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A B S T R A C T  

In this paper, we consider loaded Griffith-type strip cracks moving in orthotropic crystals using the powerful method 
of dislocation layers. Expressions.for the components of the stress fields created are obtained in closed forms and some 
representative numerical results are given. The applications of the method to the BCS model of moving cracks with 
plastic flow are briefly discussed. 

RI~SUM/~ 

Dans cet article, nous traitons des fissures sur ruban charg~ de type Griffith se d6placant en cristaux orthotropiques 
utilisant la puissante m6thode de couches de dislocation. 

Des formules pour les composantes des domaines charg6s qui sont cr6s, sont obtenues en formes ferm~es et quelques 
r~sultats num6riques repr6sentatifs sont donn~s. Les applications, au module BCS, de cette m~thode de fissures 
mobiles avec ~coulement plastique sont bri~vement discut6es. 

Z U S A M M E N F A S S U N G  

In diesem Referat handelt es sich um geladene B/inderrisse des Griffith-Typus, die sich unter Anwendung der kraft- 
vollen Methode der Schichtenverschiebung in orthotropischen Kristallen bewegen. Ausdrticke fiir die Bestandteile 
der erzeugten Kraftfelder werden in geschlossenen Formen ermittelt und einige typische, zahlenmfissige Ergebnisse 
angegeben. Die Anwendungen der Methode auf das BSC-Modell der sich bewegenden Risse mit plastischem Fluss 
werden auch kurz er6rtert. 

1. Introduction 

The technique of simulating strip-type cracks in linearly elastic media by equivalent continuous 
distributions of dislocations has been discussed and applied extensively (see, for example, 
Bilby and Eshelby [1]) since the early work of Zener [2] and Friedel [3] and is now well- 
established. Recently, in fact, it has been demonstrated by Guidera and Lardner [4] that cor- 
responding methods can be advantageously applied to investigations of the analogous penny- 
shaped cracks in isotropic media. This so-called dislocation layer method is found to be ex- 
tremely useful for studying situations in which the traditional techniques of integral tr, ansform 
and complex potential function theories are rather unwieldy. 

The present paper demonstrates that it is especially suited to providing details of the stress 
fields created by particular orientations of loaded straight cracks rri6ving through orthotropic 
crystals. Corresponding analyses have recently been presented for moving cracks in isotropic 
media by Lardner and Tupholme [5] and for stationary cracks in orthotropic crystals by 
Tupholme [6], whilst a comprehensive discussion of a more general nature of interracial 
cracks between bonded anisotropic half-spaces has been given by Willis [7]. In order to study 
cracks moving in orthotropic crystals in this way it is essential to have detailed information of 
the stress fields around uniformly moving straight dislocations in such media. For this, weap- 
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peal to the fundamental work of Bullough and Bilby [8]. Their results have provided the 
foundations for the subsequent general discussions of Teutonieo [-9, 10] and the analyses of 
dislocations moving in various particular cubic and hexagonal materials undertaken by 
Teutonico [11, 12-] and Weertman [13, 14]. The model of a crack which we employ here to 
gain some insight into the fundamental problems of a growing crack is based on that used by 
Yoffe [15]. An interesting comparison of this with the one used by Craggs [16] has recently 
been given by. Atkinson [17]. 

The basic situations with which we are dealing are formulated in section 2, whilst sections 
3 and 4 are concerned with deriving and analysing the stress fields' components for mode II 
and mode III cracks, respectively. In particular, the results enable approximations valid near 
the crack tips to be obtained and typical numerical results are presented graphically. Finally, 
in section 5, ways of treating the corresponding elastoplastic cracks using the BCS model are 
indicated. 

2. Basic formulation 

We consider a plane strip crack of Griffith type moving parallel to its axis with uniform velocity 
in its own plane through a homogeneous crystal which is orthotropically symmetrical in its 
elastic response. We suppose that the material is initially everywhere at rest and stress-free in a 
natural reference state and situated so that its three mutually perpendicular planes of symmetry 
are the coordinate planes of a system of rectangular Cartesian coordinates x, y, z. 

