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Abstract. We introduce a general formalism for linear evolution equations with skew adjoint operators. We
make explicit the controllability operator as an expansion with respect to eigenfunctions. Using the fact that
the eigenvalues are purely imaginary, we give sufficient controllability conditions. This approach is
convenient for studying the asymptotic behaviour of the optimal control.
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0. Introduction

The problem of exact controllability for the wave equation has attracted considerable
interest in recent years, see J. L. Lions [12, 13], I. A. Lasiecka and R. Triggiani [9], R.
Triggiani [14] and references therein.

More recently, C. Bardos, G. Lebeau, and J. Rauch [1-4], using high frequency
analysis, have shown the relation between the geometry of a ray and the exact
controllability (or stabilization). Roughly, the result is that a necessary and sufficient
condition of exact controllability is that any ray meets the control region before the
time 7. This result holds true both for Neumann and Dirichiet as well as for the
Maxwell equation.

Here, we introduce a general formalism for linear evolution equations with skew
adjoint operators. We make explicit the controllability operator as an expansion with
respect to eigenfunctions. Using the fact that the eigenvalues are purely imaginary, we
give sufficient controllability conditions. They are expressed in terms of
eigenfunctions, which is natural since we are looking for the asymptotic behaviour or
the behaviour for large time. In particular, this approach is convenient for studying
the asymptotic behaviour of the optimal control, a problem considered by J. L. Lions
[11], and Chin-Hsien-Li [6].

Let us briefly describe the main ideas of our approach in the context of finite-
dimensional spaces.
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Consider a linear system of the form
'+ .z = B, 2(0) =

which is solved by the formula

() = G + ft G(t — s)Bv(s)ds
0

where G(t) =e~".
Controllability is linked with the invertibility of the controllability matrix

Alt) = jl G*s)BAB*G(s) ds
4]

The state space (space of z) is denoted by J#, which is a complex finite-dimensional
space of dimension 2N. We assume that ./ = —.&/* and that the eigenvalues of .=/ are
1\/2 — i\/fj,j = 1,..., N. This feature will imply an interesting property leading to
the invertibility of A(t) for large r.

Let ¢/ and ¢’ be the eigenfunctions corresponding to z\/‘ , zf which form an
orthonormal basis of 3. The operator G(t) is expanded as

e—l\//Jtcp +C elV 1 (P)

Then the controllability matrix is expanded as

(A(t)o, ) J Z (c; eV "a?*(p +c e*’v’f‘,@* iy %
0

j=1

N .o . — LT .
x Y @ VB 4 5 eV gl ds.
i=1
This form shows immediately that there is a principal term:

(A(t)(P> , _[ z ( C l‘Z*(P |2 t)(Pv )s

where A(f) involves all other terms. The important remark is that lﬂ(z){ <C
independently of r. Therefore, if |B*@/|> does not vanish, one can assert that

(A, 9) = (cot — ¢lol?

and, thus, for ¢ sufficiently large, A(t) is invertible.
This is the key property that we want to recover in infinite-dimensional spaces. The
basic difficulty is the following. We may rely on an infinite expansion (i.e. N — o), but
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this brings in a new parameter N, and terms must be controlled. Some additional
features and assumptions are necessary, in particular flexibility of the state space.

After having developed the general theory, we see how it can be applied to recover
the known results concerning the wave equation (Dirichlet and Neumann cases).

In a separate paper, we shall check that it also applies to the Maxwell equation. All
these results have been derived in the literature, using the methodology of HUM,
introduced by J. L. Lions.

Our approach has several advantages. It sheds the light on the fact that
controllability for large time is a property to be expected for skew symmetric
operators. The treatment for infinite-dimensional spaces is not as simple as the one
sketched above.

Second, we have a general theorem which can be applied in specific cases by
checking the assumptions. One does not need to redo all calculations for each case.
Third, it *probably’ leads to the smallest time of controllability, since the calculations
are exact in time (this has not been investigated, though). Besides, the asymptotic
behaviour of the optimal control is easily obtained, whereas the problem was
somewhat open for the wave equation.

Finally, our approach will fit nicely with a finite-dimensional approximation
(Galerkin method) of the system, which will be the case in numerical approximations.
It is well known that high frequencies are sources of difficulties in the numerical
approximation of the wave equation.

1. A General Framework
I.1. NOTATION

Let V, H be two Hilbert spaces, with the usual set up V<« H = H' = V', each space
being dense in the next one with a continuous injection.
We consider the operator 4 such that

{(Av, by = ((v, D)), Vo, 0el, (1.1)

with the usual notation (( . )), ( . ) for the scalar product in ¥, H and { . ) for the
duality between V and V'.*
We introduce the domain of 4 in H defined by

D,={veV|AveH} (1.2)
which is structured as a Hilbert space with the norm

[ollp, = 14v] (1.3)
and 4 1s an isometry from D, into H, and V into V’, since the norm of V' is

Iy = A7l (1.4)

*For Hilbert spaces different from V, H we shall indicate explicitly the space in the norm notation; | | will
represent the norm of the Hilbert space F.
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We thus have the following sequence
D,cVcH=H cV cD), (1.5)

each space being dense in the next one with continuous injection. Note that A is also
an isometry from H into D/,.

1.2. THE CHANGE OF PIVOT SPACE

In the previous set-up, the space H is a pivot space. We shall need also a different set
up where V' becomes the pivot space. Recall that V'’ is a Hilbert space for the scalar
product

(& mhy = (478 A7)
=AM (1.6)

and H = V', H being dense in V', with a continuous injection. We identify V' and its
dual (which implies that this dual is now different from V). In this set-up, the dual of H
becomes D’,, since any linear continuous functional on H can be written as
h—(h, A™1¢) where £eD’,, which coincides whenever &e V' with ((h, £)),-, hence we
can write

HcocV <Dy, (L7)

where it must be understood that V' coincides with its dual and D, is the dual of H.
To find the dual of V in this set up, we need to further introduce the space

A, ={veV, AveV}, (1.8)

provided with the norm |v|a,=1Av|,. Then A4 is an isometry from A, into V.
Considering its dual A’, when the pivot space is H, one can complete (1.5) as follows

AjcD,cVcH=H cV cD,cA) (1.9)

and A is an isometry from V' into A/,.
Now when we identify V' with its dual, A’, appears as the dual of V, and we have

VeHcV D <A, (1.10)
The notation prime does not represent duality any more. To summarize if he H, £€ D,
we have

Ch, Edpp, = (h, A71E) (1.11)
and if ve V, (e A/, we have

v, Ova, = v, AT, (1.12)

1.3. THE OPERATOR &/
We shall now consider the product space

H =HxV (1.13)
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which is identified with its dual. This means that in each component a different
identification is made, H and its dual for the first component and V' and its dual for
the second component. We thus have by construction # = H#".

