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Abstract. We consider a two-sample semiparametric model involving a
real parameter # and a nuisance parameter F which is a distribution
function. This model includes the proportional hazard, proportional
odds, linear transformation and Harrington-Fleming models (1982,
Biometrika, 69, 533-546). We propose two types of estimates based on
ranks, The first is a rank approximation to Huber’s M-estimates (1981,
Robust Statistics, Wiley) and the second is a Hodges-Lehmann type rank
inversion estimate (1963, Ann. Math. Statist., 34, 598-611). We obtain
asymptotic normality and efficiency results. The estimates are consistent
and asymptotically normal generally but fully efficient only for special
cases.

Key words and phrases: Semiparametric transformation models, M-
estimates based on ranks, Hodges-Lehmann estimates.

1. Introduction

We consider the two sample problem where Xi,..., X and Yi,..., Ya
are independent random samples from populations with continuous distri-
bution functions F and G, respectively. Many of the models in which rank
(partial, marginal) likelihood methods are useful can be put in the form

(1.1) F()=D(H®®,0), G()=DH®),0),
where H(t) is an unknown continuous distribution function, D(u,6) is a

known continuous distribution function on (0, 1), and 8, and 6, are in some
parameter set 6.
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For inference based on rank likelihood, the above model is equivalent
to the model obtained by using the distributions of U; = F(X;) = D(H(X)), 6))
and V; = F(Y)) = D(H(Y)), 0:). These distributions are

Fw=u, ue©,1), GO =DWD'v0)80), ve®]1).

In the case where {D(u,0): 0 € @} is a group under composition satisfying
D(u, 1) = u, D(D \(u, 0)),62) = D(u,8), 6 = 6,/6,, we can write

(1.2) Fw=u, ue©,1), G@O) =D@®80), ve(,1).

From this point on we assume that (1.2) is satisfied. The distribution
function F is treated as a nuisance parameter and we consider the problem
of estimating 6. This model goes back to Lehmann (1953), and includes the
following models that have important applications in survival analysis,
reliability, and other areas.

Example 1.1. (Proportional hazard model) If F and G have pro-
portional hazards, then D(v,6) = 1 —[1 — v]"’, #> 0. Lehmann (1953) and
Savage (1956) considered testing in this model. Cox (1972, 1975) developed
estimation procedures in a much more general regression problem with
censored data.

Example 1.2. (Proportional odds model) For any continuous dis-
tribution H the odds rate is defined by ry = H/(1 — H). If F and G have
proportional odds rates, in the sense that re(s) =  'r#(f), then D(v,6) =
v[(1 — v)8 + v]"". This model has been considered by Ferguson (1967) and
Bickel (1986) in the two-sample case and in more general regression models
by Bennett (1983) and Pettitt (1984), among others.

Example 1.3. (Proportional y-odds model) For any continuous
distribution function H, the y-odds rate is defined by

{{1-HOI' -1}y, >0,

rut) = { —log[1 - H(1)], y=0.

If Fand G have proportional y-odds, then

1_{ (1 - vy
D(U,O): 1'_(1 —U)y+0(l “U)y
1-(1-v)", y=0.

1/y
‘ , v>0,

This model, which has been considered by Harrington and Fleming (1982),
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Clayton and Cuzick (1986), Bickel (1986) and Dabrowska and Doksum
(1988), reduces to Example 1.1 when y = 0, and to Example 1.2 when y = 1.

Example 1.4. (Transformation shift model) Let Q be any known
continuous distribution function which is strictly increasing on the whole
real line. If F and G satisfy the transformation shift model where for some
increasing transformation A, X: and Y; can be written

h(X)=m+e& i=1,....m,

(1.3)
h(Yj)=.“2+£j, j=1,...,n,

with g — u1 =log 8, N=m + n and ¢,,..., ex independent with distribution
function Q, then D(v,8) = Q(Q '(v) —log §). To see this, set h(f) =
QO '(F(t)) + . Then (1.3) is equivalent to (1.2) with D(v,8) = Q(Q"'(v) —
log 8). This is an extension of the power transformation model where h(f)
is of the form sign (r)||" or [sign (#)|¢|* = 1]/4, and where Q is the standard
normal distribution function (see Anscombe and Tukey (1954), Tukey
(1957), Box and Cox (1964), Bickel and Doksum (1981) and Doksum
(1987)). This transformation shift model reduces to the proportional odds
model if we take Q to be the logistic distribution function L(x) =
/[1+e]

