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Abstract. Changes in the joint distribution of influence functions for the 
mean vector and the covariance matrix are examined when the true 
probability distribution is contaminated. In particular, the formulas for 
influence functions of the first and second moments with respect to the 
above joint distribution are obtained and used to derive reasonable test 
statistics for multivariate normality. The formulas are extended by using 
the joint distribution of score functions for population parameters. An 
application of the extended formulas to the usual linear regression 
analysis leads to a measure of multivariate skewness which can he used to 
reduce the effect of non-normality of the response variable. Also, some 
relationship between the extended formulas and goodness-of-fit statistics 
is discussed and used to derive test statistics for multivariate normality. 

Key words and phrases: Influence function, multivariate normality, 
measure of dependence, measures of multivariate skewness and kurtosis, 
score function, linear regression. 

1. Introduction 

Many of the standard multivariate statistical methods depend on the 
assumption of multivariate normality. Thus, in analyzing multivariate data, 
we often face the problem of detecting influential observations which may 
affect the estimation of  the mean vector and the covariance matrix. Let F 
be an underlying p-variate distribution function with mean vector p ' =  
(/tl,...,/tp) and covariance matrix Z '= (a0), i, j =  1,.. . ,p. An influential 
observation X'=  (X~,...,Xp), which may have a possible effect on the 
estimation of  p and _r, is detected by the influence functions for /a  and X, 
that is, 

(1.1) IF(X;/~) =lira ° (#(P) - # ( F ) ) I t  = X - # ,  

and 
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(1.2) IF(X; 2`) =lim (Z(P) - S ( F ) ) / e  = ( X -  1 2 ) ( X - / 2 ) ' -  2`, 

respectively, where F =  (1 - e ) F +  egx (0 <_ e <_ 1) is a mixture distribution 
function constructed in terms of F and a discrete distribution with a unit 
mass at X (see Radhakrishnan and Kshirsagar (1981)). 

If we take F to be multivariate normal, then a well-known diagnostic 
tool for checking the distribution of IF(X; g) (or some function of IF(X; 2`)) 
is Healy's (1968) X 2 probability plot based on ( X - / a ) ' 2 ` - l ( X  - lu). This 
method is closely related to Wilks' (1963) outlier detection procedure, 
which examines the distribution of the influence function about the 
determinant of 2 .̀ The influence function is defined by 

(1.3) IF(X; ISI) = [ ( X -  #)'2`-~(X - #) -P]I2`I 

(again see Radhakrishnan and Kshirsagar (1981)). Wilks (1963) examined 
the ratio statistic IF(X; 12:1)/12:1, that is, 

(1.4) R(X;  1271) = ( X  - i z ) ' Z - ~ ( X -  /~) - p ,  

The second moment of R(X;  12`1) was used by Mardia (1970) to derive his 
measure of multivariate kurtosis fl2,p for testing multivariate normality. 

On the other hand, a necessary and sufficient condition for multivariate 
normality is independence of the sample mean vector and the sample 
covariance matrix (see Section 15.24 in Stuart and Ord (1987)). This means 
that IF(X;/~) and IF(X; 2`) are independent, whenever F is multivariate 
normal. Therefore, in order to investigate possible departures from multi- 
variate normality for influential observations, it is natural to examine the 
structure of the joint distribution of IF(X;/1) and IF(X;2") when the 
distribution of an influential observation X, say/4, is different from F. 

In the following section, we first evaluate the first and second moments 
of the joint distribution of IF(X;/0 and IF(X; 2`) under the contaminated 
distribution H =  (1 - r/)F+ r/G (0 _< r/___ 1), where G is an unknown p- 
variate distribution. Then, we derive influence functions for the first and 
second moments in the joint distribution of IF(X;/z) and IF(X;Z). By 
using these influence functions, we give some interpretations of various 
non-null configurations of the g 2 probability plot, which are due to 
outliers, heteroscedasticity of variance, or non-normality. This consideration 
of the g 2 probability plot for non-normality gives us an idea about the basic 
relations of IF(X; g) and IF(X; 2`), which enables us to introduce two types 
of measures of dependence for checking multivariate normality. A simulation 
study in 2-dimensional non-normal models shows that the two measures 
have good powers in comparison to other related test statistics. 

In Section 3, the above basic relations are extended by using score 
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functions for population parameters. An application of the extended 
relations to the usual linear regression analysis leads to a measure of 
multivariate skewness tr(S2) (see Isogai (1983a)) which enables us to 
choose an experimental  design so as to reduce the effect of  non-normali ty 
of the response variable. Finally, some relationship between the extended 
relations and goodness-of-fit statistics is discussed and used to derive 
typical test statistics for multivariate normality. 

