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Abstract. The problem of synchronization of the Earth-based clocks has been discussed in the 
framework of General Relativity Theory. The synchronization is considered as the transformation of 
the observers' proper time scales to the coordinate time scale of local inertial geocentric reference 
system, which is single for all the observers. The formulas for the relativistic corrections occurring in 
some methods of Earth-based clock synchronization (transported clock, duplex communication via 
geostationary satellite and meteor-burst link, LASSO experiments) have been derived enabling one 
to attain the accuracy of 0.1 ns. 
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1. Introduction: The Notion of Synchronization in General Relativity 

Realization of a high accuracy time scale is well-known to be a very important 
problem for investigations in the field of geodynamics, radio astrometry (VLBI), 
for high accuracy navigation on the Earth and in space. The accuracy of up-to-date 
atomic clocks is 10 -14 - 10 -15 and improves by about an order of magnitude 
every seven years [Allan, Ashby, 1986]. In not so distant future the frequency 
standards will apparently be developed enabling one to attain the accuracy of 
10 -17 - 10 -18 [Matisson, 1989]. However, the accuracy of clocks is not sufficient 
for the realization of a time scale. It is indispensable to solve the problem of high 
accuracy synchronization of clocks which realize the single time scale. Besides 
its direct intention, the synchronization of time standards may improve the total 
accuracy of time scale with respect to the accuracy of a separate clock [Allan, 1981; 
Allan, Ashby, 1986]. Indeed, the synchronization allows one to remove in part 
systematic differences in clock rates. The random differences can be diminished 
by the usual methods of the mathematical statistics. 

The present accuracy of clocks synchronization may achieve 1 ns. This value is 
by 2-3 orders of magnitude smaller than the main relativistic effects. The numerous 
experiments which deal with the transportation and synchronization of high accu- 
racy atomic clocks [Vessot, 1979; Alley, 1983; Allan, Ashby, 1986] completely 
confirm predictions of the General Relativity Theory (GRT). The significant mag- 
nitude of the relativistic effects in the process of remote clocks synchronization 
and realization of single self-consistent time scale results in the necessity to ana- 
lyze these effects consequently in the framework of GRT and with high level of 
accuracy. 

The notion of synchronization is closely connected with the notion of simul- 
taneity. Indeed, synchronized clocks must simultaneously produce the same time 
markers. 
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Newtonian mechanics and Newtonian theory of gravitation postulate the ex- 
istence of absolute and independent from each other space and time. The notion 
of simultaneity has absolute meaning as well. Independently of used reference 
system (RS) two events can be either simultaneous or not. One can believe that 
in Newtonian theory two events are supposed to be simultaneous if these events 
correspond to one and the same value of absolute Newtonian time. 

In the Special Relativity Theory (SRT) the situation changes drastically. The 
refusal of the notions of absolute time and space, the difference of the time rates 
in different inertial reference systems result in the notion of simultaneity losing its 
absolute (and unique) meaning. 

For analysis of any process in the framework of GRT one must introduce certain 
four-dimensional RS, which consists of one time coordinate (so called coordinate 
time of the RS) and three space coordinates. Special Relativity Theory as having 
been formulated by Einstein deals only with so called inertial reference systems. 
Not going into unnecessary details one can say that any RS, in which bodies 
not affected by forces move linearly and uniformly, is called inertial RS. As the 
matter of fact, the following definition of simultaneity has been adopted in SRT 
[Bom, 1962; MOiler, 1972]. Two events fixed in some RS by the values of their 
coordinates (tl, Xl, yÂ, Zl) and (t2, Z2, Y2, Z2) are considered to be simultaneous 
with respect to this RS, if the values of time coordinate corresponding to them are 
equal:t1 = t2. In the following this definition of simultaneity (and corresponding 
definition of synchronization) we shall call coordinate simultaneity (and coordinate 
synchronization). From the defin fion of coordinate simultaneity one can see that 
the events, which are simultaneous in one inertial RS, may turn out to be non- 
simultaneous in another inertial RS (see, for example, [M¢ller, 1972]). Thus, the 
notion of simultaneity in SRT becomes relative, i.e. dependent on coordinate system 
being employed. 

For synchronization of clocks, which are at rest relative to an inertial RS, 
Einstein has suggested the following procedure. Let us consider two clocks a 
and b. At the moment when the reading of the clock a is %1 the station a emits 
a signal, which arrives at station b at the moment ~-t,0 according to the clock b, 
and then is reflected and returns to station a at the time moment "ra2. The moment 
Ta0 = ½ ('ral + ~-a2) = Tal + ½ (~-,~2 - T,~I) according to the clock a is considered to be 
simultaneous with the moment ~-b0 according to the clock b. This procedure is often 
called Einsteinian synchronization. Sometimes one can meet another definitions 
of this procedure [Born, 1962; Fock, 1957]. But all the definitions are equivalent 
to the above-formulated one. Einsteinian procedure is no more than practically 
convenient algorithm enabling one to achieve coordinate synchronization of clocks, 
which are at rest relative to inertial RS. The basis of this algorithm is the equality 
of light velocities when propagating from the clock a to the clock b and back or, 
to put it another way, the isotropy of light velocity in inertial RS. This equality is 
a consequence of the SRT postulates and the condition of resting of the clocks in 
certain inertial RS. Einstein has emphasized [Einstein, 1953] that synchronization 
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could be carried out in any reasonable way. But the simplicity of equations of light 
propagation in any inertial RS as well as maximal possible speed of the transmission 
of information make this procedure preferable. It should be noted once again that 
the Einsteinian procedure has been originally intended only for synchronization of 
clocks, which are at rest relative to an inertial RS. In our opinion, any extension 
of this procedure to more complicate situations is absolutely incorrect. 

The present accuracy of observations does not permit us to confine ourselves 
to the approximation of SRT. Therefore, we must appeal to the General Relativity 
Theory. It should be noted that in transported clock synchronization relativistic 
effects due to the gravitational field of the Earth are of the same order of magnitude 
as the effects of special relativity. Thus, the approximation of special relativity has 
no independent interest as applied to the problem of Earth-based clock synchro- 
nization. 

It is well-known that in infinitesimal domains of space-time special relativity 
turns out to be a good approximation of general one. In agreement with this fact, the 
definition of simultaneity in SRT can be adopted as the definition of simultaneity of 
two infinitesimally close events in the framework of GRT. So, to synchronize two 
infinitesimally close clocks one can resort to the above-mentioned Einstein proce- 
dure. However, attempts to achieve Einsteinian synchronization of the clocks in 
finite region of space-time encounter, in general case, principal difficulties. Indeed, 
consequently synchronizing a number of infinitesimally close clocks situated along 
a curve by using Einstein procedure we can synchronize clocks separated by any 
finite distance. But the result of such synchronization tums out to be dependent on 
the chosen curve, i.e. on the method of synchronization. Similar effects as applied 
to Earth-based clocks have been discussed in [Cohen, Moses, 1977; Cohen, Moses, 
Rosenblum, 1983a, b, 1984]. The absence of transitivity is clear manifestation of 
the above-mentioned ambiguity of the Einstein synchronization in the framework 
of GRT: if clock a is synchronized with clock b and b in turn with e then a is not 
necessarily synchronized with c. Analogous effects result in impossibility of con- 
sistent synchronization of Earth-based clock by means of the Einstein procedure 
(the main cause is the non-inertiality of RS which is connected rigidly with the 
surface of the rotating Earth). 

