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Abstract. Analogous to Kingman's Poisson Counts, power law counts 
are defined. Further, these are used to obtain the maximum likelihood 
estimator of the scale parameter of a power law process. Comparison of 
this estimator is done with those obtained by using other sampling 
schemes. Also, cost comparisons are done under the assumption of equal 
asymptotic variances under different sampling schemes. 
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1. Introduction 

The study of various point processes has been dealt with by many 
authors. Cox and Lewis (1966) have discussed in detail the classical 
inference problems in point processes along with applications. Cox and 
Isham (1980) study random collection of point occurrences from the 
theoretical point of view though they do not consider the development of 
techniques for the statistical analysis of the data from such processes. Cox 
(1970) contains a systematic study of the theory of renewal processes. 
Billingsley (1961) deals with the problems related to the statistical inference 
for Markov processes. Basawa and Prakasa Rao (1980) contains a vast 
study of various stochastic processes and their inference problems. Kingman 
(1963) has introduced the concept of Poisson Sampling (PS) and has 
proved that the stochastic structure of a process is completely determined 
by the distribution of the Poisson Counts associated with it. Basawa (1974) 
has suggested three sampling schemes for the maximum likelihood estimation 
of the parameters of a renewal and a Markov renewal process using PS. 
Schuh and Tweedie (1979) have given numerical evidence to show that in 
certain instances sampling at random time points is more advantageous 
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than sampling at fixed time points. McDunnough and Wolfson (1980) 
compare fixed versus random sampling for estimating the parameters of a 
Poisson process and a pure birth process. Using the variance-covariance 
matrix and the cost factor, Baba (1982) has made a detailed comparison of 
the estimators of the parameters of M~ M/1 queue obtained from PS with 
those obtained from complete observations. 

It has been established that a non-homogeneous Poisson process with 
power law rate function, as described by Ascher (1981) serves as a good 
model for reliability growth. Even though this process is also known as the 
Weibull process, this can lead to confusion as indicated in Ascher (1981). 
Therefore in this article we refer to such a process as a power law process. 
Several applications of this process are given in Bain (1978). If instead of 
the time points of the events, the recorded data is the number of events in 
the specified intervals, one could use the PS. However, as it is shown in 
Section 3, the solution of the likelihood equation requires iterative proce- 
dures in this case. Hence the technique of power law (PL) counts is 
developed. The corresponding likelihood equation has an explicit analytic 
solution. In Section 2, power law process (PLP) sampling scheme is 
defined and the probability distributions of 'PL Counts'  are derived. In 
Section 3, under various sampling schemes, solutions to the likelihood 
equations and in turn the maximum likelihood estimators are obtained. 
The estimators are compared in Section 4. The criterion used for comparison 
is the 'asymptotic variance' and the 'cost analysis'. In the last section, we 
give a numerical example to illustrate the usage of PLP sampling scheme 
of Type II. 

2. PL counts 

DEFINITION 2.1. Power law process (PLP): A PLP denoted by 
PL(0, fl) with scale parameter 0 and shape parameter fl is a non-homoge- 
neous Poisson process with intensity 

2(t) = f l  (t/O) È-l, (fl, 0 > 0), t_>O. 

DEFINITION 2.2. Power law count process: Let r = { To, T~, /'2,... } be 
the sequence of random variables where T, indicates the time point of the 
n-th transition in a discrete state point process {X(t), t > 0}. Assume that 
{X(t), t > 0} makes only finitely many transitions in any finite time interval. 
Let r' = (T& Tf, TL...) be a random sequence corresponding to a PL(y, fl), 
where r' is independent of r. Let Nn = number of transitions in a stochastic 
process {X(t), t >_ 0} during (Td-l, T~], and N* = number of transitions in 
PL(y, fl) during the n-th interval (T,-~, T~], n >_ 1, To = Td = 0. N,, N = {N,, 
n = 1, 2,...} and N*=  {N,*, n - - 1 ,  2,...} are a PL-count, the PL-count 
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process and the dual count process, respectively. Further, it is assumed that 
for each m, n, T,, ~ T', so that t~ determines ~* uniquely and vice-versa. 

DEFINITION 2.3. PLP sampling: The data  obtained by recording the 
observations on a PL-count process is referred to as PLP sampling. 