2. Use of influence functions IF(X; p) and IF{X; 2) 

Let us first examine the first two moments of IF(X;/t)  and IF(X; S).  
Here we assume that the distribution H of an influential observation X is 
expressed as H =  (1 - r / )F+ r/G with 0 < r/_< 1 and some p-variate non- 
normal  or normal  distribution G with mean vector v ' =  (vh...,vp) and 
covariance matrix 7 t =  (~,ij), i , j= l, . . . ,p. We hereafter assume in this 
section that the distribution F is p-variate normal. Put 

(2.1) ut = IF(X;/z) = X - / ~ ,  

and 

(2.2) u2 = vec (IF(X; Z')) = vec {(X - ,u)(X - / 0 '  - Z'} ; 

here, the vec operator  on a given p x q matrix A constructs a pq x 1 
column vector by stacking the q column vectors of A consecutively. In 
other words, if the matr ix  A is given by A = (al: a2: . . . :  aq), where each ai is 
a p × 1 column vector, then vec (A) is defined by 

vec (A) '=  (a(, aL..., a~). 

Also put 

(u,) 
( 2 . 3 )  w = . 

U2 

The expectation of the (p  + p2)-dimensional random vector w with 
respect to the distribution H is 

(2.4) EH(w) = (1 -- rl)Ee(w ) + qE~(w) 

= q E 4 w )  = ~ E a ( u ~ )  = ~ 
( v :  ) 

vec { ~ -  27 + ( /t)(v -/1)'} ' 

(because Er(w)= 0), where by subscripts F, G and H we denote distri- 
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butions under  which their moment s  are calculated. Also the covariance 
matr ix of w under  H may be expressed as 

(2.5) vart1(w) = En{(w - En(w))(w - Err(w))'} 

= varF(w) + q[ vary(w) - vary(w)] 

+ q(1 - tl)[Eo(w) - EF(W)][E~(w) - EF(w)]'. 

We need the following lemma to write the formula  of varn(w) explicitly. 

LEMMA 2.1. For matrices A o f  order q × r, B o f  order r x s and C o f  
order s x t, we have 

(2.6) vec [ABC] = (C' ® A )  vec [B] ,  

where the symbol  ~ denotes the Kronecker product  o f  matrices ( fo r  
details, see Rao (1973), Section lb.8). 

First we give the formula  for vary(w). Part i t ion 

( v a r G ( u , )  cov~(u~, u2) ) 
(2.7) varG(w) = covG(u2, ul) varo(u2) ' 

where 

(2.8) 

(2.9) 

and 

(2.10) 

v a r ~ ( u 0  = ~ ,  

COVG(Ul, U2) = COVG(/12, Ul)' 

=3 + ~ ' ® ( v - a ) ' + ( v - a ) ' @  ~'. 

vary(u2) = F + d Q (v - / 0  + (v - / z )  @ 3 + d '  ® (v - ~t)' 

+ (v - ~) '  @ 3 '  + ~ ® (v - a)(v - ~) '  

+ (v - ~)(v - a) '  @ ~u + (v - /~ )  ® ~' ® (v - ~) '  

+ (v - ~) '  @ ~ ® (v - / 1 )  ; 

we now describe the matrices 3 and F. In particular,  we put  E o [ ( X -  v) 
• vec { ( X -  v ) ( X -  v ) ' -  ~u}'] --- 3 = (6,3, which is a p  x p  2 matr ix given by 
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K i l l  K211  * ' "  K p l l  

K121  K221  " ' "  Kp21 

K131 K231  " ' "  Kp31  

K l p l  K 2 p l  " "  K p p l  

K l I 2  K212  ' "  /~p12 

(2.11) A ' =  K 1 2 2  K222  . . .  Kp22  
. . ° 

K l p 2  K 2 p 2  • . .  Kpp2  

. . . 

K 1 lp K 2  lp " "  K p  Ip 

K 1 2 p  K22p  " "  Kp2p  

1( lpp If. 2pp • • • Kppp  

Next,  we put Eo[vec {(X - v ) (X  - v)' - ~ }  vec {(X - v ) (X  - v)' - ~} ' ]  -= F = 
(yst), which is a p2 × p2 matrix given by 

(2.12) / ' =  

0"11,11 0"11,21 " ' "  0"11 ,p l  : 0"11,12 0"11,22 " ' "  

0"21,11 O"21,21 " ' "  0"21 ,p l  " 0"21,12 O"21,22 " ' "  
: : • . : 

0.p1,11 0.pi ,21 " '"  0 .p l , p l  : 0.p1,12 0.pi ,22 " '"  

: : • : : 