Extension of the concept of coordinate simultaneity and coordinate synchro- 
nization on the general relativity is the way out of the situation. In the framework 
of GRT as well as in special relativity we must introduce four-dimensional RS. 
However, in general relativity all reference systems are completely equivalent. Ref- 
erence system in GRT is no more than a method of mapping of four-dimensional 
Riemanian space onto four-dimensional Euclidean one. Formally speaking, the 
definition of coordinate simultaneity in GRT totally coincides with the analogous 
definition in SRT (see above). This definition enables one to avoid any ambiguities 
and vagueness of Einstein synchronization in the framework of GRT and to intro- 
duce a single self-consistent time scale in quite different space-time regions and 
with any reasonable level of accuracy. The choice of RS to be used for coordinate 
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synchronization is arbitrary. But we have no cause to worry. Given the clocks 
synchronized with respect to coordinate time of one RS we can easily synchronize 
them with respect to coordinate time of another RS. 

The detailed discussion of the concept of coordinate synchronization of Earth- 
based clocks is contained in [Ashby, Allan, 1979; Allan, Ashby, 1986]. A number of 
issues have been clarified in [Ashby, Allan, 1984; Podlaha, 1984; Skalafuris, 1985; 
Borisova et al., 1988; Huang et al., 1989]. In our opinion this concept needs to be 
further developed. The RS which have been used in above-mentioned papers have 
been constructed accounting for gravitational field of the Earth only. The precision 
of synchronization claimed by the authors is 1 ns. This precision is not always 
sufficient at present. On the other hand, the methods of the papers in question do 
not allow to improve the precision up to the level of 0.1 ns. Beside this, some 
new technical methods of synchronization have been developed in the last years 
[Gubanov et al., 1989; Kascheev and Bondar, 1989]. These methods do not appear 
to have been considered from the relativistic point of view. All these points lead 
to the necessity to re-consider and to make more precise relativistic algorithms of 
synchronization. 

In the present paper the usual notations will be used: G is Newtonian constant of 
gravitation; c is locally measured light velocity; the Greek indices c~,/3, % . . .  take 
values 0, 1,2, 3; the small Roman indices i, j ,  k , . . .  run from 1 to 3; repeated index 
imply summation irrespective of the places of this repeated index; the italic capitals 

1 , i = j  
A, B, C , . . .  number the gravitating bodies of the Solar system; 5ij = O, i ¢ j 

is the Kronecker symbol; the underlined quantities x, w__,.., are three-dimensional 
vectors; the absolute values of these vectors calculated by means of usual Euclidean 
metric 5ij are designated by the same letters as the original vectors but without 
underlining: x, w , . . . ;  the signature of the metric is + - - - 

2. Coordinate Synchronization in General Case 

In the framework of GRT the properties of a reference system are completely 
described by the components of its metric tensor. Let us choose certain RS. We 
denote coordinate time, spatial coordinates and metric tensor of the chosen RS by 
t = x°/c,  x i, g ~ ( t ,  x) respectively. The metric tensor 9 ~ ( t , x )  depends on the 
coordinates of the centers-of-mass of gravitating bodies z__ A (t), z__ B (t), x_ C (t), . . . .  
which are functions of time. These functions are to be determined from observations 
of different nature. When observing, an observer use the readings of his own 
clock, which measure proper time on his world line. The world line itself must be 
determined from observations. 

Let the observer a move along the trajectory xa(t). The proper time of this 
observer 7-a is related with coordinate time t by the well-known expression (a dot 
denotes the derivative with respect to t): 
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= (goo( t ,x~( t ) )  + 2_ goi(t,x__~(t))2~(t) + 
c 

1 . . , ,  1 / 2  

+ - ~  g~j(t,X_a(t))2~(t)gc~(t)) . (2.1) 

To establish one-to-one transformation between the coordinate time t and the 
readings of clock ra it is not sufficient to use only formula (2.1). One must set 
up an initial values for the differential equation (2.1). Some moment ta0 of the 
coordinate time must be prescribed to the moment 7-a0 of the proper time (or vice 
verse). Using the equation (2.1) and the condition TaO (tao) = TaO we can transform 
the readings of clocks 7a to the moments of coordinate time scale t. In the present 
paper we consider two coordinate time scales t and t / to be different even if they 
differ only by a constant term: t = t ~ + const. It should be noted that the definition 
of a scale t includes some equation of the form TaO(taO) = 7-a0. Having processed 
the observations, which refer to the derived scale t, we can obtain the coordinates 
of the observer himself_x a (t) and other objects __x A ( t ) , . . .  

Let us consider another observer b. His clock measures proper time Tb on the 
world line Z__b(t ), which generally speaking does not coincide with the world line 
of the observer a. The proper time 7-b is connected with the coordinate time t by 
the equation analogous to (2.1) with some initial values 7-b0(tto) = 7-b0. 

To synchronize clocks a and b is to find the initial values 7-b0(tb0) = 7b0 for 
clock b enabling one to transform to the same coordinate time scale t, to which we 
have decided to transform from the readings of clock a. For this purpose we must 
mark the reading of clock b corresponding to some event on the world line of the 
observer b, whose coordinate time tb0 we can calculate using the coordinates of the 
observers __x a (t), X__b(t ) and perhaps other objects. The above-mentioned event on 
the world line of clock b we will call 'synchronizing' event. 

Generally speaking, the observers a and b have totally equal rights. Postulating 
some equation of the form 7-bO(ttbO) = TbO, the observer b can transform from 
the readings of his clock T6 to some coordinate time scale t I, which differs from 
the scale t of  the observer a only by a constant term: t = t ~ + tab. Observing 
different celestial objects, calculating the moments of scale t ~ corresponding to 
these observations, and performing the reduction of the observations, the observer 
b can determine his own coordinates xb(t~), and coordinates of other celestial 
objects _z A (t), _x B ( t ) , . . .  in the form of functions of the time scale t ~. Comparison 
of the results of  observations and calculations of the observers a and b permits to 
obtain the difference tab of the coordinate time scales t and t ~, that is to synchronize 
the clocks. Moreover, the observer b may synchronize his clock with the clock a 
by observing celestial bodies and comparing the results of these observations with 
x A(t) ,z__B(t) , . . .  and X__b(t ). In this case some natural event (an observation of 
occultation of a star by a planet, etc.) may be considered as 'synchronizing' event. 
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Fig. 1. One-way synchronization. 

In principle the above-mentioned considerations allow one to synchronize 
clocks without some special procedure like signal exchange. Something similar 
happens during the processing of VLBI observations, which (besides other results) 
enables one to synchronize clocks at the stations [Counselman et al., 1977; Clark et 
al., 1979]. The only difference is the following. When treating VLBI observations, 
the joint reduction of observations made by both observers is performed accounting 
for the possible lack of clock synchronization. 

More simple, fast and reliable manner of synchronization is artificial creating 
of 'synchronizing' event on the world line of the observer b. Such methods of 
clock synchronization are often called 'autonomous'  or ' independent '  methods. 
The principal feature of all autonomous methods of synchronization lies in the 
fact that the coordinates _Xb(t ) of the observer b must  be known a priori .  These 
coordinates must  be calculated on the basis of observations performed by the 
observer a in his coordinate time scale L Let us consider some simplest methods 
of creating of 'synchronizing' event. 

At some moment  rao of proper time scale, which is supposed to correspond to 
the moment  to of the coordinate time, the observer a emits electromagnetic signal 
(Fig. 1). This signal reaches the observer b at the moment  tl of coordinate time. 
On the basis of coordinates of the observers _x a (t), _x b (t), and the light propagation 
laws in the chosen RS we can calculate the moment  tl. 