Next we set

¥ =V xH, # =D, xV
and according to Sections 1.1 and 1.2,
17 =V x D, W' =Dy x A,

Moreover, A is an isometry from #” into #, ¥ into ¥"" and 4 into #"". By A applied
to a vector

we clearly mean

Az = .
Az,
We have the sequence

Wt cH =K cv' W’

each space being dense in the next one with continuous injection. We notice the
duality products

(aonyy gy =Lz, ) + (23, Ail’?zl {1.14)
Czomyyy = (Az, A ')y
=(Az, A7) + (22, A7 ') (1.15)

We next define the operator «/ as follows

0 I
o =
()

and we have the properties
AELW 1 )N LI s ) L(H V)ALV W), (1.16)
We can check that &/ is skew symmetric, namely
oF = —d. (1.17)
For instance, let o #”, Yy e, we must check that
¥ P, 0y = =LA O, YDy 5
which amounts to checking that
@, AYDy = —LAQ YDy
which is easy, using (1.13), (1.14).
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We can also check that
(z, 2)p = —((z, Y2)p, V2,Z€Z (1.18)

where (Z, F) is, respectively, the pair (#', ¥), (¥, #), (A, V'), (¥V', #™).
The operator .o/ is monotone in ¥", #, ¥/, #"' and maximal monotone since the
equation

Sz+z=f zeZ, feF (1.19)

has one and only one solution whenever the pair (&, F) is as above.
By application of the Hille-Yosida theorem (see, for instance, H. Brezis [5]), one
can solve the differential operational equation

C o wz=0 0= (1.20)

with eeZ =%, ¥, #, ¥, respectively, and the solution belongs to
C°([0, 20); ) CY([0, co); F), where F=v", #, ¥, #', respectively.

1.4. THE GREEN OPERATOR
From (1.19) it follows that we can write z(t) = G(t)¢ and
G e L%, %), withZE =W ,v, H#, #'
Moreover,
IGWelr = l9lls, with F =, 8,9, %",

which implies that G(t) is a continuous semigroup of contractions on F. We may next
check that G(z) is a group and, more precisely,

G(—1t) =G '(t) = JG(1)J,

where

=6 )

Moreover, consider the equation

a . 3
S tA=0 U=y (121

and we can easily check by differential calculus that

(T, Yl = (0, (0N, Vo, Ye¥. (1.22)
This formula extends to ¢, ¥ in 5 and also
AT, Yoy 5 = <@, {055~ (1.21)

ifyey”, pe¥ orye?’, pe? .
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Therefore, {(0) = GX(T), if y e ¥, #, ¥"". Because of (1.17) {(0)= G~ }(T)y. Hence,

we have
G )y=GCH)el (K, )VNLY ;¥ )LV " +7). (1.23)

Since (1.21) extends to @e#', ye# and ¥, YW, respectively, and since
from (1.17)

1G5 = llols
and similarly

IGHW = [¥ls
we also deduce

1G]y = lelly,  NG*Wl» = li¥ls (1.24)
and

G ()= G*O)e LA ; W) LW, W) (1.25)

1.5. EIGENVALUES AND EXPANSION FORMULA

We consider the complexified versions of %7, ", #, ™', #”', which is natural in the
context of spectral analysis, and look for the eigenvalues of .o7. At this stage, we need
the additional assumption

the injection of V into H is compact. (1.26)
This implies, together with the properties of A, that there exists a sequence
0< i, <y, < <4, < - 4,1 + 00 of eigenvalues of A, such that

Awj=Aw;, wieA,, lwily =1 (1.27)

and w; is an orthonormal basis of H, whereas wj/\/}t/j, \/l—jwj are, respectively,
orthonormal bases of ¥V and V’. Note that (1.26) also implies

the injection of H into V' is compact. (1.28)
Therefore
the injection of ¥~ into # is compact (1.29)

It follows that the spectrum of .+ is discrete and, as easily checked, the eigenvalues
are z\/z and —i\/fj (the spectrum is purely imaginary).
The eigenvector corresponding to i\//l‘j is

) 1 W
()
ﬁ—i A w;
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and that corresponding to —i\//lij is

= il w)

VAN
and it is easy to check that the sequence @7, »’ forms an orthonormal basis of J#.
Similarly, @i/\/4;, ®’/\/#; forms an orthonormal basis of ¥ and \/i_j(pj, \/ch"pj

forms an orthonormal basis of ¥,

The spectrum of &/* = —.o/ is also i\/4;, —i\/fj and @’ corresponds to i\/g,
whereas ¢’ corresponds to —i\//lj- )

We can give a representation formula for the solution of (1.20). If the initial
condition is written as

Q= ;(Z‘j(pj + ¢;p7), (1.30)
where
¢;j= (@, ®)x. (1.31)
The solutions of (1.19) is then
z(r) = ). (¢ e“’\ﬁ“ft(p" +¢; eV )
J

= 2ReY ¢, VA pl. (1.32)
J

2. Dynamic Systems -~ Controllability Operator
2.1. NONHOMOGENEOUS DIFFERENTIAL OPERATIONAL EQUATION

Let us consider the analogue of (1.20) with a right-hand side, namely

(:Tj+ Az =f(t); z(0)= o, (2.1)

where pe X =W, v, #, ¥ and feCY[0, T, F)with F=v, 5, V"', ¥
Then (2.1) has a unique solution ze C*([0, T]; F)n C%([0, T]; Z) given explicitly by

=(t) = G(t)p + j G(t — 5)f(s) ds. 2.2)
0

Now (2.2) extends to f e L'((0, T); F), and defines a function z in C%{0, T]; F) (note
that 7 is replaced for F). If F is, respectively, ¥, 3#, ¥", then dz/dt e L'((0, T); E) with
E=,9" %"

2.2. CONTROLLED SYSTEM

Let % be a Hilbert space (the space of controls) which we identify with its dual. We
consider an operator

Be LU H) (2.3)



THE GENERAL THEORY OF EXACT CONTROLLABILITY 205

and the dynamic system

% + Az =%Bv, z2{0)=¢ (2:4)

where v(.)e L (0, oco; #). Pick @ e #, then according to (2.2), Equation (2.4) has a
unique solution z(.) in C%[0, T]; #), VT > 0, given by the formula

t

2(t) = G(t)p + J G(t — s)Bu(s) ds. 2.5)

0

2.3. EXACT CONTROLLABILITY
Consider the controls of the form
os) = B*Gls), (2.6)

where (e #". Then the corresponding z(t) can be written as

z(t) = G(r) {(p + (Jl G*(s)BB*G(s) ds) C}
0
= G(O{p + A)}, 2.7
where

Alr) = jt G*(5)BB*G(s) ds (2.8)
0

will be called the controllability operator*. Clearly A(t)e L(H#; H).
If for some t, we can solve the equation in

o + A =0, 2.9)

then z(t) = 0 and the system is brought to a standstill.

