Ann. Inst. Statist, Math.
Vol. 41, No. 1, 47-61 (1989)

ESTIMATION OF PARAMETERS IN THE DISCRETE
DISTRIBUTIONS OF ORDER &

S. Akl AND K. HIRANO
The Institute of Statistical Mathematics, 4-6-7, Minami-Azabu, Minato-ku, Tokyo 106, Japan

(Received January 6, 1988; revised August 5, 1988)

Abstract. This paper considers estimating parameters in the discrete
distributions of order k such as the binomial, the geomeiric, the Poisson
and the logarithmic series distributions of order k. It is discussed how to
calculate maximum likelihood estimates of parameters of the distributions
based on independent observations. Further, asymptotic properties of
estimators by the method of moments are investigated. In some cases, it is
found that the values of asymptotic efficiency of the moment estimators
are surprisingly close to one.
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1. Introduction

Let k£ be a positive integer. Suppose we are given independent trials
with success probability p. The distribution of the number of occurrences
of consecutive k successes until the n-th trial is called the binomial
distribution of order £ and is denoted by Bx(n, p). The distribution of the
number of trials until the first occurrence of the k-th consecutive success is
called the geometric distribution of order k and is denoted by Gx(p). In
addition to these distributions, there are some important distributions of
order k such as the negative binomial (NBx(r, p)), the Poisson (Px(1)), the
logarithmic series distributions of order k (LSk(p)), etc. The properties of
each distribution and relationships among them have often been investi-
gated in the literature (cf. e.g., Philippou er al. (1983), Aki et al. (1984),
Hirano (1986), Philippou (1986), Hirano and Aki (1987) and Aki and
Hirano (1988)). However, there are not many papers which treat estimation
of the parameters in the distributions of order &, since the probability
functions are too complicated. To the best of our knowledge, moment
estimation of the parameters of Gi(p), NBi(p) and Pi(1) was considered
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only in the remarks by Philippou et al. (1983) and Philippou (1983, 1984).
Considering that Px(4) is one of the generalized Poisson distributions, we
have to mention Douglas (1955) and Shumway and Gurland (1960a,
1960b). They discussed the problem of calculating the MLE of the para-
meter of certain generalized Poisson distributions such as the Neyman type
A, the Poisson binomial and the Poisson Pascal, respectively.

In the present paper we discuss how to calculate the maximum
likelihood estimates (MLE’s) of the parameters in the distributions based
on independent observations. Let Xj, X>,..., X, be independent discrete
random variables with common probability function f(x,8). In order to
calculate the MLE 8, we have to solve the likelihood equation iteratively

d
5 30 f(Xl,e)
(1.1 F(0)=i§lw=0.

Since the sequence of the iteration 8, is determined by the equation

_p _ FOn)
(1.2) On+1 = On F(6,)’
where

(a—"{;f(x,-, 0) ) - f(X:,8) - ( f;f(xi, 0) )
(f(X;,0)) ’

the solution of (1.1) can be obtained if f(x,8), (9/98)f(x,8) and
(3*/90%) f(x,0) are given. Therefore, the most important problem for
maximum likelihood estimation of the distributions of order k is how
quickly the probability function, the first and the second derivatives of the
probability function with respect to the parameter can be calculated.

Besides the MLE’s we investigate moment method estimators (MME’s)
of parameters in the distributions of order k. MME’s are relatively simpler
than MLE’s in these distributions. In some cases, it is found that the values
of asymptotic efficiency of the MME’s are surprisingly close to one. In
Section 2 estimation of the parameter p in the binomial distribution of
order k is discussed. We study, in Section 3, estimation of the parameters
in the geometric, the Poisson and the logarithmic series distributions of
order k.
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2. The binomial distribution of order

2.1 The maximum likelihood estimation

Some properties of the binomial distribution of order k are given by
Feller (1968), Hirano (1986), Philippou and Makri (1986) and Aki and
Hirano (1988). As we stated in Section 1, the calculation of the probability
function, the first and the second derivatives of the probability function
with respect to the parameter is necessary for getting the MLE based on
independent observations.