Indeed, 

c(tx - to) = IXb(tl) - x__~(to)l + A (Xa(g0), Xb(~l)) , (2.2) 

A (X__o, _Xl) being relativistic gravitational time dilation (Shapiro effec0 on the path 
from the point ~o to x__ 1. Solving the equation (2.2) by the iterations 

~(~o) _ to) = Ixb(to) - ~ ( t o ) l  + ~ ( x ~ ( t o ) , x b ( t o ) ) ,  

c(t~ ~) - to) = Ixb(~ n-~))  - xo(t0)l  + zx (~ (~o) ,  Xb(t~n-~))), 
n = 1 ,2 , . . .  (2.3) 

one can find moment  tl = limn-.oo t~ ~). 
On the other hand, the signal arrives at the observer b at the moment  %1 relative 

to his proper time scale. Thus, we can prescribe the calculated moment  tl to the 
observed moment  rbl and, thereby, synchronize observers' clocks. 
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Fig. 2. Two-way synchronization. 

~4(t~) 

This procedure, which is correct in principle, has at least one drawback - large 
inaccuracies of synchronization. Coordinates of observers are always known with 
some errors (Sx, which with the factor 1/c directly contribute to the inaccuracy of 
determination of the moment  tl: (5tl ,-~ ~ax. 

Using the fact that real observers move with the velocities v which are much 
less than the light velocity c, one can significantly diminish the influence of in- 
accuracies of the observers' coordinates on the synchronization accuracy. Let the 
signal receiving at the moment  rbl is reflected and retums to the observer a at the 
m o m e n t  Tag (Fig. 2). 

Integrating the equation (2.1) and using the values rao, to, ra2, one can calculate 
the moment  t2 of coordinate time corresponding to the reading ra2 of the clock a: 

d t  = r a 2  - -   -oo. (2.4) 

The moment  tl to be computed is defined by the following set of equations: 

1 (tz - to) + 6 + 6g , tl = t 0 + ~  

~gr = l(A(---Xa(~;0),X_.b(~l)))- A ( X b ( t l ) , ~ a ( t 2 ) ) ) ) ,  

R 1 -- __Zb(tl) -- Xa(t0) , ___R2 ~-- Xb(tl) --__Xa(t2). (2.5) 

In the flat space-time of the special relativity theory the correction 3a~ becomes 
equal to zero. The correction (5 results from the difference of the path length R1 
and R2 corresponding to the light propagation from the observer a to the observer 
b and back, which is caused by the motion of the observer a relative to the chosen 
RS. It should be noted that writing down the formula describing the coordinate 
time interval needed for a photon to propagate from one fixed point to another in 
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the form (2.2), we implicitly impose certain limitations on the employed reference 
system. Using metric language these limitations may be expressed by the fact that 
non-Galilean part of the m e t r i c / z ~  = g ~ # -  z/,,O (700 = 1,r/0i = 0,z/ij = -6~j 
being Minkowski flat space-time metric) is caused only by the gravitational fields 
of the bodies A, B, . . .  and vanishes when gravitational field is absent. By other 
words, if we neglect the influence of gravitational field our RS must turn into an 
inertial RS of the special relativity theory. If such limitations are undesirable for 
some reasons, in right-hand side of (2.2) one must  add the term e (x_~(t0), Xb(tl)) 
reflecting non-gravitational anisotropy of the light velocity in non-inertial RS. 
In rotating RS such anisotropy leads to the effects similar to the Sagnac effect 
[Post, 1967; Ashtekar, Magnorl, 1975; Saburi, 1976; Landau, Lifshitz, 1975]. In 
the present paper we will consider only such reference systems which satisfy the 
limitation in question. 

To compute the corrections 5 and ~gr in (2.5) it is necessary to know the 
coordinates of the observer b at the moment  of signal reflection _Xb(tl ). Therefore, 
the moment  tl must  be computed by successive iterations: 

t~0) 1 =  (to + t2), 
t~n) 1 6(n_l) = ~(t0 + t2) + 6 (n- l)  + vgr , 

n = 1 , 2 , . . . ,  

(2.6) 

when computing corrections 6 (i) and 6(~ coordinates of the observer b being 

evaluated at the moment  t} i)." 
In the case when the velocity of an observer is small relative to the light velocity, 

the relation IR1 - Rzl << R1 becomes true and the correction (5 may be expressed 
in the form: 

2 c  \ -  - 2R1 - 

2n ( l ax_ol + o(la_xol ni 
_n = R1/R , 

1.. 
Ax_a = xa(t2) - x_~(to) = _~(to)(t2 - to) + ~x,( to)( t2  - to) 2 + . . .  (2.7) 

Thus, the errors of synchronization are caused mostly by the inaccuracies of Az_a. 
So called method of transported (or portable) clock is another method of syn- 

chronization (Fig. 3). Let we have another one clock c. At the beginning the 
positions of the clocks a and c coincide. At some moment  to of coordinate time we 
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Fig. 3. Clock-transport synchronization. 

compare clocks a and c, that is we mark their readings 7-a0 and r~o at this moment. 
Then clock c is transported along known trajectory z~(t). After that we can com- 
pare clock b with clock c. Their reading at the moment of comparison is ~-~1 and 
Tbl. The coordinate time t] corresponding to this moment may be computed on the 
basis of known values 7-~o and 7-~1, trajectory _zc(t ), and moment to. Inverting the 
equation 

£ ~ ~ c ( t , ~ c ( t ) , z c ( t ) )  dt  = Tel - -  TcO (2.8) 

we get the value tl and, thereby, we find initial value 7-b(tl) = "/-bÂ enabling one 
to perform the transformation from the proper time scale of the observer b to the 
coordinate time scale L 

In spite of their simplicity, the considered algorithms of synchronization con- 
tain all principal, from the view point of relativity theory, aspects of practically 
employed methods of earth-based clock synchronization. 

3. Geocentric Reference System: Light Propagation, Relation between 
Coordinate Time and Proper Time of an Observer 

3.1. METRIC TENSOR 

According to the basic principle of GRT, an analysis of any process and phe- 
nomenon occurring in the neighborhood of the Earth may be performed in any RS. 
In just the same way, coordinate time of any RS may be considered as the coordi- 
nate time scale. Besides the solving of synchronization problem, RS is employed 
to analyze the motion of bodies and to describe the procedures of observations. 
The choice of RS is governed mostly by the considerations of convenience. 

The widely-accepted versions of a barycentric reference system (BRS) [Fock, 
1959; Landau, Lifshitz, 1975; Will, 1981 ] turn out to be convenient for the analysis 
of the planets' motion and the light propagation inside the Solar system and outside 
its boundaries. BRS is valid in the whole Solar system and its neighborhood up 
to the boundary of the Solar system's near zone, which dimensions are limited 
by the minimal wavelength of the gravitational waves being emitted by the Solar 
system. BRS is the relativistic generalization of Newtonian inertial RS, whose 
origin coincides with the barycenter of the Solar system. Synchronization with 
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respect to the coordinate time of BRS is the only way to establish self-consistent 
global time scale in the whole Solar system. 

Many branches of science which need self-consistent time scale (geodynamics, 
navigation and so on) deal with the processes bounded in space by the neighborhood 
of the Earth (say, by geostationary orbit). In the same time, BRS is inconvenient 
when analyzing processes and phenomenons being located inside the compact 
subsystem, i.e. inside space domain whose dimensions are small with respect to 
the distance to the nearest body not contained in the domain involved. Utilization 
of BRS for an analysis of physical phenomenons being located in the neighborhood 
of the Earth (the motion of an earth satellite, light propagation etc.) results in some 
practical difficulties. 

Let us suppose that when analyzing observations of an earth satellite on the 
basis of Newtonian physics we have errors of the order of ~A. Slightly idealizing 
the situation we consider that the errors are caused mostly by relativistic effects. 
If we construct relativistic model of these observations using BRS, the differ- 
ences between relativistic formulas describing the motion of the satellite, the light 
propagation etc., and their Newtonian analogs are significantly (by an order of 
magnitude) greater than .A. When calculating immediately observable quantities 
these large corrections compensate each other to a marked degree and final ex- 
pressions contain the terms of order of .A. Inconveniences are obvious. In order to 
overcome this difficulty one must construct in the neighborhood of the Earth local 
inertial RS, in which gravitational field of external bodies can be represented in 
the form of tidal terms only. Different approaches to the construction of such RS 
have been developed by a number of authors [Ashby, Bertotti, 1986; Fukushima et 
al., 1986b; Bmmberg, Kopejkin, 1989; Voinov, 1990]. It is RS of this kind that has 
been used in [Ashby, Allan, 1979; Allan, Ashby, 1986] to describe the algorithms 
of synchronization. 

