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Abstract. We consider a two-sample semiparametric model involving a 
real parameter t9 and a nuisance parameter F which is a distribution 
function. This model includes the proportional hazard, proportional 
odds, linear t ransformat ion and Harr ington-Fleming models (1982, 
Biometr ika,  69, 533-546). We propose two types of estimates based on 
ranks. The first is a rank approximation to Huber's M-estimates (1981, 
Robus t  Statistics, Wiley) and the second is a Hodges-Lehmann type rank 
inversion estimate (1963, Ann.  Math .  Statist. ,  34, 598-611). We obtain 
asymptotic normality and efficiency results. The estimates are consistent 
and asymptotically normal generally but fully efficient only for special 
cases. 

Key words and phrases: Semiparametric transformation models, M- 
estimates based on ranks, Hodges-Lehmann estimates. 

1. Introduction 

We consider the two sample problem where X~,..., Xm and Y~,..., Y, 
are independent random samples from populations with continuous distri- 
bution functions F and G, respectively. Many of the models in which rank 
(partial, marginal) likelihood methods are useful can be put in the form 

(1.1) F(t) = D(H(t), 01), G(t) = D(H(t), 02), 

where H(t) is an unknown continuous distribution function, D(u,O) is a 
known continuous distribution function on (0, 1), and 02 and 02 are in some 
parameter set O. 
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For inference based on rank likelihood, the above model is equivalent 
to the model obtained by using the distributions of U~ = F(Xi) = D(H(X3, Or) 
and Vj = F(Yj) = D(H(Yj), 01). These distributions are 

P(u) = u, u ¢ (0, 1), 0(0) = D(D-I(o, 01), 02), /) E (0, 1). 

In the case where {D(u, 0): 0 ~ O} is a group under composit ion satisfying 
D(u, 1) = u, D(D-I(u, O1), 02) = D(u, 0), 0 = 02/0,  we can write 

(1.2) P(u) = u, u e (0, 1), ~(o) = D(o, 0), 0 ¢ (0, 1). 

From this point on we assume that (1.2) is satisfied. The distribution 
function F is treated as a nuisance parameter and we consider the problem 
of estimating O. This model goes back to Lehmann (1953), and includes the 
following models that have important  applications in survival analysis, 
reliability, and other areas. 

Example 1.1. (Proportional hazard model) If F and G have pro- 
portional hazards, then D(o, 0) = 1 - [1 - o] '/°, 0 > 0. Lehmann (1953) and 
Savage (1956) considered testing in this model. Cox (1972, 1975) developed 
estimation procedures in a much more general regression problem with 
censored data. 

Example 1.2. (Proportional odds model) For any continuous dis- 
tribution H the odds rate is defined by rn = H/(1 - H). If F and G have 
proport ional  odds rates, in the sense that ro(t)= 8-1rp(t), then D(o,O)= 
o[(1 - o)0 + 0] -1. This model has been considered by Ferguson (1967) and 
Bickel (1986) in the two-sample case and in more general regression models 
by Bennett (1983) and Pettitt (1984), among others. 

Example 1.3. (Proportional y-odds model) For any cont inuous 
distribution function H, the y-odds rate is defined by 

/ {[1 - H(t)] - y -  1}/y, y > O, 
rn,~(t) [ - l o g  [1  - H ( t ) ] ,  y = 0 .  

If F and G have proportional y-odds, then 

D(o, O) = 

0(I - o) ~ } :~ 
1 - 1 - ( 1  - - o ) ? + - O ( 1  - 0 )  ~ ' Y > 0 ,  

1 - ( 1  - o )  I /0  , y = 0 . 

This model, which has been considered by Harrington and Fleming (1982), 
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Clayton and Cuzick (1986), Bickel (1986) and Dabrowska and Doksum 
(1988), reduces to Example 1.1 when ? = 0, and to Example 1.2 when ? = 1. 