0"1p, 11 0"1p,21 " ' "  0"1p,pl : 0"1p, 12 0"1p, 22 " ' "  

0"pp, 11 0"pp,21 " " " 0"pp,pl " 0"pp, 12 0"pp,22 " " • 

0"1 l , p2  " ' "  0.11, lp  0 .11 ,2p  " ' "  0.1 l , p p  

0 .21 ,p2  " ' "  O'21, lp  0"21,2p " ' "  0"21, lp  

° • 

0"pl ,p2 " '"  0"pl, lp 0"pl ,2p "'" 0"pl ,pp 

. o 

O' lp ,p2  " ' "  O ' lp ,  Ip tTlp .  2p "'" 0 .1p,pp 

0.pp,p2 " '"  0.pp, lp 0 .pp.2p "'" 0 .pp,pp 

In (2.11) and (2.12), 

0.ij ,  l m - =  l f . i j lm + ~bril~l/jm + ~l/im~l./jl , 
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and xijt and xijt,, denote the 3rd and 4th order multivariate cumulants of G, 
respectively. We note in addition that 

gs,=x~ji for s = i  and t = j + ( l - 1 ) p ,  

yst=a;j,x,, for s = i + ( j - 1 ) p  and t = l + ( m - l ) p .  

In terms of Kronecker products and a p2 × p2 permutation matrix T, F can 
be rewritten as follows: 

(2.13) F =  K(4)+ ~t~)  ~ +  T(~u~) ~u) ; 

here K (4) is a p2×p2 matrix whose elements are the 4th order cumulants 
Kijlm, and the permutation matrix T is given by 

T= 
Ell E21 E31 
El2 E22 E32 
EIp Ezp E3p 

• .. Ep~) 
• "" Ep2 , 

"'" Epp 

with p × p matrices Ei/s whose (i, j )  element is 1 and the other elements are 
zero. Note that the permutation matrix T has the following properties: (1) 
T= T' and T 2 = L the identity matrix of order p2 and (2) Tvec (A) = 
vec (A') for an arbitrary p × p matrix A. 

For the formula of varr(w), we need only replace v and ~ in the 
formula of varo(w) by It and S, respectively, and set the 3rd and 4th order 
multivariate cumulants equal to zero. Then 

(2.14) varF(ul) = S, covr(ul, u2) = covr(ul, u2)' = 0 ,  

and 

(2.15) varp(u2) = Z (~ Z + T(Z ~ Z) , 

where T denotes the p2 × p2 permutation matrix defined above. 

2.1 Influence functions of the moments of IF(X; It) and IF(X; ~)  
From the above results we can easily evaluate the influence functions 

of the moments EF(w) and varF(w) of the influence functions IF(X; It) and 
IF(X; Z). They are given by 

(2.16) IF(G; Er(w)) = Ea(w), 

and 
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(2.17) IF(G; vary(w)) = varo(w) - vary(w) + Eo(w)Eo(w)'. 

By utilizing these formulas we may investigate the first two moment s  
of R(X; 12:1) in (1.4). Recall that  

R ( X ;  IXI) = tr E - l { ( S  - I~)(X - SO' - E }  

= v e c  ( 2 : - 1 ) ,  v e c  { ( X -  • ) ( X  - ]./) '  - z~} = v e c  ( 2 : - 1 ) ' u 2  . 

So, we have 

En[R(X; I XI)] = vec (x-l)'En(u2), 

varn(R(X; 12:1)) : vec (2:-1), varn(u2) vec (X-l) .  

The influence functions of the first two moments  of R(X; 12:1) are thus 

IF(G; Ev[R(X; 1271)]) -- vec (X-l)'Eo(u2), (2.18) 

and 

(2.19) IF(G; vare(R(X; I SI))) : vec (2:-1),{ varo(u2) - vary(u2) 

+ E~(u2)Eo(u2)'} v e c  (~.~v'.-1) . 

We next evaluate (2.18) and (2.19) in some special eases: 

Case 1. (location shift problem) ~ = 2:, F and G are normal.  

IF[G; Ev(R(X; 12:1))] = (v -/a)'X-l(v - It), 

IF[G; varv(R(X; 12:1))] = 4(v -/a) '2:-l(v - kt) 

+ [(v - /~) ' s - l (v  -/~)]2. 

Case 2. (variance discrepancy problem) v =/~, F and G are normal.  

IF[G; Er(R(X; 12:1))] -- t r  (~-/X -1) - - p ,  

IF[G; varr(R(X;lXI))] = 2[ tr (2:-1 ~2:-1 ~v) _ p] 

+ [ tr (~2:-1) _ p ] 2 .  

(non-normal  case) v = / , ,  ~ =  X, F is normal  and G is Case 3. 
non-normal .  