In this paper we follow the approach which has been developed in [Bmmberg, 
Kopejkin, 1989; Kopejkin, 1988]. The authors has constructed local inertial geo- 
centric RS (GRS) in garmonic gauge. Let us denote coordinate time and spatial 
coordinates of this RS by u and w i respectively. Its metrics is defined by the 
formulas 

= 

g o i ( u ,  w__) = 

= 

1 - ~(UE + UB) + O(a-4), 
4 i + + 

-Sij(1 + ~(UE + UB)) + 0(c-4),  ( 3 . 1 )  

- GME 1 GI E wiw j 
- -  + + + . . . ,  
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• 1 , .  i - j  wk 
U~ = ~ # E ~ - ~  + . . . ,  

%o 3 
3 [ Q A w i w  j O ( G M A r ~ E A  , 

A # E  

i j 
O A _ G M A  (r 'EAr~EA 1 - -  g S ~ j )  ( 3 . 2 )  ' r L  

where M A  is the mass of the body A; r_EA = x E -- x_ A is the difference between the 
barycentric positions of the centers of mass of the Earth and the body A; e*jk is the 

fully antisymmetfic Levi-Civita symbol, e½3 = +1; S E is the angular momentum 
vector of the Earth (spin) 

S.S E ,.~ IECOE, (3.3) 

w__ E is the angular velocity of the Earth; [ E  is its moment of inertia with respect to 
the rotation axis; iriff is the Earth's quadrupole moments defined by 

I i  E = £ p E W i W  j d3x ,  (3.4) 

PE being the mass density and the Integration being performed over all the volume 
of the body A. In the metric (3.1)-(3.2) terms of higher orders of magnitude are 
omitted. 

3.2. LIGHT PROPAGATION 

The light propagation in GRS has been investigated In [Voinov, 1990; Klioner, 
1990a,b]. For the problem of synchronization the following formula defining the 
coordinate time for a photon to propagate from one fixed point W__o to another w is 
important 

c(u - ~o) = I_w - wol + / x  

A = A E  + A B  (3.5) 

where AE and AB are relativistic time delay caused by the gravitational fields of 
the Earth and external bodies respectively. These quantities are defined by: 

A E --  

A B = 

2 G M E  In w + wo  + Iw__ - W__o I + . . .  

c z w + wo  - ]w_W_ - W__ol ' 

• " _ A i j 

A ~ E  

+ . . . .  (3.6) 
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Here ~ is the unit direction of propagation of a photon at the moment uo ( ~ = 
(w -ZOo)/Iw__ -w__0l + O(c -2) ). In relativistic terms u - uo is equal to Iw__ - w_w_w_w_~]/c. 
The value of QA must be calculated at the moment u0. 

In the expression for AE terms caused by the non-sphericity of the Earth and 
its rotation are omitted. The influence of these factors on the light propagation 
has been investigated in [Richter, Matzner, 1981; 1982a,b; 1983; Klioner, 1989b]. 
The results of the papers allow us to conclude that the total effect of the factors 
in question on AE is less than 0.05 ps, the effect of the Earth's rotation being by 
3 orders of magnitude smaller than the effect of its non-sphericity. This value is 
much smaller than the present and anticipated accuracy of observations. 

If the trajectory of a photon is bounded by the geocentric sphere of the radius of 
50000 km, the values of relativistic time delay may be estimated as I ~ AE] <--- 163ps, 
I 1 AB] ~ 0.01ps. The only significant effects in A B are due to the Sun and Moon. 
Thus, with sufficient accuracy one can suppose that in (3.5) A = A E. 

3.3. PROPER TIME AND COORDINATE TIME 

The differential relation between proper time r of an observer moving along the 
trajectory w(u) and the coordinate time u of GRS has the form 

4- 

f (zo ,~ ,u)  

= 1 -b f(w__,Cv, u), 

= + + 

+ o(c-4), (3.7) 

a dot denoting the derivative with respect to u: 4- = d~ du" 
Let us consider this formula in details. The influence of the Earth's monopole 

field on 4- is maximal at the surface of the Earth (here it has the value 7.10 -l°) and 
decrease proportional to 1/w. The influence of the observer's geocentric velocity 
may have approximately the same maximal value. For a clock, which is at rest 
relative to the Earth's surface, this quantity is much smaller- I zb2/e2 < 1.2.10-12. 
Near the Earth's surface there is significant effect due to quadrupole gravitational 
field of the Earth: 

4-Q -- 
1 IG.'~ wJ w j 

1G ME Pw~ J2E 2 c 2 ( 3 s i n 2 ~ -  1) < 8 .10  -13 (3.8) 

where PE is the equatorial radius of the Earth, j E  is the coefficient of second zonal 
garmonic of its gravitational field, ~ is the geographical latitude of the point of 
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observation. The effect of harmonics of higher orders is by approximately 3 orders 
of magnitude smaller and equal to 10 -15 - 10 -16. 

The influence of external bodies on the rate of the clock of an Earth-based ob- 
server can be divided naturally into two components: direct influence, manifesting 
itself in varying of the potential of external bodies at the point of observation (first 
of all, due to diumal rotation of the Earth), and indirect influence, which consists 
in tidal deformations of the Earth's body and its gravitational field and results in 
varying of the potential of the Earth itself. Thus, the total effect of the potential of 
external bodies is 

1 (1 + k~. - h 2 )  × 
2 

GMA w 2 
E [  "~ r3A (3cOs2 °~A(~) - I) +O(GMA 

113 3 

A # E  62 r~EA) }. (3.9) 
× 

Here tea (u) is the angle between the vectors w and _tEA, ke and h2 are the Love 
numbers characterizing the reaction of the Earth's body on the tidal potential of 
external bodies. For the most models of intemal structure of the Earth 1 +/~2 --  h2 ~'~ 
0.7. The dependence of aA on time is caused, first of all, by diurnal rotation of the 
Earth. Each term in (3.9) can be divided into a secular term and two periodic ones 
- diurnal and semi-diurnal: 

GMA w 2 
- ( l + k e - h 2 )  ~ c2 r3AE × 

A # E  

× [4(3 sin2 5A -- 1)(3 sin 2 ~ -- 1 )+  

3 
-~-~ COS 2 5 A COS 2 ~0 COS2WE(U -- UA) + 

3 
+ ~  sin2~A sin2~ cos wE(u -- UA)], (3.10) 

5A being declination of the body A, UA being the moment of upper culmination 
of the body A at the place of observation. Maximal value of the secular term in 
(3.10) is less than 2 • 10 -17. Integrating 4- B with respect to u, one can find that 
maximal difference between the scales 7- and u is 0.3 ps and 0.2 ps for the diurnal 
and semi-diumal terms respectively. Actually, because of the mutual motion of the 
Solar system bodies, 5A and UA depend on time as well. This dependence results 
in the appearance of the complicated long-periodical effects whose investigation 
is out the scope of our paper. 
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3.4. UNITS OF MEASUREMENT 

It is convenient for practical use of the coordinate time scale u that its rate be equal 
to the rate of the proper time of an observer on the geoid. Here, by the geoid we 
mean the relativistic u-geoid [Bjerhammar, 1985; Soffel et al., 1988; Kopejkin, 
1991] - two-dimensional surface close to the mean sea level, in any point of which 
the rate of the proper time of an observer, who is at rest relative to the Earth's 
surface, with respect to the geocentric time u is constant: 

dT 
du kT const. (3.11) 

This definition is one of the possible relativistic generalizations of the Newtonian 
definition of the geoid. From the metric of GRS it is easy to see that the equation 
(3.11) is equivalent to 

w (w_, ~,  u) - - d r ( w _ ,  ~ ,  ~)  : 

: ~_2(~) + uE(~_, ~,) +~ 
A=S,L 

= W0 = c2(1 - kT). 