Example 1.4. (Transformation shift model) Let Q be any known 
continuous distribution function which is strictly increasing on the whole 
real line. If F and G satisfy the transformation shift model where for some 
increasing transformation h, Xi and Yj can be written 

h(Xi)=lt l+ei ,  i =  l , . . . , m ,  
(1.3) 

h(Yj) = ,u2 + ej, j =  1, . . . ,n ,  

with/z2 - /z l  = log 0, N = m + n and el,..., eN independent with distribution 
function Q, then D(o,O)= Q(Q-I (o ) -  log 0). To see this, set h( t )= 
Q-l(F(t)) + p~. Then (1.3) is equivalent to (1.2) with D(o, 0) = Q(Q-I(o) - 
log 8). This is an extension of the power transformation model where h(t) 
is of the form sign (t) I t l a or [sign (t) l t l a - 1]/2, and where Q is the standard 
normal distribution function (see Anscombe and Tukey (1954), Tukey 
(1957), Box and Cox (1964), Bickel and Doksum (1981) and Doksum 
(1987)). This transformation shift model reduces to the proportional odds 
model if we take Q to be the logistic distribution function L ( x ) =  
1/[1 + e-X]. 

Theory and methods for dealing with semiparametric models and 
partial likelihood have been developed by Begun (1981), Begun et al. 
(1983), Begun and Wellner (1983), Wellner (1986) and Wong (1986), among 
others. However, these methods do not lead to tractable efficient scores or 
tractable efficient estimates for any of the above models except the 
proportional hazard model. For arbitrary 80 and under certain regularity 
conditions, Bickel (1986) obtained the asymptotically optimal rank test for 
testing H0:0 = 00, vs Hi: 0 > 80. His regularity conditions are satisfied by 
the ?-odds model with y ___ 1. However, the optimal test statistic is a non- 
linear rank statistic whose value can be obtained only after solving certain 
functional equations numerically on the computer. Attempts to extend 
these methods to obtain estimates that are asymptotically efficient in the 
semiparametric sense have not yet succeeded. Doksum (1987), and 
Dabrowska and Doksum (1988) propose a resampling scheme for comput- 
ing maximum partial (rank) likelihood estimators in general semipara- 
metric transformation regression models with censored data. These esti- 
mates perform well in Monte Carlo simulation studies, but the theoretical 
properties are difficult to establish. Clayton and Cuzick (1986) proposed 
estimates for the proportional ?-odds model that also apply to regression 
and censored data, but the theoretical properties of these estimates are also 
not well understood. 
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Methods based on local (near 0 = 1) approximations to the likelihood 
have been developed by Pettitt (1984), Doksum (1987), and Dabrowska 
and Doksum (1988). These estimates are asymptotically normal for 0 in 
neighbourhoods of 0 = 1, however, they are not consistent for fixed 0 ~ 1. 

In this paper we consider the uncensored case and introduce two 
classes of estimates. The advantage of these estimates is that they are 
relatively simple to implement in practice and their properties can readily 
be derived and understood. Moreover, they are based on intuitive estima- 
tion equations that are immediate extensions of the familiar M and R 
estimate equations. Although the new estimates are not fully efficient for 
all values of 0, such fully efficient estimates are not available for y ~ 0. 

In Section 2 we introduce estimates of 0 that can be regarded as rank 
approximations to Huber's (1981) M-estimates based on score function ~u. 
We show asymptotic normality of these RAM (Rank Approximate M)  
estimates. We compare these estimates with the asymptotically optimal 
estimates for F known, and find that for a certain range of parameter 
values, not much efficiency is lost. In fact, the score function ~u can be 
chosen so that the estimate is fully efficient at 0 = 1. 

In Section 3 we introduce estimates of 0 based on the Hodges- 
Lehmann (1963) rank inversion idea and obtain asymptotic normality of 
these estimates. For appropriate choices of the score functions, these 
estimates have the same asymptotic distribution as the RAM estimates. 

2. M-estimates based on ranks 

In this section, we introduce estimates that, in an approximate sense, 
are M-estimates based on ranks. We start by assuming that the distribution 
F of the X's is known and introduce M-estimates of 0 that depend on F. 
Let 

Ug = F(Xi), Vj = F( Yj), i = 1,..., m,  j = 1,..., n .  

m n 

The joint distribution of U1,..., Urn, Vl,..., Vn is iH=~ ui jill D(oj, 0), so that 

(V~,..., V,) is sufficient for 0. Let ~u(o, 0) be a function which is monotone 
decreasing in 0, and satisfies Eoo~U( V, 0o) = 0 where V is distributed accord- 
ing to D(o, 00) and 00 is the true parameter value. An M-estimate (see 
Huber (1981)) of 0 is defined as a solution to the equation Zg(Vj,  0) = 0. 