Next we obtain the distribution of the PL-count  process. Let r and r' 
be as mentioned earlier where r '  is independent of r. Using the properties 
of a PL process it may be seen that 

(2.1) Pr[N* = k j ; j=  1, 2, . . . ,n]  

- (T.[ y)~ ,-F, flk~t '-rfl ,'lr, fl'~k: I , 'r f l  ] 11 ~ 2 - -  ~I___._L) "'3__L,- T~-I) k" 
= G ~--~")k~ !k2!'" "k,! ] ' 

where k ( n ) =  k~ + k2 + ... + k,, Pr[.] is the probability of ' . '  and G[.]  
denotes the expectation with respect to the joint distribution of T1, 
T2,..., T,. Since for every m, T~, has absolutely continuous distribution, 
T;, = T, with probability zero for any m and n. Thus the sequence N* 
determines the sequence t~ with probability one, so that (2.1) enables us to 
compute the distribution of the PL-count process ~. 

In the following discussion {X(t), t -> 0} is considered as PL(0, fl) with 
0 unknown and fl known. We note that using t ime-transformation y = t p, 
the process PL(0, fl) may be studied as a homogeneous Poisson process 
(HPP).  However, usage of PS for this H P P  gives rise to likelihood 
equation (3.6) derived later. 

THEOREM 2.1. Let r = (/1, T2,...) be a sequence corresponding to 
PL(0, fl), 0 unknown, fl known and r '  = (T(, TL...) a sequence corresponding 
to PL0,, fl), which is independent o f t .  Then 

[A] {N*, n - 1 } are independent and identically distributed (iid) as 

(2.2) P r [ N * =  k] =pqk, (k = 0, 1,...; n = 1, 2 , . . . ) ,  

[B] {_IV,, n >_ 1 } are lid as 

(2.3) Pr[N, = k] = qpk, (k = 0, 1,...; n = 1, 2 , . . . ) ,  

[c] 

(2.4) Pr[N* + N~ + . . . +  N ~ = m ] = (  k + m -  1) m pkq,,, 

(m = 0, 1,...; k =  1, 2 .... ) ,  

and 
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[D] 

(2.5) Pr[N1 + N2 + "" + Nk = m ] = (  k + m - 1] k m 
m q P '  \ ] 

where p = 7~/(0 ~ + ),P) and q = 1 - p .  

( m = 0 , 1 , . . . ; k =  1,2 .... ) ,  

PROOF. r = (T~, /'2,...) being a sequence corresponding to PL(0, fl), 
the joint  probability density function of (T~, T2,...) as given by Bain (1978) 
is, 

(2.6) fr,,r~ ..... r,(ti, t2 ..... t,)=(fl/O)%_,°/o)~ [ tlt___.t,o~ ]~-i , 

From (2.1) and (2.6), 

Pr[N* = k A j  = 1, 2,. . . ,n] 

0 -~ g O <  t l  < "'" < ln < ~ . 

- ~ 1,/y)~ ,-rflk~t ,'rfl ,-rfl.~k~ l "pfl "] 
t~ 1 1  1 1 2 -  1 1 )  " " ~ l n -  T~-I) k" 

= G 7Bk~"~k~! .. .k.! J 
fin_ f ~ f t .  t3 t2 

1 + 1 

Substituting t~ = xi, i=  1, 2 .... ,n and simplifying the above expression 
reduces to 

O~")ynPF(k(n)+n) jOz i,=Zo [ ( -  ( k ( j ) - i j + j - 1 ) ]  

(0~ + 7~)kln/+n (j=l~l ki!) 

It is seen from Feller (1978) that 

7P~O pk~') n 
Pr[N* = k j ; j =  1, 2, . . . ,n] = (0 p + 7p)kl,l+ . = H pqkj , 

where p and q are defined as above. Thus N* are iid as Pr[N* = k] - (pqk), 
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(k = 0, 1,...; n = 1, 2,...), hence [A] follows. 
N*, N*,..., N$ being k independent and identically distributed geo- 

k 
metric random variables, E N*, has a negative binomial distribution as 

given in [C]. Proofs of [B] and [D] would be parallel to the above. 

3. Sampling schemes 

For a PL(0,fl), 0 unknown and fl known, estimation of 0 is considered 
under the following sampling schemes. 

[I] Fixed number of events 
Under this sampling scheme, it is assumed that the given PL process is 

observed till n events occur. The sample, thus, consists of (tl, t2,...,t,) 
where ts is the time point of the occurrence of the j-th event; j = 1, 2,..., n. 
The likelihood of the sample is given by 

(3 .1)  tn = (fl/O)ne-(t'/°)B ( .n~=l ti )B-1/on(¢-l) , 0 <  tl < t2 < "'" < tn<oo.  

Then 0 I  = t./n 1/~, is the solution to 0 In L./00= O. Further, it may be 
verified that 02 In Ln/O02]o, < 0; thus 0~ is the maximum likelihood estimator 
(mle). The asymptotic variance (Billingsley (1961)) of 0i is 

0 2 

002 

[II] Random number of events 
For fixed time T, the stochastic process is observed in the interval 

[0, T]. Thus the number of events is a random variable that depends on T, 
say n( T). 

