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Abstract. This paper considers estimating parameters in the discrete 
distributions of order k such as the binomial, the geometric, the Poisson 
and the logarithmic series distributions of order k. It is discussed how to 
calculate maximum likelihood estimates of parameters of the distributions 
based on independent observations. Further, asymptotic properties of 
estimators by the method of moments are investigated. In some cases, it is 
found that the values of asymptotic efficiency of the moment estimators 
are surprisingly close to one. 
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1. Introduction 

Let k be a positive integer. Suppose we are given independent  trials 
with success probability p. The distribution of the number  of occurrences 
of consecutive k successes until the n-th trial is called the binomial 
distribution of order k and is denoted by Bk(n,p). The distribution of the 
number  of trials until the first occurrence of the k-th consecutive success is 
called the geometric distribution of order k and is denoted by Gk(p). In 
addition to these distributions, there are some important  distributions of 
order k such as the negative binomial (NBk(r,p)), the Poisson (Pk(2)), the 
logarithmic series distributions of order k (LSk(p)), etc. The properties of 
each distribution and relationships among them have often been investi- 
gated in the literature (cf. e.g., Philippou et aL (1983), Aki et al. (1984), 
Hirano (1986), Phil ippou (1986), Hirano and Aki (1987) and Aki and 
Hirano (1988)). However, there are not many papers which treat estimation 
of the parameters in the distributions of order k, since the probability 
functions are too complicated. To the best of our knowledge, moment  
estimation of the parameters of Gk(p), NBk(p) and Pk(2) was considered 
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only in the remarks by Philippou et al. (1983) and Philippou 0983, 1984). 
Considering that Pk(2) is one of the generalized Poisson distributions, we 
have to mention Douglas (1955) and Shumway and Gurland (1960a, 
1960b). They discussed the problem of calculating the MLE of the para- 
meter of certain generalized Poisson distributions such as the Neyman type 
A, the Poisson binomial and the Poisson Pascal, respectively. 

In the present paper we discuss how to calculate the maximum 
likelihood estimates (MLE's) of the parameters in the distributions based 
on independent observations. Let X~,XE,. . . ,Xn be independent discrete 
random variables with common probability function f ( x ,  0). In order to 
calculate the MLE 0, we have to solve the likelihood equation iteratively 

0 
00 f(Xg, O) 

(l.1) F(O) = ~, = O. 
i= 1 f ( X i ,  O) 

Since the sequence of the iteration 0m is determined by the equation 

(1.2) Oz+, = Om 
F(O,~) 

F'(Om) ' 

where 

F'(O) = 
,:, (f(X+, 0)) 2 

e 2 

the solution of (1.1) can be obtained if f ( x , O ) ,  (O/O0) f (x ,O)  and 
(a2/aOE)f(x,O) are given. Therefore, the most important problem for 
maximum likelihood estimation of the distributions of order k is how 
quickly the probability function, the first and the second derivatives of the 
probability function with respect to the parameter can be calculated. 

Besides the MLE's we investigate moment method estimators (MME's) 
of parameters in the distributions of order k. MME's are relatively simpler 
than MLE's in these distributions. In some cases, it is found that the values 
of asymptotic efficiency of the MME's are surprisingly close to one. In 
Section 2 estimation of the parameter p in the binomial distribution of 
order k is discussed. We study, in Section 3, estimation of the parameters 
in the geometric, the Poisson and the logarithmic series distributions of 
order k. 
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2. The binomial distribution of order k 

2.1 T h e  m a x i m u m  l i k e l i h o o d  e s t i m a t i o n  

Some properties of the binomial distribution of order k are given by 
Feller (1968), Hirano (1986), Philippou and Makri (1986) and Aki and 
Hirano (1988). As we stated in Section 1, the calculation of the probability 
function, the first and the second derivatives of the probability function 
with respect to the parameter is necessary for getting the MLE based on 
independent observations. 

