, ?,wj 
" 8v r = 0 .  

Let  

rtXo) - {x  e F I m, v > 0} ,  r e ( x )  ~ x - X o ,  

F*(xo) = F - F(xo). 

We consider 

9++/= (L2(F*(xo))) "+ 1 x L2(F(xo)) 

and define 

~0 = trace on F(xo)e 5°( V; L2(F(xo)))c~ LP(Da; Hl(F(xo))) 

(5.1) 
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and ~?o = trace on F*(xo) defined similarly 
a ie  C~(Hl(F*(xo)); L2(F*(xo))) such that 

~0 ~ j  = Vj ~-  lV*[xo) + O'j~O~P, V~ O~H2. 

Let ~ ~ ~cP(~<~; ~g be defined by 

VoZ~ 

Iffn~OZl 

?oZ2 

then 

with 

D O 

V 1 
p* " _(po*(l)o+ff ' l 'Vl + ""A)~Vn+l 4"G'nOn)) ~¢¢F'' 

I) n 

Un+ 1 

Next define 

:~ = --A-l~*E~f(o~/ ' ;  j/c), 

hence, 

"~v=( -~°(v° +o*vl +'''-7~v.+~ +a'v,)), 

where we have set 

~7o = A-  ~?* 

and 

A[ o e ~(L2(F*(Xo)); V) n ~a((Hl(F*(Xo)))'; L2). 

'Formally', q~ = Nog is the solution of 

c3~v F*(xo) -Aqo + @ = 0 ,  - -  = g ,  

Next we can check that 

~7~'z t ~o A - lzl 

O" 1 /~Z  1 71~oA 1Z 1 

Z 2 ffnN~z1 a.Po A lz 1 

~o A - lz: yo A- lz2 

~ F(xo) = O. 

r*(Xo) 

ALAIN BENSOUSSAN 

instead of F(xo), 

(5.2) 

(5.3) 

(5.4) 
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f o r  

Considering the base q~J and ~J, we deduce 

~19o 
1 

i ° • = 

\ w,t 
\-t~o ~ /  
\ q '~jl 

and ~*~pJ is the conjugate. 
Denote (!1) 

D, the tangential gradient = 

n 

and 7 = )'o + )~o, the trace on F. Note that 

7D~o -- D~7~0, if ~ = 0. 
C V  

(5.5) 

The bilinear form 2, becomes (cf. (2.10)). 

t Wk 

+2 fo fv*,,o, ~ Re(c1 d ' /~")w_j](~ Re(~:k e i ' /~)  ~ ' ] q  ds d F +  
j ,~j/ \  k 2 J J  

Im(~k e i'/&~S) ~ ds dF. (5.6) 

To simplify the writing, we have written w) instead of 9oWj or 7oWj in the boundary 
integrals. It is implicit• 

We shall use the following result. 

LEMMA 5.1. We have the formula 

rmv(D~wj" D~Wk + WjWk)dF 

f ~ (  ~Wk OWJ x~ = (n - 2 ) ~ 6 j k  + 26ik + rn~, 2iw , ~ + 2kw k ~x~)dx. (5.7) 
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We deduce from (5.7) that considering ~ j=  %/x/~J; we have 

frmv(D. D. ¢Vk + ¢Vj ¢Vk) dF ¢v j " 

2 .t_ t me(~jwj_~x _t_~kWk()x~jdx 
,,/)~j& 0 n 

and 

mv(iD~#flz + (~j)2) dF = - 2  + ~ + mvw~dr. 

A L A I N  B E N S O U S S A N  

(5.8) 

(5.9) 

5.2. V E R I F I C A T I O N  O F  T H E  A S S U M P T I O N S  O F  T H E O R E M  3.2 

We can write 

)~t((, ~) = 2 Re(aj ds dF + 

+ 2 *tXo) 

+ 2 ~ Im(aj " " dsdF. (5.10) 
X .1~ (. 0) J 

We are going to prove the following proposition. 