24. BILINEAR FORM

Using the representation formula (1.32) we can give an explicit formula for A(r). Let
{,le, and

i=¢0=Ce)  G=c¢0=C o)
then we associate to the controllability operator the bilinear form on J# defined by

488 = (AL D
t . By . . N
= 4f (Z Re[c; eV #*p7], ¥ Re[e* e'ﬁs%%"]) ds. (2.10)
0\ Jj k u
The bilinear form 4, is symmetric but not coercive in general in #.

*It corresponds to the usual controllability operator of the pair (@/*, #)=(—.s/, #).
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3. General Results on the Controllability Operator
3.1. EXTENSION OF A(1)

We are interested in further properties of A(z) and of I'(r) = A(#)/t (in particular, its limit
as t— o0), as well as invertibility properties. We shall first extend A(t) and I'(¢) as
follows.

PROPOSITION 3.1. A(¢) and I'(t) extend as operators € L(¥"';+"') and L(v"; V).

Proof. Let (e ¥ and a;=a;(()=(({, \/4; ")}y I L€ # then a;=c;/\/4; and we
have

LlaP =305, Yol = 51C1%- G3.1)
J J

Similarly, we can state that
Y Alei? = 3113 (3.2)

We write (2.10) as
’i-t(Caf = 4j (Z Re[a]\/“\ ’fs,@* J] ZRC[C e'\/;ksj* k])
0

4 ( Y Imla, i g, Y Re[z, eiVhs g k]) ds

4<21m[a eVt gx ], Y Reft, ¢ eVt g k])
4<Zlm[a #9'). Y Re[6, A "]) +

4 j <Z Imfa; ¢V B*p7], Y. Im[/2,& e‘ﬁs,@*@k]) ds
0 J k £/

hence

-~

|4 Ol Z Im[q; e’\ff%p’] +

’Z Re[, ev/!p4]
k H

+C
J

‘; Re[é@"]]x +
. ‘; Im[,/4;% Vi k] .

1/2 1/2
c (}_j Ia,-|2> (; lékrz) + CUY Na; ) VHY. e D2
< C(t + DIy IEN

and the desired result is obtained. 0

;1071
H

ds

t " .
Y Im[a; eV45p7]
olJ

We state the immediate corollary:
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COROLLARY 3.1. We have
A w0 ) < Cty
TAWI 252y < CE + 1), (33)
A #1720y < CE+ 1),
Remark 3.1. 1t is clear that if A(¢) is invertible for t,, it is invertible for any t = t,,.
For some type of problems (like plate and Schrodinger equations), A(f) will be
invertible for any time t > 0, or never invertible, E. Zuazua [15], G. Lebeau [10].

3.2. APPROXIMATION

Let Py be the projector on the subspace of J# generated by ¢, 3/, j = 1,..., N, hence

N
Pyl = Z (Cj(bj + Z'j@j)»

Since also

N
D= Y (030 + a4,
ji=1
Py is also a projector in ¥"’ and in ¥~. We shall denote

76 O = (TQ), g)——(C f). (34)

We have the
LEMMA 3.1. On has the estimate

. = . = C 1 ~
I7C Q) = 7 (PyE, PROI < (1 + ;)lCl,# ICH - (3:5)

T

Proof. We write

PG O = 7PyG, Py = 30 = Pyl D) + 2Pyl £ — PyD)
4 € o i N

= f ( Y Re[c; eV #*pT], ¥ Re[E, e‘\/’;sﬂ*éa"]) ds +
FJo\j=N+1 X u

4 ! N . N ©
+- f ( Y Re[c; eV #*p], Y Relt, Vs B*g ’f]) ds =T +1L
o\j=1

¢ k=N+1

Operating as in the proof of Proposition 3.1, we have
4 . s
1= —( Y Im [ i giv f‘j* } > Re[, e’\/;‘ﬁ*(b“]) —~
T\ j=~N+1 \//‘] % u
4 e
- Im L B*p ReEs%?*”‘> +
ot (J:z [\//1_} :| ; EX Y
4 t o« . Lo . ./
+ —j ( > Im [“C’ e‘qus,%’*(pJ:}, S Im[\/fkﬁk e‘V/ZS%*(Z)"]> ds
t = \/)_J 3 b
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and it follows that
C
I <—(1 + )IC|J/ 010y
N

We next write II as follows

4 [t/ N e . © R AC iﬁs‘%*-k
== J ( Y Re[c; eV @*p7], Y cL/he ¢ ]) ds,
r Jo\j=1 k=N+1 Vﬁg wu

hence,

C ~
I < =1 18

and the desired result has been proved. [

Similarly we prove the following lemma.

LEMMA 3.2. We have the estimate
e B — 7i(PyC. Pad)l < — <1+1)ncn W+ Sl 181y 36)
Yt Né, N \//1—N ; ] ¥ ” H AL .

Proof. Since A is an isometry between #” and #, we have
IE1% = 14015 = 23 Ale,l™ (3.7)
J

Considering the terms I and I defined in the previous lemma, we write

4 o
Wis gk i1 S lfs * =
I = tj (] ;HRCEC eV R*pT], Zlm[\/ﬂ B :D%ds
4 x e ) .
=— eVt gH i kit gk k _
z<,~z Re[c; e %q)],;lm[\/;?ke qu,])%

“N+1
Gy _
(@* k +
S G e
+ - Im[ec, eV”JSJ* Y Im[ eivs gg* k:|> @
tjo(; Y. Imle; /% 1) N *|)

=N+1

- ‘—j( T Re[e,#57), T Im[

=N+1

and from (3.7) we easily deduce

c 1 ~
IN<s—1+-)l{|ly
| |<\/E( +r> ISl 11y
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We then write, in a similar manner,

N .S . X ¢ ey
1= 4( Y Re[c;eV4'B*p], Y Im [—Ck e’ﬁ’.@*(j)"]> -
I\ j=1 1 \/Z Y

k=N+

4 N o Ek —k:|>
——| Y Re[c;#*¢’ Y, Im B*p -
( = Le; L k=N+1 |:\/Z i

i whionn § wfioins])
+§<i Im[cfﬂ 77, i Re[ ])
= k=N+1
+ L—:J ( ﬁ Re[c;4; eV B*pI, i Re [ SNERY SB*p :l)) ds,
= k=N+1 2 u

hence
c ~ c1 ~ ¢ ~
I < = (81w HCHy ===l 1S + = 1w 11
t iyt Ay

hence, (3.6) obtains.