Let N =  m + n. When F i s  unknown, we define P(u) = mF,, , (u)/(m + 1) 
for u ~ [XI~I, Xc,,,)], /~(u)= 1 / (N+  1) for u < XIll and /e(u)= N / ( N +  1) for 
u > X~,,). Here Xtl) and XIm) denote the first and the last order statistics of 
the Xi's and F,,(u) = m -l # {i: X; _< u}. 

We set ~ = P( Y3, and we let 0 be any "solution" to 
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/1 

z (Ge)=o. 
]=1 

More  precisely,  t~ is any value in the interval  [0",0"*] where  0 " =  
sup {0: E ~ ( ~ ,  0) > 0} and 0"* = inf {0: Y4u(~, 0) < 0}. 

In terms of the rank likelihood, IYt,..., 17", are sufficient for 0. To see 
this, let YI1)< "'" < Y(/1) be the ordered statistics and let KIjI = m~(Yu)). 
Then it is easy to check that  Kill,..., KI,) are equivalent to the ranks. Thus 
we call 0 a RAM (Rank Approximate M) estimate. 

Here is an example where we get an explicit formula  for 0. 

Example 2.1. A s s u m i n g  F is known ,  the M-es t imate  based on 
~u(o, 0) = - 0 -  log ( 1 -  o) is the MLE ( M a x i m u m  Likelihood Estimate) 
for  the p ropor t i ona l  hazard  model  of Example  1.1. This es t imate  is 

- 1  n Z [ -  log ( 1 -  F(Yj))]. The corresponding R A M  estimate of 0 which 
- 1  n 

applies when F is unknown  is 0 = n j E t [ - log (1 - F(  Yj))]. 

We return to the general case and show asymptotic normali ty of the 
R A M  estimates. We assume th roughout  that  the limits no = lim (m/N) and 

N - o o  

nl = lim (n/N) exist and are strictly between 0 and 1. Further, we assume that 
N - o o  

~, is cont inuously  differentiable in u and we set ~u'(u,O)= (a/au)[~(u, 0)] 
and d(u, O) = (O/Ou)[D(u, 0)]. Define 

Oo)au, =fo'C,,(u,O)au, 

~,~(u, O) = fo ~u'(o, O) d(o, 0o) do, 

' 2  + { fo (u, O)d(u, Oo)du _ 22(O) } {fo  U,(u,O)du- } ' 

Assume that  for 0 in a ne ighbourhood  of the true parameter  value O0, the 
following assumptions hold: 

(m.l) I~'(',0)1 = O(r a) and I~"(-,0)1 = O(r a+l) where r(u)=[u(1-  
u)] -1 and a = 1/2 - r for some 0 < r < I/2.  

(A.2) fr(u)]-~d(u, O)du < ~ uniformly in 0 for some 0 < r /<  r. 

(A.3) mfumd(u,O)du = O(1) and mf(1 - u)md(u,O)du = O(I) uniform- 

ly in 0 and m. 
Assumpt ion  (A.3) is satisfied whenever the density d(u, O) is bounded  

uniformly in 0 in a ne ighbourhood  of 00. In particular, it holds for the 
propor t iona l  hazard model  with 00 < 1 and y-rate models of Examples 1.2 
and 1.3. Assumpt ion  (A.2) is satisfied in all three examples. 
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THEOREM 2.1. Suppose that ~,'(u, 0) and 2(0) are continuous in 0 
for 0 in a neighbourhood o f  the true parameter value 00 and suppose that 
00 is the unique point with 2(0o)= 0. Assume that a2(0) is finite, nonzero 
and continuous in a neighbourhood o f  Oo and that (A.1), (A.2) and (A.3) 
hold. Then V ~  2(O) is asymptotically normally distributed with mean zero 
and variance a2(Oo). In addition, i f  2'(00) exists and 2'(0o)< O, then 
v ~ ( O - 0 0 )  is asymptotically normal with mean zero and variance 

2. 

PROOF. First we note that asymptotically all ~ ~ [0', 0**] are equiv- 
alent, so it is enough to consider 0". 