At time t, the crack is assumed to occupy the region y = 0, v t -  c < x < v t  + c, - oo < z < 

of the x -  z plane, so that 2c is the width of the crack and v its speed of propagation. Defining 
a moving coordinate ~ given by 

= X - -  v t ,  

we suppose that a traction,  T(~), is applied symmetrically to the two faces of the crack and 
translates with the crack. It has become standard practice in fracture mechanics to consider 
separately three fundamental modes of loading. Letting 0-xy, a x x ,  0-yy, 0-yz denote the components 
of the stress-tensor referred to the x, y, z system of coordinates, these modes are represented by 
the following boundary conditions holding for [4] < c: 

Mode I: O-yy(~, 0) = T({), 0-xy(¢ , 0)  = 0, 

Mode II: 0-yr(~, 0) = 0, axy({, 0) = T(~), (1) 

Mode III: o-r=({, 0) = T({), 

with the medium remaining stress free at infinity. Plane strain deformations are created 'by the 
first two modes, whilst the third is antiplane strain. With respect to the x, y, z coordinate system, 
the relationship connecting the components of the stress and strain tensors, a and ~ respectively, 
for an orthotropic material can be written in the form 
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where the c o denote the elastic constants referred to the chosen coordinate system. 
Hexagonal and cubic crystals are important  special classes of orthotropic crystals and a 

fuller discussion of the way in which the expression (2) can be modified to provide an analysis 
applicable to them is given by Tupholme [6]. It is sufficient to simply state here that if the basal 
plane of a hexagonal crystal is chosen to be the x -  z plane then our results describe a crack 
moving in this basal plane when we make the substitutions 

C13 ~ C~2 , C12 : C23 ~ C~3 , C22 ~ C~3 , 

C55 ~--- ~ (C~1- -C~2) ,  C44 : C66 : C~4 

C l l  : C33 ~ C ] l  , 
(3) 

throughout.  Here the superfix h is used to indicate that the five elastic constants are those of a 
hexagonal crystal referred to the more standard hexagonal system of coordinates in which the 
z-axis (rather than the y-axis which we find more convenient to use here) is parallel to the six- 
fold axis. Similarly for discussing a crack in the x -  z plane of a cubic crystal situated with its 
three cubic edges coinciding with the x, y, z axes we make, with an obvious notation, the 
replacements 

C13 = C23 = C~2 , C22 = C33 = C~l , C55 = C66 = C~4. (4) 

The mathematical studies and properties of the mode I and mode II situations are very 
similar. For  brevity, we only discuss here a shear crack subjected to mode II surface tractions, 
the extension to the normally loaded crack being tedious but straightforward. 

3. Moving inplane shear crack 

Firstly, consider a straight edge dislocation with line in the z-direction and Burgers vector in 
the x-direction which is gliding through the crystal with constant speed v in the positive 
x-direction. We suppose it corresponds to a displacement discontinuity given by 

UII(~, 0 "[- ) - -  gII(~,  0 - -  ) = ( - -  b,  0 ,  0)  for ~ > 0 

where b is a constant. Throughout  this section, a superfix II is attached to the displacement 
vector u and the components of the corresponding stress tensor. The displacement and stress 
fields of such a dislocation situated at the origin can be deduced from the general discussions 
of Bullough and Bilby [8] and the subsequent investigations undertaken by Teutonico [9]. 
The analysis is found to depend crucially upon the solutions of the quartic equation 

K4 ~4_ K2 ~z + Ko = 0 (5) 

with 

K 4 = C 2 2 C 6 6  ~ 

Kz = (Cl 1 c22 -- c~ 2 - 2cl z c66)  - (c22 + c66)P v2, (6) 

Ko = (el 1 - pv2)(c66 - pv2), 

p being the density of the material in the reference state. This, in fact, is simply a quadratic in ~2 
and has solutions 2~, 222 given by 

22 {q+(q2 4s)~}/2, 2~ 2 = = {q-- (q - 4s)~}/2, (7) 

where 
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q = K z / K 4  {CllC22fl2..[_ 2 2 ~---- C66 f16 - -  (¢12 -[- C66)2}/C22C66 
2 2 s = Ko/K4 = Cllfllf16/c22 

with 

= 1-6 , = 1-e6666 /¢11, 66 = p Vc 6. 