Theory and methods for dealing with semiparametric models and
partial likelihood have been developed by Begun (1981), Begun et al.
(1983), Begun and Wellner (1983), Wellner (1986) and Wong (1986), among
others. However, these methods do not lead to tractable efficient scores or
tractable efficient estimates for any of the above models except the
proportional hazard model. For arbitrary 8, and under certain regularity
conditions, Bickel (1986) obtained the asymptotically optimal rank test for
testing Ho: 60 = 6o, vs Hi: 0 > 6. His regularity conditions are satisfied by
the y-odds model with y > 1. However, the optimal test statistic is a non-
linear rank statistic whose value can be obtained only after solving certain
functional equations numerically on the computer. Attempts to extend
these methods to obtain estimates that are asymptotically efficient in the
semiparametric sense have not yet succeeded. Doksum (1987), and
Dabrowska and Doksum (1988) propose a resampling scheme for comput-
ing maximum partial (rank) likelihood estimators in general semipara-
metric transformation regression models with censored data. These esti-
mates perform well in Monte Carlo simulation studies, but the theoretical
properties are difficult to establish. Clayton and Cuzick (1986) proposed
estimates for the proportional y-odds model that also apply to regression
and censored data, but the theoretical properties of these estimates are also
not well understood.
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Methods based on local (near § = 1) approximations to the likelihood
have been developed by Pettitt (1984), Doksum (1987), and Dabrowska
and Doksum (1988). These estimates are asymptotically normal for 6 in
neighbourhoods of § = 1, however, they are not consistent for fixed 6 # 1.

In this paper we consider the uncensored case and introduce two
classes of estimates. The advantage of these estimates is that they are
relatively simple to implement in practice and their properties can readily
be derived and understood. Moreover, they are based on intuitive estima-
tion equations that are immediate extensions of the familiar M and R
estimate equations. Although the new estimates are not fully efficient for
all values of 8, such fully efficient estimates are not available for y # 0.

In Section 2 we introduce estimates of 8 that can be regarded as rank
approximations to Huber’s (1981) M-estimates based on score function y.
We show asymptotic normality of these RAM (Rank Approximate M)
estimates. We compare these estimates with the asymptotically optimal
estimates for F known, and find that for a certain range of parameter
values, not much efficiency is lost. In fact, the score function y can be
chosen so that the estimate is fully efficient at § = 1.

In Section 3 we introduce estimates of 6 based on the Hodges-
Lehmann (1963) rank inversion idea and obtain asymptotic normality of
these estimates. For appropriate choices of the score functions, these
estimates have the same asymptotic distribution as the RAM estimates.

2. M-estimates based on ranks

In this section, we introduce estimates that, in an approximate sense,
are M-estimates based on ranks. We start by assuming that the distribution
F of the X’s is known and introduce M-estimates of 6 that depend on F.
Let

U=FX), Vi=FY), i=1..m, j=1,..n.

The joint distribution of Ui,..., Un, V1,..., Vx is fll U jlfll D(v;, 8), so that

(Vi,..., Va) is sufficient for 6. Let (v, 6) be a function which is monotone
decreasing in 8, and satisfies Es,y (¥, 8o) = 0 where V is distributed accord-
ing to D(v,60) and 8, is the true parameter value. An M-estimate (see
Huber (1981)) of 8 is defined as a solution to the equation Zy/(¥;,8) = 0.

Let N=m + n. When F is unknown, we define F(u) = mF,(u)/(m + 1)
for u € [Xu), Xom}, F(u)=1/(N+1) for u< X, and F(u)=N/(N+1) for
u> Xm. Here X1, and X(m) denote the first and the last order statistics of
the X/’s and Fn(u)=m ' #{i: Xi<u}.

We set V; = F(Y;), and we let § be any “solution” to
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n ~
Ev(,0=0.

More precisely, § is any value in the interval [6*, 0**] where 6* =
sup {8: =y (¥, 0) > 0} and 6** = inf {6: Zy (V;, 6) < 0}.