We note {n(T) = 0} is equivalent to {7"1 > T}, where T1 is the time of 
occurrence of the first event in PL(0, fl). Now Pr[n(T) = 0] -- Pr[T1 > T] = 
exp ( -  (T/O)'), which is negligible for large values of T, for all 0, fl < 0. 
We assume that Tis sufficiently large, so that the sample (tl, t2,..., t,(r)) is 
realized. Hence the likelihood is 

L = 
fl"Ir)e-Ir/°)P { ~1~) i:1 ti }#- 1 

oBn( r) , 0 < t l < ' . ' < t n t r l < T < ~ .  

Solving 0 In Ln/00 = O, the mle is 

(3.3) 811 = T/[n(T)] va, and 
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(3.4) asy Var (On) = 02+/3/(f12Tl~). 

R e m a r k .  To test the null hypothesis that (t~, 12,..., tn(T)) is from an 
HPP the desirable least value of n ( T )  is three (Cox and Lewis (1966), pp. 
45-51) at 5% level of significance. However, the test is valid for all 
n ( T )  >_ 1. 

[III] Poisson sampl ing  
The notion of PS has been explained in detail by Kingman (1963), 

Basawa (1974) and Baba (1982). Let z' = (T{, TL . . . )  be a Poisson sequence 
of known intensity 2. We observe the given PL process till co Poisson 
events occur. The sample, thus, consists of co Poisson counts (hi ,  n2, . . . ,  no). 

The corresponding likelihood is 

(3.5) Pr[N1 = nl, Nz = n2,..., N~ = n~] 

=/_~ 

= ~oJ 

Ij=FI2is~=o (-1)nj-ii(~jJ)/[~(n(j) - i j ) + j - -  l] } 

f~o e_( Td/O)~_ ~ T d x o T'P"(°~+°-~dTg' 

where n( j )  = nl + n2 + ... + n j ; j =  1, 2,...,09. Now, 

(3.6) 
01nLo 

O0 
- -  - { -  f in(co)/O}+ -~0 ln f ° e-( T;/o)~- ).r~ T,P,(o) + o~- l d T,  . 

If fl # 1, as mentioned in Section 1, to solve the likelihood equation (3.6) 
one has to use numerical methods. 

[IV] P L P  sampl ing  o f  Type I 
The sample, according to this scheme consists of co PL-counts (na, 

n2,..., n~). Note that, from (2.5), for fixed co, 

P r [  i=1 ~ n i = 0  ] = (0P/(0 ~ + ?P))"~. 

Thus, for large values of co, the samples having each ni = 0 occur with 
negligible probability. Hence for a large value of co the likelihood is 

Lo = Pr[Nj-- nj;.j = 1, 2, . . . ,  co]. 

Using (2.3), we get 



MLE OF THE SCALE PARAMETER OF PLP USING PL COUNTS 145 

0 In/_,o /~o9 (n((.o) + o~)pO ~-~ 
(3.7) O0 - 0 (0 B + yP) 

o) 
where n(co) = E ni. Solving 0 In Lo/O0 = O, the mle is 

i=I 

0,v (we assume that n(o)) ¢ 0) .  

Then, using (2.5), 

(Off n t- 7B) 0 2 
(3.9) asy Var (01v) - ogy~# 2 

[V] PLP sampling o f  Type H 
In P L P  sampling of Type II, the number  of events to be observed in 

PL(0, fl), say co, is fixed. Hence the number  of  events to be observed in the 
dual count  process are random.  Thus, the likelihood is 

/_~ --- P r [N* = nj; j = 1, 2 .... , co]. 

Using (2.2) in the above likelihood 

0 I n / ~  /~n(co) (n(co) + o9)/~0 ~-1 
O0 - 0 0 p +  7P 

where n(co) = E ni. Solving 0 I n / ~ / 0 0  = O, the mle is, 
i=l 

(3.10) Ov - y . 