G. E. Tupholme 

(8) 

If qZ _ 4s > 0, then clearly 2~ z and 22 are both real, whilst they are complex if q2 _ 4s < 0. The 
value of q2_ 4s depends upon the elastic constants of the medium together with the speed of 
propagation v. Suppose we let 

2, = p ,+ iq , ,  n = 1, 2. (9) 

For convenience and brevity we restrict our attention in the main text to situations for which 
q2_ 4s > 0 and briefly outline the corresponding results for q 2  4s < 0 in Appendix II. 

After many cumbersome algebraic manipulations it is found that when q2 _ 4s > 0 the stress 
field Of this dislocation has components given by 

bc66 ~ n~--~/_..al ~n 
a~(~, y) - 2re = ~ p ,y  v2..[_ 2 2'  

by ~ clakn+ClzW n 
a~,(~, y) = ~,~=x ~2+p2y2 , (10) 

by ~ ¢12kn+c22wn 
O-II(~' Y) = ~ n = l  ~2 +pZy2 ' 

where, for n = 1, 2, 

kn 2 2 "= Pn Ani(c22 Pn -- f16 C6 6), 

with 

3 wn = -p,A. i (c12+c66) ,  (9. = (w , /pZ) -k , ,  (11) 

Al i  _(pZ2c22+c12fl~)/c2 a 2 2 2 = fl6(¢12 + C66)(Pl - -  P2), 

a 2 i  = (P~ c22 AF C12 fl2)/C22 fl2(C12 "q- C66)(P 2 - -  p2) 
(12) 

and p, = 2. (n = 1, 2) given by equations (7) and (8). 
It is known, from the general techniques of the dislocation layer method, that a loaded 

crack can be studied by replacing it by an equivalent continuous planar distribution of dis- 
locations. For this moving mode II shear crack we utilize straight edge dislocations with line 
in the z-direction having Burgers vectors and velocity of magnitude v in the x-direction. From 
equation (101) we observe that on y = 0, where the boundary conditions (12) are to be satisfied, 
tr~y is given by 

aIIxy(¢, O) = bc66 ~2/27c, (13) 

where 

f2 = q~l+~bz. (14) 

If the number of dislocations in the interval (4, ~ + d~) is f(~)d~ for all ~ lying between - c and 
+ c, then, recalling equation (13), the corresponding stress component at a point on the x-axis 
is given by 
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ff_c a~' 
a~r(~, O) = (~-~ ' ,  O)f(~')d~' 

_ bc66 0 f c ~  d4'. (15) 
2= .]-¢4- 4 

When 

f c  c O- a~r(4, 0) = lim ~y(4-4', y)f(4')d4'  
y ~ O  - 

is evaluated rigorously using equation (101) and the Plemelj formulae it becomes clear that the 
integral in (15) must be interpreted as a Cauchy principal value integral. To satisfy the second 
of the conditions (12) we equate the expression (15) to the prescribed function T(4). The solution 
of the resulting integral equation for the density function f ( Q  is deducible from the results of 
Muskhelishvili [18] and Gakhov [19] and can be written in the form 

2 1 f c  (C2 - -  4,2)½ 

f ( 4 ) -  ~be66Y 2 (e2_42)½ J-c  ~ T(4')d4', (16) 

if the relative displacement of the two crack faces is assumed to vanish at ~ = + c. Having 
derived an expression for f(4), any of the stress components produced by the crack can now be 
calculated by direct substitution into the formula 

~'_ c{Ti = { -  4 ,  (17) o-ij(4, y) ~{ ' y)f(4')d4'. 

with the necessary o-~} given by the corresponding expressions (10). 
It is convenient at this stage to define the functions ~ . (0 . )  for n = 1, 2, which subsequently 

occur, by 

1 I c {p.y cos 0 . + ( 4 - 4 ' )  sin On}(cZ__4,2)kT(4,)d4 ' 
~-,(0,) = ~ o-c ~ ,{ (4-4 ' )2+pZY 2} (18) 

where the functions ~,(4, Y) and 0.(4, y) for n = 1, 2 are given by 

~ ,  ei°" = { c 2 - ( 4 +  ip,,y)2} ½. (19) 