PROPOSITION 5.1. The following estimate holds 

2,((, () t> t mln~2-~l, R(Xo) -~2 - R(xo) + 11~112, ~,* (5.11) 

Proof There is a special treatment for the first eigenvalue since 2~ --- 1, w~ = 1/Ig/I ~/e, 
hence, we write 

;'AL ~)= 2 f ~ fr.,Xo) j~2 Re(aj ei'/~)D,;v~ 2 ds dF + 

+2flfv im(a~ ds) . -  2 (~o) ~ / ~  + ~ 2  ~ Im(aje~'J~Js)% ds dF 

'*We recall that R(xo) = supper Ix - Xo], l~(xo) = sup:,~n Ix - xo]. 
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Ir*(xo)l-Ir(Xo)l + lal} z -I 21~1 Im[at2(e z i ' -  1)] + 

2 a, a, l+ , /g ,  1-d , JUF. .,o, 

F { eil t+x/~t '- l)  (ei{t-'/~J~t--1) -]'} f . _  
{O~ 712 j~2 Im a 1 k ] o¢_ N~2j | - -  4 2 J  _]) 3r(×o} I~j - - -  aj - % - -  -|~" | Wj ~l l ,  

We then treat the different terms as follows 

Re(aj + ~ Re(aj eix/LJs)wj ds dF + 2 *(xo) j j > 2 

+2f~frl,,o, lj~zlm(a.iei'/TS)wjl 2dsdF 

>~ - R(xo~)) my ~2 Re(a, e'~'e~,')D,#j + ~2 Re(aj ei',/~,s)~v, ds dr + J J 

+ ~  my J Im(aj ei"/~S)wj ds dF = R(xo) X. 

From (5.8) we have 

X= f:j>~_,2 (2-n-~)'Re(ajei'f~s)12ds- 
/',k>2 ~ Re(ak d " ~ )  dx + 

t ~ 2 

r r t v  • " ' . +f: fr  ~ 2  'm(% e"/"~)wJ I d sdF .  

Operating as in the proof of Proposition 4.1, we can write 

fo >( ;o - X = 2 - n - IRe(aj ei~~)} 2 ds + n ~ }Im(aj ek/;'J'~)] z ds - 
J ~  j > ~ 2  

_2 fnm, [ (  ~z % im(ajeiv4.j,,]( y ~ 8wk . ~. ) j /\~>~2 ~ Re(ak e'V'-,') - 

- ( j ~ 2  %Im aJ)C~z e~x= o~vk Re(ak,)] dx 

> 1 t ,~2 {af+ 1 - ~  j ~2  2x/~ 

~x= Re(ak -- 

- t 2 [ajl 2 - (co + cllt(Xo)) ~ [a~[ 2. 
j ~ > 2  j > / 2  

223 
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Next consider the term 

2 { [ ((ei'l+~J)~-l) 
Z ~ -  t2]~/2 ~ Im al a t 

I I j~2 l + x / ~ j  

where 

ALAIN BENSOUSSAN 

~j (ei'l -,/~)t - 1)-]~ I 
- - -  - wj dF 

i-,/-g~ j~ j~,xo, 

2x//~ Im {a 1 [a~ ((ei(l+"~)t--1) aJ (ei(l_ - . ~ ) t  1).q;, 
g~(t) 

1~21 1/2 1 + x ~ J  1 - ~  / J  

hence 

IZll<-fmo, j~2~J(t'c~J dr ~< ,r',xo)l~/2 (fmo, j~2aJ(t,%~dr) "~ 
Ir[ 

C ~: aj(t)¢% n, 

,v,( ,.~(~),:),:: 
IF I ( \1/2 

Similarly, considering 

¢v j dF. 

An estimate similar to that holding for Izd, holds for IZ2[. 
Collecting the results, one obtains 

]F] 2 2 (  1 )  
;~,(;, O >~ t Tff al + R~xo) t 1 -  ~ ~ 2 1 , ' £  - 

2 ,r,( ) 
- R(xo~) (c°+cd~(x°))  j>~22 laJL 2 - c ~ lall e + J>~22 laJI 2 (5.12) 

and the desired result (5.11) is obtained. [] 

Clearly (3.18) follows from Proposition 5.1. Let us check (3.19). But 

hence 

1/8,~ol/2 _ 1 [FI 
2 Ifll 
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and for j ~> 2 

I~*mSl 2 > 
; ; 2  

1 wj dF 1 mv (w~ + IO~wfl 2) dF + 2R~o) m v  - : -  
2R(xo) ~ ZS 

and from (5.9) 

1,( 
and, thus, (3.19) is also established with 

c°=min(121F] 1 ( 21 ) )  
[~[,e(xo) 1 - . 