In terms of the rank likelihood, V,..., ¥, are sufficient for 6. To see
this, let Y, < -+ < Y, be the ordered statistics and let K= mF(¥;).
Then it is easy to check that K,..., Ki,) are equivalent to the ranks. Thus
we call & a RAM (Rank Approximate M) estimate.

Here is an example where we get an explicit formula for 6.

Example 2.1. Assuming F is known, the M-estimate based on
w(v,0)= —6—1log(l —v) is the MLE (Maximum Likelihood Estimate)
for the proportional hazard model of Example 1.1. This estimate is
n'Z[ - log (1 - F(Y})]. The corresponding RAM estimate of § which

applies when F is unknown is § = n”' .anl [ - log (1~ F(1))].
iz

We return to the general case and show asymptotic normality of the
RAM estimates. We assume throughout that the limits 7o = 11\;1930 (m/N) and

m = 11\}52 (n/ N) exist and are strictly between 0 and 1. Further, we assume that

w is continuously differentiable in v and we set y'(u, §) = (3/du)[w (u, 6)]
and d(u, 0) = (3/9uw)[ D(u, 0)]. Define

20 = [ v, 0)d(w, ydu,  1:(6) = [ wi(us ),

wi(w, 0) = [, v'(v,0)d(, 60)dv,

o*(0) = mo' { fol wi(u,6)du— 2}(6) ] + ' { fo' v’ (u, ) d(u, 6o)du — 22(6) | .

Assume that for 8 in a neighbourhood of the true parameter value 6o, the
following assumptions hold:

(A1) |y(-,0)] =00 and |y'(-,0)| = O¢*") where r(u) = [u(l —
u)] ' and a=1/2 — 7 for some 0 <7< 1/2.

(A.2) fr(u)l"’d(u, #)du < oo uniformly in 8 for some 0 <y < 7.
(A.3) mfu’"d(u, 6)du = O(1) and mf(l — u)"d(u,0)du = O(1) uniform-

ly in § and m.

Assumption (A.3) is satisfied whenever the density d(u, #) is bounded
uniformly in 8 in a neighbourhood of 6. In particular, it holds for the
proportional hazard model with 8, < 1 and y-rate models of Examples 1.2
and 1.3. Assumption (A.2) is satisfied in all three examples.
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THEOREM 2.1. Suppose that w’'(u,0) and A(0) are continuous in 0
for 8 in a neighbourhood of the true parameter value 6, and suppose that
6o is the unique point with A(6o) = 0. Assume that ¢*(6) is finite, nonzero
and continuous in a neighbourhood of 6y and that (A.1), (A.2) and (A.3)
hold. Then \/1‘7 AMB) is asymptotically normally distributed with mean zero
and variance o*(6c). In addition, if A'(6o) exists and A'(60) <0, then
\/ﬁ(é — 8o) is asymptotically normal with mean zero and variance

0 (60)/[A"(60)Y.

PROOF. First we note that asymptotically all & € [§*, 6**] are equiv-
alent, so it is enough to consider 6*.

By the assumed monotonicity of w(u,6) in 8, the function A(6) is
monotone decreasing. Let y be fixed. Since A(fo) = 0 and A is continuous,
for N sufficiently large, there is 8y such that y = — /N A(fy). In fact,
Ov=—21"(~-y/ V). Let G, denote the empirical distribution function of
the Y’s. Then

P(— /N A% < y) = P(8* < 6y)

JN [ [ (£, 63)dG. — A(6x) ]

=P (B = (6w

- y
(p[o()o) )

To see this we note that
@1 N [ [w(E,03)dGx — A(Br) ]
- JN [f(Fm — F)y'(F,00)dG + [w(F,08)d(G. - G) ] +rw,
where ry is a remainder term. We have
[(Ew - F)y'(F, 0%)dG
=m" £ JU(Xi < x) ~ FOIW(F), 0nd(F(x), 00)dF(x)
= is;":l Aim |

which is a sum of independent identically distributed (iid) random variables.
By Assumption (A.1), |Ain| = O(I)r”z'”"(F(X,'))f r'"(u)d(u, Bo)du. By
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Assumption (A.2), in a neighbourhood of 6, the deterministic part of this
upper bound is uniformly bounded from above. Further, for some 7: >0
the random part of this bound has an absolute moment of order 2 + 7y,
which is uniformly bounded above.