The branches of the square root functions are specified by choosing 0, to be zero for - c < ~ < c, 
y = 0 +  and extending it by analytic continuation elsewhere. Using the equations (A.1) and 
(A.2) of Appendix I, it can be shown that the stress components given by equations (17) have 
the simplified forms 

2 

axy(4, y) = ~ ~nO~n(On), 
n = l  

1 + ellkn"l-Cl2W n 
axe(4, y) = - -  ~ ~ ' , t v . -  ~/z), (20) 

C66 n = l  Pn 
1 ~ c12k,,+c22w,, 

o-rr(4, Y) = - -  ,~n(On-- ~/2 ). 
C66 n = 1 Pn 

These agree with the results of Lardner and Tupholme [5] in the isotropic limit in which 
C l l  ~--- C22 = C33 = 2+2/~, ¢12  = e 1 3  = c 2 3  = 2 ,  c44. = e55  = c66  = ]2, where 2 and # are the 
Lam6 elastic constants of the isotropic material evaluated in the reference state. Using 
equation (203), a further application of the Plemelj formulae verifies that ayr(~, y) does vanish 
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as y approaches zero as is required to fulfil the first of the two traction conditions (12) on the 
crack. 

F rom the expression (16) for the density function f(~) it is clear that the analysis breaks down 
when ~2 -- 0. For  specified values of the elastic constants, this first occurs at a particular value 
vR of the speed of propagation v. Recalling equation (14) and combining the expressions (11) 

2 ± and (12) it can be shown that 6R = (PVR/c66) ~ is a root of the equation 

C22C26(C22--C66 )V 6 -  C22C66{2(CllC22--¢122)"4- C66(C22--C 11)}V4 

+ ( C l l  C22 - C12){(CllC22__C12)+2C22C66} V 2  2 2__(CllC22__C22)Z = 0 (21) 

where 

V 2 = pv2/¢66 . 

This cubic equation in V 2 corresponds to the usual Rayleigh surface wave equation in iso- 
tropic media and has been previously shown to govern the speed of a surface wave of plane 
strain in an orthotropic crystal by Hearmon [20, p. 86]. It can be shown that there always exists 
a root  such that 0 < 6g < 1. This equation (21) can easily be solved numerically for various 
media and using the data of Huntingdon [21] and Baker, Chou and Kelly [22] it is found, in 
fact, that for most common crystals 6R > 0.83, so that the analysis is not severely restricted by 
this limitation. 

The interesting distribution of the stress field close to a tip of the crack can be shown to be 
qualitatively similar to that found by Lardner and Tupholme [5] and Tupholme [6] in cor- 
responding situations. This can be illustrated by putting 

= e + r cos c~, y = r sin c~ 

into equations (20) and considering situations in which r ~ c. It can easily be shown from equa- 
tion (19) that the quantities ~ ,  and 0, are approximately given by 

~ n  ,~ {2cr(cos 2 ~+pZ sin 2 c~)~}½, (22) 

0 .  ,-, - ( r ~ -  ~ . ) / 2 ,  

as r--+ 0. Here q~, is defined for n = 1 and 2 by 

4~, = t an-  l(p, tan ~) (23) 

and t an-  1 (...) is used to denote the principal value of the inverse tangent for 0 < e < re/2 and 
re plus the principal value for re/2 < e _< re. When the expressions (22) and (23) are substituted 
into the representations (18) and (20) it is found that the stress components are approximately 
given by 

axy(r,c~) - K 2 c~n ( ~ )  
- -  Z - -  COS 
~r~ n=l A, 

K 2 Cllkn.~_Cl214; n 
axx(r, C~) C66 ~-2r ~ ,= ~1 Pn An sin (24) 

K ~ ¢12kn.-t.-c22w n 

c66 ,Q~'½ n=l  p,,An: 
a.(r, .) 

as r ~ 0, where we have put 
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K -  ~(2c)~ ~ \ c - ¢ ' /  

An = ( c°s2 c¢+P 2 sin 2 ~)¼- (25) 