Though Hirano (1986) and Philippou and Makri (1986) gave exactly
the probability function of Bi(n,p) as

k-1

Q) X

m=0 x,+2x+ - +kxx=n-m-kx

Foe o XiH e Xk
x[xl Xk X]pn(l) , for x=0,1,...,[£],
Xlyere, Xicy X p k

where g = 1 — p, [a] means the largest integer not exceeding a and the inner
summation is over all nonnegative integers Xxi,...,xx such that x, + 2x;
+ -+ + kxx = n — m — kx, the formula (2.1) is not suitable for calculation.
Aki and Hirano (1988) proved that the following recurrence relation
for the probability function Bx(n, p; x) holds
(2.2)  Bi(n,p;x)= Bi(n—1,p; %)
+p"(Bu(n —k,p;x~ 1) — qBi(n — k — 1, p; x)
—pB(n—k-1,p;x—-1))

if n>kandx= 1,2,...,[—:—],

(2.3)  Bi(n,p;0)= Bi(n—1,p;0) - p'qBe(n—k~ 1,p;0) if n>k,
24  Bikp;0)=1-p Buk.p;)=p",
2.5y Bi(n,p;0)=1 if 0<n<k.
By differentiating both sides of (2.2)-(2.5), we have the following re-
currence relation for (8/9p)Bi(n, p; x) (= Bi(n, p; x)) and (3*/9p?) Bi(n, p; x)
(= Bi(n, p; x)).
(2.6) Bi(n,p;x)= Bi(n—1,p; x)

+kp* Y{Bu(n~ k,p;x - 1) — (1 = p)Be(n — k — 1,p; x)

—pBi(n—k—-1,p;x— 1)}
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+pM{Bln—k,p;x — 1)+ Bi(n—k - 1,p; x)
—(l =p)Bin — k - 1,p; x)
~Bin—-k—-1Lp;x—1)
~pBin—k—-1,p;x— 1)}

if n>kandx= 12[—',:—]

(2.7)  Bdn,p;0) = Bi(n— 1,p;0) — p*"'(kq — p)Bu(n — k — 1,p;0)
—pqBin— k- 1,p;0) if n>k,
(28) Bik,p;0)= —kp“,  Bitk,p;)=kp" "',
(29) Bdn,p;0)=0 if O<n<k,
(2.10) B{(n,p;x) = Bi(n— 1,p; x)
+k(k - Dp* *{Bu(n—k,p;x — 1)
—(1=p)B(n— k- 1,p;x)
—pB(n—k—-1,p;x— 1)}
+2kp* Y{BUn — k,p;x — 1) + Bu(n — k — 1,p; x)
~(1=-p)Bin—k - 1,p;x)
~Bin—k~-1,p;x—-1)
-pBin—k—-1,p;x—- 1)}
+ p"{Bi(n — k,p;x — 1) + 2Bi(n — k - 1,p; x)
- (1 -p)Bi(n—k - 1,p;x)
~2Bin—k - 1,p;x— 1)
—pBi(n—k—1,p;x— 1)}

if n>kandx= 12[—",(—]

(2.11)  Bt(n,p;0) = Bi(n — 1,p;0)
—{(k — DP* 2k — (k + Dp)
—(k+ Dp* "}Bin — k — 1,p;0)
—2p*"'(k — (k + Dp)Bi(n — k - 1,p;0)
-0 -pBin—k—1,p;0) if n>k,
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(2.12) Bik,p;0)= — k(k - 1)p* 2,
(2.13) Bitk,p; 1) =k(k - 1)p* 2,
(2.149) Bi(n,p;0)=0 if 0<n<k.

2.2 The moment estimation of p
Let X1, X>,..., X be independent identically distributed random vari-

ables with probability function f(x;p). If we set X =(1/m) E} Xi, then,

from the central limit theorem, it holds that /m(X — f(p)) converges in
distribution to the Gaussian distribution with mean zero and variance
o’(p) as m — o, where f(p) = EX; and ¢’(p) = Var (X)). Now we define a
moment estimator p of p by the solution of the equation f(p) = X. For
simplicity we assume that f'is strictly monotone in p. Then, j is written as
f£~Y(X) and hence it holds that Vm(p — p) converges in distribution to the
Gaussian distribution with mean zero and variance o*(p)/(f*(p))* as
m — oo,

When the X’s are distributed as Bi(n,p), the moment estimator is
much simpler than the MLE. In fact, from Proposition 2.4 of Aki and
Hirano (1988), f( p) can be written as a very simple polynomial

@.15) Ltk Dp* ~ (=P

It is very easy to solve the equation f(p) = X numerically. Now we shall see
that the function (2.15) is monotonously increasing with respect to p € (0, 1),
which implies that the moment estimate can be determined uniquely.
Though we have not yet succeeded in showing this analytically for all
integers n, we can give an algorithm for proving this for each given integer
n. Since the function (2.15) is a polynomial with integral coefficients, it can
be proved exactly by using classical results of algebra like Sturm’s theorem
that the polynomial is monotonously increasing in p € (0,1) (see Aki
(1987)).