Further, f w(F,0n)d(G,— G) is a sum of iid random variables. By

Assumptions (A.1) and (A.2), they have a finite absolute moment of order
2 + 1, for some 7; > 0. Berry-Esseen’s theorem completes the proof of the
asymptotic normality of the first two terms. The remainder term ry is
considered in Section 4.

Note that when 6, = 1, the asymptotic variance of 8 reduces to

2
6=1{ "’

where U is uniform on (0, 1). This is exactly the same as the asymptotic
variance of the M-estimate for the model (1.1) with H known. Thus if we
choose

-1 -1 2 d
(mo” + 1 )EW (U, 1) /[ E:;E w(U,0)

d
W(D, 0) - 55 log d(D, 0) s

then #, in addition to being consistent and asymptotically normal for
general 6, is asymptotically efficient when 6, = 1.

If we consider the RAM estimate 8 = n—ljé[ —log (1 — F(Y))], we

find that in the proportional hazard model the asymptotic variance is
7062 — 6) ' + 71'6 for 6 < 1. We can compare this estimate with the Cox
partial likelihood estimate. The usual parametrization in the Cox propor-
tional hazard model is in terms of #=1In#. If * is the Cox partial
likelihood estimate, then from Efron (1977) we find that its asymptotic
variance is given by

1 -1
[fo {mi' + n5'0u‘0-”/0}_1du] .

The asymptotic variance of fo = log 8 where 8 is the RAM estimate is given
by

02 -0" +a',

for < 1. For mo=m = 1/2 the asymptotic relative efficiency of S, with
respect to f* is equal to 1, 0.951, 0.863, 0.757 and 0.647 for 6 =1, 1/2, 1/4,
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1/8 and 1/16.

Example 2.2. (Proportional y-odds model) Our main application is
to the proportional y-rate model, y > 0. The y function corresponding to
the MLE for the F known case is

(1-whe
1-(1-w+6(1-uw

(2:2) ww,O) =y —(1+y")

Using Theorem 2.1, we find that the asymptotic variance of the RAM
estimate simplifies when y is of the form y = 1k, where k = 1 is an integer.
In this case the asymptotic variance is

0’ 2+k 0’ _1_{(1+k)2 3+k(3+k)

+ k+2
mo ok (1-6) mo PR

el 5T

For y=k =1, the proportional odds model, the asymptotic variance is
30771 + (0.2)0n5'(4 + 70 + 467) while for k = 2, it equals 277'6* + 6o’ {18 +
236 + 126* + 36°}/28.

1

To judge the performance of the RAM estimate based on (2.1), we
compute the efficiency of this estimate with respect to the MLE for the
y-odds model with F known and the X’s and Y’s distributed as D(H(x), 61)
and D(H(y),8:), respectively, where D is given in Example 1.3, and
6 =6,/6,. For m=n, this efficiency is given by e(fram, ImLe) = 606(8 +
446 + 80*)' for k = 1 and 1126(18 + 790 + 126* + 36°y " for k = 2.

Here is a brief table of these efficiencies.

We see from Table 1 that when y = 1 and 1/2, 8 is quite efficient for 6
in the range (0.5, 2). The efficiency increases as y increases. In fact, it is easy
to show that as y — oo the efficiency tends to one for all 8. The efficiency
given is a lower bound on the efficiency of § with respect to the asymp-
totically optimal estimate based on the ranks.

Table 1. The asymptotic relative efficiency of the RAM estimate with respect to the MLE for the
parametric y-odds model.

N 235 5 a5 9 [ L1 125 15 175 2 4

1 .769 .938 .989 .999 1 999 .993 978 .959 .938 769
0.5 726 .920 .985 .998 1 .998 990 968 937 903 .624
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3. Rank-inversion estimates

In this section, we introduce rank-inversion estimates based on the
ideas of Hodges-Lehmann (1963). Again, we start by assuming that F is
known and let U, ¥; and D(u,0) be as in Section 2. In particular, we
assume that D(u,#) is monotone decreasing in 6. Note that U,,..., Un,
D(V1,0),..., D(V,,0) all have the same distribution when 8 = 8, where 6 is
the true value of the parameter. Let R;(f) denote the rank of U; among
Us,..., Un, D(71,0),..., D(V4,0), and let

Tv@)=m"Z JN( RO )

N+1

denote a linear rank function with monotone increasing score function J.
For F known, the Hodges-Lehmann estimate of 8 is obtained by solving

n() = f J(u)du for 0, where J(u) is the limit of Jy(x). Without loss of
generality, we assume f J(w)du=0.