Though Hirano (1986) and Philippou and Makri (1986) gave exactly 
the probability function of B k ( n , p )  as 

k-I  
(2.1) E 

m=0 xj+Ex2+...+kxk=n-m-kx 

× p "  q 

X l , . . . ,  Xk, X 7 ] 
for 

where q = 1 - p, [a] means the largest integer not exceeding a and the inner 
summation is over all nonnegative integers x ~ , . . . , x k  such that x~ + 2x2 
+ ... + k x k  = n -- m -- k x ,  the formula (2.1) is not suitable for calculation. 

Aki and Hirano (1988) proved that the following recurrence relation 
for the probability function B k ( n , p ;  x )  holds 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

B k ( n , p ;  X) = B k ( n  -- 1,p; X) 

+ p k ( B k ( n  -- k , p ;  x - 1) - q B k ( n  - k - l ,p; x) 

- p B k ( n  -- k - l ,p; x - 1)) 

if n > k a n d x = l , 2 , . . . , [ k  ] ,  

B k ( n , p ; O )  = B k ( n  - 1,p;O) - - p k q B k ( n  -- k - 1,p;O) if n > k ,  

B k ( k , p ;  O) = 1 - pk ,  B k ( k , p ;  I) = pk, 

B k ( n , p ;  O) = 1 if 0 < n < k .  

By differentiating both sides of (2.2)-(2.5), we have the following re- 
currence relation for (O / O p ) B k ( n , p ;  x )  ( = B ; ( n , p ;  x ) )  and (02/ap2)Bk(n,p; x )  

( - B ~ ( n , p ;  x) ) .  

(2.6) B/ , (n ,p ;  x )  = B/,(n - l ,p; x) 

+ k p k - l { B k ( n  - k , p ; x  - 1) - (1 - p ) B k ( n  - k - 1,p;x) 

- p B k ( n  -- k - l ,p; x - 1)} 
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(2.7) 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

S. AKI AND K. HIRANO 

+ p k { B [ , ( n  - k , p ; x  - 1) + B k ( n  - k - 1,p;x)  

- (1 - p ) B ~ ( n  - k - 1,p;x)  

- B k ( n  - k - 1,p; x -  1) 

- p B ~ ( n  - k - 1 , p ;  x - 1)} 

if n > k a n d x =  1 , 2 , . . . , [ k  ] ,  

B I ( n , p ;  0 )  = B ~ ( n  - 1 , p ;  O) - p k - ~ ( k q  - p ) B k ( n  - k - 1 , p ;  0 )  

- p k q B ~ ( n  - k - 1,p; O) if n > k ,  

B ~ ( k , p ; O )  = - k p  k - l ,  B ~ ( k , p ;  1) -- k p  k-~ , 

B [ , ( n , p ;  O) = 0 if 0 <_ n < k ,  

B i ' ( n , p ;  x )  = B i ' ( n  - 1,p; x) 

+ k ( k  - l ) p k - 2 { B k ( n  --  k , p ;  x - 1) 

- (1 - - p ) B k ( n  --  k -  1,p;x)  

- p B k ( n  - k - 1,p; x - 1)} 

+ 2 k p k - l { B ~ ( n  - k , p ; x  - 1) + B k ( n  - k - 1,p;x)  

- (1 - p ) B ~ ( n -  k -  1,p;x)  

- B k ( n - -  k -  1 , p ; x -  l) 

- p B ~ ( n - k -  1 , p ; x -  l)} 

+ p k { B ~ ( n  -- k , p ;  x - 1) + 2 B ~ ( n  - k - 1,p; x) 

- (1 - p ) B i ' ( n  - k - 1,p;x) 

- 2 B ~ ( n  - k - 1 , p ; x  - 1) 

- p B I , ' ( n  - k - 1,p; x - 1)} 

if n > k a n d x =  1,2,..., [ k  ] , 

B ~ ( n , p ;  O) = B i ' ( n  - 1,p; O) 

