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Abstract. We consider a two-factor experiment in which the factors 
have the same levels with a natural ordering among the levels. Likelihood 
ratio tests for testing equality of the main effects with a one-sided 
alternative and for testing the one-sided hypothesis as a null hypothesis 
are studied. Closed form expressions for the maximum likelihood esti- 
mates under the various hypotheses are obtained. The null hypothesis 
distributions for these test statistics are derived. 
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1. Introduction 

Duality is a powerful tool for solving optimization problems and 
Luenberger (1969) contains an excellent discussion of the topic of duality. 
The concept of a simple (linear) order and the concept of stochastic 
ordering are related via Fenchel duality, as was first pointed out in Barlow 
and Brunk (1972). This duality between simple and stochastic orderings is 
also discussed in Section 1.7 and Chapters 5 and 6 of Robertson et al. 
(1988) and is further explored in order restricted testing problems in 
Robertson and Wright (1981, 1982). 

In this paper we explore a further manifestation of this type of duality 
in an inference problem which has a different character than those discus- 
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sed above. This problem gives an elegant demons t ra t ion  of the power of 
duality for solving optimizat ion problems. We consider a "one-sided" 
analysis of a two-factor  exper iment  in which the two factors each have the 
same levels and it is assumed that  the levels have a natural  ordering. For  
example,  in a s tudy of nutr i t ion for plants,  we may wish to compare  
fertilizer combinat ions  of ni trogen and potass ium at each of several levels. 
It is desired to compare  the main effects of these two fertilizers on some 
variable of interest, when it is believed that  the effect of one fertilizer 
dominates  that  of the other. 

We assume the following s tandard parametric model: 

(1.1) Yo, =/t0 + e,jr, i , j  = 1,2,.. . ,  k and r = 1,2,.. . ,  n ,  

where the eur are assumed to be independent  normal  r andom variables with 
zero means and c o m m o n  variance, a 2, a n d / t  = [/t0] is a matrix of unknown  
parameters.  The main effect for the row (column) factor at level i is 

k( k) 
/ti+ = :~I/tO /t+i = ~=i/tgi= for i = 1,2,.. . ,  k .  

Within this context,  we consider two order restricted testing problems. The 
first is to test homogenei ty  of the main effects corresponding to the two 
factors, specifically: 

(1.2) U0:/ti+ =/t+i, i = I, 2 ..... k ,  

with a one-sided alternative given by 

i i 

(1.3) Hl:j~=l/tj+ >_j~=~/t+j for i = 1 ,2 , . . . , k .  

In the fertilizer example,  suppose that  both  the row effects, pi÷, and the 
co lumn effects, g+,-, are nondecreasing.  If the co lumn factor, say potassium, 
were believed to have a more  pronounced  effect on the variable of interest 
than the row factor, then one could quantify the difference in the effects of 
the two factors by assuming that  the values of g+i increase at a faster rate 
than  do the values of p~+. Since ~/ti÷ = ~/t+;, this difference in effects would 
produce  more variat ion in the co lumn effects than  in the row effects, and 
one quantif icat ion of greater dispersion is Schur-majorizat ion.  Because the 
row and column effects are nondecreasing, this is equivalent to (1.3). 

The method  used here for developing theory for the restriction (1.3) is 
applicable to any "cone restriction" which has (1.2) as a subhypothesis.  The 
second testing problem we will consider is to test (1.3) as a null hypothesis. 

To clarify the meaning of (1.3), we consider some possible configura- 
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tions for the main effects. If g,j does not  depend on i and is nondecreasing 
in j ,  then ai+ = g++/k, ~u+i is nondecreasing with sum/t++, and (1.3) holds. 
This is the extreme case in which the row factor has no effect on the 
variable of interest. With k = 5, suppose that 

/.t+l = - 1, /.t+5 = 1, i//+2 : /[,/+3 : ] 2 + 4  : 0 and /~i+ = (i - 3 ) /3 .  

In this case, (1.3) holds even though the column factor has no effect except 
at its extreme values and the row factor has a linear effect. This is because 
there is more dispersion in the/t÷; values than in the/t~+ values. With k = 4, 
if/t+~ =/t+2 = - 1, ~+3 =/~÷4 = I and/t~+ = ( 2 i -  5)/3, then (1.3) holds. In 
this example,/t~+ =/t÷~ = - 1 and/t4÷ =/~+4 = 1, but again the ~÷~ have the 
greater dispersion. 

Of course, Schur-majorization is not the only way to characterize the 
concept of "greater dispersion". However, it is very useful since ~b(x) _< tk(y) 
for every Schur-convex function ~b and y = (y~, y2,..., yk) which Schur- 
majorizes x =  ( x ~ , x 2 , . . . , x , ) .  This, in turn, has a number  of important  
statistical applications (cf. Marshall and Olkin (1979)). 

Rober tson and Wright (1982), Pukelsheim (1984) and Cohen et  al. 

(1989) study partial orderings on R k which quantify the concept that one 
vector is more dispersed than another.  In their terminology, (1.3) says that 
the vector (/t+~,/z+2,...,/-/+k) is more isotonic than the vector (/~+,/L2+,..., ak+). 
They discuss tests of  hypotheses involving this restriction for independent 
samples from the populations associated with the various parameter  values. 
However, in the framework considered here, the observations on ai+ are 
not independent of those on/~÷~. 