3.3. CONVERGENCE OF ITy)

Let us introduce the bilinear form on #

WG C) = 23 Re ¢;8;|B* ¢ )
J

=(I'¢, O,
then
Ce LA H)VNLH 4 )VN L ¥7).

We clearly have

. ) — 9Pyl PR) < ﬁm,y, 021
9(C &) = 9Pyl PRl < —— 11y 10
N
Moreover, we can state that
1 (PrE. Prd) — (Pyg, PO < |C|~,« 11y

. s O
[ (PyL PyEY — 9(PrCy PR < 10w 1E Ny -

209

(3.8)

(3.9)

(3.10)

(.11)

(3.12)
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These relations are easily obtained because we are now in the finite-dimensional
case (see discussion of the Introduction). Note that the bound dy depends on N and
tends to + oo as N tends to + co.

We next state the following convergence result.

THEOREM 3.1. One has the property

r-Iliny", Y in¥", (3.13)
Iyl —-ICinv, V{in¥, (3.14)
e -I¢inst, Y(lin H. (3.15)

Proof. Let us first prove
[ ->I{in ¥, ¥Y{in #. (3.16)

Indeed. let {e ¥, and consider

768 = 98 D) = 9L D) — vl(PAl, PO +
+ 7(Pyg, Py) — 7Pyl Ph0) + 1(Pal Py0) = 9(C, D).
From (3.5), (3.9), and (3.11) we deduce

~ ~ B -
I7:(8, O = 9(& QI S( . +TN>IC|f IS5

S
and (3.16) follows easily.
To prove (3.13), note that for { in¥"’, Py{ e # and tends to {in #"', as N - co. We
can write
N — T =N — Py0) + TPy — TPy + TPy — 0).
Since [T(t)|| #+v <k, We deduce
[0S — Ty < el — Pr€liy - + (@) — D)PaLly~

and the result follows from (3.16).
A similar proof holds for (3.14), using Lemma 3.2, (3.10) and (3.12), and proceeding
as above. Now (3.15) is easily deduced from (3.14). O

3.4. SUFFICIENT CONDITION FOR EXACT CONTROLLABILITY

Instead of the equation of exact controllability (2.9), we shall consider the equivalent
form

IO+ ¢ =0. (3.17)

Clearly, if { is a solution of (2.9), then t{ is a solution of (3.17), so it suffices to work
with (3.17). We want to characterize the ¢ so that (3.17) has a solution. Naturally, the
less regularity is required on {, the fewer conditions will be imposed on ¢.



THE GENERAL THEORY OF EXACT CONTROLLABILITY 211

So we require { to be in ¥, and the problem amounts to characterizing the range of
().

Without further assumptions, little can be said. We shall see that interesting results
can be derived from the following assumptions

28O = BICIG -, Ve, B>0, (3.18)
at least for ¢ large enough, and
| B* |2 ZC_O. (3.19)
4
Note that (3.19) implies at once from (3.8) that

0 = 20 ) lasl? = coliChT (3.20)
E

and. thus, the same property as (3.18) is true for ({, {). From (3.18), it follows that
7L 0) is a norm in £, not equivalent to that of #, nor to that of ¥"'. We complete
the space # with this norm and obtain a Hilbert space denoted .#, (whose dual is
denoted by .#,).

We obtain the following inclusions

{ cll,cH <]t (3.21)

Therefore, I'(t) e L(.#,;.4,) and has an inverse T " '(t)e L(. #,; .#]). It follows that if
€./, there exists a unique solution of (3.17). From the inclusion (3.21), we deduce
that it is sufficient to pick ¢ in #°, hence, we have the following proposition.

PROPOSITION 3.2. If (3.18) holds, then there is exact controllability of the system
(2.4) for @ in f . 0
3.5 CONVERGENCE OF I (1)
Let ¢ € ¥, and denote p, the unique solution of
I'hp, + ¢ =0, p,e.#,. (3.22)
In a similar way, we can solve (thanks to (3.19))
Fp+¢9=0, pe.d’ (3.23)

where . 7/ will be Hilbert space defined as .#,, with T'(z) replaced by T
In fact. (3.23) has an explicit solution. Considering the formula (3.8), we deduce

(@, @)

- 3.24
4 ? o

¢;=(p, @) =
We notice that

_ 4 Ll oA,
SN
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and, therefore, by (3.19)

(2]

Since ¢ € ¥7, we verify by this estimate that p is well defined in ¥’ (in fact, we know
a little bit more, pe.#’). The explicit formula (3.24) allows us to check the following
regularity result.

LEMMA 33. If pe W, then pe 3, hence T "' e L(W";, #).
Proof. If pe #" then Z 2}|(¢, ¢7)|* < 0. But (3.24) implies [c;| < co4;l(¢, @7)], hence
Z|c;|* < oo, which implies that pe #. O

la;] < ¢o

We are now in a position to prove the following theorem.

THEOREM 3.2. Assuming (3.18), (3.19), then we have
o pin?t’ o ast— @ (3.25)
Proof. We begin with the weak convergence. Since we have
70w p) A+ L@ poya =0,
we deduce from (3.18) that {{p, )+~ < C.

Therefore, we can extract a subsequence converging weakly to some ¢ in ¥~'. Now
since I'(t)p, + ¢ = 0 for { in ¥", we have

<o TOD + (0, ) = 0.

From (3.14) we can pass to the limit, as ¢t — o0, to obtain <o, I'D> + (¢, {) =0,
hence, I'c + ¢ = 0. Therefore

0=1p0c—p,0—p) =clo—pli,

hence, ¢ = p. By the uniqueness of the limit, the weak convergence of the whole

sequence is obtained.
We next prove the strong convergence. It is done in two steps.