We observe from equations (24) and (25) that near the tip ~ = c of this mode I I  crack the stress 
components  depend on the loading T(~) only through K which is the corresponding stress 
intensity factor at the end of a stationary or moving crack in an isotropic medium. The aniso- 
tropy of the material clearly does not affect the stress components  on the i-axis ahead of the 
crack, since we see that  

axy(r, O) ~ K/r ~, crry(r, O) ~ 0 

as r ~ 0. It  is found that  similar observations can be made for mode  I and mode I I I  cracks also. 
The asymptotic  behaviour as r ~ 0 of the physically interesting radial shear stress component  

ar~ can be deduced from the expressions (24) using the identity 

ar~ = ~ a y y - a x e )  sin 2~ + a~ r cos 2~. (26) 

whilst the properties of the corresponding tangential stress component  a ~  can be calculated 
from 

o-~ = a~x sin 2 ~ + o-y r cos 2 0~- a~ r sin 2~. (27) 

F rom these, for a fixed value of r, the approximate  variations of a, ,  and a~, with e in any ortho- 
tropically symmetry crystal for which q2 _ 4s > 0 can easily be calculated for various speeds of 
propagation.  Appropriate  values for the required elastic constants for many  orthotropic, and 
in particular cubic and hexagonal, crystals have been given by Hunt ingdon [21] and Baker, 
Chou and Kelly [22]. Typical numerical results are presented graphically in Figures 1 and 2. 

Figure 1 illustrates the angular variation of the scaled stress component ,  r~rr~/K, around 
the tip, ~ = c, of a crack in the basal planes of magnesium and graphite for a range of values of 
66 = (pvZ/c66) -~. For  magnesium the features are very similar to those found by Lardner and 
Tupholme [5] for a crack moving in an isotropic material in the sense that the max imum stress 

occurs in a non-forward direction (i.e. offthe x-axis) for a sufficiently high speed of propagation. 
This first occurs at the critical speed of about  66 = 0.78 here. For  speeds higher than this the 
ratio of the max imum stress to its value in the forward direction rapidly increases. By solving 
equation (21) for magnesium the limiting speed at which the analysis fails is given by ap- 
proximately 6 R = 0.94. By contrast, for graphite which exhibits a far greater anisotropy we 
find that  the effect of the speed of propagat ion upon the value of the non-forward max imum 
stress which Tupholme [6] showed occurs even in the static case (66 -- 0) is very small for 
speeds less than the limiting speed given by 6R = 0.99~ 

Figure 2 exhibits the distribution around the tip ~ -- c of r-~a~JK again for magnesium and 
graphite with various values of 66. It  is well-known that for a stationary crack in an isotropic 
material  a ~  has a m ax i m um  at about  ~ -- - 70 ° from which it is frequently concluded that  a 
crack in a brittle material  grows in a tensile mode at an angle of  - 7 0  ° to its initial direction 
when shear forces are applied to it. We see from our results that this max imum becomes sharper 
and also moves round towards an angle of - 9 0  ° with the crack as the speed or strength of 
anisotropy (typified by the curves for graphite) increases. Again the behaviour for graphite is 
found to have very little dependence upon speed within the range under consideration, whilst 
that  of  magnesium is close to that  of  an isotropic material. 
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Figure 1. Distribution of tile stress component ar, around the tip of  a moving mode 11 crack for a range of  speeds in 

(a) magnesium (b) graphite. 
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Figure 2. Distribution of the stress component tT~, around the tip of a moving mode II crack for a range of  speeds in 

(a) magnesium (b) graphite. 
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4. Moving antiplane shear crack 

As a preliminary to studying a moving mode III crack, we consider a moving screw dislocation 
whose displacement discontinuity is given by 

UII'(4 , 0 + ) - -  UIII(4 , 0 - - )  = (0, 0, - -  b) for ~ > 0. 

The stress field of such a dislocation situated at the origin can be extracted from the analyses of 
Bullough and Bilby [8] and Teutonico [9] and is found to have non-zero components given by 

bKs t/2f15 y O.III,'~ ~t~, Y) - 2re 42 +t12flZy 2 ' 
(28) 

bK~ f15 4 
2n ~2 -t- q2f12 y2 

0.Itll~ rzt~, Y) - 

where 

Ks = (c4,c55) ~, q = (csdc**)L fl] = 1 - 5 2 ,  5~ = pv2/c55. (29) 

A distribution of such screw dislocations with density function f(~) can be used to replace 
the moving mode III crack. From equation (282) we see that 

iii,. o) bK~fld2x~ Gyz[~, = 
and the boundary condition (13) therefore yields the integral equation 

bK,  fl5 f~  f(~')d4' 
2re c 4--~' -- T(~). 