Suppose now that F is unknown. Let X(;) < --- < X(m) be the vector of
order statistics of X/’s. Let F be defined by

F(u) _u + iX(i+1) - (i + I)X(,')
(m+ DXy ~ X))~

for Xoy=u< Xy, i=1,...,m— 1. Thus on the interval [X(1),X(m)], Fisa
linearized version of the right-continuous distribution function mF,/
(m+ 1), where Fn(u) = m ' # i X< u}. Further, let Y1) and Y, be the
first and the last order statistics of the Yj’s. If Yy < X1 or Yn > X(m), then
we extend F to the interval [min (X, Y1), max (X(m), ¥(»)] linearly with
F(Y) =1/(N+ 1) if Yoy < X and F(Y) = N/(N + 1) if Yin) > Xim).
Further, let Ri(6) be the rank of F(X) among F(X)),..., F(Xn),
D(F(1),0),..., D(F(Y»), ). Let 8z be any “solution” to
~ o Ri(6)
Tv)=m ZJN(N+1) 0.

More precisely, let 8z be any point in [0, 6F*] where 0 = sup {#: T (6) < 0}
and 68* = inf {#: Tw(0) > 0}. Similar estimates have also been considered
by Doksum and Nabeya (1984) and Miura (1985).

Example 3.1. Assuming Fis known, the Hodges-Lehmann type rank
estimate based on J(u) = 2u — 1 is asymptotically optimal for the propor-
tional odds model. Let L(x) = 1/[1 + ¢ ] be the logistic distribution func-
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tion and note that if we set W; = L' (F(X) and Z; = L"(F(Y))), then W;
and Z; follow a logistic shift model (W;~ L(w), Z;~ L(z — log #)) with
parameter log 8. Since the ranks are invariant under the increasing trans-
formation L™, it follows that the Hodges-Lehmann estimate of 6 is

Our = exp {median(Z; - W)} .

The corresponding Jz, which is appropriate when F is unknown, is

Gz = exp {median (LN(F(Y) - L (FXx) .

We return to the general case and show the asymptotic normality of
\/N (8 — o). From (1.2), we have

(3.1 D(D'(u,0),8)= D(u,6/9), Du,1)=u.

Let
D) =2 Dw.0) 1=, 7D, Ddu
2(6) = fol T (w)du + 75! [ [ oy - ( [ atwau )2 ] ,

where a is defined by

2 - 7 (DG, O, OF
Further, let

Gi(w)=n"' #[j D(F(Y),0) < ul = G.F'Du,67),
Hi(w) = {mFnF ' (w) + nGY W)}/ (N+ 1),
G’(u) = D(D \(u, 8), 60) = D(u,60/6)

(by (3.1)) and H %(u) = mou + 711G*(u). In terms of these functions, we have
Tn@) =m" z JIn ( R io) ) = [In(HYF) dFn = [In(HEYdF

Assume
B.1) riv=N[{In(HE) — J(H{)}dFE" <0 as N — o uniformly
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for 6 in a neighbourhood of 6.
Moreover,
(B.2) Jis a differentiable function with bounded continuous deriva-

tive J/, and 0 <fJ2(u)du < oo,
Finally, we assume that the limits 7o = 11\{1{2 (m/N)and n, = ]{,1210 (n/ N) exist

and are strictly between 0 and 1.

THEOREM 3.1. If D(u,0) is decreasing in 0, and if the preceeding
conditions hold, then \/N (O — 60) has asymptotically a normal distribu-
tion with mean zero and variance 6¢t*(60)/n".

PROOF. As in the case of Hodges-Lehmann (1963), 6%, #&* and any
point between them, such as Jz, will have the same asymptotic distribution.
Further,

P(/N(0%/60— 1)< 1) = P(WN Tw(6) > 0),

where = 8y(1 + t/+/N). We have

VN Tw(8) = /N [In(HE W) dFnE ™)
= VN [J(HEW) dLFnF (1) — u] + NN [[J(H @) - J(H ()] du
+ VN[[JH W) - J@)ldu+ rv=L+ b+ I+ rx.