Strong convergence when @ € % . In that case we know that p € 5, hence, from (3.15)
I[(t)p - Tpin . (3.26)
Next we have

o — p, oo — p) = — <o, p> + 2o, p) HT()p, p)
—0

hence, from (3.18), |p, — plly~— 0.

General case. Let e+, and ¢* in #7, such that ¢* — @ in ¥7, as u — 0. Let p! be the
solution of (3.22) with ¢* instead of ¢ and, similarly, p* the solution of (3.23), for ¢*.
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We can write

e —plly < lpe — ptll + llpf — ) + 10" — 2l (3.27)
But

Blo: — il < vlpe — pls po — pi) = —<@ — ¢", p, — piD,
hence,

o, — ptlly < cllo — @y,
therefore from (3.27),

o= plly- < clio — @y + It — p"lly~

and from the first part, the desired result easily follows. The proof has been
completed. |

Remark 3.2. In practice, we are interested by p, and not by p. But p, will be
computed through a numerical procedure whose purpose is to invert I'(¢). Since p is an
approximation of p, for t large, and can be computed very easily, then it provides a
way of checking that the numerical approximation used to compute p,, whatever it is,
is correct. It 1s enough to check it for large ¢ and it should lead to an approximation
of p.

4. Controllability for the Wave Equation with Dirichlet Conditions

4.1. NOTATIONS

Let Q be a smooth bounded domain of R", and I" = dQ. We shall take
H=1%Q), V=HYQ. V' =H YQ) and 4= —A.

Then D, = H* ~ H}.
Let N = ¢/dv, where v denotes the outward unit normal. We have N e Z(D ,; L)

We pick # = LXT) and define

po (AN 4.1
Ar = 0 4.1)
and #e L(U; #). It is easy to check that
. ¢ - . Zy )
Biz=—A""z, ifz= eN. 4.2)
v Z,

Considering the basis ¢/ and @7, we deduce

1 1 éw,

:/—57)-51"

%*(pj — %*(2)1 -
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4.2. VERIFICATION OF THE ASSUMPTIONS OF THEOREM 3.2

Knowing that w; satisfies

—Aw; = Aw;, wilr =0, f wi =1, 4.4)
Q

IMOE

we first state the following lemma.

LEMMA 4.1. Let ge(CYR")", then we have

r v 6\1 1 vdl
0w; 0w, (0qy  0Oq . ow, . Ow;
=3 — — ki —d D ; D bt )w T — X
ﬁ;[ﬁxa 6x,,<8xa+6xﬂ Wq Dy, Dwe=u| Ay gt hong ) |dx

@.5)

Proof. We multiply (4.4) by q,(0w,/0x,) and perform integration by parts. Inverting
j and k and adding up, the desired result follows. O

We apply (4.5) with ¢ = m and with m(x) = x — x,. We deduce

ow; 6wk vdl
T

ow,, ow;
= 2= Say S — | (w4 e o ) dx. 4.6)
0xy 0x,
In particular,

f \2
<%> m-vdl’ = 24, @.7)

A
Jr oy

We have used the fact deduced from (4.4)

n
Dw;-Dw,dx = \/)tvj\/a@k.
o)

Let R(xq) = sup,.r [m(x)}, then m, v < R{x,), hence, from (4.7),

w;\? 24;
dr = —=~..
J r< v ) R(x,)
Together with (4.3), it follows immediately that (3.19) holds with ¢, = $R(x,).
We next check (3.18). First, from (2.10) and (4.3), we have

)

where we have set w; = wj/\//lj. We then state the following proposition
PROPOSITION 4.1. The property (3.18) holds.

Y. Re(g, e ‘) *ds dr, 4.8)

)
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Proof. We have from {4.8)

"CC/ mv

Now from (4.6)

t
Xzfjnztv
o Jr

—@2—n) J 'Y [Rela; eV ds —

A

Y. Relq; eiv/i%) 60

i

dsdI’

—2 J J [Z Re(a, e/ /1, w:l[z Re(ay /o) ]d ds

=2 —n) J Y [Re(a; eN49)2 ds + Y.
o j

Then

Y=2£Lmake[ (za ity )]Re[Za s O

~J 2m, {Im [Z a; ei\ﬁ'f’wj] Re [z a, e‘\/"‘:'[z—%]—
o T 0x,
—Im [Z JJ Re [Z a, OA ]}ds—

1 . — Ow
72 Im i IVF I l\//s.hs
L L m, [; a;e ] m [Za e axa] dx ds.

Therefore

=(2-n) LZ|Rea e’fs ds+nf lem(a e’fs)l ds —

J m, {(Z Im(a; Vit )(Z Re(q, eiﬂ‘)aw’) —
PR

( m ajwj>(; Re(a,) a::k)} dx.

n—1 1 s
=t 3 laj* + y (Im @} — Im a? e2iv/ity
J

RN/

—2J m, {(Z Im(a; e‘f‘)w>(z Re(q, e'V* )6
Q Ox

(g pran e

215
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Collecting the results, it follows that
1
R{x,)

where p(xq) =SUp.eq X — Xol, and the desired result follows. ]

(e {t —co — crulxo)} LI (4.10)

4.3. ADDITIONAL RESULTS
In fact, in the present context, one can e¢ven say that
=17 4.1
This follows from the following proposition.
PROPOSITION 4.2. We have the estimate
A8 O < ele + DICHT (4.12)

Proof. We shall use (4.5) with g =h, such that h, v = 1, which can be found. Hence,
we can state

W; Oy
——=dI’
J v Qv
| | D ( P Do) _ i i, iy~
ol 0x, Ox5\0x,  Oxg

<\/‘1w aw"+fwka )} 4.13)

We deduce
[t (oh, ok o O,
A0 =2 JO L (ﬁxﬁ + ﬁxa><z Re(a; e )ET) X
ZRe(a e‘v’*‘)6 dxds
ox,
t o 2
-2 f f divh ZRe(aje’\/'TfS)DWj
0Jo 7

-2 ft j h, <Z Re(q; ei\ﬁfs)\/);wj>(z Re(a, eV%5) %> dx d
0 Jo 7 3 0x,

=i+ P+ A (4.14)

dxds—

We check easily that

A2 |47] < et Z la;|*.