Either of the likelihood ratio tests (LRT's) considered in this paper can 
be carried out under the additional assumption that the parameter  matrix, 
/1, belongs to any one of the following linear models: 

the additive model: 

lt~ = m + ai + flj , 

the interaction model: 

/z,7 = m + ai + ,flj + (a,fl)~., 

the cohort  model: 

/zu= m + a,- + ,flj + v;+j-~, 

the Latin square design: 

~i j  = m + ~i  + f l j  + ~p(i,y) + pq(i,j) . 
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Additional models include the symmetric interaction model with (afl)o = 
(afl)ji as well as any of the above models without diagonal elements or with 
diagonal elements /~;i = m + v~, since the hypotheses H0 and H~ do not 
involve the pi~. Within any one of these models, the maximum likelihood 
estimates (MLE's) subject to H N Ho and H A H~ can be found by first 
finding the MLE's subject to the model restriction, H, and then making a 
simple adjustment for the appropriate hypothesis, H0 or H1 (cf. Theorem 
3.4). The null hypothesis distributions for the LRT statistics are found by 
making simple adjustments in the degrees of freedom for the distributions 
associated with the free model. 

Fenchel duality is discussed in Section 2 and the remarkably simple 
forms of the duals of the subsets of the parameter space corresponding to 
H0 and H~ are derived. Closed form expressions for the estimates subject to 
the various restrictions are derived in Section 3 and we partition the sum of 
squares and derive distributions of quadratic forms in Section 4. 

2. Parameter spaces 

The set of unknown parameters,/~,.j, form a k × k matrix which we will 
think of as a point in the k2-dimensional Euclidean space, R k×k, and we 
denote this point by p = [p~]. If p and v are two such matrices, we define 
the usual inner product in R k×k by 

k k 

v> = Zl j z  fovo  . 

If C is a closed convex cone in R k×k, then the Fenchel dual or polar of C is 
defined by 

(2.1) C* = {v: <v,/z> _< 0 for all/~ ~ C}. 

The duals of the subsets of R k×k corresponding to the hypotheses Ho and 
H1 have a remarkably simple structure. Let the symbols H0 and H1 also 
denote the subsets of R k×k corresponding to the hypotheses H0 and H~. 

THEOREM 2.1. The 
o f  the f o r m  vii = 6i - 6j f o r  
the set o f  all matrices v 
numbers 61 < 62 < ... <- 6k. 

dual, H*,  o f  rio is the set o f  all matrices v = [v/j] 
real numbers 61,62,..., 6k. The dual, H*,  o f  H1 is 
o f  the form v U = 6 i -  6j for  nondecreasing real 

PROOF. Define the k matrices a'; t = 1,2, . . . ,k so that the non- 
diagonal entries in the t-th row of a t are 1; the nondiagonal entries in the 
t-th column of Ct t a r e  - 1; and the other entries in a t are 0. The linear 
space, H0, can be written 
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H0 = {It: (at, It) = 0 for t = 1,2,. . . ,  k} .  

k 

Note  that  the mat r ix  Y~ a t is identically zero so that  it is sufficient to use 
t = l  

only k -  1 constraints  in character iz ing H0. Since H0 is a l inear space, its 
dual  H *  is the o r thogona l  c omp le men t  of  Ho and it follows f r o m  the 
definit ion of  H *  that  H0* is the set of  all l inear combinat ions  of  a 1, a2,..., a k. 
Thus,  

(2.2) H *  = {v: vo = c~, - 6i for  some 61, 62,..., 6k}. 

Now,  H0 C H1, so that  it follows f rom (2.1) that  HI* C H *  and thus 
tha t  matr ices  in H *  are also of  the fo rm [ 6 i -  6j]. It remains  to show that  
61 < 62 < ... < 6k is the restr ict ion character izing HI*. Using the defini t ion 
of  a t, the set/-/1 is the closed convex cone, 

(2.3) {(' > } HI= It: rE=tat, It ->O;h=l,2,...,k-I . 

By (2.1), a ma t r ix  v is in HI* if and only if it is a l inear combina t i on  of  
k - I  

a 1 a 1 + a2,.  ~ a t with nonposi t ive  coefficients 21,22,..., 2k-1. Using Abel 's 
' "" t=1 k 

method of summation by parts and the fact that E a t = O, 
t=I 

k - 1  h k 

v = h__g Y, d =  6hd' 
= i=1 h = l  ' 

with 2h = 6h -- 6h+~; h = 1,2,. . . ,  k - 1. It follows that  HI* is the closed convex 
cone 

(2.4) H *  = {v: vt/= 6i - 6j; 61 -< 62 _<... < 6k}. [] 

The sets in (2.2) and (2.4) are not  changed  if 6 = ( 6 1 , 6 2 , . . . , ~ k )  is 
restr icted so that  Y~6i is a f ixed value. This observat ion is useful when  
comput ing  the MLE's  of  It. 

R e m a r k .  H *  and HI* can be character ized as follows: 

H *  = {v: v~ = 6i - 6j with ~6i  = 0},  

H *  = {v: v 0 = 6~- - 6j with 6~ _< 62 - ... _< 6k and Y~6i = 0}.  
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3. Maximum likelihood estimates 

The purpose of this section is to derive the MLE's for the unknown 
parameter  matrix, p, under the restrictions H n H0 and H n H~ where H is 
any one of the linear models discussed in Section 1. Let ~ = [Y0] be the 

matrix of sample means ySj = ,~lY°r/n . If C is any closed convex cone in 

R k×k, then the MLE of/~ subject to the restriction/~ ~ C minimizes the sum 
of squares 

k k 

(3.1) E E (Yo - ~o) 2 
i = l j = l  

subject to p ~ C. The solution to (3.1) is the closest point of  C to the matrix 
in the least squares sense, and we denote this point by E(.~[ C). One of 

the keys to finding the MLE's subject to p e H n H0 and/.t e H n H1 is the 
following theorem together with the Remark  at the end of Section 2. 
Moreover,  this observation implies that both H*  and H0* are subsets of 
any one of the linear subspaces described in Section 1. The proof  of the 
following theorem uses the characterization of z = E(yl C) by the condi- 
tion, z ~ C, together with 

(3.2) (y - z, z) = 0 

and 

(3.3) (y - z, w) _< 0 for all w ~ C 

(cf. Theorem 1.3.2 in Robertson et al. (1988)). Note that if C is a linear 
subspace, then z = E(yl C) is characterized by the two conditions, z ~ C and 

(3.4) (y - z, w) = 0 for all w ~ C.  