By the assumed monotonicity of ~,(u, 0) in 0, the function 2(0) is 
monotone decreasing. Let y be fixed. Since 2(00) = 0 and 2 is continuous, 
for N sufficiently large, there is ON such that y = - ~/N2(0N). In fact, 
ON = -- 2-1( -- y~ ~r~). Let G~ denote the empirical distribution function of 
the Y's. Then 

P( - x/~2(O*) < y) = P(O* < ON) 

= P a(ON) 

~ [  Y 

< Y ] 
- a ( O N )  

To see this we note that 

= F)~u'(F, ON)dG + f u(F, ON)d(G.- G) ] + r m ,  

where rN is a remainder term. We have 

f(Fm - F) ~'(F, Os)dG 

= m I(X~ < x) - F(x)] ~t'(F(x), ON)d(F(x), Oo)dF(x) 
i -  

=- ~ Airn , 
i=1 

which is a sum of independent identically distributed (iid) random variables. 

By Assumption (A.1), IAi,~l = O(1)rm-~+~(F(Xi))frl-~(u)d(u, Oo)du. By 
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Assumption (A.2), in a neighbourhood of 00 the deterministic part of this 
upper bound is uniformly bounded from above. Further, for some rl > 0 
the random part of this bound has an absolute moment of order 2 + rl, 
which is uniformly bounded above. 

Further, f~,(F, ON)d(Gn- G) is a sum of iid random variables. By 

Assumptions (A.1) and (A.2), they have a finite absolute moment of order 
2 + r2 for some r2 > 0. Berry-Esseen's theorem completes the proof of the 
asymptotic normality of the first two terms. The remainder term rN is 
considered in Section 4. 

Note that when 00 = 1, the asymptotic variance of 0 reduces to 

0 (I~oI + n;1)E~2(U, 1) /[ E-~ ~(U,O) o=I ] 2 , 

where U is uniform on (0, 1). This is exactly the same as the asymptotic 
variance of the M-estimate for the model (1.1) with H known. Thus if we 
choose 

~,(v, 0) = 0-~ log d(o, 0), 

then 0, in addition to being consistent and asymptotically normal for 
general 0o, is asymptotically efficient when 00 = 1. 

If we consider the RAM estimate 0=  n-1~2 [ -  log ( 1 -  F'(Y/))], we 
j = l  

find that in the proportional hazard model the asymptotic variance is 
no10(2 - 0) -1 + n~102 for 0 _< 1. We can compare this estimate with the Cox 
partial likelihood estimate. The usual parametrization in the Cox propor- 
tional hazard model is in terms of fl = In 0. If fl* is the Cox partial 
likelihood estimate, then from Efron (1977) we find that its asymptotic 
variance is given by 

[f0~{n~l + nolOul°-ll/O}-ldu ]-~ . 

The asymptotic variance of/~0 = log 0 where 0 is the RAM estimate is given 
by 

n o 1 0 - 1 ( 2  _ 0 )  -1 + g l  1 , 

for 0_< 1. For no = nt = 1/2 the asymptotic relative efficiency of/~0 with 
respect to fl* is equal to 1, 0.951, 0.863, 0.757 and 0.647 for 0 = 1, 1/2, 1/4, 
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1/8 and 1/16. 

Example 2.2. (Proportional },-odds model) Our main application is 
to the proportional y-rate model, y > 0. The ~u function corresponding to 
the MLE for the F known case is 

(2.2) 
( 1  - u)YO 

~(u,O) = 7 -1 - (1 + 7 -1) 1 - (1 - u) ~ +/9(1 - u) ~' " 

Using Theorem 2.1, we find that the asymptotic variance of the R A M  
estimate simplifies when y is of the form y = 1 / k, where k >_ 1 is an integer. 
In this case the asymptotic variance is 

(1 k i=0 i 

i l k  ( 1  0-------~0 ) i -  ( k k-----~0 )2 } . 

For y = k = 1, the proportional odds model, the asymptotic variance is 
302~z~ 1 + (0.2)0~01(4 + 70 + 482) while for k = 2, it equals 2r~182 + 0n01{18 + 
238 + 1282 + 303}/28. 

To judge the performance of the RAM estimate based on (2.1), we 
compute the efficiency of this estimate with respect to the MLE for the 
y-odds model with F known and the X's and Y's distributed as D(H(x), 01) 
and D(H(y),02), respectively, where D is given in Example 1.3, and 
0 = 02 /01 .  For re=n,  this efficiency is given by e(~RAM, 0 M L E ) =  6 0 8 ( 8  + 

448 + 802) -1 for k = 1 and 1120(18 + 790 + 1202 + 303) -1 for k = 2. 
Here is a brief table of these efficiencies. 
We see from Table 1 that when y = 1 and 1/2, 0 is quite efficient for 8 

in the range (0.5, 2). The efficiency increases as y increases. In fact, it is easy 
to show that as y -- ~ the efficiency tends to one for all 8. The efficiency 
given is a lower bound on the efficiency of 0 with respect to the asymp- 
totically optimal estimate based on the ranks. 