For A} we operate as in the proof of Proposition 4.1 {see the treatment of the last
integral) to derive the desired result. A
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44. INTERPRETATION

Let us interpret the dynamic system (2.4) with the operators 4= —A and # given by
(4.1). We write

and obtain

Iy —z,=(—=A)!N*»,  Z,—Az, =0,

[\

z4(0) = ¢4, 2,(0) = ¢,,
z; ([0, T]; L?), z,eC(0, T; H™ ). (4.15)

If we set z, = n, then z; = —(—A)" 'y, then we have
(——A)—I}’]" + '? — -—(—A)‘—IN*U,
n0) =yo=9:  1(0) =y, = Ag,,

neC(0, TL H ' (—4) 'weC. T; L
(=AY 'yel*0, T, H Y 4.16)

and # 1s ‘formally’ the solution of
N =Ap=0 nlz=v, 50 =y, #(0)=y,. (4.17)

Indeed we use the fact that the functions in L, ¢ = —(—A)~ ' N*p, are formally the
solution of —AY =0, Y| = v.

From Proposition 3.2, it follows that there exists exact controllability if ¢,, ¢, € ¥,
hence, yoeL? and y, e H™1, with o(.)e L¥0, T; LX), for some convenient T. The
control is explicitly given by (2.6), hence, from 4.2, we easily check that

b g_i’ (4.18)
where 8 is the solution of

0" —A0=0, =0,

00) = (=A)7'L,  80) = (=871, (4.19)

where

$2

¢ = (g‘)eH" x (H? ~ HYy

is the solution of A(T)Y, + ¢ = Q.
This is exactly the result given by ‘HUM’ (cf. J. L. Lions [12]).
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Applying formulas (3.24), we get for the limit p

a. = \/E/ [<W1/ j’ y1> + l(W], )’o)]

|Ow;/0v|?
hence,
. <Pl>
p p—t
P2
is given by
<Wp yl>
=2 )
- ; Sow,jov
> W yo) yo)
4.20
; 7 |ow; c’v[2 (4.20)
hence, also,
, {wj, y1»
(_A) 1/)1 = Z j lav\j/allz jEH(l),
— (W 5 yO)
(—A) 1p, = Z —2 70y e L2, 421
i [awj/a l2 J ( )

4.5. AN ADDITIONAL REMARK

Consider the case when the domain Q is star-shaped with respect to x4, hence, we have

m.v = 0. 4.22)
We modify the operator 2, defined in (4.1), and then follows
Ay LAk 1/2
Ao = <( A NO[U(mV) ]> , (4.23)

hence, v has first been multiplied by (mv)!/%. The operator #* € L(¥ ; #) reads
d
B¥z = (mv)”za—[(—A)"zl]. (4.24)
v
The bilinear form (2.10) becomes

=2 jt j mv Re [Z a; Vs (m’] Re [Z
o Jr 7 Y 3

Note that (4.10) is changed into
48 Q) = (¢ — co ~ e pxo)IICHT . (4.26)

a1

i

eiv/hss %J dsdl.  (4.25)
v
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Note that from (4.7)
. 1 ow;\2 1
Brpl|r = — —L} dl'=—.
A =5 jrm"(av) 7

Therefore, the bilinear form (¢, ) on ¥’ defined by (3.8), becomes extremely
simple, namely

t

Dy (4.27)

o
Uany

Ho O =23 Reaa; = (¢
J

and, thus, I = (—A)"".
Formulas (4.21) are then replaced by

(—A)_1P1 = (—A)71Y1, (_A)ﬂpz = —Yo- (4.28)

5. Controllability for the Wave Equation with Neumann Conditions
5.1. NOTATION

We consider here the situation
H = LAHQ), V = HY{), = —A+1

associated with the Neumann boundary condition. Hence,

¢

D,= {UEHZ - 0},
av T
0

A= {veH3 i 0}.
av T

The eigenvectors w; are defined by the equation

. ow;

—Aw; + w; = 4w, a—vlr=0. (5.1)

Let
Cixg) = {xellm, v >0}, mx)=x— xq,
[*(xo) = T — ['(xy).
We consider
U = (LAT*x)))" 1 x LT (xo))
and define
70 = trace on I'(xo)e L(V; LAT(x) 0 LD 4; H'(T(xo)))
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and J, =trace on I™*(x,) defined similarly with

0,€ LIH(T*(xo)); LA(I *(xo))) such that

_ lo oo i
Yo E = Vj 8_\) lr*(xo) + O'j'yoq), V(pEHZ.

Let 3 £(%; %) be defined by

YoZ1
01702,
_(z; _
1(7)-
z, i
CuV0%1
YoZ3
then
Vo
vy \ . *
. &y + o¥v, + - + afv )
%] =(Y0( o 1 ; ")>EW,.
Ayovn+1
v,
Un+1
Next define
B = — AL K)
hence,
B = <—N0(Uo +o¥v, + - + G’,’fv,,))}
—yﬁv,,ﬂ

where we have set
No=A"1%§
and
Noe LILAT*(xo)); V) N LUHNT*(x0))); L?).

‘Formally', ¢ = Ngg is the solution of

0 d
OV |I(x,) AV IT(xo)
Next we can check that
_3‘21 ?oA_lzx
01[\73‘21 015’0147121
z, - o
o,N§z, o, 504" "2y

ALAIN BENSOUSSAN

I'*(xo) instead of I'(x,),

(5.2)

{5.3)

(5.4)
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for
= <;1>€% or B*z=yA 'z
=2

Considering the base ¢/ and @/, we deduce

s W

1o -

/v}‘

_ Wy

—0.70 =+

/Lj
_ﬂ*@]z_l_
NG

_ Wy

—0'")’0)—}

i

—i70

and #*¢’ is the conjugate.
Denote

0y
D, the tangential gradient = ;

o

n

and y = y4 + 74, the trace on I'. Note that
0
Do = D,yp, if 22 =0,
v

The bilinear form 4, becomes (cf. (2.10)).

AW D=2 J: J [(Z Re(c; ei\ﬁjS)D” %) . (z Re(Z, ei\/ZS)DG Wi
0 JI*(x,) J j

A

+2 J‘tf <Z Re(c; eiﬁ‘) >( Y Re(g, e‘\/_s) 5)} ds dI' +
0 JT*xg) \J )Lk

' /iy Wi = idhs W
2 L (e ol e e

k

221

(5.5)

(5.6)

To simplify the writing, we have written w; instead of j,w; or y,w; in the boundary

integrals. It is implicit.
We shall use the following result.