THEOREM 3.1. I f  C is a closed convex cone and H is a linear 
subspace such that H ~ C*, then 

E(y IH N C) = E ( y I H ) -  E(y lC*) ,  

for all y. 

PROOF. Let u =  E ( y l H ) -  E(yIC*). We verify that u has the three 
properties characterizing E(yl H n C). First note that u ~ H since H is a 
linear subspace, E(y lH)  ~ H, and E(ylC*) ~ C* C H. In order to see that  
u e C = C** suppose w ~ C*. Then 
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(u, w) = ( E ( y I H )  - E(y] C*), w) 

= ( y  - E ( y l  C*) ,  w)  - ( y  - E ( y l H ) ,  w ) .  

The first inner product  is nonposit ive by (3.3) and the second is zero by 
(3.4). Thus u ~ H CI C. Now consider 

<y - u, u) = <y - E(y l  H )  + E(y[ C*), E (y l  H )  - E (y l  C*)) 

= (g (y[  C*), E ( y [ H )  - E(y[ C*)) 

= (E(E(y[  H)[ C*), E(y[ H )  - E ( E ( y I H ) [  C*)) = 0 

by (3.4); by L e m m a  2.4 in Lee (1975) (or L e m m a  2.2 in Raubertas  et al. 
(1986) which states that  if C~ and (72 are polyhedral  cones and C1 C (72, 
then E(E(y[  C2)1 C1) = E(y l  C1) if either is a linear subspace) and by (3.2). 
Finally, suppose w ~ H A C and consider 

(y  - u, 14,) = (y  - E ( y [ H )  + E(y[ C*), w) 

= (y  - E ( y [ H ) ,  w) + (E(y[  C*), w) _< 0 ,  

by (3.4), the definition of C*, and the assumption that  w c C. [] 

Since H0* and H *  are subsets of H the projections of .~ onto H f~ H0 
and H A H1 are determined once E(y[ Ho*) and E(Yl H*) are found. 

THEOREM 3.2. I f  y is any matr ix ,  then 

E(y[ H*)~ = (y,+ - y+,)/(2k) - (yj+ - y+j)/(2k) . 

PROOF. Let z u = 3 i - 3 j  with 3 i = ( y ~ + - y + i ) / ( 2 k ) ;  i =  1 ,2 , . . . , k .  By 
k 

Theorem 2. I, z ¢ H*.  Moreover,  if w ~ H *  with w u = ai - aj where Y~ ai  = 0,  
i=1  

then 

k k 

( y  - z, w) = Z Z (yiy - zo') wo" 
i = l j = l  

= i~lOti(yi+ + y+i)  --j~=l aj(yj+ + y+j) 2 = O. 

Thus z = E(ylHo*) by (3.4). [] 

Let d = (d~, d2,..., dk) be defined by 
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(3.5) di=  (~+ - ~+;)/(2k), i =  1 ,2 , . . . ,k .  

Clearly, E(Yl H*)o = & - dj and 

k 
( ) X d , = 0  .3.6. i= l " 

If g = (g~, g2,..., gk) is any k-dimensional vector, let g* be the isotonic 
regression of g whose components are in a nondecreasing order. Specifical- 
ly, g* solves 

k 

min ]~ (g i - f i )  2, f~ <-f2 <- ... <fk 
i=1 

(see Section 1.2 of Robertson et al. (1988) for computat ion algorithms and 
properties of g*). 

THEOREM 3.3. l f  y is any matrix and if  the k-dimensional vector g is 
defined by 

g, = (y;+ - y,i)/(2k), i = 1, 2,..., k ,  

then E(y IH*)  = z with z~ = g* - g*. 

PROOF. Since g* _< g* _< ... _< g*,  z ¢ H~*, by Theorem 2.1. Also by 
Theorem 1.3.2 of Robertson et al. (1988), 

k 

(3.7) i~=l (gi - -  g*)g* = 0 

and 

k 

(3.8) E=~(gi-g*)f<_O for f~-- - f2-  < ' ' ' - < f k .  

k k 

Then (3.7) and (3.8) imply that ,~,g, = ~=,g* = 0 and ( y -  z , z )=  O, and if 

u e H1* with u~j = 3 5 - ~  and f l -<f2-< ""-<fk,  then (3.8) implies that  
(y - z, u) < O. Thus by (3.2) and (3.3), z = E(yl H*). [] 

This theorem implies that the MLE of/z subject to the restriction H *  
is given by E(~] H*)o = d* - dj* where d is given by (3.5). 

Let ~ be the maximum likelihood estimate o f / t  under H where H is 
any one of the linear models described in Section 1. Expressions for 33 are 
well known under any of these models. Combining the above theorems 
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yields the following result. 