IF[G; EF(R(X; I~1))] : O, 
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IF[G; varF(R(X; ISI))] = vec (S-1)'K (4) vec (S  -l) 

= E E E ~ o'ijlTlmxijlm. 
i j I m 

We focus now on Case 3, in which the value of IF[G; varF(R(X; IZI))] 
is equivalent to Mardia 's  (1970) measure of multivariate kurtosis fl2,p. 
Under  the condit ions of Case 3, (2.17) can be rewritten as 

vara[R(X; 1271)] = varF[R(X; I L'I)] + IF[ G; varF(R(X; ]XI))], 

or equivalently, 

varc[IF(X; I Z])] = varr[IF(X; 1271)] + IF[G; var~.(IF(X; 127 I))]. 

This relation well explains the character of fl2,p as a diagnostic tool in using 
Healy's (1968) X 2 plot under  normality,  and also suggests some ways to 
define measures of testing multivariate normality.  That  is, under  the 
assumpt ion  that  g = v, ~ =  X, F is normal  and G is non-normal ,  f rom 
(2.17) we have the basic relation 

(2.20) vary(w) = varF(w) + IF(G; varF(w)). 

By using varc(w) in (2.20) we shall define measures for assessing multi- 
variate normality.  

2.2 Measures of dependence 
Under  the assumpt ion  that  G is a p-variate  non-normal  distr ibution 

with mean vec tor / ,  and covariance matrix 27, we shall consider the problem 
of evaluating the magni tude  of the correlation between the r andom vectors 
u~ and u: in w; recall that  zero-correlation between ul and u2 is a necessary 
condit ion for assuring multivariate normality. 

Two types of measures of dependence D~um and Dmax are introduced.  
Dsum is defined as the sum of canonical correlations between u~ and uz, 
namely, 

(2.21) Dsum --- tr (X-1dF-d ') , 

where F -  denotes  a generalized inverse of Moore-Penrose  type (see Rao 
(1973), Section lb.5). In the case of the 4th order multivariate cumulants  
xijl,, being all zero, we have Dsu~ = (1/2)~1,p, where F -  = (1 /4 ) ( I+  T) and 
fll,p is a measure of multivariate skewness introduced by Mardia  (1970). 

Dsum is invariant under  the affine t ransformat ion of the r a n d o m  vector 
X ~ QX + r, where Q is an arbitrary p x p nonsingular  constant  matr ix 
and r is an arbitrary p x 1 constant  vector. This invariance proper ty  can be 
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easily shown by noting that under the transformation X - - Q X  + r, the 
random vector w = (uf, u;) is transformed to 

(Q 0 )(u,) 
0 Q ' t ~ Q  u 2 "  

For a given random sample X1, 3(2,..., Xn of size n, a sample version 
/)sum of  Dsum is defined by replacing the population cumulants by the 
corresponding k-statistics. Under normality, (n/3)/)s~m has the same 
asymptotic distribution of Z 2 with p(p + 1)(p + 2)/6 degrees of freedom as 
that of Mardia's (n/6)bl.p. 

The object of the other measure of dependence Dm~x is to examine the 
correlation between u~ and u2 by using a'X, a linear combination of the 
random vector X, where a ' =  (a],...,ap) is a p x 1 scalar vector. Dmax is 
defined by 

(2.22) Dmax = max 
a 

[ covo(a'ut, (a' ~ a')u2)] 2 

var~(a'ul) var~((a' ~) a')u2) " 

Here we carry out the maximizat ion  in a under  the condi t ion that  
var~(a'ui) = 1. Then Dmax may be rewritten as 

(2.23) 
[a'A(a ~ a)] 2 

Omax --= max 
( a '@ a')F(a @ a) 

2 
[ r, Z r, a, aja, ,j, ] 

i .i t = max 
" ~, • E ~, a~aiatamXotr~ + 2 ' 

i j l m 

under a',Sa = 1. 
In the case of the 4th order multivariate cumulants rot,, being all zero, 

we have Dmax = (1/2)b'l, where b* is a measure of multivariate skewness as 
defined by Malkovich and Afifi (1973). 

Clearly, Dmax is also affine invariant, and for a random sample of size 
n, a sample version/)max of Omax is defined similarly as in the case of/gsum. 
It is difficult tO calculate the sampling distribution of/3max exactly, but a 
simulation study is feasible. 