3 A i " -{Q,{y ~ + . . .  + o(c  -2) = 

(3.12) 

Here it is to be kept in mind that for the points of the Earth's surface _~ = w E x _w. 
From the theoretical point of view, the terms explicitly written in (3.12) define 

the surface of u-geoid with the accuracy of 1 cm. The effect of missed relativistic 
terms, which are O(c-2),  is less than 0.5 cm. Quadrupole tidal field QA must  
be taken into account for the Moon (~  35 cm) and the Sun (,,~ 16 cm) only. 
Octupole tidal field QA k [Brumberg, Kopejkin, 1989] being neglected in (3.12) 
gives significant effect only for the Moon (N 0.6 cm). The equation of u-geoid 
(3.12), corresponding to the Newtonian approximation of GRT, coincides with the 
generally accepted Newtonian definition of the geoid. 

Putting W0 : 6.263686.107 (this constant is part of the system of geophysical 
constants [Fukushima, 1990]), one obtains 

kT - - - -  1 - 6.969290- 10 -1°. (3.13) 

Let us introduce new variables ~ and _~: 

~_ : ksw_. (3.14) 

Then for an observer on the geoid 

dT 
- -  = 1 .  ( 3 . 1 5 )  
d~ 
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The transformation (3.14) is to be considered as re-definition of the units of 
measurement of time and length [Fukushima et al., 1986a; Brumberg, Kopejkin, 
1990]. One can believe that in (3.14) u and w_ are the numerical values of the 
coordinates of an event, expressed in the SI units Is] and [m], while ~ and ~ are the 
numerical values of the coordinates of the same event, expressed in the units [so] 
and [mo], which are defined by 

= [c]/kr, 

[rna] = [ml/ks.  (3.16) 

According to the definition of the SI units, l[so] is the duration of 
9192631770/kT periods of radiation corresponding to the transition between 
two hyperfine levels of the ground state of the caesium 133 atom; l[mG] is 
the length of the trajectory passed by the light in vacuum during the time 
1/299792458 k T / k s  [so]. An observer in his practice uses the SI units. 

The masses of the bodies and the light velocity expressed in the units [so] and 
[mo] are connected with the usual SI values by 

G"-'-MA 3 2 = k s / k  T GMA, 

= kS /k  T C. (3.17) 

The choice of the constant ks is govemed mostly by the considerations of 
convenience. In our opinion, the most acceptable values are the following: 

1. ks = 1: 
The unit of length coincides with the SI one; GMA = 
G M A / k  2, 5 = c/ky;  This choice of ks has been considered in 
[Fukushima et al., 1986a; Kopejkin, 1989]. 

,2/3 
2. ks  = I¢ T : 

The values of the bodies' masses remain unchanged; GMA = 

GMA, C = kT 1/3c. 
3. ks = kT: 

The value of the light velocity does not change; GMA = 
kT GMA, ~ = c; This appears to be the most appropriate value of 
ks. This value has been recommended in [Fukushima et al., 1986a; 
Bnunberg, Kopejkin, 1990]. 

In the new variables (5, ~)  the formulas (3.5)-(3.6) have the same functional 
form as ha the variables (u, w): 

2GME ha + + ]w__- - 2 1  + . . . .  (3.18) 
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Finally, let us obtain the appropriate expression defining the relation between 
the GRS coordinate time and the proper time of an observer, which is situated at 
the height h above the geoid and moves with respect to the Earth's surface having 
the velocity _u. According to the definition of the geoid, we have 

h h 
W(ZOo(1 + ~-~n ), W__E × W__o(1 + ~ ) +  __v, u o ) =  W(ZOo, WE × ZOO, U0)+  

OW i 
+ -ff~w~(W--o, ~-E × zoo, uo) wbh + 

zoO 

1 02W i J 
~ zoOzoO z.2 

+ 20wiOwJ (w°' w-E × zoo, '~°) ~--:-$2-~ + zoO 

+ l v z  + (w__ E × zo0)_u + O(h 3) = (3.19) 
2 -  

1 1 2 
= Wo - g(w__o, uo)h + -,~n(w__o, uo)h 2 + ~v + (~E × W---o)--v+ O(h3) 

where ~ is the vector, whose absolute value is equal to the height of the geoid 
in the direction of W__o/Wo at the moment  uo; g = g(W__o, uo) ,.~ g(~) is the gravity 
acceleration at the point of intersection of the observer's radius-vector with the 
geoid, n(w_o, uo) ~ const being its vertical gradient: 

g = 9.78033(1 + 0.00530sin 2 ~) + . . .  m / s  2, 

n = 3 .086 .10  -6 + . . .  S -2 .  (3.20) 

At the fight-hand side of (3.19) we have neglected terms of the order of O (h3), 
which appear when expanding the left-hand side in Taylor series. Relative error due 
to these terms are approximately equal to 2.7 • 10 -21 (hi 1 km) 3. Thus, given the 

error c one can use (3.19), if Ihl _< 33(e/10-16)l/3km. If we neglect in (3.19) the 
term proportional to h 2, the limitation on maximal height above the geoid have the 

form Ihl <_ 2.4(c/lO-Z6)l/2km. This is not sufficient obviously when transporting 
a high accuracy clock (if h = 12 km, the error becomes equal to 2 .10-15) .  

Accounting for the numerical values of the constants involved one can rewrite 
(3.19) as 

d~ 
N 

g - - h -  n 2 1 2 1 
1 + c2 ~-~h - ~--~v - ~(_w E × ZOO)_U 

1 + 1.08821 • 10-16h + 5.77 • 10-19h sin 2 cp - 

-1 .716-  10-23h 2 - 5 . 5 6 3 . 1 0 - 1 8 v  2 - 

- 5 . 1 7 5 0 . 1 0 - 1 5 v  cos~  cos0 + 

+1 .74 .  l O - 1 7 v  COS ~ s in  2 ~ cos  0 + . . . ,  (3.el) 
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being the latitude of the point of observation, 0 being the course angle (the angle 
between the direction of the observer's motion and the direction of the east). The 
values of h and v are to be expressed in m and m/s respectively. 

The formula (3.21) has the accuracy 10 -16 provided that h < 15 km and 
// _< 300 m/s.  For a clock which is at rest relative to the Earth's surface, the 
relation between r and 5 is defined by the first four terms in (3.21). 

In the next section we will suppose that all quantities relating to GRS are 
measured in [sG] and [mG] and we will miss out the tilde over ~, ~ ,  GMA and 5. 

4. Algorithms of Earth-Based Clock Synchronization 

In the present section we will consider some methods of synchronization, which are 
supposed to be used for autonomous synchronization of the clocks at the stations 
of radiointerferometric networks. 

4.1. TRANSPORTED CLOCK 

The problem is to find the value of tl from the integral (2.8). By the coordinate 
time t we mean the GRS time scale u. Inverting (3.21), one gets 

rl - To - 1.08821 • 10 -16 ~ 1  h(T) dT -- 

--5.77" 10 -19 f~ l  h(T) sin 2 ~(~-) dr  + 

+1 .716-10  -23 f l  a h2( ' r )dr  + 5 .563.10 -18 a~'0frl I/2(7-) dT- + 

+5.1750.10  -15 f~ l  v(r)  cos ~( r )  COS O(r) d r  - 

- 1 . 7 4 . 1 o - 1 7 f ~  sinZqo(r) cosO(r) dr. (4.1) 

The functions h(v), qo(7-), v(r) ,  O(T) are defined by the trajectory of transported 
clock. Permissible uncertainties of these functions strongly depend on the particular 
conditions and duration of clock transport. 