Using (2.4) in the asymptotic variance formula,  we get 

(3.11) asy Var (Or) - (Op + 7p)02 
o)OB/~ 2 

[VI] Periodic sampling scheme 
We observe the given PL process at fixed time points {a, 2a .... ,na}, 

a > 0, and count  the number  of events in ( ( j -  l)a, ja]; j = 1, 2,..., n where 
'a' is a preselected positive real number.  Thus,  the sample consists of 
{x(0, a), x(a, 2a),..., x((n - l)a, ha)} where x ( ( j -  1)a, ja) denotes the number  
of events in ( ( j ' - l ) a ,  ja]; j =  I, 2, .... n. It may be shown that,  the 
probabil i ty of non-occurrence of any event in (0, na] is negligible for large 
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values of n. Hence for a large value of n, the likelihood is, 

L, = Pr[X(0, a) = kl ,  X ( a ,  2a) = k2,..., X ( ( n  - 1)a, na)  = kn] 

exp ( - na/O)Ba#ktn)[2 p -  1] k:...[n p -- (n - 1):] k° 

Solving 0 In L . / O 0  = O, the mle is 

(3.12) Ovl - - -  

get 

~a 

[k(n)]l/p • 

Following a similar procedure as in the previous sampling schemes, we 

Off+2 
(3.13) asy Var (01v) - fl2(an) B . 

4. Comparison 

In this section, we compare the estimator obtained by PLP sampling 
of Type I (sampling scheme [IV]) with those obtained by sampling schemes 
[I], [II] and [VII as regards (1) asymptotic variance and (2) cost factor. 

The sampling scheme [IV] would be better than the sampling scheme 
[I] in the sense of asymptotic variance if 

(4.1) o9 >_ n[1 + (0/7)~]. 

Similarly, sampling scheme [IV] would be better than sampling schemes 
[II] and [VI] in the sense of asymptotic variance if 

(4.2) 1 1 ) T  ~ co> -~-- + -7 -  ' 

and 

(4.3) o9 >_ ~ + (ha)  p , 

respectively. The above inequalities are obtained by using (3.2), (3.4) and 
(3.13). 

To answer, when the sampling scheme [IV] would be better costwise 
than the other sampling schemes viz. [I], [II] and [VII, the following 
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assumptions are made. 
[i] The parameters of the sampling schemes are chosen in such a 

way that all of them have the same asymptotic variance. 
[ii] Co = per unit observation cost by sampling scheme [I]. 

[iii] C1 = observation cost per unit time by sampling scheme [II]. 
[iv] (72 = per unit observation cost by sampling scheme [IV]. 
Iv] C3 = observation cost per unit time by sampling scheme [VI]. 

Then using inequalities (4.1), (4.2) and (4.3), we get 

C2 
(4.4) Co -< 1t [ l  + (8 /7 f ]  , 

F)'] C 2 <  1 + T ~ ( 4 . 5 )  - ' 

and 

(4.6) 
Cz 1 

For specified values of 7, fl, Cz and C2 if the preliminary investigations 
suggest that most likely O is less than 8o (8o is known), then the economical 
advantage of using PLP sampling scheme of Type I may be decided using 
the equations (4.4) to (4.6). To illustrate this fact in Table 2 we have given 
the maximum feasible values of C2/C1 for different values of 0 when fl = 2, 
T= 1 for 7 = 0.1, 0.5, I, 1.5 and 2. 

For instance, if 0 = 6 and 7 = 0.5 the corresponding 'table value' 0.25 
indicates that, the PLP sampling scheme is economically better than the 
complete observation in (0, T) if C2/C1 is less than 0.25. 

5. Example 

An example given below illustrates the usage of PLP sampling scheme 
of Type II. 

Observations were simulated from PL(0,fl), where 0 =  2.778 and 
fl = 0.5. These values were selected, because, Crow (1974) had used these 
values to illustrate the mle method for PL process. The number of events 
of PL(7, fl) between the successive events of PL(8, fl) were collected until a 
predetermined number, co of events in PL(8,fl) occurred. Data were 
simulated for 7' = 0.8, 1.5, 2.0, 3.0 and co = 25. 

To obtain the roles, 0, under the above sampling scheme, 15 samples 
were generated from each PL(7, fl). These estimates along with their 
sampling variances are given in Table 1. 
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Table 1. mle of 0 using PLP sampling scheme of Type II*. 

y 0.8 1.5 2.0 3.0 
1.776213 2.074860 2.466933 1.855680 

Var (/~) 0.179920 0.417476 0.836035 0.772777 

*Based on 15 samples with true value of 0 = 2.778. 

Table 2. Maximum feasible values of C2/C~ (fl = 2, T= 1). 

y\O 1 2 3 4 5 6 7 8 9 10 11 12 

0. l 0.01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 
0.5 .20 .24 .24 .25 .25 .25 .25 .25 .25 ,25 .25 25 
1.0 .50 .80 .90 .94 .96 .97 .98 .98 .99 .99 .99 _99 
1.5 .69 1.44 1.80 1.97 2.06 2.11 2.15 2.17 2.19 2.20 2.20 2.20 
2 .8 2 2.76 3.20 3.44 3.60 3.69 3.76 3.81 3.83 3.83 3.94 
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