- {(k - 1 ) p k - 2 ( k  --  ( k  + 1)p) 

- ( k  + l ) p k - ~ } B ~ ( n  - k - 1,p;O) 

- 2 p k - X ( k  - ( k  + 1 ) p ) B ~ ( n  - k - l ,p;O) 

- p k ( 1  --  p ) B i ' ( n  - k - 1,p; O) if n > k ,  
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(2.12) 

(2.13) 

(2.14) 

° ~ B~(k,p,O) - k ( k  - 1)p k-2 

Bi,'(k,p; 1) = k ( k  - l)p k-2 , 

Bf,'(n,p; 0) = 0 if 0 -< n < k .  

2.2 The moment  estimation o f  p 
Let X1, X2,..., Xm be independent identically distributed random vari- 

m 

ables with probability function f ( x ;p ) .  If we set ) ( =  (l/m)i~=lXi, then, 

from the central limit theorem, it holds that x / - m ( X - f ( p ) )  converges in 
distribution to the Gaussian distribution with mean zero and variance 
a2(p) as m --- o% where f ( p )  = EXi and tr2(p) = Var (Xi). Now we define a 
moment estimator fi of p by the solution of the equation f ( p )  = ,~. For 
simplicity we assume that f is strictly monotone in p. Then,/~ is written as 
f - l ( ) ( )  and hence it holds that vC-m(/5-p) converges in distribution to the 
Gaussian distribution with mean zero and variance a2(p) / ( f ' (p ) )  2 as 
m .---~ oo. 

When the X's are distributed as Bk(n,p), the moment estimator is 
much simpler than the MLE. In fact, from Proposition 2.4 of Aki and 
Hirano (1988),f(p) can be written as a very simple polynomial 

(2.15) ~kll{(n - j k  + 1)p jk - (n -jk)p'ik+l} . 

It is very easy to solve the equat ionf(p)  = ,~ numerically. Now we shall see 
that the function (2.15) is monotonously increasing with respect to p ~ (0, 1), 
which implies that the moment estimate can be determined uniquely. 
Though we have not yet succeeded in showing this analytically for all 
integers n, we can give an algorithm for proving this for each given integer 
n. Since the function (2.15) is a polynomial with integral coefficients, it can 
be proved exactly by using classical results of algebra like Sturm's theorem 
that the polynomial is monotonously increasing in p e (0, 1) (see Aki 
(1987)). 

Here we give an algorithm for checking a sufficient condition for the 
problem. This algorithm is simpler than that of Aki (1987) and may be 
more suitable in particular for proving that the function (2.15) is mono- 
tonously increasing in p e (0, 1). To prove the problem, it is sufficient to 
show that the derivative of (2.15) 

[n/k] "k 1 
f ' ( p )  = j~=,pJ - { jk(n - j k  + 1) - ( jk  + 1)(n - j k ) p }  

is positive for all 0 < p  < I. Since f ' (0 ) - -0 ,  we consider the polynomial 
which is obtained by dividingf '(p) by p k- 1 
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[n/k] (J- 
g(p) = j~lp ])k{jk(n - j k  + 1) - (jk + 1)(n - j k ) p } .  

Then it suffices to prove that p = 1 is a lower bound for positive roots of 
g(p) = 0. Setting r =  [n/k], consider the equation which is obtained by 
transforming the equation g(p) = 0 by p = 1/x 

- l ) x  + '  h(x) -~:  l{jk(n - j k  + - ( jk  + l)(n - j k ) x  {r-j)k} = O . 

Then it suffices to show that x = 1 is an upper bound for positive roots of 
h(x) = 0. From Newton's theorem, it is easily checked by showing that 
h(1), hIll(1),...,h(Ir-llkl(1)>0. We have proved at present by using the 
computer algebra system REDUCE (see Hearn (1984)) that f ( p )  is mono- 
tonously increasing for k = 2, 3,..., 10 and n = k, k + 1 .... ,100. 