THEOREM 3.4. I f  ~9 is the M L E  o f  g under the linear model  H and if  
)o and ) l  are the MLE's  o f  ll under H A Ho and H N H~, respectively, then 

)30 = E(f l  n N Ho)o = E(.~I n)o - E(.~I Ho*)o = ~ - & + (3.9) 

and 

(3.10) ^1 = 
y,~ E(ylHCI HI)~ = E(YlH)o'- E(.vlH*)u=)3~ - &* + dj*, 

where d is given by (3.5) and d* is the isotonic regression o f  d whose 
components are in a monotone nondecreasing order. 

4. Distributions of quadratic forms 

Consider the matrices at; t = 1 ,2 , . . . ,k  defined in Section 2. Clearly, 
each of these matrices belongs to H*  and by assumption H *  C H. Thus, 
since )3 = E(yl H) ,  

which implies that 

(4.1) 

LEMMA 4.1. 

PROOF. 

k k E Z -  " ' (Y0 - Y0) ct,j = 0, t = 1 2,..., k 
i = I j = 1  ' ' 

f~,+-~+,=y-~+-y+t, t =  1 ,2 , . . . , k .  

The two projections )30 and E()311H0) are equal. 

Note that 

E(.pll H o) = 331 - E ( ) I l H  *)  

and using Theorem 3.2 

(4.2) 

However, 

k 

since Z dj* = 0. 
j = l  

obtain 

E ( ~ I  i Ho)/j = .~1 [(:~+ )31i) ~1 - - - ( y j +  - f l + j ) ] / ( 2 k ) .  

k 

yi+'I :J:~=l ()30 - d* + dj*) = )3,+ - kd* 

Similarly, 1̂ y÷~ = P÷i + kd* and substituting into (4.2), we 
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E(.f,'lHo)o = ~,7 - (Y,+ - p+,)/(2k) + (pj+ - ~ O / ( 2 k ) .  

By (4.1) and (3.9) this is equal to 33 °. [] 

Now consider the sum of squares, 

(4.3) 
k k n k k n 

~ i (  Z Z r~:l (Yijr -- y~.)2 Y~ ~, yor-- O~')2----i=lj=l 
i = l j = l  r= = 

k k ^1 ^1 ~0 
+ 2 Y. E ~2 (Yo, - Yo)(Yo - Yo) 

i = l j = l  r= l  

k k 

i= j = l  

The inner product  term is equal to 

k k 
2n E Z(ff# .1 .I - Y O ) ( Y O  - ~o) 

i = l j = l  

k k k k 
~1 ~1 ~-~ ^1 ~0 

= 2n ~, ~, (Yo - Y#)Y~ - 2n ---1 ~ (yig - Yo)YO. 
i = 1 j = 1  i= j = l  

The first term is zero by (3.2) and the second term is equal to 

k k k k 
~0 ^0 ~ ~ ~0 ~1 ^0 

- - ( Y o  - Y o ) Y ~ .  2n i=tj=lE ~ (fu - Yo)Y~ 2n i = 1 j =  1 

The first term is zero by (3.2) and the second term is zero by L e m m a  4.1 
together with (3.2). Thus,  the inner product  term in (4.3) is zero and the 
sum of squares is part i t ioned as follows: 

(4.4) 
k k n k k n 

i = l j = l  = i= j = l  r= 

k k 

+ n Z Z - 
"= j = l  

Now consider the problem of testing the null hypothesis,  H ~ H0 against 
the alternative H f3 H1 - H O Ho (i.e., H (3 HI but not  H f3 H0). If A01 is 
the likelihood ratio and tr 2 is known,  then the L R T  rejects for large values 
of To1 = - 2 in Aol and by (4.4) 

k k 
To, = (n /a  2) ~=~ j~=~ (~- 330)2. 

Using the expressions for 331 and 330 given in Theorem 3.4 
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k k 

To, = ( n / a  2) X:, SX_l[(& - ds) - (d*  - ds*)] 2 

= (2kn/a 2) ,=X l ( & -  d*) 2 

k 

since Y. ( d / -  d*) = 0. 
i=1 

Clearly, the random vector d has a multivariate normal distribution. If 
H0 is true, then the mean vector is zero and the covariance matrix is 
a2(I - k- l j ) / (2kn)  where I is the k × k identity matrix and J is the k x k 
mat r ix  with each ent ry  one. Let U,,U2,...,Uk be independent  no rma l  
random variables with zero means and common  variance a2/(2kn), and let 

k 

= iE__ui/k. The two random vectors d and x = (u, - ~,u2 - ~,...,Uk -- ~) 

are identically distributed. Suppose x* is the isotonic regression of x with 
nondecreasing components.  Then x* = u* - ~ and the random variable T01 
has the same distribution as 

k 
Td, = (2kn/ a 2) iX= , (ui - ui*) 2 . 

The distribution of T6, is given by Corollary 2.6 in Robertson and 
Wegman (1978), which proves the following theorem. 

THEOREM 4.1. I f  Ho is satisfied, then 

k 

P[Tol > t] = t~IP(I,k)p[z2-t > t], 

where Z~ is a standard chi-square variable with i degrees o f  freedom 
(Z 2 = O) and the P(I, k) are the equal-weights level probabilities given by 
Corollary A on p. 81 of  Robertson et al. (1988). 

Now consider the problem of testing H (q H, as a null hypothesis and 
again assume o .2 is known. Using (4.1) and Theorem 3.3 one shows that 
E031H *) = E(.vlH*) and then by Theorem 3.1, we obtain the following 
lemma. 

LEMMA 4.2. The two projections y '  ---- E(vl H A H,) and E(331H0 are 
equal. 