2.3 Monte Carlo study 
In this section we shall examine some finite sample properties of/Ssum 

and /)max for various non-normal models with dimension p = 2. For the 
non-normal  models, we consider the following two component  normal 
mixture models, which were studied earlier in Isogai (1983b): 
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(MI) (1-n)N2(O'I2)+~N2[(m)'s2( r r)]l 

w i t h l > r c > O , l > r >  - 1 ,  r e > O ,  

(M2) (1-Tr)NR(O'I2)+ ~rN2[( m)'s2( 0 l+r0 )] 
with 1 > re > 0, 1 > r > 0 ,  m_>0 ,  

where N2(kt, X) in (M1) and (M2) denotes the density function of a 2- 
dimensional normal distribution N2(~, X). 

By specifying the values of 4 parameters rt, r, m and s 2 in each of the 
above mixture models, we have the following non-normal cases: 

(sl) lr = .25, m = 3, S 2 = 3, 1 > r > - 1 with (M1),  

(s2) re=.25, m = 3 ,  s 2 = 3 ,  l>r_>O with(M2) ,  

(kl) zt=.25,  m = O ,  s 2 = 3 ,  l>r_>O wi th(M1)(or (M2)) ,  

Table 1. 5% level power of/),.m and /~rnax and other related measures with sample size n = 30. 

N o n - n o r m a l  cases 
Measures  

/%um /~nmx 61.2 ?/max *2 6~ 

(s l )  n = . 2 5  r =  .9 71% 80% 68% 51% 62% 

S 2 = 3 r - - . 5  66 80 66 40 61 

m =  3 r = 0.0 59 82 62 35 60 

r = .5 52 84 58 40 62 

r - .9 80 86 70 81 64 

(S2) ~ - . 2 5  r = 0.0 59 82 61 35 59 

s 2 = 3 r = .5 59 81 61 40 63 

m =  3 r =  .9 64 82 62 66 63 

(k l )  n = .25 r = 0.0 14 16 23 12 20 

s 2 = 3 r = .5 14 16 22 12 21 

m = 0  r =  .9 16 15 22 15 19 

(k2) s 2 = 1  n = . 2 5  9 8 10 6 8 

m =  0 n = .50 15 15 19 13 19 

r = .9 n = .75 24 25 33 20 32 

(k3) n = . 5 0  r - - . 9  42 42 7 35 5 

s 2 = I r = .5 15 19 4 13 3 

m =  3 r -  0.0 7 9 2 5 2 

r = .5 14 12 7 t6 6 

r = .9 86 60 59 80 37 

(k4) n = .25 m =  1 36 25 36 32 30 
s 2= 3 m =  2 46 49 54 41 48 

r =  - .9 
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(k2) rc=.25 , .50 , .75 ,  m = 0 ,  s 2 = l ,  r = . 9  w i th (M1) ,  

(k3) ~ = . 5 0 ,  m = 3 ,  s 2 = 1 ,  l > r > - I  wi th (M1) ,  

(k4) zc=.25,  m = l , 2 ,  s2=3 ,  r = - . 9  wi th (M1) .  

First, with respect to each of Dsum and Dmax, 5000 samples of size n 
( = 30, 50) were drawn from a 2-dimensional normal Nff0,12). The empirical 
5% points were obtained from the corresponding order statistics of /3sum 
and /)max. 

Next, with/~sum and/3m~x, 1000 samples of the same size as above were 
drawn from each of non-normal cases. The empirical power was calculated 
by the proportion of samples falling in the 5% empirical critical region. 

The results for the non-normal cases are given in Tables 1 and 2, 
where for purposes of comparison we also reprint the simulation results of 

~2 the measures b~,2 and b* and r/~x, taken from Isogai (1983b) (for details 
~2 concerning the measure r/max, see Cox and Small (1978)). Obviously, /~sum 

and /0m~x seem to have good power compared to the other measures; in 
practice, we would recommend the use of bsam. 

Table 2. 5% level power of/5~um and/gmax and other related measures with sample size n = 50. 

Non-normal cases Measures 

b~um bm,x b~.2 ~2 b* /']max 

( s l )  n = . 2 5  r = - . 9  9 5 %  96% 9 2 %  76% 88% 

s 2 = 3 r = - .5 95 97 91 64 88 

m = 3 r = 0.0 95 97 89 54 88 

r = .5 93 98 86 62 90 

r = .9 97 98 96 97 93 

(s2) n = .25 r = 0 .0  95 97 89 54 88 

s 2 = 3  r =  .5 94 98 88 63 90 

rn=3  r =  .9 94 97 89 90 91 

( k l )  n = . 2 5  r =  0.0 19 20 29 16 29 

s 2 = 3  r =  ,5 16 18 27 16 28 

m = 0  • =  .9 17 17 26 20 27 

(k2) s 2 = 1  n = . 2 5  9 8 9 8 10 
m = 0 n = .50 17 15 22 16 23 

• = .9 ~ = .75 26 24 40 27 42 

(k3) ~ = . 5 0  • = - . 9  53 44 12 46 7 

s 2 =  1 r = - . 5  20 18 5 17 4 

m = 3  r =  0.0 7 8 1 5 2 

r =  .5 23 17 11 26 9 

r = .9 98 81 90 98 68 

(k4) n = .25 m = 1 59 40 57 54 44  

s 2 = 3 m = 2 77 75 80 67 72 

r = - . 9  
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3. Use of a score function 