2.3 Estimation o f  p based on a censored sample 
The binomial distribution of order k is closely related to the reliability 

of the system called a consecutive-k-out-of-n:F system (of. e.g., Aki (1985), 
Hirano (1986) and Philippou (1986)). The system, which was introduced by 
Chiang and Niu (1981) and was further studied by many authors (cf. e.g., 
Derman et al. (1982)), consists of n components in sequence and fails 
whenever k consecutive components are failed. On the assumption that all 
components fail independently with identical probability p, the probability 
P{Xi = 0} (P{Xi > 1 }) means the probability of the event that the system is 
functioning (resp. failed). Assume that it is observable only whether the 
system fails or not. Then it corresponds to considering the following 
censoring. 

Let X~, X2,..., Xm be independent identically distributed random vari- 
ables with probability function Bk(n,p; x). Let Y~, Y2,..., Ym be the random 
variables defined by 

y = /  0 if X~ > _ 1, 

1 if X~=O, i = l , 2 , . . . , m .  

Assuming that only Y's are observable, we shall consider estimation of p 
based on Y~, Y2,..., Ym. Since Y~ is distributed as the binomial distribution 
B(I, c(n)), where c(n)= Bk(n,p;O), the likelihood equation can be written 

m 

as Y= c(n), where Y= E Yi. From Proposition 2.3 of Aki and Hirano 
i = l  

(1988), we have the following recurrence relations for c(n) and c'(n) 
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c(n) = 

c ' ( n )  = 

1 i f  O < n < k ,  

1 - pk if n = k ,  

c(n - 1) - p k ( l  - p ) c ( n  - k - 1) if n > k ,  

0 if 

_ kpk- 1 if 

c'(n - 1) - (kp k-1 - (k + 1)pk)c(n - k - 1) 

_ p k ( 1  - p )  c ' ( n  - k - 1)  if 

0 < n < k ,  

n = k ,  

n > k ,  

where c'(n)= (O/Op)c(n). Then the est imation procedure is feasible. As the 
first part  of Subsect ion 2.2, it is easy to see that  x/-m(/~c - p )  converges in 
distr ibution to the Gaussian distribution with mean zero and variance 
A V(p)  as m - - - ~ ,  where /~c is the M L E  based on Y's and A V ( p ) =  
c(n)(1 - c(n))/c'(n) 2. 

2.4 Estimation o f  p when n is large 
In this subsection,  we shall consider es t imation of p based on one 

observat ion X, which is assumed to be distr ibuted as Bk(n,p). Since the 
sample size is one, the asymptot ic  theory which we have stated in the 
previous subsections does not  hold. Another  type of asymptot ic  result, 
however,  will be expected when n is large. If k = 1, X, can be written in 
distr ibut ion as a sum of n independent  identically distr ibuted r andom 
variables which are distr ibuted as B(1,p)  and hence the law of large 
numbers  and the central limit theorem can be applied directly. 

Feller ((1968), Chapter  XIII) proved the next theorem. 

THEOREM 2.1. (Feller (1968)) I f  Xn is a random variable distri- 
buted  as Bk(n,p), then x / - n ( X , / n -  1//0 converges weakly to the Gaussian 
distribution with mean zero and variance o'2 / p 3, where/~ = (1 -pk ) / (1  - p ) p k  
and a 2 = {1 - (2k + 1)qp k -p2k÷ 1}/q2p2k are the mean and variance o f  Gk(p), 
respectively. 

Now we define an est imator o f p  by the solution of n/Xn = (1 _pk ) /  
(1 --p)pk. Then the est imator  is consistent and asymptotically normal  f rom 
the above theorem. 