Let us consider an example. The clock is transported by jet airplane during 8 
hours with the velocity u = 300 m/s  and at the height h = 12 kan. The required 
accuracy of determination of Ul, that is the accuracy of synchronization to be 
attained, is supposed to be 1 ns. We consider that the transported clock is accurate 
enough (in the case under consideration its accuracy should not be worse than 
2 • 10-14). It is easy to prove that under these conditions the above-mentioned 
functions are to be known with the mean uncertainties 
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Crh <_ 100 m, 

cr~ < 4 m / s ,  

a~ <__ 10 I, 

~r0 < l0 t, (4.2) 

If the accuracy of synchronization to be attained be 0.1 ns, permissible uncertainties 
decrease by an order of magnitude. 

The relativistic terms, in the order they are written in (4.1), have the values: 
37.6 ns, 0.2 ns, 0.07 ns, 14.4 ns, 44.7 ns, 0.06 ns (for the terms which depend on 
and 0 the maximal values are indicated). The total effect may amount to 67.9 ns. 

In order to compute ul with given level of accuracy ~r,~, the uncertainties of h, 
u, ~ and 0 must satisfy an inequality of the form a 2or 2 + b 2c r2 + c 2Cr 2 + d zCr 2 < crzu, 
a, b, c, andd being some numerical coefficients. The expressions (4.2) are one of 
the possible combinations of the values which satisfy the inequality involved. For 
example, we can choose crh _< 200m, c~, _< 2 .5m/s  and so on. Nevertheless, 
the expressions (4.2) give correct information about the values of permissible 
uncertainties. In the following, when considering other methods of synchronization 
we will indicate partial solutions of analogous inequalities. It should be understood 
that this is exactly partial solutions. 

4.2. DUPLEX LINK VIA SATELLITE 

When synchronizing Earth-based clocks situated far enough from each other, direct 
exchange of electromagnetic signals (Fig. 2) becomes impossible. In this case one 
must resort to the help of a relay station. Artificial earth satellites or meteor tracks 
- the regions of ionized air appearing when a meteor passes through the Earth's 
atmosphere - can be utilized as a relay station. There are many technical methods 
of synchronization with the aid of earth satellites. Here we will consider the method 
which utilize duplex communication link via satellite. High cost of  duplex satellite 
link hinder this method from wide spreading in practice. Nevertheless, the method 
in question is one of the most precise methods of synchronization. 

The scheme of the method is shown in Fig. 4. At the time when the reading of 
the clock a is ~-ao (this moment corresponds to the moment u0 of the coordinate 
time) the station a emits a signal, which arrives at the satellite at the moment ~1 
and then comes to the station b at the moment when the reading of its clock is "rb2 
(the coordinate time uz). The station b emits the signal at the time ~-bo (u0 + Au  in 
the coordinate scale). This signal reaches the satellite at the moment u3 and comes 
to the station a at the moment 7-a4 (U4). We suppose that during the observation 
the coordinates of the stations ~ (u), W__b(U ) as well as those of the satellite w~ (u) 
are known. The observable quantities are two intervals of  the proper time of the 
clocks a and b: ~-~ = 7-~4 - Tao and % = Tb2 -- Tb0 • It is assumed herewith that the 
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Nmo) 
~o 

W_s(U ) ~-sfua ) 

~ (u a) ~ (Uo+AU) ~ (u a) 

Fig. 4. Duplex link synchronization. 
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clocks have been initially synchronized to the accuracy of a few tenth of second. 
Thus, both 7-a and 7-b are non-negative. The quantity to be determined is coordinate 
desynchronization Au  of the clocks. Generally speaking, one can employ any 
satellite. In the following estimations we shall suppose that the satellite in use is 
geostationary one with arbitrary inclination of the orbit. 

Using the formula (4.1) the observables 7-a and ~-b can be easily transformed to 
the corresponding intervals of the coordinate time. Since ~-~ and 7-b are less than 
0.56 s (the time needed for a photon to propagate from one station to another and 
back), we have 

~l"a - ~  ~ 4  - -  ~ 0  -'~ T a ~  

Zt'b = ~ 2  - -  ~ o  - -  A ' t t "  = T b .  (4.3) 

Here we neglect the quantities of the order of 1 ps. In the following we shall 
suppose that the almospheric delay and the delay due to the equipment are properly 
accounted for (see [Gubanov et al., 1989]). 

We can write the following set of equations: 

¢(~/'1 -- ~0)  = R1 q'- A1 ,  

C(~2 -- Ul )  = R2 + A2,  

c(~3 -- U0 -- A U )  = R3 + / " 3 ,  

c ( u 4  - -  u3) = Pt4 q- A4, 

_n~ = - ~ s ( ~ ) -  ~ ( ~ 0 ) ,  

__n2 = __w,(~) - ~ ( ~ 2 ) ,  

R 4 = ~ t ; s ( ~ 3 )  - ~_~_a(1$4), 
(4.4) 

A i being gravitational time delay along the path Ri. Adding the first equation to 
the second one, then the third equation to the fourth one, and subtracting the results, 
we can find the expression defining desynchronization to be determined 
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1 
Au = ~(u~ - ub) + a + 69,-, 

1 (R~ + Rz - R3 - ~),  
1 

6g~ = ~ (AI  + / X 2  - % - A4).  (4.5) 

Although every Ai may amount to 77 ps, the correction 59~ caused by the 
gravitational field of the Earth does not exceed 1 ps and can be neglected. 

We denote 

AW, 

AW a 

Aq)3 b 

na 

~-- Ws (Z~3) --  ~/3s(~l) , 

= ~ ( u 4 )  - ~ ( ~ 0 ) ,  

= ~ ( ~ 2 )  - ~ ( ~ o  + 6~), 
= .__RI/R1, ~ = R 2 / / ~  2. (4.6) 

The values of IA~I and IA~I are less than 260 m, and IAw__.sl < 880 m. Thus, 
neglecting terms of the order of 10 ps, we have 

(4.7) 

The vectors of displacement must be computed as 

AW~ 

Aw___b 

Aws 

1 
= _~z × ~(~o)'~o + ~~F  x (~E × ~ ( u o ) ) ' ~ ,  

1 
= ~-E × ~ ( ~ o  + A~,)~,b + ~w__E × ( ~  × ~ ( u o  + exu))ub z, 

1 2 G M E  / , 2 
= Vs(~I)Z/, s q- ~as( 'u,1)I / ,  s = Vs('//,1)'as 2 ~ ) w s { , ' o , 1 ) ' a s  (4.8) 

where v_ s and _% ~ - 1 G M E w - [ 3  w~  are t he  velocity and acceleration of the 
satellite, Us = u3 - u l  is the time interval between the moments of reception of 
the signals coming from the stations b and a. The terms which are quadratic with 
respect to u may amount to 1 cm in Aw~, and 0.5 cm in Aw_,, and Aw_b. 

Depending on the relative location of the stations and the satellite as well as the 
initial desynchronization Au  of the docks, the correction 5 may vary from -430  
ns to +430 ns. It is easy to show that, in order to compute the value of 6 with the 
accuracy of 0.1 ns, the coordinates of the satellite and stations are to be known 
with the precision 
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~rws < 500 m, 

crw~, C%b _< 100 m. (4.9) 

Let us note that the polar motion can be neglected because its effect on IAw~l 
and l ex l is less than 1 mm. The velocity of the satellite v_ s is to be known with 
relatively high accuracy: 

avs _< 5 cm/s. (4.10) 

The absence of a clock onboard the satellite does not permit the direct measure- 
ments of us. Nevertheless, this quantity may be computed with sufficient accuracy 
(,-~ 1 #s): 

1 1 
us  = 5 ( u o  - ub) + (R3 - R 1 ) ,  (4.11) 

the difference R3 - R1 being calculated on the basis of coordinates having the 
accuracy (4.9). 