Table I. The asymptotic relative efficiency of the RAM estimate with respect to the MLE for the 
parametric y-odds model. 

.25 .5 .75 .9 1 1.1 1.25 1.5 1.75 2 4 

1 .769 .938 .989 .999 1 .999 .993 .978 .959 .938 .769 
0.5 .726 .920 .985 .998 1 .998 .990 .968 .937 .903 .624 
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3. Rank-inversion estimates 

In this section, we introduce rank-inversion estimates based on the 
ideas of Hodges-Lehmann (1963). Again, we start by assuming that F is 
known and let U~, Vj and D(u, O) be as in Section 2. In particular, we 
assume that D(u,O) is monotone decreasing in 0. Note that U~,..., Urn, 
D(V1, 0),..., D(Vn, O) all have the same distribution when 0 = 00, where 00 is 
the true value of the parameter.  Let Ri(0) denote the rank of Ui among 
1..71,..., Urn, D( V~, O),..., D( V,, O), and let 

m_ 1~ , [ Ri(O) ] TN(O) ,e, N J ' 

denote a linear rank function with monotone increasing score function JN. 
For F known, the Hodges-Lehmann estimate of 19 is obtained by solving 

P 1 
TN(O) =In J(u)du for 0, where J(u) is the limit of JN(U). Without loss of 

generality, we assume J(u)du = O. 

Suppose now that F is unknown. Let XI1 ) < ... < X(m) be the vector of 
order statistics of Xi's. Let P be defined by 

P(u) = 
U + iX(i+l)  - (i + 1)X(i) 

(m + l ) ( X ( i + l ) -  X(i))  

for X(i)-< u < S(i+l), i-- 1, . . . ,m - I. Thus on the interval [XI1), X(m)], F i s  a 
linearized version of the r ight-continuous distribution function mFm/ 
(m + 1), where Fro(u) = m -1 # {i: Xi <- u}. Further,  let YI1) and Yin) be the 
first and the last order statistics of the Yj's. If Yo) < XI*) or II(,) > XIm), then 
we extend P to the interval [min (X(l), YIx)), max (Xim), Y(,))] linearly with 
P(Y~I)) = 1 / ( N +  I) if Y(1)< Xll) and F(YI,)) = N/(N+ 1) if YIn)> XIm). 

Further,  let Ri(O) be the rank of F(Xi) among P(XI),...,F(Xm), 
D(F(  Y0, 0) .... , D(/~(Y,), 0). Let OR be any "solution" to 

,m (  i,o, ) 
TN(0)=m ,_ZJ, v ~ =0 .  

More precisely, let 0R be any point in [0", 0"*] where 0* = sup {19: TN(0) < 0} 
and 19"* = inf {0: I"N(0) > 0}. Similar estimates have also been considered 
by Doksum and Nabeya (1984) and Miura (1985). 

Example 3.1. Assuming F i s  known, the Hodges-Lehmann type rank 
estimate based on J(u) = 2u - 1 is asymptotically optimal for the propor- 
tional odds model. Let L(x) -- 1/[1 + e -x] be the logistic distribution func- 
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t ion and note that  if we set W,. = L-I(F(Xi)) and Zj = L-I(F(Yj)), then W,- 
and Zj follow a logistic shift model  (Wi ~ L(w), Zj ~ L ( z -  log 0)) with 
parameter  log 0. Since the ranks are invariant  under  the increasing trans- 
format ion  L -1, it follows that  the Hodges-Lehmann estimate of 0 is 

t~nL = exp {med.ian (Zj - IV,.)}. 
I , I  

The corresponding ~R, which is appropriate  when F is unknown,  is 

OR = exp {median (L-I(/~(Yj)) - L-I(P(Xi)))}. 

We return to the general case and show the asymptotic normali ty of 
X/~(~R - 00). F r o m  (1.2), we have 

D(D-I(u,O),J) = D(u,J/O), D(u, 1) = u .  (3.1) 

Let 

0_~ 1 . D(u, O) = D(u, O) rl = fo J'(u)D(u, 1)du , 

+ (::o,u,,o) 

where a is defined by 

Further,  let 

da(u) 
du 

- -  - J'(D(u, O))[d(u, 0)] 2 . 