Here we give an algorithm for checking a sufficient condition for the
problem. This algorithm is simpler than that of Aki (1987) and may be
more suitable in particular for proving that the function (2.15) is mono-
tonously increasing in p € (0, 1). To prove the problem, it is sufficient to
show that the derivative of (2.15)

[n/k] .
S(p)= 2 p" " k(n = jk + 1) = (k + D)(n - jK)p}

is positive for all 0 <p < 1. Since f/(0) =0, we consider the polynomial
which is obtained by dividing f’( p) by p* '
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[n/kl
g(p) = 2 pU "*{jk(n — jic + 1) = (jk + D)n = jk)p}

Then it suffices to prove that p =1 is a lower bound for positive roots of
g(p) =0. Setting r =[n/k], consider the equation which is obtained by
transforming the equation g(p)=0byp =1/x

h(x) =,§,{jk(n — jk + D — (ke + Dn = jkx"Y = 0.

Then it suffices to show that x = 1 is an upper bound for positive roots of
h(x) =0. From Newton’s theorem, it is easily checked by showing that
h(Q1), K(1),...,h""""¥(1) > 0. We have proved at present by using the
computer algebra system REDUCE (see Hearn (1984)) that f( p) is mono-
tonously increasing for k =2,3,...,10and n =k, k + 1,..., 100.

2.3 Estimation of p based on a censored sample

The binomial distribution of order & is closely related to the reliability
of the system called a consecutive-k-out-of-n: F system (cf. e.g., Aki (1985),
Hirano (1986) and Philippou (1986)). The system, which was introduced by
Chiang and Niu (1981) and was further studied by many authors (cf. e.g.,
Derman ez al. (1982)), consists of » components in sequence and fails
whenever k consecutive components are failed. On the assumption that all
components fail independently with identical probability p, the probability
P{X;= 0} (P{X: = 1}) means the probability of the event that the system is
functioning (resp. failed). Assume that it is observable only whether the
system fails or not. Then it corresponds to considering the following
censoring.

Let X1, Xs,..., X» be independent identically distributed random vari-
ables with probability function Bi(n, p; x). Let 11, Y»,..., ¥, be the random
variables defined by

0 if Xi=1,
I f Xi=0, i=12,...,m.

Y. =

Assuming that only Y’s are observable, we shall consider estimation of p
based on Yy, Y2,..., Yu. Since Y; is distributed as the binomial distribution
B(1, c(n)), where c(n) = Bx(n, p;0), the likelihood equation can be written

as Y = c(n), where Y= 2‘1 Y. From Proposition 2.3 of Aki and Hirano

(1988), we have the following recurrence relations for c¢(n) and c'(n)



ESTIMATION OF THE DISTRIBUTIONS OF ORDER % 33

| if 0<n<k,
c(n)=1{ 1-p" if n=k,
cn-D-pd-petn-k-1 if n>k,
0 if O0<n<k,
— kp*! if n=k,
cm=y\ | k-1 k
cmn-1)—-(kp" —(k+DpHe(n-k-1)
- -pen—k-1) if n>k,

where ¢'(n) = (8/dp)c(n). Then the estimation procedure is feasible. As the
first part of Subsection 2.2, it is easy to see that /m(p. — p) converges in
distribution to the Gaussian distribution with mean zero and variance
AV(p) as m — oo, where p. is the MLE based on Y’ and AV(p)=

c(n)(1 - c(n))/ c'(n)’.

2.4 Estimation of p when n is large

In this subsection, we shall consider estimation of p based on one
observation X, which is assumed to be distributed as Bx(n,p). Since the
sample size is one, the asymptotic theory which we have stated in the
previous subsections does not hold. Another type of asymptotic result,
however, will be expected when n is large. If k=1, X, can be written in
distribution as a sum of n independent identically distributed random
variables which are distributed as B(l,p) and hence the law of large
numbers and the central limit theorem can be applied directly.