The solution of this equation which is appropriate is 

2 1 (~ (c2-- ~'2) ½ 

f(4) - ~bKsfl~ ( c 2 - U )  ~ J-~ ~ ' - ~  
T(4')d~'. 

After simplification using equations (28) and (A.1), (A.2) it then follows from the formula 

f '_ c(Tij = 4 - ~ ,  trij(~ ' y) III( ' y)f(~')d~' 

that the non-zero stress components can be written in the forms 

axz(4 , y) = -- (tl/fls)~-(O-- x/2), 

arz(4, Y) = ~-(0). 
( 3 0 )  

Here the quantities ~(0), ~(~-, y) and 0(4, y) are given by 

1 f c qfl5 Y cos 0 + ( ~ -  ~') sin 0 
o ~ ( 0 )  = - n ._c ~{(4--4')2+r/2f12y 2} (c2-('2)½T(~')d~" 

Ne i° = {c 2 - (~ + i11fl5 y)2}÷ 

with 0 chosen to be zero on y = 0 +  for [41 < c and continued analytically elsewhere. 
Near the crack tip we find that 

(31) 
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Figure 3. (i) Distribution of  the stress component  Cr,z around the tip of  a moving mode III crack for a range of speeds 
for r /=  1.36 (graphite). 

(ii) Distribution of  the stress component  a,z around the tip of  a moving mode III crack for a range of  speeds for t /=  2.5. 
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0.x~(r, ~) 

0 . . ( r ,  ~)  

~/K sin (qV2) 

fi5 r~ A ' 

K cos (4/2) 

r ~ A 

(32) 

as r ~ 0, with 

~b = tan-1 (t/fl 5 tan ~), 

A = (cos  2 ~-q-q2f12 sin 2 ~)¼ (33) 

and K given by equation (251). axz(r, 0) and 0.yz(r, 0) near the crack tip are easily seen to be un- 
affected by the anisotropy of the material. 

The behaviour of the stress component axz near the crack tip is deduced from the expressions 
(32) to be governed by 

,34, 

as r --* 0. This component has a non-forward maximum for large enough values of I /or  6s. 
The curves in Figure 3 depict the variation with ~ of the scaled stress component, r~0.~z/K, 
for a range of values of 65 for graphite ( t /=  1.36) and for the case t / =  2.5. 

5. Moving crack with plastic flow 

The properties of a mode II crack when the material in the vicinity of the tips of the crack 
behaves plastically are often discussed using the BCS model suggested by Bilby, Cottrell and 
Swinden [23]. This model replaces the plastic zones by plane distributions of dislocations 
coplanar with the crack spread over the regions - a  < ~ < - c ,  c < ~ < a in which the con- 
stant yield stress, a l ,  of the material is such that 0.xy(~, 0) = --0.1.  The loading T(~) for 141 < c 
is supposed to be an even function of ~ so that the plastic zones are symmetrical about ~ = 0. 
The value of a is determined by the requirement that there should be no stress singularities at 
the ends ~ = _ a of the plastic zones. The stress intensity factor must therefore vanish there. 
Hence, recalling equation (251), it can be shown that 

0" 1 

< I~'L < .  (a2 - -  ~'2)  ~ c (a2  - ~ ' ~ :  

which determines the length ( a -  c) of the plastic zones in terms of the applied load. This is 
observed to be independent of both the anisotropy of the crystal and the speed of propagation 
of the crack. 