LEMMA 5.1. We have the formula

J m(D,w;-D,w, + w;w,)dIl
r

— 0w, ow;
=(n— 2)/Agd;Op + 204 + J;l m, ({,-wJi E + Lwy K’)dx.

a

(5.7)
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We deduce from (5.7) that considering Cvj:wj/\//Tj ; we have

f m(D, ;- Dy, + W) dIl
T

2 ow, ow;
= (n—~2)5}k+———ﬂ(5!k+J. ma<\/7_’ j k'l‘/lkwk w ) dx (58)
VA 0 0x 0x,
and
J mv(|D, ;| + (W) dl = -2 + 2 + J myw} dI. (5.9)
I ﬂj r
5.2. VERIFICATION OF THE ASSUMPTIONS OF THEOREM 3.2

We can write

. 2
S Rela; eV55)D,#,| ds dT +

»t,(ﬁ,g):zj’j
0 JT¥xy) | j
Y. Re(g; e‘fs)w

w2,

MHxo) | j

+2J J Zlm(a e‘fs)w
0 JT(xo)

We are going to prove the following proposition.

ds dI” +

dsdrI’. {5.10)

PROPOSITION 5.1. The following estimate holds

, Ny 1 1) C0+C1/,t(x0) C|I'l 2 x
A (P {t min <ZIQI Rixo) (1 /12>> < Revo) IQI )} ICh5-*  (5.11)

Proof. There is a special treatment for the first eigenvalue since 4, =1, w, =1//€)|1/?,
hence, we write

ds dI' +

o 2
Re(a; ev4%)D, W,
j=2

=2
J Jr*(xo) Z

Re(a, ) e 2
J jr*(xo) R + Z Re(”je‘/:’ ;i ds dll +
f J‘ Im(al ‘5) N Z Im(a etfs)w ds dT'
[(x,) |Q|1/2

J J Y. Relg; ei\ﬁ‘fs)D‘,Wj ds dl’ +
*(xo) |iZ2
J f 2 Re(a; ev/45)w, * ds dr +
[*(xo) |
f j Y. Im(a; eV4%)w;| ds dl+
Flxp) |jz 2

*We recall that R(xq)=SuUp..r |x — Xol, #(Xp)=5UPxeq IX —Xql-
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+r|r;) 2y IT*(xo)| — 1T ()|
o 29

A T
——— a . N w. —
Q) 5 LY 1+f o 1% M)
( l(1+\/7)(__ ) B (ei(l—\ﬁj)t_l)il}f
Im<a ; —a; . dl.
IQI“2 2, { 1[ 1+./4; S BN Fg

We then treat the different terms as follows

[ [
J Jeus
iy

Im[ai(e* ~1)] +

e R
Re(a; eV S)D,,w ;

z Re(a; eV W,
]/

) ds dI' +

Y Im(a; eV 5w

Yliz2

ds dr

=2 [ Z Re(g; eNESD wil +1 Y Rela; e‘\/“is)ﬁvji ]ds dr +
0 j=z2
j j my Z Im(g; e’f‘)w ds dT 2 X
Rixg) Jo Jr {52 T Rxg)

From (5.8) we have

X = j y (2 —n- %) IRe(a; ) ds —
J

0jz2

J‘ ‘[ (Z \/‘Jw Re(g; e’\/i\i"))< Z::k (@, e‘*/f*s)> dx +
jiz2 k=22 a

ol

Operating as in the proof of Proposition 4.1, we can write

X = f v (2 —n— 7)me (a; V%) ds + n f Y |Im(a; Va2 ds —

0 j=z2

Z Im(q; e Yw, ds dr.

2

it oWy iany

f [(PZ w; Im(a; e )>(k;2 ox. Re(q, €'V ))
Ow,

(; Im )( o ))} dx

2(1_‘—) Y oyl + (*““ Zlm[“’g(ezm“ﬂ~~
Ar) iz 7 =2 2\/’,@

J [( w; Im(a, e/4! )(Z 8w: Re(g, efﬁkz)>~
(g, w5, 2 o)

1

;(1 --—) Z [a;|?> — (cq + cyp(Xq)) Z [a;|2.

G
Z2 Gxa

A jz2

jz2
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Next consider the term

2 ((ei(l-#\//l_j)l_l) _ (ei“‘\/’?i)t__l):l}j
Z,=———5 > Im<a, |a —a; w; dr
1 |Q|1/2,~;2 { 1 [ R RS/ SR /N o)

- jrm) <Z 9O )

where

i1+ __ (- /i _
g,it) = — 2\/ll—lm{ [aj((e 1)—-21.(e U:ﬁ,

(o 1+ S /N
hence
2 1/2
1Z4] <J Y g;()W;| T < |T(xo)|M? (j g;,(0w; dl“)
I(xg) |i=2 Tixe) |jz2
1y .
IQII/Z Z g! W

F /2
rslzlll”(Z ) )
1/2

C@| 1|<J;|, ) .

Similarly, considering

2 ( i(l+\/7j)l_1) (ei(l—\/,{—j)l_l):l}f
Z Im<a - w;dI
2T £ Z { 1[ 1+\//Tj S BN M*xo)

An estimate similar to that holding for |Z,|, holds for |Z,|.
Collecting the results, one obtains

M =1L 2_
MG > gl + R(xo)t<1 )_2) T lajf

(€o+¢11(X0)) .Zz la;1* — ¢ % <|adz + Zz | ,|2) (5.12)

2
R(x,)
and the desired result (5.11) is obtained. ]

Clearly (3.18) follows from Proposition 5.1. Let us check (3.19). But
. 1 wi |Dw;l? IJ w?
Brol|? = 4+ dr + —Ldr,
el 2 jl"*(xol (’f A ) 2 Jreo 4

iy
T 2100

hence

qu* 1/2 _
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and for j > 2

. 1 mv 1 wi
Broil? > — — W2 + |D,w;)?) dT" + fmv%dl"
4%’ 2R(x,) L A Wy + 1Dawil) 2R(xo) Jr 4

and from (5.9)

11 < 1) 11 < 1)
Rxo), \  4,) " Raxo) &\ 7

and, thus, (3.19) is also established with

oo (1—L))
Co = min Eﬂ’m /12 .

The assumptions of Theorem 3.2 are thus verified.