If AI2 is the likelihood ratio for testing H N  H, against H - H ,  and 
TIE = -- 2 In A,E, then an argument similar to that leading to (4.4) yields 
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i= '= r=l i= j = l  r=l 

k k k k ] /  
= n Z E 030 - yl)2 + 2 E E ~ (Yo' -- ~0")(Y0 -- J~b) ¢r2 

i = l j = l  i = l j = l  r=l  

k k k k 
= ( n / 2 )  ~, j~l 03~ - )31)2 = ( n / 0  -2) ,~1 j~, (d* - dj*) 2 

k 
= ( 2 k n / a  2) ~E1 (d*) 2 , 

recall that Yd* = Y-& = 0. Modifying the argument given for Theorem 4.1, 
the distribution of T~2 can be shown to be the same as that of 

k 
( 2 k n /  ¢r 2) i~=1 (U~ -- ~ ) 2 .  

The distribution of this random variable under H0 is given by the corollary 
to Theorem 2.3.1 of Robertson et al. (1988). Moreover, by the first 
corollary to Theorem 3.6 of Raubertas et aL (1986), H A  H0 is least 
favorable within H N HI for this test statistic. Denoting probability with a 
mean vector/~, by P~(- ), we obtain the following theorem. 

THEOREM 4.2. F o r  any  real  t, 

sup P,[  T~2 -> t] = sup 
II~ HN H~ pe Hn  Ho 

k 
Pu[T12 >- t] = ,~1P( I , k )P[ z~ -~  > t] , 

w i th  P(l ,  k)  as in T h e o r e m  4.1. 

cr 2 U n k n o w n .  First consider the problem of testing H O H0 against 
the alternative H O H~ - H n H0. If A0~ is the likelihood ratio, then A0~ can 
be written as 

= , 

where N = k2n, or N = k ( k  - 1)n if the model has no diagonal elements, 
and ~ and ~ are the MLE's of 0 .2 under H n H1 and H n H0, respectively. 
Specifically, applying (4.4) and its analogue developed in the proof of 
Theorem 4.2, 

(4.5) 
k k n 

= YO) /(Net2) 
i = l j = l  r=l  

]/ = E E (yijr -- )g)X/tr2 + 7"12 N 
i = l j = l  r=l 
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and 

(4.6) 
[kk  2 2  ]/ #~/ a 2= ]~ 5", ~ (yO•-yo) /a  + TI2+ T01 N .  

i = l j = l  r = l  

The LRT rejects H fq Ho for small values of A0~ or equivalently for 
large values of ~2  = 1 - Ato~/m. This statistic can be written 

= 
T01 

k k n 
2 2 

T01 + T12 + 5", E E (Yo• - YU)/a 
i = l j = l  r = l  

k 
2kn Y~ (& - d*) 2 

i=1  

k k k k n 

2kn ~, (di - -  d*) 2 + 2kn E (d/*) 2 + X, X 5'. (Yo, - .vo) 2 
i=1  i=1  i = l j = l  r = l  

This statistic is similar to the two statistics discussed in Theorem 2.3.1 of 
Robertson et al. (1988) and Theorem 2.7 of Robertson and Wegman 
(1978). While it is not equal to either one, a careful comparison shows that 
E'21 is the statistic discussed in Theorem 2.7 of Robertson and Wegman 
with the roles of To1 and T~2 interchanged. The term ~ E E ( y o , -  )o)2/tr 2 

i j • 

has a chi-squared distribution with y degrees of freedom, where ~ depends 
on the model,  H, of interest. The values of ~, are well known for the models 
considered here. Furthermore by (4.1), this term is independent of To~ and 
T12. For v = 1,2,... ,  let Q(v) be a sequence of chi-square variables which 
are independent of To~ and T12 (it may be necessary to enlarge the 
probability space to construct such a sequence). Define 

ff~Ozl(V) = Tol/[Tol + T12 + Q(v)], 

and note that ff_,o21 -~ ff-,o~ (y). 
An argument like that given for Theorem 2.3.1 of Robertson et al. 

(1988) and Theorems 2.5 and 2.7 of Robertson and Wegman (1978) yields 
the null hypothesis distribution of ff, o~ (v). 

THEOREM 4.3. Let v be a positive integer. Under the hypothesis 
H N H o ,  

k 

P[ff, o2 (v) > t] = l~1P(l, k)P[Btl/211k-tl. 11/2~t~+t-ll > t ] ,  

where Ba.b is a Beta random variable having the standard Beta distribution 
with parameters  a ,b  and Bo, b = O. The level probabilit ies P(l ,k)  are the 
same as those given in Theorem 4.1. 
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It is more convenient to table the critical values for an increasing 
function of  ~ (v). Define 

and note that Sol(V) = vTol/[Tx2 + Q(v)]. As v --- ~ ,  Tl2/v converges to zero 
at each point in the probability space and Q(v)/v ~ 1 and thus Sot(v) ~ Tot 
as v --, ~ .  Tables 1 and 2 contain the a = 0.05 and a = 0.01 critical values of  

Table 1. Critical values of S0~ (v) with significance level a = 0.05. 

k 
V 

3 4 5 6 7 8 9 10 

I 53.026 56.636 58.065 58.957 59.707 60.475 61.263 62.133 
2 14.413 18.706 22.254 25.363 28,201 30.825 33.300 35,653 
3 9.652 12.990 15.959 18,696 21.272 23.727 26.084 28.357 
4 7.950 10,817 13.434 15.899 18.253 20.527 22,733 24.883 
5 7.093 9.684 12.081 14.362 16.564 18.700 20.785 22.831 