Feller ((1968), Chapter XIII) proved the next theorem.

THEOREM 2.1. (Feller (1968)) If X. is a random variable distri-
buted as Bi(n,p), then \/n(X./n — 1/u) converges weakly to the Gaussian
distribution with mean zero and variance 6*|i’, where u = (1 — pb /(1= p)pk
and o* = {1 — 2k + 1)gp* — p™*'}/ ¢*p™ are the mean and variance of Gi(p),
respectively.

Now we define an estimator of p by the solution of n/ X, = (1 — pY)/
(1 — p)p*. Then the estimator is consistent and asymptotically normal from
the above theorem.

3. Some other distributions of order &k

3.1 The geometric distribution of order k

As Philippou et al. (1983) indicated, the mean of Gi(p) is mono-
tonously decreasing and hence the moment estimate which was defined in
the first part of Subsection 2.2 can be determined uniquely. Since f(p) and
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o*(p) are written as (1 — p*)/(1 — p)p* and {1 — 2k + l)gp* — p**'}/q

S. AKI AND K. HIRANO

2. 2%k

P

respectively, the asymptotic variance of the MME can be written as

Pg{l — Qk + Y1 — p)p* - p*)
(-p" " +p+kp—k) '

Next we shall consider how to calculate the MLE based on indepen-

dent observations. As we stated in Section 1, the calculation of the
probability function, the first and the second derivatives of the probability
function with respect to the parameter is crucial. There are some recurrence
relations to be used for the calculation of the probability function (cf. Aki
et al. (1984), Aki (1985) and Philippou and Makri (1985)). Among them
the next formula given by Philippou and Makri (1985) will be suitable for
the calculation since it can be used satisfactorily even if k is large.

We denote by Gi(p; x) the probability function of Gi(p). Let a1 = p*

and a, = p*(1 — p). Then the following recurrence relation holds

3.1

Ge(p;x) =

0 if 0=sx<k,
ai if x=k,
a if k+1<x<2k,

Gi(p;x— D) —aGu(p;x—k—1) if x=2k+1.

By differentiating both sides of (3.1) we have the following recurrence

relation for (3/9p) Gr( p; x) (= G p; x)) and (3°/9p>)Gr(p; x) (= G(p; X))

(3.2)

Gi(p,x) =

0 if 0sx<k,
as if x=k,
as if k+1<x<2k,
Gip;x— 1D —asGe(p;x—k—1)— &G p;x —k— 1)
if x=2k+1,

where a3 = kp* "' and a4 = as — (k + 1)p%,

(3.3)

Gi(p;x) =

[ O if 0=x<k,
as if x=k,
as if k+1=sx<2k,

Gi(p;x— 1) — asGi(p; x — k — 1)
~2aGUp;x —k— 1) - a:Gi(p;x — k — 1)
if x=2k+1,
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where as = k(k — 1)p" "> and as = k(k — 1)p*"* = (k + Dkp* .

3.2 The Poisson distribution of order k

Since the mean and variance of Pi(A) are (k(k+ 1)/2)A and
(k(k + 1)(2k + 1)/6) A, respectively (cf. e.g., Aki et al. (1984)), the MME of
A is given by (2/k(k + 1)).X and the asymptotic variance of the MME can
be written as (2(2k + 1)/3k(k + 1))A. Moreover, we can easily see that the
MME is unbiased and that the exact variance of the MME is given by
22k + 1A/ 3k(k + Dn.

A recurrence relation which is necessary for calculation of the MLE
was given by Adelson (1966) (cf. also Aki et al. (1984)) as follows:

Pi(d;0) =€,
34 A kDx
4 Pl = B P x - ),

where Pi(A;x) is the probability function of Px(1) and a A b means the
minimum of ¢ and b. Differentiating both sides of (3.4), we have
Pi;0)= — ke,
35 1 kAx kAx
(3-5) P4, x) = — Z JPe(A;x — ])+— Z JPiAx—J),

and

PU(4;0) = kK*e ™,

kAx kAx
(3-6) P =2 8, jBillix )+ 2 % jPRGsx - ))

where Pi(A; x) = (3/9A) Pe(4; x) and P{(4; x) = (9%/9AY) Pe(A; x).