G°(u) = n -1 # [j: D(P(~) ,  0) <_ u] = G,F -1D(u, O-'),  

H~(u) = {mFmP-l(u) + nGf(u)} / (N + 1), 

G°(u) = D(D-I(u, 0), 0o) = D(u, 0o/0), 

(by (3.1)) and H°(u) = noU + nl G°(u). In terms of these functions, we have 

/ R,(o) 1 m 
] = f JN( H°u( P))dF,, = f Ju( H ° ) d F , , r  -1 ~N(0) = m-i~JN[=,\ 

Assume 

(B.1) rlN = V ~ f { J N ( H  g) - J (H°)}dFmP -~ --~ 0 as N - "  oo uniformly 



RANK ESTIMATES IN SEMIPARAMETRIC MODELS 73 

for 0 in a ne ighbourhood of 00. 
Moreover,  

(B.2) J is a differentiable funct ion with bounded  cont inuous  deriva- 

tive J ' ,  and 0 <f j2 (u )du  < oo. 

Finally, we assume that  the limits no = l i m ( m / N )  and n~ = l i m ( n / N )  exist 
N - ~  N - ~  

and are strictly between 0 and 1. 

THEOREM 3.1. I f  D(u, 0) is decreasing in 0, and if  the preceeding 
conditions hold, then V @  (~R - 0o) has asymptotically a normal distribu- 
tion with mean zero and variance 0o2rE(0o)/r/2. 

PROOF. As in the case of Hodges-Lehmann (1963), 0*, 0** and any 
point  between them, such as ~R, will have the same asymptot ic  distribution. 
Further ,  

P(x/~(O*/Oo - I) ~ t) = P ( V ~  TN(J) > 0) ,  

where 6 = Oo(1 + t/v@). W e  have 

vrN ~(6) = x/N f JN( H~(u))dF~P-'(u) 

= V~fJ (H~(u) )d [FmF- ' (u )  - u] + V~f[J(H~(u) - J(Ha(u))]du 

+ x/Nf[J(W(u)  - J(u)]du + rlN = II + 12 + 13 + r m .  

Note  that  Ii = -w/Nf[FmF - 1 -  u]dJ(n2~(u)). This te rm is b o u n d e d  in 

absolute value by sup x / ~ l F m F - l ( u ) -  u lflJ'(u)ldu, which tends to zero 

since sup bFmF-l(u) - ul -< 2/(m + 1) andf lJ ' (u) ldu < ~ by (B.2). 

The second term can be written as 

12 = vrNfJ'(Ha(u))[H~(u) - W(u)]du + r2N, 

where 

r2N = "v/Nf(H~ - Ha){J'(/~ ~) - J ' (Ha)}du ,  

and /~a  assumes values between H~ and H a. We have 

(3.2) v~fg'(Ha(u))[H~(u) - Ha(u)]du 

= v ~ f g ' ( H a ( u ) ) [ m / ( N  + 1)FmF-I(u) - nou]du 
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+ x /~ fJ ' (HZ(u) ) (n / (N  + 1)) 

• [G,P-ID-1(u, ~) - GF-1D-1(u, g)]du 

+ v /NfJ ' (HZ(u))[n/ (N + 1)GP-~D-~(u, ~) 

- ~zlGF-lD-l(u, O)]du. 

The first term converges in probability to 0 by an argument similar to L. 
The next two terms of this expansion converge weakly to 

{ , '/2fJ'(u)B2( )du-zcol/ZfJ'(D(u, Oo))dZ(u, Oo)Bl(u)du }, 
where B~ and B2 are independent Brownian bridges. This follows since 
x , / n ( G , - G )  and v / - m ( F - l ; -  F -1) converge weakly to B2(G) and 
- f ( F - l ) B l ( u ) ,  respectively and sup IF - 1 -  F-~I--oe(1).  The standard 

Skorokhod construction yields the desired result. Further, rZN--:-" 0 by 
(B.2), sup IH.~ - Hal --~ 0 and sup x/N(H~ - H ~) -- Oe(1). 