Let us consider the particular case when the satellite moves in the equatorial 
plane. In this case v_ s = _w E × w__ s and combining (4.7) and (4.8) we can write 

2CC --WE × ws 1 {_~I(U ~ - - .  W__b(U~+Ub)}+ = 

2WE +O(u~,b,,) + O(IAwI2/R) ~ ---~--A, 
__w, = w,(u l ) ,  ~ = w~(u0), w__b = _Wb(U0 + Au) (4.12) 

where A = - ~ I  OaE × ws (w__ ~ -- Wb) is the area of the quadrangle whose vertexes 2zo E - -  
are the center of  mass of the Earth, and the projections of the stations and satellite 
onto the equatorial plane. The value A is positive when the station a is situated 
westward with respect to the stations b, and negative otherwise. The formula (4.12) 
have the accuracy of order of 1 ns. 

The scheme under consideration (Fig. 4) contains some other variants of  the 
clock synchronization via duplex satellite link (in particular, the modification when 
the station b reflects the signal coming from the station a, and does not emit another 
signal). 

4.3. LASSO 

The method LASSO (LAser Synchronization from Stationary Orbit) [Ashby, Allan, 
1979; Serene, 1981, 1988] is one of the most promising methods of Earth-based 
clock synchronization. The potential accuracy of this method exceeds 0.1 ns. The 
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ll)~ ( U 1 ) ~--~ ( U 3 ) 

_ 

N(Uo) ~ (u  a) N (Uo~'~u) N (u4) 

Fig. 5. LASSO.  

utilization of laser pulses diminishes the influence of the Earth's atmosphere on the 
uncertainties of synchronization. The drawbacks of LASSO are obvious -h igh  cost 
of the equipment and dependence on the weather conditions. The satellite employed 
in LASSO must have special onboard equipment - laser comer reflectors equipped 
with the fast photo diodes and precise interval timer. 

The scheme of LASSO is shown in Fig. 5. This scheme is quite similar to the 
scheme of the duplex method considered in the previous subsection. At the moment 
when the reading of the clock a is Ta0 (U0 of the coordinate time) the station a emits 
a laser pulse which reaches the satellite at the moment Ul (the reading of the satellite 
clock is Tsl), makes the onboard timer start, and is reflected backward to the station 
a where is received at the moment TaZ (UZ in the coordinate time scale). Just the 
same procedure is repeated from the station b. The pulse coming from the station b 
stops the onboard timer. The readings of the timer are sent to the observer via radio 
link. The observable quantities are three intervals of  the proper times of the stations 
a and b, and the onboard clock: Ta = 7"a2 -- T~0, Tb = Tb2 - -  TbO, Ts - ~  T s 3  - -  Tsl. 
The intervals Ta and Tb are less than 0.28 s (the geostationary satellites SIRIO-2, 
METEOSAT-P2 are employed in LASSO [Serene, 1981, 1988]). Therefore, with 
the sufficient accuracy 

~ta "~- ~ t 2 - - ~ 0  ~ Ta~ 

%bb : U 4  - -  UO - -  A U  : T b .  (4.13) 

Generally speaking, the interval 7s is arbitrary and must be transformed to the 
interval of coordinate time on the basis of (3.7) and (3.2). However, if Ts < 1 s and 
the satellite is geostationary, we can write 

us = u3 - Ul = (1 - 5.4.10-1°)Ts. (4.14) 

From the expressions which are analogous to (4.4) one can easily obtain the 
expression for the desynchronization to be determined 
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1 
AU -~- -~(U a -- Ub)"~Us-I- ~"l-~9r, 

= 2-~le(R1 - R2 - R3 + R4), 5 

~gr -~- -~C (A1 --  A2  --  A3 nt- A 4 )  

where 

(4.15) 

_R1 = _ w , ( ~ ) - _ ~ o ( u o ) ,  

_R2 = _ ~ ( ~ ) - _ w o ( u 2 ) ,  

R 4 ~--- '/gs(?Z3)--~_~.b(Z~4), (4.16) 

Ai being the gravitational time delay along the path __R i. Similarly to the duplex 
method, ~a~ < 1 ns and can be neglected. The correction ~ may be written as 

A w__a 

A W__b 

n_a 

1 ( n o A a  - mt,_ b + O(IAzl2/R)) 

= ~ ( u 2 )  - ~ ( u o )  = ~ x __Wa(~0)~a + . . . ,  

- -  ~_~.b(~4) --  ~_.b(~0 -b A ~ )  : (,d E X ~W_b(?~0 n t- A~) ' /z  b -~- . . .  , 

= R_I/R1,  ~ = R 3 / R 3 .  (4.17) 

In the case of LASSO IAw__a[ and IAWbl do not exceed 130 m. It is easy to see that 
in order to compute the value of t5 with the accuracy of 0.1 ns we must know the 
coordinates of the satellite and stations with the accuracies 

crws _< 4600 m, 

crw,~,cr~b _< 500m.  (4.18) 

Relativistic correction (4.17) depends on the motion of the satellite only indirectly. 
Therefore, the velocity of the satellite may not be known with high accuracy. 

4.4. SYNCHRONIZATION VIA METEOR-BURST LINK 

In spite of not so large maximal distance between the clocks to be synchronized 
(_< 2300 km) and interrupted character of the link (the existence of a suitable me- 
teor track being unamenable to control is needed), this method is widely employed, 
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because of low cost of the equipment and relatively high accuracy of synchroniza- 
tion [Kascheev, Bondar, 1989]. The method in question does not appear to have 
been considered from the relativistic point of view. The possible explanation is the 
following. The equipment already developed enables one to attain the accuracy of 
the order of 40 ns. In the same time, the relativistic correction in this method may 
amount to 10 ns only. The high potential accuracy of the method (,,~ 1 ns) makes 
us to analyze consequently the relativistic effects. 

There are many technical modifications of the synchronization method via 
meteor-burst link [Kascheev, Bondar, 1989]. We will consider only one modifi- 
cation, which is quite similar to the synchronization method via duplex satellite 
link (Fig. 4). The utilization of a meteor track instead of a satellite for the retrans- 
mission of a signal is the only difference between the methods. The expressions 
(4.3)-(4.8) and (4.11) remain to be correct in the case being considered in the 
present subsection. 

The characteristic feature of the meteor-burst link method of the clock synchro- 
nization consists in the fact that the location of the meteor track (that is, the location 
of the relay station) is not known in principle. The location of the retransmission 
point ws must satisfy two conditions. First, this point must be observable from 
both two stations a and b. Second, its height above the Earth's surface is from 
80 km to 105 km (just at these heights the most of meteor tracks which can be 
employed for meteor-burst link forms). The reflection of radio waves from meteor 
tracks is subjected to the usual law of reflection known from the geometrical optics. 
According to this law the meteor track is to be tangent to the ellipse which passes 
through the point of retransmission and whose focuses coincide with the stations. 

The uncertainty of the location of the point w~ leads to the impossibility of 
accurate computing of the relativistic correction 6 being defined by (4.7). The 
gravitational effect 6a~ tums out to be negligible again. Our aim is to calculate 
'averaged' value ~ of the relativistic correction over all possible locations of the 
point ws when synchronizing the clocks situated at two given points w a and wb. 
Besides this, we must point out the maximal deviation of ~ from the true value 6. We 
suppose that the motion of the retransmission point relative to GRS is caused only 
by the rotation of the Earth. We neglect herewith possible additional displacement 
of the meteor track with respect to the Earth's surface due to the wind. 