5.3. INTERPRETATION
We now interpret the dynamic system (2.4) with the operators A= —A+J, and #

given by (5.2). We write z = (Zl ) and obtain

Z2

Ty — 2= —1\70(00+0'T01+-~+0',’,“v,,), Zh + Azy = — 80,44

2,(0) = o,, z,(0) = ¢,

z;eC([0, TT; L?),  z,eC([0, TT; (HY)),

2,eL?e LX0, T} (H'Y), Zye LX([0, TY; D). (5.13)
Set § = z,, then z; = — A"y — Nyv,,, It follows that

AW 4= —Ngt,, + Ny(vg + 6¥v, + - + o*v,),

'7(0) = (PZ = yO,

7'(0) = — A, — 80,4 1(0) = y; — 7§v,4,(0). (5.14)

From the interpretation of N,, N,, we can write (5.14) as

N —An+n=0,
an "
= =vy+ ofv, + - + ok,
OV |r*(x)
on ,
_ = — N
ov '(xq) el
mO) = yo . 7(0) = y; — y§v,+,(0). {5.15)

Note that #'(0) is defined only when v, , , is continuous. It is also very important to
notice that, unlike the Dirichlet case (see (4.16)), we cannot impose 7'(0) = y,. We must
allow some control to influence the initial condition.



226 ALAIN BENSOUSSAN

We can relate (5.14) to the transposition method (cf. J. L. Lions [12]).
Let us consider the equation

0" —AG + 6=, i

=0, Ty =0, g =0. (5.16)
v r

If we proceed with a formal integration by parts between (5.14) and (5.15), we obtain

j {finyde
0
T
= —(0(0), yo) + <&O0), y,» + J j X
0 T*(xo)

00 00
x| 0y +—-—vy + - +—v, |dsdl'+
0x 0x,

T
+ f f 0'v,,, ds drl,
0 JT(xo)

which provides a rigorous definition of #, for (5.14), which coincides with the second
component of z in (5.13).

From Proposition 3.2, it follows that there exists exact controllability if o7,
hence, ¢, € H', ¢, € L? which implies y,e L?, y, €(H'Y.

Exact controllability here means z,(T) = 0; z,(T) = 0 for some convenient T. In
terms of the function #, this means

(5.17)

n(T)=0,  #(T)= —y8v,+(T) (5.18)

and, thus, #'(T) is different from 0.
Let us make explicit the control obtained from formula (2.6), which yields exact
controllability. From (5.4) we see that
UO(S) = _?0‘/’7
vi(s) = —a17o¥,

0(s) = — .70l
Ups1(8) = =70V, (5.19)

where i is the solution of

0
Vosru=0, =0 0=A N FO=ATG (520)

where {, e(H'), {,eD/, is the solution of A(T){ + ¢ = 0.
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Inserting (5.19) in (5.15) yields
’7// . A}7 + '? — 0,

an .

> = —(—Arwx + Dio¥,

ﬁv r*‘x()) ( 1€ o) )'})ol//

on . , ]

5;mw=%w, 70) = yo.  7'(0) =y, + y§r0A~ (s, (5.21)

where we have set —Arxx,) = a¥a, + -+ + ata,.

The precise definition of the solution 7 of (5.20) can be seen by the transposition
method, see (5.17), namely considering 6 given by (5.16) and y given by (5.20), then
from (5.17)

LT Cfinyde
= —(0'0), yo) + <6(0), y,> —

T T
— J J [ + DB.Dy]ds dI' —J J 'y’ ds dI. (5.22)
0 I™*(xo) 0 I'(xo)

We find the formula given by J. L. Lions [12], from ‘HUM’, However, we must
insert the control at the initial value of #'(0), otherwise there is some contradiction (see
J. L. Lions [12], Chap. 111, Section 1.5).

There is another way to represent the control on I'(x,) in (5.15). Consider the
operator Joe LHYO, T; LAT(x,)); LXO, T; LA{T{x,)))) defined by J,g = ¢4, then we
can write (5.15) as follows

n'—An+yn=0,
a
L =vgtotoy + o+l
¢y T™*(xo)
on
Sl = Sen O =yo,  H(0) =y (5.23)
V{T(xo)

Let us justify (5.23). First note that J§v, , ; € (H*(0, T; LA(I'(x,)))) and that if we write
the following duality between (5.15) and (5.21)

(T T K
. oy de = —(@(0), y(0) + (B(0), #'(0)> + J J; 6 a ds dI’ (5.24)

0 v

v

then we must interpret the boundary integral as

T
0 {Fob, Fovg + TFVy + - + TFOD HI T xoH I xo)y G5 +

+ V00s J§Un+ 1 DHO.T: LT (xoH O.T: LT (xo))y 45

and we recover (5.17).
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Writing (5.23) has some advantages, since it has a meaning for
o+ € LH0, T; L3(T(x,))) and allows us to write '(0) = y,, although this is misleading,
since the quantity J¥v,, , influences the initial value.

Another merit of (5.23) is that it emphasizes the fact that the boundary control is an
element of L0, T; (HY(I'*(x,)))) x (HX0, T; L3(T(x,)))).

Using (5.18) we obtain

N —An+n=0,

g'—‘z o —(=Arsg) + Dol
Fél
E_Z o~ = —J5re¥’,
70y =ys,  n(0)=y,. (5.25)
Besides, instead of (5.18), we can write
nT)=0, n(T)=0 (5.26)

for reasons similar to those justifying the writing of the initial condition. Indeed,
consider (5.16) with a nonzero condition at T, namely
00 )
0" — A8+ 0=, = 0, (T) = 6, 0(T)=0,, (5.27)
Vr
then (5.22) 1s still valid, which justifies (5.26). The fact that (5.22) holds can be seen by
proceeding as for (5.17) and taking account of (5.18). In other words, the initial
conditions and the final conditions (5.26) are met, provided we leave aside the Dirac
measures at O and T arising in J§.
Let us finally describe what is the limit value p. We again apply (3.23) and get

a; = —1_[<y1’ wi/\/Tj>f}'i(YO’ wj)]
V2 A\ B*l

V2000 Wil A + iy, Wil

" T2 +1D, W) AT+ Jreq w2 dT 5.28)
W, = \;:\J (5.29)
Therefore p = <i1> is defined by
z,
pr=2 ?fr*(xo)(fvf +|Di;ziz?glyifr(xo) wi dl'”
py= 2% 4100 W)W, (5.30)

7 fres (W] + 1D 1) AT+ frey wi A
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and also
ATlp =2 ((y1, \/Z’Wj))V'Wj/\/E o
I 7 freo W]+ 1D, W,1%)dD + Freegw; AT
AT =20, Vo 20 L (5.31)

~ ~ €
7 jr*(xo)(wf+lDawjlz) dr+jr(xo)wf dar

Remark 5.1. From the control point of view, the main difference between the

Dirichiet and Neumann cases stems from the nonexistence of a sharp theorem for the
trace of the Neumann problem (see Bardos et al. [4], formula (3.15) and Corollary 3.9).
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