The density of dislocations in the region 141 < a can be deduced from equation (16) to be 
given by 

2 1 ~ I c (a 2_- ~,2)~ ; (a 2_  ~,2)~ ,} 

f(~) -- nbc66f2 ( a2 - -~2)  ~ (.J-c ~'--~ T(~')d~'--al d~ . <l¢' l<o  ~ ' - ~  
This is the corresponding density for the stationary case (see Tupholme [6]) multiplied by a 
factor of Ke/c66 f2 where 

Ke = {(CIIC22)½+C12}[ C66{(C11C72)½--C12} 1½ 
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It therefore follows that the ratio, ~"(v)/~n(O), of the plastic displacement at the moving crack 
tip defined by 

~ I I ( v  ) = ~abf(~)d~ 

to its stationary value is given by 

~bI I (v ) /~ i I (o )  = ge/C66 Q. (35) 

This ratio is 1 when v = 0 and becomes infinite as the limiting speed given by equation (21) is 
approached. If the same model is applied to a mode III crack then, with an obvious notation, 
it is found that 

~j~III(v)/~III(O) = 1/f15, (36) 

f15 being given by equation (293) and the length of the plastic zones is again unaffected. 
The possible implications of these results to a discussion of the growth of ductile and brittle 

cracks are similar to those given by Lardner and Tupholme 1-5] for cracks in isotropic media. 

Appendix I 

Contour integrations can be used to verify that 

f c d U  

C 2 - 2  ½ , ~,,)2.jw -c(  --~ ) (4 -- ~"){(~-- tcZY 2} 

f~ (~-- ~")d~" = 
c (c ~ -  ~,,2)~(~,_ ~,,){(~_ ~,,)2 + ~2y~} 

for constant K, where the branches of 

Ne i° = {c 2 - (~ + i~cy)2} ~ 

are chosen similarly to those in equation (19). 

To{toy sin 0 - - (~ - -  ~') cos O} 
ytcN{(~- ~,)2 + tc2y2} 

7r{tey cos O + ( ~ - ~ ' )  sin O} 
~ { ( ~ -  ~,)~ + ~y~}  

(A.1) 

(A.2) 

Appendix II 

When the straight edge dislocation described in section 3 is moving through an orthotropic 
crystal for which q2_  4s < 0 it can be shown that the 2, (n -- 1, 2) defined in equation (9) are 
complex. It is found, in fact, that their real and imaginary parts are given by 

Pl = P2 = {(4s) ~+q}~/2, 
(A.3) 

q,2 = ql = {(4s)~--q}-~/2. J 

If we define the functions 

A u  = A2i = 1/2f12(ca2+ ¢66) ,  1 (A.4) 

A l~ = - A 2 ,  = {c12f16+c22(Pl-q2)}/4plq2czEf16(c12+c66),2 2 2 2 J 
and 
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c22(p. - q . ) - c 6 6  S . , =  2 ~ / ~ ,  

Sni = 2p. qnc22, (A.5) 

Rnr : -- qn(Cl2 q- C66), 

R.i = p.(cx 2 "~ C66), 

for n = 1, 2, the stress components of such a dislocation situated at the origin can be shown, 
after lengthy manipulations, to be given by 

a ~ ( ~ , y ) -  2~ =1 

b 2 ~(CllC~n+c121n)+y(Cltkn+c12wn ) 
aZ(~, y) = ~.~=--1= ~2+g p.y2 z , (a.6) 

b 2 ~(c12O~n_l_Cz21n)+y(c12kn+c22Wn ) 0-1I (~ 
. , ,  y) = ~ .L:I ~ + p~y2 , 

where here, for n = 1, 2, 

ct. = A . ,  S . , -  Ani Sni, 7n = A . ,  S.i + A.~ S.r, 

On = Ant R n r -  Ani Rnl, gn = A . ,  Rni d- Ani R.r,  

k .  = y . p . - ~ . q . ,  l. = - ( 6 . q .  + e.p.), (A.7) 

w. = 6.(pZ+q2), (% = 6 . - ~ . q . - 7 . p . ,  

2 2 v. = e, p. - 6. q. + ~.(p. + q.). 

It follows from equations (A.3) to (A.5) and (A.7) that 

2 2 
Z .=El.=0 

n=l n=l  

In particular therefore, we observe from the expressions (A.6) that 

O-L(~, O) lI 
= cryy(~, 0) = 0, (A.8) 

J a~(~, O) = b c 6 6 0 / 2 ~  

Equation (A.82) is identical to equation (13) and hence the density function of the system of 
such dislocations equivalent to a mode II crack will again be given by equation (16). Results 
corresponding to those of section 3 can then, if required, be calculated by substituting this with 
the expressions (A.6) into equation (17). 
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