3. Some other distributions of order k 

3.1 The geometric distribution o f  order k 
As Phi l ippou et al. (1983) indicated, the mean of Gk(p) is mono-  

tonously  decreasing and hence the m o m e n t  estimate which was defined in 
the first part  of Subsection 2.2 can be determined uniquely. S i n c e f ( p )  and 
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tr2(p) are wri t ten as (1 - pk) / (1 - p ) p k  and { 1 - (2k + 1)qpk - p2k + l} / q2p2k, 

respectively, the asymptot ic  var iance of  the M M E  can be wri t ten as 

pZq2{1 - (2k + 1)(1 - p ) p k  _ pZk+l} 

( _pk+1  + p  + k p  - k )  2 

Next  we shall cons ider  how to calculate the M L E  based on  indepen-  
dent  observations.  As we stated in Sect ion 1, the calculat ion of  the 
probabi l i ty  function,  the first and the second derivatives of  the probabil i ty  
funct ion with respect to the pa ramete r  is crucial. There  are some recurrence 
relat ions to be used for the calculat ion of  the probabil i ty funct ion (cf. Aki 
e t  al. (1984), Aki  (1985) and Phi l ippou and Makr i  (1985)). A m o n g  them 
the next  fo rmula  given by Phi l ippou and Makr i  (1985) will be suitable for 
the calculat ion since it can be used satisfactorily even if k is large. 

We denote  by G k ( p ;  x )  the probabi l i ty  func t ion  of  G k ( p ) .  Let al = pk  

and a2 = p k ( 1  - - p ) .  Then the following recurrence relation holds 

(3.1) G k ( p ; x )  = 

0 if 0 _ < x < k ,  

al if x = k ,  

a2 if k + l < x < 2 k ,  

G k ( p ; x -  1 ) - a 2 G k ( p ; x - k -  1) if x > _ 2 k +  1 . 

By different iat ing both  sides of  (3.1) we have the following recurrence 
relat ion for  ( O / O p ) G k ( p ; x )  ( -- G ~ ( p ; x ) )  and ( 0 2 / O p 2 ) G k ( p ; x )  ( - G ~ ( p ; x ) )  

(3.2) G / , ( p ; x )  = 

0 if 0 _ < x < k ,  

a3 if x = k ,  

a4 if k +  l < _ x < 2 k ,  

G~(p;  x - 1) - a 4 G k ( p ;  x - k - 1) - a2G~(p;  x - k - I) 

if x > _ 2 k  + 1 ,  

where a3 = k p  k-I and a4 --- a3 - (k + 1)p k, 

(3.3) Gf , ' (p ;x )  = 

0 if 0 < x < k ,  

a5 if x = k ,  

a6 if k + l < _ x < _ 2 k ,  

GI,'(p; x - 1) - a 6 G k ( p ;  x - k - 1) 

- 2 a 4 G [ , ( p ; x  - k -  1) - a z G ~ ' ( p ; x  - k - 1) 

if x _> 2k + 1 , 
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where a5 = k(k - 1)p k-2 and a6 = k(k - 1)p k-2 - (k + l)kp k-1. 

3.2 The Poisson distribution of  order k 
Since the mean and variance of Pk(2) are (k (k  + 1)/2)2 and 

(k(k + 1)(2k + 1)/6)4, respectively (cf. e.g., Aki et al. (1984)), the MME of 
2 is given by (2/k(k  + 1)))( and the asymptotic variance of the MME can 
be written as (2(2k + l ) /3k(k  + 1))4. Moreover, we can easily see that the 
MME is unbiased and that the exact variance of the MME is given by 
2(2k + 1)2/3k(k + l)n. 