6 6.580 8.992 11.240 13.393 15,478 17.515 19.507 21.471 
7 6.239 8.528 10,669 12.724 14.725 16.681 18.603 20.496 
8 5.997 8.194 10,253 12.237 14,169 16,063 17,927 19,767 
9 5,817 7.942 9.939 11.865 13.743 15.586 17.402 19.197 

10 5.675 7.747 9,692 11.572 13.406 15.206 16.983 18.739 

11 5.565 7.589 9,494 11.334 13.131 14.898 16.642 18.364 
12 5.473 7.461 9,331 11.139 12.904 14.641 16.354 18.051 
13 5.397 7.355 9.196 10.975 12.713 14.424 16.113 17.786 
14 5.333 7.263 9.080 10.835 12.551 14.238 15.906 17.555 
[5 5.279 7.186 8.980 10.714 12.410 14,079 15.726 17.358 

16 5.231 7.119 8.894 10.610 12.286 13.939 15.568 17.183 
17 5.190 7.060 8.818 10.517 12.179 13.814 15.430 17.029 
18 5,153 7,007 8.751 10.436 12.084 13.704 15.306 16,893 
19 5.121 6.961 8.692 10.363 11.998 13.607 15.195 16.769 
20 5.092 6.920 8,638 10.297 ll.921 13.519 15.097 16.659 

21 5.065 6.882 8.589 10.239 11.851 13,438 15.005 16.557 
22 5.042 6.849 8.546 10,186 11.789 13.366 14.924 16.466 
23 5,021 6.819 8.506 10.137 11.731 13.300 14.849 16.383 
24 5.001 6.790 8.470 10.093 11.679 13.238 14.781 16.307 
25 4.984 6.764 8,437 10.052 11.630 /3.183 14.717 16.236 

26 4,967 6.740 8,406 10,014 11,586 13.131 14.659 16,170 
27 4.952 6.719 8.378 9,980 11.544 [3.084 14.604 16.110 
28 4,939 6,699 8.352 9.947 11.507 13.040 14.554 16.054 
29 4,925 6.680 8.327 9.917 11.471 12.999 14.507 16.000 
30 4.913 6.663 8.304 9.890 11.437 12,959 14,463 15.952 

40 4.826 6.537 8.141 9.688 11.198 12.682 14.146 15.594 
60 4.742 6.415 7.980 9.489 10,958 12.404 13.827 15.235 

120 4,658 6.294 7.821 9.290 10.721 12.125 13,506 14.872 
200 4,626 6.246 7.758 9.212 10.627 12.014 13.379 14.726 

oo 4.578 6,175 7.665 9,095 10.485 11.846 13.185 14.505 
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Sol(v) for k = 3, 4,. . . ,  10 and various values of  v. With Sol = ) ,~2/[1 -/~21], 
the a = 0.05 and a = 0.01 critical values of Sol are found in these tables 
with v = y. The rows labeled v = ~ give critical values for T01. 

For testing H N H~ against H - H 1 ,  the likelihood ratio, A~2 can be 
written 

where O~ is given in (4.5) and 

Table 2. Critical values of So,(v) with significance level a = 0.01. 

k 
V 

3 4 5 6 7 8 9 10 

1 1157.754 1104.000 1021.901 947 .938  886,871 835,811 795 ,185  760.493 
2 7 1 . 7 1 6  8 6 , 7 9 9  9 8 . 2 0 4  107.770 116,077 123.541 130.388 136.838 
3 3 1 , 5 1 7  40,002 4 7 , 3 0 8  5 3 , 9 5 4  6 0 , 0 1 4  6 5 . 8 3 9  7 1 , 2 4 6  76,532 
4 2 1 . 4 4 1  2 7 . 5 3 8  3 3 , 0 2 6  3 8 . 1 4 5  4 2 . 9 7 9  4 7 . 6 0 3  52.061 56,401 
5 1 7 . 1 8 8  2 2 . 1 2 6  2 6 . 6 5 4  3 0 . 9 3 0  3 5 . 0 3 9  3 8 . 9 9 5  4 2 . 8 5 0  46.587 

6 14.889 19.155 2 3 . 1 1 8  2 6 . 8 7 7  3 0 . 4 9 0  3 4 . 0 2 6  3 7 . 4 5 9  40,856 
7 13.465 17.298 2 0 . 8 6 4  2 4 . 2 8 4  2 7 , 5 8 6  3 0 . 8 0 1  3 3 . 9 6 0  37.077 
8 12.506 16,041 19.329 2 2 . 4 9 6  2 5 . 5 7 4  28,571 31.503 34.418 
9 11.815 15.126 18.216 2 1 . 1 9 2  2 4 . 0 7 7  2 6 , 9 1 2  2 9 . 6 9 2  32.443 

10 11.289 14.432 17.371 20.195 2 2 . 9 5 2  2 5 . 6 4 8  2 8 . 2 9 8  30,909 

11 10,882 13,893 16.710 19.412 2 2 . 0 5 6  24,631 27.183 29,701 
12 10.562 13.461 16.175 18.787 2 1 . 3 2 3  2 3 , 8 2 5  2 8 . 2 8 0  28.706 
13 10.293 13,108 15.736 18,267 2 0 . 7 3 3  2 3 . 1 4 9  2 5 . 5 3 0  27,897 
14 10.074 12.809 15.370 17.831 2 0 , 2 3 5  2 2 . 5 8 3  2 4 . 9 0 4  27.195 
15 9,885 12,558 15,059 17.465 19.800 2 2 . 1 0 1  2 4 , 3 7 2  26.612 