The assumptions of Theorem 3.2 are thus verified. 
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5.3. INTERPRETATION 

We now interpret the dynamic system (2.4) with the operators A = -  A +J ,  and 

00 given by (5.2). We write z = and obtain 
Z2 

~1 - z2 - N o ( v o  + a*vl  + ... + a*v,), z2 + Az l  - Y * v , + l  

ZI(0)  = (~01' Z2(0) = ¢P2' 

z, 6 C([0, r ] ;  Lz) ,  z 2 6 C([0, T]; (Hi)'), 

z ' ~ e L 2 ~ L 2 ( O ,  T; (H1)'), z~L2([0 ,  T]; D~). (5.13) 

Set q - z2, then z i = - A - X t f  - N o v , +  1 It follows that 

A 1~" + r/ Nor,+1 + No(vo + o * v l  + - "  + o , v , ) ,  

rl(O) = ¢Pz = Yo,  

t/'(0) = --Acpl -- 78v,+1(0) =- Yl -- 78v,+~(0). (5.14) 

From the interpretation of N o, /Vo, we can write (5.14) as 

rf'  - -  A n  + rl = O , 

= 

&' r*(~0J vo + a*v~ + .,. + a*v, ,  

~v F(xo I - -  vn  + 1 ,  

0 (0 )  = y o  • ~#'(0) = y~ - ~ , * v . + l ( o ) .  ( 5 . 1 5 )  

Note that r/'(0) is defined only when v, + ~ is continuous. It is also very important to 
notice that, unlike the Dirichlet case (see (4.16)), we cannot impose r/'(0)= y~. We must 
allow some control to influence the initial condition. 
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We can relate (5.14) to the transposit ion method (cf. J. L. Lions [12]). 
Let us consider the equat ion 

0" --AO + 0 = f ,  ~30 r = O, O(T) = O, i f (T)  = 0. (5.16) 

If we proceed with a formal integration by parts between (5.14) and (5.1 5), we obtain 

× = - (o ' (o ) ,  yo) + (o(o) ,  y ~ )  + *(~o) 

x OVo + - - v ~  + ... + d s d F +  
J 

f;; + O'v,+l ds dF, 
(Xo) 

( 5 . t 7 )  

which provides a rigorous definition of r/, for (5.14), which coincides with the second 

component  of z in (5.13). 
F rom  Proposi t ion 3.2, it follows that there exists exact controllabili ty if (p ~ ~ ,  

hence, (Px sH~,  (02 ~L2, which implies y o e L  2, Yl e (H l )  '. 
Exact controllability here means Zl(T) -- 0; z2(T) = 0 for some convenient  T. In 

terms of the function r/, this means 

q(T) = 0, ~/'(T) = -7*v ,+~(T)  (5.18) 

and, thus, r/'(T) is different from 0. 
Let us make explicit the control  obtained from formula (2.6), which yields exact 

controllability. F rom (5.4) we see that 

Vo(S) = - % 4 ' ,  

v l ( s )  = - ~ 1 % ~ ' ,  

v . ( s )  = - o . % q J ,  

v . +  ~(s) = - ~ o q / ,  (5.19) 

where ~, is the solution of 

0 " - - A O + O = 0 ,  ~-v 0 ~ = 0, Lh(0)=A 1~1 ~ 

where ~1E(HI) ', ~2~D~ is the solution of A(T)~ + q) = 0. 

' (0 )  = A - ~¢2,  (5.20) 
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Inserting (5.19) in (5.15) yields 

q " -  Aq + ~ = 0, 

~v r*(xo) = - ( - A r * ( X o ) +  I)yo~h, 

~c~-~qv r(.~o) = 7°~h"' ~/(0) = Yo, q'(0) = Yl + ?*7oA- 1~2, (5.21) 

where we have set -Ar*(Xo) = a'a1 + "" + a , a , .  