A recurrence relation which is necessary for calculation of the MLE 
was given by Adelson (1966) (cf. also Aki et al. (1984)) as follows: 

(3.4) 

Pk(2; 0) = e -ka , 

2 k A x  

ek(2; x) = x jZ.=  je (2; x - j ) ,  

where Pk(2;X) is the probability function of Pk(2) and a A b means the 
minimum of a and b. Differentiating both sides of (3.4), we have 

(3.5) 

P ~ ( 2 ;  0 )  = - k e  -k~ , 

P~(2; x) 1 k^x 2 kAx "P' = ~ Y~ j P k ( 2 ; x - j ) + -  ~-, j k(2;X--j) 
X j = l  X j = l  ' 

and 

(3.6) 

P~'(2;  0 )  = k 2 e  -ka , 

9 k A x  2 k A x  
tt ~ ~ • p , P~(2; x) = ~1 jP~(2,x - j )  + - -  • jP~'(2;x- j )  

X J X j = l  :~ 

where P~(2; x) = O/a2)PkO; x) and Pi'(2; x) = (02/022)Pk(2; x). 

3.3 The logarithmic series distribution o f  order k 
First we study the MME of the parameter p of LSk(p), which has been 

discussed generally in the first part of Subsection 2.2. Aki et al. (1984) gave 
the mean of LSk(p) as 

- I  
(3.7) f ( P ) -  k ~ g p  { 1--pk  (l_p k k}. 
The next proposition implies that the MME is determined uniquely if the 
sample mean exceeds (k + 1)/2. 
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PROPOSITION 3.1. The mean o f  LSk(p) (3.7) is monotonously de- 
creasing in p ¢ (0, 1) andf im f ( p )  = ~ and m f ( p )  = (k + 1)/2 hold. 

PROOF. The derivative of (3.7) is written as 

1{ 
kp k log p 

1 - k l o g p  {1 + p  +p2 + ... +pk-~ _ kpk} 
- p  logp  

1 + p  + t 9  2 + "" + p k - 1  _ kpk-t +  2pk-, } 
1 - p  

Since pk < pk- z, we have 

[ - k_lo__g_p {1 +p + ... +pk-,  _ kpk} 
- p  l ogp  

1 +p  +p2 + ... +pk-~ _ kpk-I 

1 - p  
+ 

> 1 - k l ogp  {1 + p  +p2 + ... +pk-1 _ kpk} 
--p l ogp  

1 + p  + p 2  + ... + p k - 1  _ kpk  

1 - p  
+ k2pk - 1 

= (1 + p  +p2 + ... +pk-1 _ kpk) 

l - k l o g p  1 }+k2pk_l 
- p  logp  1 - p  

Noting that 1 + p + p2 + ... + pk-1 _ kpk > 0, it is sufficient to show that 
(1 - k  log p ) / ( - p  log p) - 1/(1 - p )  is positive in order to prove that f ( p )  
is monotonously decreasing in p ¢ (0, I). If we write 

1 - k l o g p  1 h(p) 
- p l o g  p 1 - p (1 - p ) (  - p l o g  p )  ' 

where h(p)  = (1 - k logp)(1 - p )  + p  logp,  then the denominator  is posi- 
tive. Hence it suffices to show that h(p)  is positive in p ~ (0, 1). But it is 
easily seen from the fact that h( l )  = 0 and h'(p) is negative in p ~ (0, 1). It is 
easy to see that limp_0 ~f(p) = ~ and lipmf(p)_ = (k + 1)/2. This completes the 
proof. 

As for recurrence relations of the probability function, which is 
necessary for getting the MLE, two different methods exist given by 
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Propos i t ion  3.3 of Aki et al. (1984) and by Charalambides ((1986), Section 
4). The next recurrence relation was obtained by Charalambides.  

1 - p  
LSk(p;  1) - _ k log p ' 

(3.8) 

X-I 1 - p  x-1 
L S k ( p ; x )  = 1 - p  ~, ( x - j ) p J - ~ L S k ( p ; x - j )  - - p  

x J:~ k l o g p  

if l < x < k ,  

k 
L S k ( p ; x ) =  1 - p  ] E ( x _ j ) p J _ ~ L S k ( p ; x _ j  ) if x > k  

X j = l  

where LSk (p ;  x) denotes the probabili ty funct ion of LSk(p) .  Differentiating 
both  sides of (3.8), we have 