3.3 The logarithmic series distribution of order k

First we study the MME of the parameter p of LSi(p), which has been
discussed generally in the first part of Subsection 2.2. Aki et al. (1984) gave
the mean of LSk(p) as

-1 1-p*
-7 I = T0ep {(1 —p)p"_k}'

The next proposition implies that the MME is determined uniquely if the
sample mean exceeds (k + 1)/2.
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PROPOSITION 3.1. The mean of LSi(p) (3.7) is monotonously de-
creasing inp € (0, 1) and Eg&f(p) = oo and lplg} f(p)=(k+ 1)/2 hold.

PROOF. The derivative of (3.7) is written as

1 l-klogp
kp*logp | —plogp
l+p+p'+ - +p7 —kp*!

_ =

(l+p+p +-+p"" - kp"}

+ k2pk— 1

Since p* < p*”!, we have

l-—klogp 2 k-1 k
————{l+p+p + 4 —kp'}
_plogp{ ptp p P
l+p+pi+ e+ p T -t R
I-p
l-klogp 2 k-1 k
>————=EAf14p+pi++p —k
_plogp{ ptp P P}
- l+p+p +-+p"" — kp* + k!

1-p
=(l+p+p*+-+p"" - kp"
l-klogp 1
—-plogp 1-p

+ kzpk_1 .

Noting that 1 +p +p* + - +p* ' = kp* >0, it is sufficient to show that
(1 -k logp)/(—plogp)— 1/(1 — p) is positive in order to prove that f(p)
is monotonously decreasing in p € (0, 1). If we write

l-klogp 1 _ h(p)
-plogp 1-p (I1-p)-plogp)’

where h(p) = (1 — k log p)(1 — p) + p log p, then the denominator is posi-
tive. Hence it suffices to show that h(p) is positive in p € (0,1). But it is
easily seen from the fact that A(1) = 0 and A’(p) is negative in p € (0, 1). It is
easy fto see that ngé f(p) = e and lpip} f(p) = (k + 1)/2. This compietes the
proof.

As for recurrence relations of the probability function, which is
necessary for getting the MLE, two different methods exist given by
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Proposition 3.3 of Aki et al. (1984) and by Charalambides ((1986), Section
4). The next recurrence relation was obtained by Charalambides.

1 —
LS(p;1) = T,;ép—

LSu(pi®) ==L E (- pp  Lsu(pix ) - -l p
L PR = X ) klogp
3.8) .

if l<x<k,

1 X i N
LSk(p;x)=ij§l(x—j)p’ 'LSu(p;x—j) if x>k,

where LSi(p; x) denotes the probability function of LSk(p). Differentiating
both sides of (3.8), we have

1 —logp—-(-p)/p
k (log p)’ ’

LS(p; 1) =—
1 x=! .
LSip;x) = — Z(x=)p" (1 = p)j = 1)~ pILSc(p x = j)
+ L% (e j)p" LSKpix )
x Jj=1

P -pXx—1)—p)logp~(1 - p)}
(3.9) k(log p)’

if I<x<k,
1 & -
LSi(p;x) = — 2 (=P’ {1 = )i = 1) = PILS(p3 x = J)

1-p
X

k ;
+—5 X (- )" LS ps x = ))
if x>k,

and

-1 2 l-p _ _2Al-p)

LSt(p:1) = — + ,
U )= p(logpy’ ~ p(logp)’ ~ p’(log p)’

1 x5 i
LSHpi) =~ Z,(c=)p" 1 - PG = DG -2

—(j— 2)p — jp}LS(p; x — j)
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2 5! N2 . , ;
+— BP0 =P~ 1)~ pILSKp; x ~ )

] -

+— Z =N -p)p” LSi(p;x =)
L pX‘3
k (logp)’
(3.10) + (log pY*{(1 — p) — 2(x — xp — 1)}

+ 2(log p)(1 — p)]

[(og p)Y'{(x — 2)(x — xp — 1) ~ xp}

if l1<x<k,
1 & g
LSp; ) =— 2 (x = )p {1 = p)j = DG ~2)
= (= 2)p —Jjp}LSk(p; x - ))

2 &k g
+— 2= DpH = PG = 1)~ PSPy x — )

1 & - _
+— B == p)p” 'LSK(pix =)
if x>k,

where LS;(p; x) = (8/9p) LSk(p;x) and LS;(p; x) = (az/apz)LSk( p; X).

4. Numerical results

In the previous sections we have proposed some estimators besides
MLE’s. Values of asymptotic efficiencies of those estimators at some fixed
points of the parameters are given in Tables 1-5.