Finally, 

| ° 

13 = x/~fJ'(u)rr, lD(u,  Oo/c~) - u ldu + r4N-- - rc,tfo J'(u)D(u, 1)du , 

and 

r4N = v / N f [ J ' ( / t ~  J )  - -  J ' ( u ) ] r c , [ D ( u ,  00/6) - u ] d u ,  

where/-~6 assumes values between H 6 and H-= u. This term converges to 0 
by assumption (B.2) and Taylor expansion of D(u, 00/6). 

If we let J(u) = [1 + y-t](1 - u) ~'- y-~, y ___ 1, then in the proportional 
7-odds model, 0R given in Example 3.1 will have the same asymptotic 
variance as the RAM estimate based on (2.2) (see Example 2.2). 

4. Proof of Theorem 2.1" remainder terms 

The remainder term ru in (2.1) is given by 

rN = x/~f{~u(/~, ON) - ~(F, Ou)}dG, - x/Nf(Fm - F) ~,'(F, ON)dG. 

For small y E(0, 1) define S ~ = [ F - 1 ( y ) , F - I ( 1 -  y)]. Further,  let AN= 
[YIll, Yt,I] and EN= [XIII, Xtml] where Xol, XI,nt, YI~I and YI,t are the first 
and the last order statistics among Xi's and Y;s. Then, after some algebra, 

7 
FN -~- ~ tiN where 

i=1 
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rlN = x/N f {~"(F*,ON) - ~"(F, ON)}(P- F ) d G . ,  
AJIS~ 

rzN = X//-N f q/'(F, ON)(F- Fm)dG.,  
a~NS.~ 

r3N = x / ~  f ~u'(F, Ou)(Fm - F)d(G. - c )  , 
ANNSy 

= - f F)dC, 
~;us; 

r5N = x / ~  f v ' (F* ,ON) (F-  F ) d G . ,  
dNNS~NEN 

r6N= VIN f {II(F, ON)dGn, 
x~ns~nE~ 

r7N = -- N//N f ~(F,  ON)dG. . 
d ,̂f'IS~O E{¢ 

Here F *  is a random function assuming values between F and F. We shall 
show that for any fixed 7, rm, r2N, r3N and r6N converge in probability to 0 
and r4~v, rsu and r7N converge in probability to 0 as 7 --" 0 and N ~ o o  

LEMMA 4.1. For f i x ed  7, rlN--'~ 0 as N ~ oo. 

PROOF. Given 7 e (0, 1) let f2yN= {co:sup I F -  El < Then rlN = 
sy 

I(QrN)rlN + I(f2~u)rm. The second term converges in probability to 0, by the 
Glivenko-Cantelli  theorem. Further,  we have sup ,v/-ml P -  FI = Op(1). The 

s~ 

function ~u'(u, ON) is uniformly continuous on [7/2, 1 - ~,/2] and IF* - FI <- 
I F -  F[. Therefore, by the Glivenko-Cantelli theorem, 

I(£2yNlrlN[ --< Op(1) sup I ~"(F*, ON) -- ~"(g, ON)[ - ~  O. 
S 1, 

LEMMA 4.2. For f i x ed  y, r2s -T ~ 0 as N -" ~ .  

PROOF. This follows since I F -  Fml -< 1/(m + 1) and f~,'(F)dG. 7" 

f ~u'(F) dG. s, 
s~, 

LEMMA 4.3. For f i x ed  y, r3N --g" 0 as N ~ oo. 

PROOF. For  each positive integer k define a function Zk on [0, 1] by 
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xk(0) = 0 ,  

Z~(s) = (i - 1)/k for  ( i  - 1 ) l k  < s <_ i /k  i -- 1 ..... k .  

Then,  by L e m m a  4.3 of  R u y m g a a r t  et al. (1972) 

sup V ~ I  FmF-~xk(F) - Xk(F) - F m  + El --~ 0 ,  

3 
as k, m --  ~ .  Fur the rmore ,  I r3NI - Y- r3iN where  

i=l 

r3lN= X/~ f I (Fm- F)~u'(F, ON) 
ANNS,, 

- (FmF-1xk(F) - xk(F)) ~'(xk(F), ON)[dG., 

r32N = V ~  f I(Fm- F)~,'(F, ON) 
AunS~ 

- (FmF-1xk(F) - Xk(F)) ~U'(Xk(F), ON) IdG, 

r33N = "v/Nafs, ( FmF-~Xk( F)  - xk( F) ) ~u'(Xk( F), ON)d( a. - c )  