Note that I, = — \/ﬁf[FmF_l — u]dJ(Hwn(u)). This term is bounded in
absolute value by sup \f]\7 | B F Y1) — u] f |J(1)|du, which tends to zero
since sup | FnF (1) — u| < 2/(m+ 1) andflJ’(u)Idu < oo by (B.2).

The second term can be written as

L= /N[JH (W) Hiu) — H @)]du + ra
where
rawv = N[(HS — HYI@) - J(H*)}du

and f° assumes values between HyY and H®. We have

(32 VN[JH @) HAwW - H @))du
= VN [JHP @)[m| (N + 1) FuF () — mou]du
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+ VN[ IH @)n/(N + 1)
[G.F'D'(u,8) — GF'D\(u, 6))du
+ VN [J(H @)n/(N + )GE " D™ (u,5)
~mGF'D(u,8)]du .

The first term converges in probability to 0 by an argument similar to /;.
The next two terms of this expansion converge weakly to

{102 7() Ba(u) e — 5 (D (u, B0)) P (s, 60) Bu(w) L,

where By and B, are independent Brownian bridges. This follows since
\/;(G,.— G) and \/r;(f:“‘; — F™') converge weakly to B:(G) and
— f(F™")Bi(u), respectively and sup |F™' — F™'| = 0p(1). The standard
Skorokhod construction yields the desired result. Further, r.y—5> 0 by
(B.2), sup | HY — H’| - 0 and sup /N (Hx — H®) = Ox(1).

Finally,

I = VN[ Fm{D(u, 00/ 8) — ubdu + ray ~ — mutf, J@)D(u, Ddu,
and
ron = VNJLIH°) ~ F@)Im DG, 60/ 8) — uldu

where A° assumes values between H° and H = u. This term converges to 0
by assumption (B.2) and Taylor expansion of D(u,6o/3).

If we let J(y) =[1+ (1 = u) —y”', y= 1, then in the proportional
y-odds model, Oz given in Example 3.1 will have the same asymptotic
variance as the RAM estimate based on (2.2) (see Example 2.2).

4. Proof of Theorem 2.1: remainder terms

The remainder term ry in (2.1) is given by
rv = NJ{w(E,0) — y(F,0:}dGy — /N [(Fn — F)y'(F,01)dG .

For small y e (0, 1) define S, =[F '(y), F'(1 - y)]. Further, let dy=
[Yuy, Y] and En = [X(), X(m] where X(1), Xim, Y1) and Y are the first
and the last order statistics among Xi’s and Y;’s. Then, after some algebra,

7
rn = ,21 riv where
P
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rv="N [ {w'(F* 65— y'(F,6)})F ~ F)dG,

40,

riv=+/N f W'(F,On)(F = Fn)dG
4NS,

rv="IN | w(F,08)(Fn— F)d(Ga— G),
a0,

Fan = —\/ﬁ f w’(F,BN)(Fm—F)dGa

45US;

rv=VN [ W(F*60(F - F)dG,

ANNSNEx

rv="N | w(E 0x)dGn,

ANNS;NEx

rN= — \/ﬁ j w(F,08)dG, .

MNSNES
Here F* is a random function assuming values between F and F. We shall
show that for any fixed y, rin, ran, rav and rey converge in probability to 0
and r4n, rsy and r7y converge in probability to 0 as y — 0 and N — oo,

LEMMA 4.1. For fixed y, rin—5>0as N — 0,

PROOF. Given y € (0,1) let Qn = {w: sup |F— F| <y/2}. Then rix =

I(&yn)rin + I(258)r1v. The second term converges in probablhty to 0, by the
Glivenko-Cantelli theorem. Further, we have sup Vm|F - F| = 0,(1). The

function (i, Ox) is uniformly continuous on [y/2 l1-y/2)and |F*~ F| <
| F'— F|. Therefore, by the Glivenko-Cantelli theorem,

(] rin] = Op(1) sup ly'(F*,08) — y'(F,08)| 5 0.
LEMMA 4.2. For fixedy, rin 5> 0 as N — o,
PROOF. This follows since | F— Fn| < 1/(m + 1) and f!//'(F)dG,, -5

[v(F)de.