The definitions of the influence functions IF(X;/z) and IF(X; Z') with 
respect to the population moments /z and Z" can be easily extended by 
incorporation of the log likelihood of an influential observation X. Suppose 
that the true distribution F has a density f ( x )  belonging to the family of 
densities {f(x, 0); 0 ~ O, O is an appropriate subset in some Euclidean 
space} (say ,~r), with the densities f ( x ,  0) being sufficiently regular, and 
that the density f ( x )  is indexed by 0--00 ~ O. Also suppose that a 
contaminate component  G has a density g(x) which may or may not belong 
to the family ,~ .  

Then we can define a quasi-influence function for the population 
parameter 0 = 00 by using its score function as 

(3.1) QIF(X; 00) = 0-f0- log f ( X ,  0)10=0o. 

This definition (3.1) is obviously a generalization of (1.1) and (1.2). The 
formulas corresponding to (2.16) and (2.17) can be written as 

(3.2) E~[QIF(X, 0o)] : IF[G; Eoo{QIF(X, 00)}], 

and 

(3.3) var~(QIr(X,  0o)) + Eo[QIF(X, Oo)]'E~QIF(X, 0o)] 

= varoo(QIF(X, 00)) + IF[G; varoo(QIF(X, 0o))]. 

In the following we shall apply formulas (3.2) and (3.3) to the usual 
regression analysis with some parametric families, and derive test statistics 
for multivariate normality. 

3.1 Application to regression analysis 
Using the concept of a quasi-influence function, we here consider an 

application to the usual linear regression analysis. The model is represented 
by 

(3.4) yi = Z~fl + ei, i = 1, 2,..., n ,  

where z; = (zil, zi2,..., Ziq) is a q x 1 vector of known constants corresponding 
to the i-th level of a q-dimensional regression vector z' = (z~, z2,..., Zq), yi is 
the i-th observation of the response variable y, fl is a q x 1 vector of 
unknown parameters, and ei is a random variable, typically called the error 
term, with E(ei) = 0 and var (e;) = a2 (i = 1,..., n). 
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In matr ix nota t ion  the model  becomes 

(3.5) Y = Z f l +  e ,  

where Y ' =  (y~, . . . , y , , ) ,  e ' =  (e l , . . . , en )  and Z is an n x q matr ix  of rank q 
whose i-th row vector is zl. Usually, we assume that  the dis tr ibut ion F of 
the error vector e is an n-variate normal  Nn(0, o"21). Then,  the least squares 
est imator of fl, denoted by fl, is given by 

(3.6) ]? = ( Z ' Z ) - ' Z ' Y ,  

and fl is distributed as Nq(fl ,  t f l ( Z ' Z )  -1) under  F. 
F rom the density Nq(fl ,  a 2 ( Z ' Z )  -t) of fl, quasi-influence functions of fl 

and a 2 are obtained as 

(3.7) QIF( Y; fl) = ( Z ' Z ) ( f l  - fl) = Z ' ( Y -  Zfl)  = Z 'e  , 

and 

(3.8) QIF( Y; a 2) = (/~ - f l ) ' (Z 'Z ) ( f l  - fl) - q a  2 

= e , Z ( Z ' Z ) - l Z , e  _ q a  2 . 

Under  the normali ty assumption QIF( Y; fl) and QIF( Y; tr 2) are independent.  
Thus,  when the normali ty  of the error vector e is violated, we may use 
formulas (3.2) and (3.3) to evaluate the mutua l  dependence between 
QIF( Y; fl) and QIF( Y; o-2). 