16 9.726 12.346 14.790 17.141 19.434 2 1 , 6 8 6  2 3 . 9 1 2  26.105 
17 9.587 12.159 14,558 16.868 19.116 2 1 . 3 2 3  2 3 , 5 0 7  25.654 
18 9.469 11.995 14.358 16.630 18.836 2 1 . 0 1 0  2 3 . 1 4 9  25.268 
19 9.362 11.852 14.180 16.415 18,587 2 0 . 7 2 6  2 2 . 8 3 0  24.919 
20 9.268 11.721 14,020 16.224 18.370 2 0 . 4 7 4  2 2 . 5 5 6  24.607 

21 9.181 11.607 13,874 16.052 18.169 2 0 . 2 5 5  2 2 . 3 0 0  24.325 
22 9,105 11.505 13.745 15,902 17.996 2 0 . 0 4 9  2 2 . 0 7 5  24.070 
23 9.038 11,414 13.628 15,761 17,836 19.861 2 1 . 8 6 6  23.846 
24 8.971 11.329 13.528 15.631 17,685 19.700 2 1 . 6 8 0  23.639 
25 8.919 11.254 13.431 15.514 17.551 19,541 21.503 23.445 

26 8.865 11,181 13.341 15.414 17.423 19.404 2 1 . 3 4 7  23.269 
27 8,813 11.115 13.259 15.316 17.317 19,273 2 1 , 1 9 9  23.110 
28 8,771 11.056 13.181 15.221 17.206 19.153 21,064 22.961 
29 8.730 11.001 13.115 15.141 17.112 19.042 20.941 22.814 
30 8.690 10.946 13,048 15,061 17.017 18.937 2 0 . 8 2 4  22.687 

40 8.423 10.584 12.589 14.509 16.375 18.197 19.993 21.762 
60 8.163 10.232 12.144 13.974 15.747 17.478 19.182 20.855 

120 7.913 9.890 11.718 13.457 15.140 16.780 18.388 19.965 
200 7.813 9.759 11.550 13.257 14.901 16,505 18.076 19.618 

7.673 9.565 11.305 12.958 14.550 16,098 17.611 19,096 
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k k n 

~2 = £ £ r_~ 1 (Yo, - ) 3 o ) 2 / N .  
i = l j = l  

The LRT rejects for large values of 

- A 2/U E 2 2 = 1  - 12 = 
Tl2 

k k n 
Tl2 + Z ~=, Y, (Yo, - f'ij)2/ae 

"= j= r=l 

Table 3. Critical values of Sl2(v) with significance level a = 0.05. 

k 
v 

3 4 5 6 7 8 9 10 

1 93.288 140.680 181.647 217.226 248.839 276.916 302.320 325.354 
2 14.978 19.831 23.710 26.947 29.721 32.151 34.307 36.257 
3 8.947 11.376 13.265 14.822 16.136 17.281 18.292 19.200 
4 7.068 8.815 10.158 11.252 12.174 12.974 13.674 14.304 
5 6.181 7.624 8.724 9.616 10.365 11.012 11.580 12.084 

6 5.670 6.943 7.910 8.690 9.343 9.907 10.399 10.839 
7 5.339 6.505 7.388 8.096 8.691 9.201 9.648 10.045 
8 5.107 6.201 7.024 7.686 8.239 8.713 9.128 9.497 
9 4.936 5.978 6.759 7.386 7.908 8.356 8.749 9.097 

10 4.806 5.806 6.556 7.156 7.656 8.084 8.459 8.791 

11 4.702 5.670 6.395 6.975 7.457 7.871 8.232 8.551 
12 4.618 5.561 6.265 6.829 7.297 7.698 8.048 8.358 
13 4.549 5.470 6.159 6.708 7.165 7.555 7.896 8.199 
14 4.491 5.394 6.069 6.607 7.053 7.436 7.770 8.065 
15 4.441 5.330 5.993 6.521 6.960 7.335 7.661 7.952 

16 4.398 5.274 5.927 6.447 6.879 7.247 7.569 7.854 
17 4.360 5.226 5.870 6.382 6.808 7.171 7.488 7.769 
18 4.327 5.183 5.820 6.326 6.746 7.105 7.418 7.695 
19 4.299 5.146 5.775 6.276 6.691 7.046 7.355 7.629 
20 4.273 5.112 5.736 6.231 6.643 6.994 7.300 7.571 

21 4.250 5.082 5.700 6.191 6.599 6.947 7.249 7.518 
22 4.229 5.055 5.668 6.156 6.559 6.904 7.205 7.470 
23 4.209 5.030 5.639 6.123 6.524 6.866 7.163 7.428 
24 4.192 5.008 5.613 6.093 6.491 6.831 7.126 7.388 
25 4.176 4.988 5.589 6.066 6.462 6.799 7.093 7.353 

26 4.161 4.968 5.666 6.041 6.434 6.769 7.062 7.320 
27 4.148 4.951 5.546 6.017 6.409 6.743 7.033 7.290 
28 4.136 4.935 5.527 5.997 6.385 6.717 7.007 7.262 
29 4.124 4.920 5.510 5.977 6.364 6.695 6.982 7.237 
30 4.114 4.907 5.493 5.959 6.344 6.673 6.959 7.212 

40 4.037 4.808 5.377 5.829 6.202 6.520 6.796 7.042 
60 3.963 4.712 5.265 5.703 6.063 6.371 6.639 6.876 

120 3.891 4.619 5.155 5.579 5.930 6.228 6.487 6.715 
200 3.862 4.582 5.113 5.532 5.877 6.172 6.427 6.653 
oo 3.820 4.528 5.049 5.460 5.800 6.088 6.339 6.560 
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With {Q(v)} defined as before let E22(v)= TI2/[T12 + Q(v)] and $12(v)= 
vff~2(v)/[1 -/T22(v)]. The null hypothesis distribution of/~22(v) is given in 
the following theorem. 