Tables 1 and 2 treat the case of Bi(n,p). Of course, the MME
coincides with the MLE when k= 1. It is surprising that the values of
asymptotic efficiency of the MME are very near to 1 (which are between
0.99 and 1), for all values of the parameter listed in Table 1. From a
practical viewpoint the MME may be better than the MLE, because the
former can be calculated very easily and the round-off error which occurs
in the calculation of the MLE cannot be ignored when »n is large. Table 2
shows that the values of asymptotic efficiency of the MLE based on the
censored sample are small when the values of the parameter p are close to
one.

In the cases of the geometric and the Poisson distributions of order £,
it can be seen from Tables 3 and 4 that the MME’s are fairly good. In the
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Table 1. Values of asymptotic efficiency of the MME in the case of Bi(n,p).

(k. n)
2,10 230 G100 (330 410 (4,30

1 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
2 .99998 .99999 199999 1.00000 1.00000 1.00000
3 .99992 .99998 .99995 .99998 .99999 199999
A4 .99984 .99995 .99984 .99995 .99990 .99997
.5 99973 .99991 .99969 .99989 .99977 .99992
6
7
8
9

.99959 .99985 .99958 .99980 .99970 .99982
.99944 .99977 .99964 .99966 .99979 99965
.99948 .99964 .99988 .99942 .99996 .99944
.99983 .99948 1.00000 .99899 .99999 .99970

Table 2. Values of asymptotic efficiency of the MLE based on the censored sample
in the case of Bi(n, p).

(k,n)
i (2, 10) 2,30 3, 10) 3, 30) 4, 10) (4, 30)
.1 .96993 .88265 .99815 .98935 .99991 .99906
2 .88413 .60080 .98545 .92282 .99854 .98630
3 75072 .29392 95164 .76927 .99234 93730
4 .58211 .09156 .88725 .53501 .97497 .82358
5 .39785 .01568 .78409 27795 93724 627717
.6 22535 .00122 63720 .08995 .86760 37018
7 .09446 .00003 .44984 .01349 75246 .13501
8 .02304 .00000 .24309 .00053 .57602 .01907
9 .00160 .00000 .06817 .00000 .32090 .00029

Table 3. Values of asymptotic efficiency of the MME in the case of Gi(p).

p k=2 k=3 k=4 k=5

.50 .99395 .99635 .99821 .99919
.55 .99108 .99404 .99675 .99834
.60 98719 .99059 .99433 .99680
.65 .98204 .98553 .99044 .99407
.70 .97538 .97826 .98430 .98936
75 96697 .96809 .97485 98144
.80 .95665 95424 .96066 .96842
.85 .94441 .93603 94010 .94769
.90 .93044 91313 91167 91623
95 91532 .88610 .87508 .87205

case of the logarithmic series distribution of order k, we can see from Table
5 that the MME may not be good when the parameter p is very close to
one.
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Table 4. Values of asymptotic efficiency of the MME in the case of Pi(4).

A k=2 k=3 k=4 k=5
A .92049 .89523 .88745 .88710
2 93721 192427 192571 93204
3 .95064 .94568 95139 .95938
4 .96131 96112 .96813 .97548
5 .96970 97210 .97889 .98484
6 .97626 .97986 98577 .99029
7 98136 .98531 .99017 99349
8 98532 .98915 .99300 .99540
-9 98839 .99185 .99485 .99657
1.0 .99076 .99376 .99607 99731
L5 .99667 .99774 .99835 .99869
20 .99842 .99870 .99892 .99908
25 .99902 .99905 .99917 .99929
3.0 99928 .99924 .99933 .99942
35 99941 .99936 .99943 .99950
4.0 .99950 .99945 99951 .99957
4.5 .99956 .99952 99957 .99962
5.0 99961 .99957 99961 .99966

Table 5. Values of asymptotic efficiency of the MME in the case of LSk(p).

p k=2 k=3 k=4

40 .96076 .97108 .98000
45 94770 .96031 97168
.50 93149 .94646 .96091
.55 91138 .92867 .94666
.60 .88636 .90575 92774
.65 .85510 .87612 .90245
.70 81568 .83757 .86838
5 76537 78694 .82197
.80 .69996 71951 75786
.85 61252 .62787 66751
.90 49050 49931 53625
95 30794 .30924 .33589
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