Suppose that  under  a contaminate  componen t  G the error vector e has 
E o ( e )  = 0, varo(e) = tflI and the 3rd and 4th order  multivariate cumulants  
x0t and XOtm, i, j ,  I, m = l, 2,.. . ,  n. By applying formulas  (2.8), (2.9) and 
(2.10) to QIF(Y;fl) (say ffl) and QIF(Y; a 2) (say if2), we have 

(3.9) 

(3.10) 

(3.11) 

varG(tT,) = a 2 ( Z ' Z ) ,  

COVG(/~I,/~2) = Ztz~ vec ( V ) ,  

var~(~2) = vec (V)'[KI41 + (cr2I) @ ( 2 i )  + T ( a 2 l )  @ (cr2i)] vec ( V ) ,  

where we put 

(3.12) I, '= (o~:) = Z ( Z ' Z ) - l z  ' , 

and A is an n × n 2 matr ix  of xot's, K 14) is an n 2 × n 2 matr ix of/Cq/m'S , Tis  an 
n 2 × n 2 permuta t ion  matrix,  and A, K 141 and T have the same structures as 
those defined in Section 2. 
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From (2.21), a measure of dependence DREG is defined as 

(3.13) DREG = 

covo(al ,  a2)'{ vary(am)} -1 covo(a~, a2) 

varo(/22) 

vec ( V)'A' VA vec (V) 
0'2[ vec (V)'K 14) vec (V) + 2q(tr2) 2] " 

Note that  DREG is invariant under  the linear t ransformat ion Z -" ZQ with a 
q × q nonsingular  matrix Q. 

To simplify the expression (3.13) of DREG, we consider the case where 
the el's, the elements of the error vector e, are independently and identically 
distributed under  G. Then the 3rd and 4th order multivariate cumulants/(i j t  
and/(;jt,~ of e are 

/ ( I l l  = /(222 . . . . .  /(nnn (say/(3), 

/(ijt = 0 (otherwise),  

and 

K l l l l  = /(2222 ~ " ' "  ~ /(nnnn 

/(ijlm = 0 

Under  this condit ion DRE6 is reduced to 

(os)(y0 2 
(3.14) DREG = 

[(Or)y2 + 2q] 

where we put  yl = x3/(a2) 3/z, ~)2 = / ( 4 / ( 0 " 2 )  2, 

(3.15) Os= ~ ~, oiioiiojj 
i = l j = l  

and 

n 

(3.16) oK = iZl: (Oii)  2 • 

(say x4) , 

(otherwise).  

We remark  that  Or corresponds to the quant i ty  m introduced by Box and 
Watson  (1962); and, to use DREG in practice we must  estimate yl and 72 by 
appropr ia te  residuals. Here we shall consider how to choose an experi- 
mental  design which would reduce the dependence between QIF(  Y; fl) and 
QIF( Y; a 2) under  non-normali ty.  
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From the facts that 1 _> oii > 0, ~ o,.~ =-q and o r >  Os > - 0, and that 
i = 1  

DREG is continuous in both or  and Us, we may infer that DREG is bounded. 
If y~ and y2 are known, we may choose the design Z, which minimizes 
DREC. But yl and y2 are usually unknown,  and so instead of using DREG 
directly, we shall deal with a quantity which dominates DREG. 

From the fact that q2 /n  <_ oK <- q, we have 

(3.17) DREG --< m a x  DREG 
ug 

(Osy2)/[(q2/n)72 + 2q] 1/2 for ~2 ~ 0 ,  

= (OST~)/[q~2 + 2q] 1/2 for y2 <- O. 

The factor Os is essential to reduce max  DREG. 
OK 

To examine the structure of the factor Os, we further assume that the 
q-dimensional regression vector z is divided into one constant term and the 
q -  1 (say p)-dimensional  regression vector x, that is, z ' =  (1,x ' )  with 
q = 1 + p. Then the i-th level of  the regression vector z is represented as 
z~= (1, x~), i =  1,. . . ,n in terms of the i-th level of  the p-dimensional  
regression vector x. 

Following the method of Box and Watson (1962), in which they 
derived a measure of kurtosis Cx, we have 

1 pZ + 2p(n  - 1) 
(3.18) Os= - -  + 

n n ( n -  1) 2 

( n  - 2) 2 
+ n2(n - 1) y~ ~ ~ X  E X kii'kii'jkJ/kj,lrk Ir 

i i" j j '  1 I' 

where i, i', j ,  j ' ,  l and l' range from 1 to p, kij and k,-jz are, respectively, the 
2nd and 3rd order k-statistics based on n observed regression vectors Xl, 
x2,..., x~, and we set ( k  ij) = (kij) -1. 

Here we put 

(3.19) S x  = E ~ ~, E E Y~ k"'kiiTkJJ'kj'u'k tr . 
i i" j j '  l l '  

S x  is a sample version for a measure of multivariate skewness tr (S2) 
introduced by Isogai (1983a), which is nonnegative and invariant under the 
affine t ransformat ion of the regression vector x --" Q x  + r with a p × p 
nonsingular  matr ix Q and a p × 1 vector r. Thus, if we can choose an 
experimental  design which makes S x  = 0, that is, if we select n design 
vectors xt,. . . ,  x,  to have zero multivariate skewness in the sense of tr ($2), 
we would reduce DREG, or at least we can ensure that max DREG is of  the 

OK 
same order/,/-I as Vs. 
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3.2 Index of goodness-of-fit 
In this section we remark that under certain circumstances formulas 

(3.2) and (3.3) reduce to Fisher's information, which may be used to 
evaluate a discrepancy between different distributions. Also, by using 
Fisher's information measure we may derive some indices of goodness-of- 
fit and test statistics for multivariate normality. 