1 - l o g p -  (1 -p)/p 
LS~(p; 1) - _ k ( logp)  2 ' 

L ' 1 ~  1 S],(p; x) = - -  (x - j )pJ-2{ (1  - p ) ( j  - 1) - p } L S k ( p ;  x - j )  
x j = l  

1 - - p  X-1 

+ - -  ~=1 (x  - j )pJ -  'LSf,(p; x - j )  
X J= 

pX-2{((1 - p ) ( x  - 1) - p )  l o g p  - (1 - p ) }  

(3.9) k ( l ogp )  2 

if 1 < x < k ,  

m k LS~(p;x )  = 1 y, ( x - j ) p j - 2 { ( 1  - p ) ( j -  1 ) - p } L S k ( p ; x - j )  
X j = l  

1 - p  k 
+ ~ ( X - j ) p J - l L S [ , ( p ; x  = j )  

X j = l  

if x > k ,  

and 

L " ' : - ' I )  Y_~{ 2 1 - p  + 2 ( l - p )  } 
,~k~p, = p ( iogp)2  + pZ(logp)Z p2(logp)3 , 

L " I x-i 
S~:(p; x) = "-~ j =~ (x  - j)pJ- '{(1 - p ) ( j  - 1)(j - 2) 

- ( j  - 2)p - - j p }LSk (p ;  x - - j )  
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(3.10) 

2 x-I  
+ - -  Y~ (x  - j ) p J - 2 { ( 1  - p ) ( j  - 1) - p } L S l , ( p ;  x - j )  

X j=l 

1 v_ 1 
+ -x- j~l (x - j)(1 - p)pJ-~LSf , ' (p ;  x - j )  

1 n x - 3  
(log p)a- [(logp)3{(x - 2)(x - x p  - 1) - xp}  

k 

+ (logp)2{(1 - p )  - 2(x - x p  - 1)} 

+ 2(log p)(1 - p)] 

if l < x _ < k ,  

S~(p;  x)  = l ( x - j ) p j - 3 { ( 1  p ) ( j -  1 ) ( j -  2) 

- ( j -  2)p - j p } L S k ( p ;  x - j )  

2 '~ 
+ - -  Y, (x - j)pj-2{(1 - p ) ( j  - 1) - p}LS[ , (p ;  x - j )  

X j= l  

1 k 
+ - -  5'1 (X -- j)(1 -- p)pJ - 'LS I , ' ( p ;  x - j )  

X j= l  

if x > k ,  

where LS/ , (p;  x)  = (O / Op) L S k ( p ;  x )  and LST,'(p; x)  = (02 / Op2)LSk(p;  x).  

4. Numerical results 

In the previous sections we have proposed some estimators besides 
MLE's.  Values of asymptotic efficiencies of those estimators at some fixed 
points of the parameters are given in Tables 1-5. 

Tables 1 and 2 treat the case of Bk(n ,p ) .  Of course, the M M E  
coincides with the MLE when k = 1. It is surprising that the values of 
asymptotic efficiency of the M M E  are very near to 1 (which are between 
0.99 and 1), for all values of the parameter listed in Table 1. F rom a 
practical viewpoint the M M E  may be better than the MLE,  because the 
former can be calculated very easily and the round-off  error which occurs 
in the calculation of the M L E  cannot be ignored when n is large. Table 2 
shows that the values of  asymptotic  efficiency of the ML E  based on the 
censored sample are small when the values of the parameter p are close to 
one. 