It is easy to see that in any case ua and ub are less than 16 ms, and lu,] _< 
8 ms. According to our assumption concerning the character of the motion of the 
retransmission point, _v~ -- _w E × w__ s and the relativistic correction (4.7) is defined 
by the formula which coincide formally with (4.12) 

1 { (uo)ru _ +  (uo+  Xu) } 
6 =  w_E ×  _s(Ul) R1 s R: + ub) + . . .  

,~'~ WE × 6 -2't//s(~l) (~___a(~0) -- ~___b(U0 -3v A g ) ) +  . . . ,  (4.19) 
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In (4.19) the terms which are less than 10 ps are missed out. Depending on the 
mutual location of the stations and meteor track, the relativistic correction (4.19) 
changes from -12.1 ns to +12.1 ns. 

Using the mathematical language we can say that our aim is to find the maximal 
5ma~(-WE, W___a,W__~) and minimal 5min(O)E,~tJa, W_.Wb ) values of the function (4.19) 
over the region 

6458 km <_ Iw=l 6483 km, 
(__w, - > 0, 

(_% - zb)w_z _> 0. (4.20) 

The quantities WE, w_w_a, w b are considered herewith as constant parameters. Then 
the 'averaged' value of the relativistic correction is defined as the arithmetic mean: 
-~ = ~(1 ~5,~a~ + 6,~i,~ ). Maximal deviation of the 'averaged' value from the true one 

is A(5 = max 16 - ~ I = ½ ( 6 ~ *  - a,~i,~). Another interpretations of 'averaging'  of 
(4.19) are possible. For example, one can integrate ~5 over the region (4.20). It is 
remarkable that the expression (4.19) may be 'averaged' analytically: 

S(-wz 
m 

, w__,~,w__b) = PE(PE + h) × 

cos ~,~ cos ~b sin (Aa - Ab) × 
(1 + sin (p,~ sin qob + cos ~,~ cos ~t, cos (A,~ - Ab)) 1/2 

(4.21) 

where h ~ 92.5 km is the mean height of meteor tracks, PE is the radius of the 
Earth, qo~, qOb, )~, Ab are the geographical latitudes and longitudes of the stations 
(longitude to the east from Greenwich is negative), WE is the angular velocity of 
the Earth. 

One can show that 

WE ( 2 2  ) , (4.22) IA(S] <_ --~ -bV/2(PE + h) PE + h _  p ~ ( p ~ _  b2/4)_l/2 1/2 

b being the distance between the stations. For moderate distance between the 
stations (b ,-~ 1620 kin) the error A6 may amount to 1.1 ns. For extremely long 
(b ~ 2300 km) and extremely short (b ~ 0 km) distances the error A6 becomes 
zero: Aa ~-, 0. Thus, in spite of the fact that we don't know the position _w, of the 
retransmission point, we can calculate the relativistic correction with the accuracy 
N 1 ns. In order to compute S with the accuracy of 1 ns, the coordinates of the 
stations must be known with the uncertainties 

cr~oo,b = ~r.~o, b < 25 I. (4.23) 
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5. Remarks 

1. The concept of coordinate synchronization can be successfully applied to dif- 
ferent domains of space-time with quite different physical conditions inside them. 
Barycentric RS (BRS) may by used to define a single time scale in the whole 
Solar system. The only method of synchronization of the clocks situated in space 
(onboard space vehicles) appears to be the two-way synchronization (Fig. 2). On 
the basis of the expressions (2.4)-(2.7), the equations of the light propagation in 
BRS [Brumberg, 1972; Will, 1981; Brumberg, 1987; Klioner, 1989a,b] as well as 
the coordinates of the observers and gravitating bodies of the Solar system one can 
easily obtain the algorithms of synchronization with respect to the BRS coordinate 
time. The answer to the question what terms in (2.1), (2.7) as well as in the equa- 
tions of the light propagation we must take into account when computing 6, 6a~ and 
tz, so that the final inaccuracy of ~I be equal to some given value, strongly depends 
on the trajectories of the observers and gravitating bodies. This question must be 
analyzed separately in every particular case. 

In the space-time domain where both BRS and GRS are valid we can synchronize 
our clocks with respect to the coordinate time of either BRS or GRS. Let us suppose 
that using some method we have synchronized clocks a and b with respect to the 
coordinate time of GRS. This means that for two events, which have the coordinates 
(z~0, w__a(zt0)) and (u0 + Au, w__+ (u0 + Au)) relative to GRS, we know the readings 
~-al and Tb2 of the clocks a and b respectively. The same two events have the 
coordinates (t0,x_~(t0)) and (to + At,_xb(t0 + At)) relative to BRS, At being 
coordinate desynchronization with respect to the coordinate time of BRS. The 
relation between Au and At can be easily obtained on the basis of the relativistic 
coordinate transformation between BRS and GRS. The explicit expressions may 
be found in [Klioner, 1990b]. 

2. Another practically important space-time domain where convenient single 
time scale is needed is the neighborhood of the Earth of the radius 106 km. This 
region contains the trajectories of high satellites and the Moon. GRS which has been 
used in the present paper can not be utilized for the above-stated purpose, because 
the metric of GRS is expressed in the form of the series in powers of W/rEA, W 
being the geocentric distance of the point, TEA being the distance between the mass 
centers of the Earth and the body A. Formally speaking, the domain of definition 
of GRS is limited by the distance between the Earth and the nearest body, that 
is by the radius of the lunar orbit. Actually, since the series in powers of w/rEA 
converge very slowly when w/rEA ~ 1, GRS inthe form (3.1)-(3.3) may be used 
in still smaller domain of space, and in order to attain acceptable accuracy one 
must take into account too many terms. 

To overcome this difficulty we must construct local inertial geocentric RS 
avoiding the expansions of its metric tensor in powers of w/rEA (at least, for 
A = L, that is for the Moon). Such RS has been constructed in [Voinov, 1990; 
Brumberg, 1991]. 
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3. There are two different, from the theoretical point of view, ways to re-define 
the scale u so that its mean rate coincide with the mean rate of the proper time 
of an observer situated on the geoid. In this paper we follow one of them. We 
introduce units of measurement in GRS different from the SI units. Another way 
is to consider the expression (3.14) as the relativistic coordinate transformation 
and to introduce new coordinate system 'GRS'. All quantities defined in 'GRS' 
are measured in the usual SI units. The components of metric tensor ~ (~, w__-) of 

'GRS' differ from those of GRS only by constant factors: 

1 
= 

*v T 

1 
- kTksgO ( ,w__), 

1 
(5.1) 

Although these two ways lead to the same final results, they must be distinguished 
clearly. 

4. From the theoretical point of view it is most consequent not to introduce the 
scale ~, but to use directly the coordinate time of GRS. This corresponds to the unit 
values of the scaling factors in (3.14). In the last years this choice becomes more 
and more popular [Guinot, 1990]. In this case the only correction to be applied to 
the formulas of the section 4 is the constant factors k~ 1 in right-hand sides of (4.3), 
(4.13) and (4.14) appearing from (3.11). 

5. In the present paper we have considered in details relativistic effects in 
the clock synchronization. Besides the relativistic effects, equipment's delays, 
tropospheric and ionospheric time delays in the light propagation, the effects of 
the magnetic field of the Earth and so on influence on the results of the Earth- 
based clock synchronization. In order to minimize technical errors in practical 
measurements the results of a number of consequent observations are averaged 
giving the observables (ua, Ub in (4.5) etc.). Relativistic corrections change in time 
(although slowly) and every separate observation corresponds to its own value of 
the correction. Only after all sources of the errors having been accounted for, one 
can say about real accuracy of synchronization. 
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