Now let us consider the case where the contaminate component G 
belongs to the family ~ ' a n d  its density g(x) is specified by some 0 ~ O, but 
we have little knowledge of its shape. As the first step, from (3.2) it is 
reasonable to examine the behavior of E0[QIF(X, 0o)] as 0 tends to 0o. 
Under appropriate regularity conditions, we have Eoo[QIF(X, 0o)] = O, and 
SO 

0 
(3.20) 00 Eo[QIF(X, 0o)]10-0o 

is meaningful. The quantity (3.20) is usually equal to var0~(QIF(X, 0o)) and 
denotes the Fisher's information matrix, which is an additive component of 
the right hand of (3.3). Therefore, we can use the quantity (3.20) as a 
measure to evaluate the discrepancy between G and F. 

A measure of the discrepancy D(F, G) is defined by 

0 
(3.21) D(F, G) = -~ Eo[QIF(X, 0o)]10=0o 

= varoo(QIF(X, 0o)). 

Here, we give some examples in the following. 

Example 1. , ~ ' =  {(1 - O)f(x) + Og(x); 0 <_ 0 <_ 1 }. 

(3.22) 
g(X) ) 

D(F ,  G) = varF , 

which is called the mean square contingency. 

Example 2. ,~;= {f(x)l-°g(x)°/ C(O); C(O) = f f(x)l-°g(x)6dx and 0 <_ 
0 <__ 1 }. Then 

(3.23) g(X) I D(F, G) = varF log f (X)  ]" 

Remark. In Examples 1 and 2, let the density f(x) be a p-variate 
normal with zero mean vector, and covariance matrix lp the identity matrix 
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P 

of order  p: therefore, f (x )  can be expressed as f (x )  = ~H a(xt) with a(x) 

denot ing the density of the univariate s tandard normal  distribution. Also, 
let the density g(x) be a p-variate  non-normal ,  with zero mean vector and 
covariance matr ix  Ip, which has a Gram-Charl ier  Type A series expansion.  
That  is, suppose that  g(x) may  be formally expanded as 

P . ( 3 )  [ P  )/(rl!r2!...rp!) g(x) = { Hl a(x,) } × { l + ~' ~ ....... rp ~ t~=l ar,(Xt ) 

+ ,.~ ,~ ....... r, H~,(xt) (r1!r2!... rp!) , 

where E'  and E" denote  the summat ions  with ri, i = l , . . . , p  over the sets 

rl, r2,...,rp); Y. rt>--O, rt's are in tegers  and  rl,...,rp); E r t = 4 ,  
t = l  t = l  

rt > 0, r:s are integers / respectively, "-r:~-~,"13) and ~.14) are the 3rd and 4th - -  , t~ rl... rp 

order  mult ivariate  cumulants ,  respectively, and ri denotes the degree of  the 
Chebyshev-Hermite polynomial H,,(.) with the corresponding random variables, 
and Hr(x) is defined by Hr(x) = {( - d/dxfa(x)}/a(x) .  Then we have 

(3.24) D(F, G) -- (3!)-lfll,p + (4!) -l tr (K2), 

where fll,p is Mardia 's  (1970) measure of multivariate skewness and tr (/(2) 
is a measure of multivariate kurtosis introduced by Isogai (1983a). 

Example 3. .~'= {f(x,O); f ( x )  is a p-variate  normal  with mean 
vector # and covariance matr ix S a n d f ( x ,  0) is defined by 

f (x,O) = C(#, S, 0) -1 exp [ - 2-111x- #112÷°] 

with 

IIx -/111 = {(x - # ) ' s - l ( x  - #)}1/2,  

C(#, S, O) = fR, exp [ - 2-1[Ix - #112+°]dx  . 

0 belongs to some open interval 0 such that  C(#, Z', O) exists}. T h u s f ( x )  is 
specified by 0 = O. Then we have 

(3 .25)  D(F, G) = 16 -1 vare(l lX - #112 log IIX- #112). 

The r a n d o m  variable [ I X - p l l  2 log IIX-#112 is a multivariate version of a 
test statistic Z 2 log Z 2 (Z is a s tandard normal  variate) in t roduced by 
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Spiegelhalter (1983) to examine normality against symmetric families. 
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