THEOREM 4.4. For v a posit ive integer 

sup eAg?2(v) >- t] = sup PAg?2(v)  >- t] 
g e H N  H~ I ~  Hf~ Ho 

Table 4. Critical values of St2(v) with significance level a = 0.01. 

k 
y 

3 4 5 6 7 8 9 10 

1 2355.351 3541.487 4558.026 5460.333 6240.542 6943.212 7597.377 8159.125 
2 8 1 . 5 8 9  106.498 126.494 142.981 157 .056  169.546 180.536 190.735 
3 3 1 . 1 8 1  3 8 . 6 8 9  4 4 . 5 3 5  4 9 . 3 4 4  5 3 . 3 6 6  5 6 . 9 4 0  6 0 . 0 1 4  62.798 
4 2 0 . 1 8 3  2 4 . 4 2 0  2 7 . 6 9 0  30.348 32.571 34.505 3 6 . 2 0 6  37.716 
5 15.813 18.856 2 1 . 1 7 2  2 3 . 0 5 5  2 4 . 6 1 7  2 5 . 9 8 3  2 7 . 1 7 6  28.220 

6 13.536 15.982 17.837 19.336 2 0 . 5 9 7  2 1 . 6 7 6  2 2 . 6 1 0  23.450 
7 12.153 14.270 15.846 17.124 18.195 19.113 19.909 20.622 
8 11.241 13.127 14.536 15.668 16.619 17.421 18.131 18.760 
9 10.588 12.315 13.609 14.646 15.502 16.241 16.888 17.464 

10 10.103 11.712 12.921 13.883 14.675 15.362 15.967 16.494 

11 9.725 11.250 12.387 13.289 14.045 14.688 15.256 15.755 
12 9.426 10.883 11.965 12.824 13.547 14.159 14.691 15.163 
13 9.182 10.582 11.618 12.453 13.140 13.724 14.237 14.690 
14 8.979 10.329 11.340 12.137 12.796 13.365 13.857 14.297 
15 8.809 10.124 11.100 11.877 12.515 13.068 13.544 13.967 

16 8.665 9.945 10.892 11.652 12.273 12.807 13.277 13.688 
17 8.539 9.792 10.720 11.456 12.068 12.587 13.040 13.447 
18 8.426 9.655 10.566 11.292 11.886 12.397 12.842 13.234 
19 8.331 9.538 10.434 11.141 11.730 12.230 12.662 13.046 
20 8.243 9.436 10.313 11.013 11.587 12.075 12.508 12.886 

21 8.168 9.341 10.205 10.893 11.459 11.944 12.365 12.738 
22 8.098 9.256 10.114 10.792 11.350 11.826 12.244 12.605 
23 8.035 9.180 10.026 10.694 11.245 11.718 12.126 12.490 
24 7.979 9.110 9.945 10.608 11.153 11.621 12.022 12.382 
25 7.931 9.048 9.877 10.531 11.069 11.532 11.934 12.284 

26 7.884 8.991 9.809 10.459 10.997 11.452 11.845 12.198 
27 7.838 8.942 9.754 10.394 10.926 11.373 11.770 12.113 
28 7.801 8.892 9.695 10.332 10.858 11.307 11.698 12.038 
29 7.764 8.847 9.648 10.280 10.800 11.245 11.631 11.967 
30 7.728 8.806 9.600 10.226 10.743 11.187 11.570 11.903 

40 7.486 8.513 9.268 9.860 10.350 10.772 11.132 11.449 
60 7.258 8.234 8.947 9.512 9.977 10.373 10.717 11.019 

120 7.037 7.967 8.645 9.182 9.625 9.997 10.321 10.606 
200 6.947 7.860 8.528 9.053 9.487 9.850 10.169 10.449 

6.822 7.709 8.356 8.865 9.284 9.639 9.946 10.216 
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k 
= ~, P(I, k)P[BI1/2)It-1), 11/2)v >- t].  

l = l  

Because $12(v)= v T 1 2 / Q ( v ) ~  T~2 as v--oo, it is more convenient to 
table critical values for S~2(v). They are given in Tables 3 and 4 for 
a = 0.05, 0.01, k = 3, 4,..., 10 and various values of v. Of course, the critical 
value for $12 = y/~22/[1 - /~2 ]  can be obtained from these tables with v = y 
and the critical values for T12 are found in the v = oo rows. 

The authors have been unable to obtain closed form expressions for 
the appropriate weighted/2 projections of ~ onto H N H0 and H ~ H~ for 
an unbalanced design, i.e., one with cells having different sample sizes. If 
P = (P0) is a k × k matrix of multinomial probabilities, then the hypotheses 
H0 and H~ are marginal homogeneity and a stochastic ordering between the 
marginal distributions, respectively. Tests of these hypotheses are of 
interest in this setting also. However, the restricted MLE's must be 
obtained by iterative techniques (cf. Bishop et al. (1975)). Weighted /2 
projections could provide reasonable approximations for the restricted 
MLE's and one would anticipate that test statistic like those studied here 
could be based on these approximations. Further research in this area is 
needed. 
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