S,

LEMMA 4.3. For fixed y, rsn 5 0 as N — .

PROOF. For each positive integer k define a function yx on [0, 1] by
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x(0)=0,
x(s)=(0-D/k

Then, by Lemma 4.3 of Ruymgaart et al. (1972)

sup V/m| FnF ye(F) = y(F) = Fn+ F| 5 0,

for (i—Djk<s<ilk i=1,.,k.

3
as k,m — oo, Furthermore, |r;n| < ,E] rin where
i

riv=vN | |(Fn— F)y'(F,08)

4408,

= (FnF "' Yk(F) = xe(F )y (xe(F), 03)|dGi

raN= \/]7 f |(Fm — F)y'(F,0n)

4NN,

~ (FuF " (F) = 0e(F)W'(e(F), 08)1dG

row = ]\/JV [ EnF 0 = 1e(F) ' (e(F), 0)d(Go — G)) .

NS,

The proof is similar to Corollary 5.5 in Ruymgaart et al. (1972). Given
¢ > 0 there exist constants M and my — 0 as k, N — oo such that the sets

Qv ={sup \/m|Fn— Fl< M},
Qun = sup {(Nm|Fn— F— FuF 'i(F) + i (F)| < min}

have probability at least 1 — ¢. Further, the function y'(u, 6v) is bounded
by M, and uniformly continuous on [0, 1 — y]. Finally

Epn = sup Ly '(F,08) — v (e(F),00)| — 0.

Therefore, fori=1,2
I($n N QM) rsiv < (v My + MEumN/N/m—0.

Finally, for each w € Q, the integrand of ri;n is a step functlon assuming
value aan, |aun| < M(M, + Eyn)\/ N/m on the interval [F~ Yi- Dk,

F'(i/ k)] = Ran and

k
1@uyrssn =| Zaun | d(G.— G)

Riun
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< 2kM(M, + Eww)N/N/m sup |Ga— G| 5 0,
as N — oo,
LEMMA 44. Asyl0O0and N— o, rqn -5 0.

PROOF. Let &> 0 be fixed. By Theorem Al of Shorack (1972), there
exists a constant M such that the set

Qn={\/m(Fn~ F)< Mr™*""(F)}
has probability at least 1 — &. By Assumption (A.1)

4.1) HQy)ra) < OMNIm [ r(F)"dG.

25US;
Let us consider the integral

4.2) [ ) "d(u, 0)du .

S

By Assumption (A.2), we can find a value y of y such that (4.2) is less than
¢ provided y <7. For this y there exists N such that P(UxD $)>1—¢
provided N> N. It follows that the integral on the right-hand side of (4.1)
is less than ¢ with probability larger than 1 — & for y<y and N= N. Thus,
ran—5>0asyl0and N — oo,

LEMMA 4.5. Asyl0and N— o, rsy—5 0.

PROOF. Let ¢ >0 be fixed. By Lemmas 6.1 and 6.2 in Ruymgaart et
al. (1972), there exist constants M; and M, such that the sets Q;y=
{(Vm|E— F| < My """"(F) on Ex} and Qo = {r*"(F*) < Mar®*'(F) on
Ey} have probability at least 1 — ¢. Then

EIQix N Quw)lrswl < O)MiM/Nim [ (F)dG .

Sy
The right-hand side converges to O as y | 0.
LEMMA 4.6. For fixed y, ren 5= 0 as N — o,
PROOF. Let ¢ > 0 be fixed. Given y € (0, 1), we can find N such that

the set Qn={S, C Ey} has probability at least 1 —¢ for N> N. By
Assumption (A.1), EI(Qn)|rsn| < O((N/m)' ym' " P(Y € Ef). But
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P(Y € E) = [u"d(u, 0n) du + [(1 — u)"d(u, Ox)du .
By Assumption (A.3), EI(Qn)|ren| — O.
LEMMA 4.7. Asyl0Oand N — o, r;y—5 0.

PROOF. By Assumption (A.1),

v <VN [ H(F)dG, .

ANﬂS;m Ev

Holders inequality yields

Elrin = /Nim{mP(Y: € ES)}"” { [ H(FY“aG }”2 |

S.

By Assumptions (A.2) and (A.3), mP(Y: € Ey) = O(1) and the integral on
the right-hand side converges to 0 as y | 0.
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