The p r o o f  is similar to Coro l la ry  5.5 in R u y m g a a r t  et al. (1972). Given 
e > 0 there exist constants  M and qkN --" 0 as k, N ~ ~ such that  the sets 

f2N = {sup V/-mIFm - FI < M } ,  

fakN = sup {v/-mlFm - F -  F,.F-Izk(F) + xk(F)[  -- r/ku}, 

have probabi l i ty  at least 1 - e .  Further ,  the funct ion ~u'(u, ON) is b o u n d e d  
b y  My and uni formly  con t inuous  on [0, 1 - y ] .  Finally 

(k~u = sup I ~u'(F, ON) - ~u'(xk(F), 0s)[ --- 0 .  
s~ 

Therefore ,  for  i = 1, 2 

l(I2kN (~ g2n)r3iN <-- (rlkNMr + M~krU)x~/ m ~ O . 

Finally,  for  each ~o ~ I2u, the in tegrand of  r33N is a step funct ion  assuming  
value  aikN, laikNI <--M(M~ + ~k~u)x/N/m on the interval  [F - I ( ( i  - 1) /k) ,  
F-l(i/k)] = RikN and 

I(ON)r3,N = ~aiklV f d ( G , -  G) 



as N ~ : ¢ .  

LEMMA 

PROOF. 
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<- 2kM(Mr + ~kyN)X/~/m sup I G, - GI --~ 0 ,  

77 

4.4. As 7 ~ 0 and N --" 0% r4N " ~  O. 

Let e > 0 be fixed. By Theorem A1 of Shorack  (1972), there 
exists a constant  M such that  the set 

~N = {x/-m(Fm - F) <- Mr-1/2+'-~(F)} , 

has probabili ty at least 1 - e.  By Assumpt ion  ( A .  1) 

(4.1) I(t2N)lr, NI < O ( 1 ) M ~  f r(F)l-~dG. 
a~us; 

Let us consider the integral 

(4.2) f r(u) 1-~d(u, O)du. 
s; 

By Assumpt ion  (A.2), we can find a value ~ of 7 such that  (4.2) is less than  
e provided 7 < ~. For  this 7 there exists 37 such that  P(AN D S~) > 1 - e 
provided N >  bT. It follows that  the integral on the right-hand side of (4.1) 
is less than  e with probabili ty larger than 1 - e for 7 _< 7 and N_> 37. Thus,  
r4N--T-" 0 as ~ ~ 0 and N--- o¢. 

LEMMA 4.5. As 7 ~ 0 and N--" ~,  r s N ~  O. 

PROOF. Let e > 0 be fixed. By Lemmas 6.1 and 6.2 in Ruymgaar t  et 
al. (1972), there exist constants  M1 and 3,/2 such that  the sets QIN= 
{X/r-roll ' -  FI <- Mlr-l/E+~-"(F) on EN} and Q2N = {ra+l(F *) -< M2ra+I(F) on 
EN} have probability at least 1 - e. Then 

EI(I2,N A Q2N)IrsNI <-- O(1)M, M2 Nv/-~ f rX-"(F)dG. 
s; 

The right-hand side converges to 0 as y ~ 0. 

LEMMA 4.6. For f i xed  y, r6N ~ 0 as N--* ~.  

PROOF. Let e > 0 be fixed. Given 7 e (0, I), we can find 37 such that  
the  set ~2N= {St C EN} has p robab i l i t y  at least 1 - e  for  N >  37. By 
Assumpt ion  (A. 1), EI(f2N) Ir6N[ <-- O((N/m) l-~)m 1-`P( Y ~ E§). But 
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P( Y e Ely) = fumd(u, ON) du + f(1 - hi)rod(u, ON) du. 

By Assumption (A.3), EI(f2N)I r6NI ~ O. 

LEMMA 4.7. As y ~ 0 and N ~ ~ ,  rvu T O. 

PROOF. By Assumption (A.1), 

trvul <- v ~  f r(F)adan • 
A~AS;~AE~. 

Htilders inequality yields 

EIrTNI <- v/-N/m{mP( Yi , E~r)}'/2 { f r(F)2~dG }1/2. 
S ~ 

By Assumptions (A.2) and (A.3), m P ( ~  e E~) = O(1) and the integral on 
the right-hand side converges to 0 as 7 ~ 0. 
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