The precise definition of the solution q of (5.20) can be seen by the transposit ion 
method,  see (5.17), namely considering 0 given by (5.16) and 0 given by (5.20), then 

from (5.17) 

o ' f f ,  tl) dt 

= - ( 0 ' ( 0 ) ,  yo) + (0 (o) ,  y ~ )  - 

fof  fof  - [~ + DO.DO] ds dF - ds dF. (5.22) 
*(Xo) (Xo) 

We find the formula given by J. L. Lions [12], from 'HUM' .  However,  we must  

insert the control  at the initial value of q'(0), otherwise there is some contradict ion (see 
J. L. Lions [12J, Chap. III, Section 1.5). 

There is another  way to represent the control  on F(Xo) in (5.15). Consider  the 
opera tor  Jo~  f ( H l (  O, T; LZ(F(Xo))); L2(O, T; L2(F(Xo)))) defined by Jog = g', then we 
can write (5.15) as follows 

~ f ' - A q  + q = 0, 

~q 
Vo + a'v1 + + * 

V r , ( x o  ) : " ' "  ~'n l )n ,  

3~v r(~o) = J~v,+ 1, r/(0) = Yo, r/'(0) = Yl. (5.23) 

Let us justify (5.23). First note that J*v,  + 1 ~ (Ha( O, T; L2(F(xo)))) ' and that if we write 
the following duality between (5.15) and (5.21) 

( f  q)  dt = -( i f (0) ,  y(0)) + (0(0), q'(0)) + 0 ~ ds dF  (5.24) 

then we must interpret the boundary  integral as 

fo ' ( % 0 ,  ~ v l  + -.. + %Vo + (7*Vn~tl~(V*(Xo)) ,(H~(F*(xo))) 'ds + 

+ (To 0, J'~v, + 1 ) (HI(O,T:LZ(F(Xo) ) ) , (HI(O,  T iL2(F(Xo)) ) )  ' ds 

and we recover (5.17). 
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Writing (5.23) has some advantages, since it has a meaning for 
v,+ ~ ~ L2(0, T; L2(F(xo))) and allows us to write 17'(0) = y~, al though this is misleading, 
since the quanti ty J'v,,+ ~ influences the initial value. 

Another  merit of (5.23) is that it emphasizes the fact that  the boundary  control  is an 
element of L2(0, T; (Hl(F*(xo))) ') x (Hi(0, T; Le(F(xo)))) '. 

Using (5.18) we obtain 

q " - A q + q  

0v Ir*txo) 

C~/ F(xo) 

~(0) (5.25) 

Besides, instead 

r/(T) = 0, (5.26) 

for reasons similar to those justifying the writing of the initial condition. Indeed, 
consider (5.16) with a nonzero condit ion at T, namely 

~30 = O, O(T) = 0o, O'(T) = 0t, (5.27) 0 " -  A0 + 0 = f, ~ r  

then (5.22) is still valid, which justifies (5.26). The fact that (5.22) holds can be seen by 
proceeding as for (5.17) and taking account  of (5.18). In other words, the initial 
conditions and the final conditions (5.26) are met, provided we leave aside the Dirac 
measures at 0 and T arising in J*. 

Let us finally describe what  is the limit value p. We again apply (3.23) and get 

= 0 ,  

= -(-AF*¢~ol + I)7o~b, 

* p 

= - J o ~ o ~ ' ,  

= Yo, r/'(0) = yl. 

of (5.18), we can write 

q'(T) = 0 

1 [(Yx, w j / . ~ )  +i(yo, wj)] 
aj = ~ ),il~,q0jl 2 

~ 2 [ ( y  1, w j / , , / ~ )  + i(y o, wj)] 
* ^ 2  2 ~F (xo)(Wj -+-IDa#j} 2) dF+~rlxo)Wj dF  

~'J _ wj 

Therefore p = ( : : ) i s  defined by 

= ( y ~ ,  %)w~ 
• 2 d F '  pl 2 ~ ffv,iXo~O,~+lD~ji2 ) dr+irlXo I wj 

P2 = - 2  ~. f t#2 2j(yo, wj)wj 2dF  
J jl*~xol, j + IDa#j[2) dF  + ~rt.~o~Wj 

(5.28) 

(5.29) 

(5.30) 
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and also 

Remark 5.1. From the control point of view, the main difference between the 
Dirichlet and Neumann cases stems from the nonexistence of a sharp theorem for the 
trace of the Neumann problem (see Bardos et al. [4], formula (3.15) and Corollary 3.9). 
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