In the cases of  the geometric and the Poisson distributions of  order k, 
it can be seen from Tables 3 and 4 that the MME's  are fairly good. In the 
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(k,n) 
P 

(2, 10) (2, 30) (3, 10) (3, 30) (4, 10) (4, 30) 

.1 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 

.2 .99998 .99999 .99999 1.00000 1.00000 1.00000 

.3 .99992 .99998 .99995 .99998 .99999 .99999 

.4 .99984 .99995 .99984 .99995 .99990 .99997 

.5 .99973 .99991 .99969 .99989 .99977 .99992 

.6 .99959 .99985 .99958 .99980 .99970 .99982 

.7 .99944 .99977 .99964 .99966 .99979 .99965 

.8 .99948 .99964 .99988 .99942 .99996 .99944 

.9 .99983 .99948 1.00000 .99899 .99999 .99970 

Table 2. Values of asymptotic efficiency o f theMLE based on the censored sample 
in the case of Bk(n,p). 

(k,n) 
P 

(2, 10) (2, 30) (3, 10) (3, 30) (4, I0) (4, 30) 

.1 .96993 .88265 .99815 .98935 .99991 .99906 

.2 .88413 .60080 .98545 .92282 .99854 .98630 

.3 .75072 .29392 .95164 .76927 .99234 .93730 

.4 .58211 .09156 .88725 .53501 .97497 .82358 

.5 .39785 .01568 .78409 .27795 .93724 .62777 

.6 .22535 .00122 .63720 .08995 .86760 .37018 

.7 .09446 .00003 .44984 .01349 .75246 .13501 

.8 .02304 .00000 .24309 .00053 .57602 .01907 

.9 .00160 .00000 .06817 .00000 .32090 .00029 

Table 3. Values of asymptotic efficiency of the MME in the case of Gk(p). 

p k = 2  k = 3  k = 4  k = 5  

.50 .99395 .99635 .99821 .99919 

.55 .99108 .99404 .99675 .99834 

.60 .98719 .99059 .99433 .99680 

.65 .98204 .98553 .99044 .99407 

.70 .97538 .97826 .98430 .98936 

.75 .96697 .96809 .97485 .98144 

.80 .95665 .95424 .96066 .96842 

.85 .94441 .93603 .94010 .94769 

.90 .93044 .91313 .91167 .91623 

.95 .91532 .88610 .87508 .87205 

case of  the logarithmic series distribution of  order k, we can see from Table 
5 that the M M E  may not be good when the parameter p is very close to 
one. 
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Table 4. 
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Values of asymptotic efficiency of the MME in the ease of Pk(2). 

,~ k = 2  k = 3  k = 4  k = 5  

.I .92049 .89523 . 8 8 7 4 5  .88710 

.2 .93721 .92427 .92571 .93204 

.3 .95064 .94568 . 9 5 1 3 9  .95938 

.4 .96131 .96112 . 9 6 8 1 3  .97548 

.5 . 9 6 9 7 0  . 9 7 2 1 0  . 9 7 8 8 9  .98484 
,6 . 9 7 6 2 6  . 9 7 9 8 6  . 9 8 5 7 7  .99029 
.7 .98136 .98531 .99017 .99349 
.8 . 9 8 5 3 2  . 9 8 9 1 5  . 9 9 3 0 0  .99540 
.9 .98839 .99185 .99485 .99657 

1.0 . 9 9 0 7 6  . 9 9 3 7 6  .99607 .99731 
1.5 . 9 9 6 6 7  . 9 9 7 7 4  . 9 9 8 3 5  .99869 
2.0 . 9 9 8 4 2  . 9 9 8 7 0  . 9 9 8 9 2  .99908 
2.5 . 9 9 9 0 2  . 9 9 9 0 5  . 9 9 9 1 7  .99929 
3.0 . 9 9 9 2 8  . 9 9 9 2 4  . 9 9 9 3 3  .99942 
3.5 .99941 .99936 . 9 9 9 4 3  .99950 
4.0 . 9 9 9 5 0  .99945 ,99951 .99957 
4.5 . 9 9 9 5 6  . 9 9 9 5 2  , 9 9 9 5 7  .99962 
5.0 .99961 .99957 .99961 .99966 

Table 5. Values of asymptotic efficiency of the MME in the case of LSk(p), 

p k = 2  k = 3  k = 4  

.40 .96076 .97108 .98000 

.45 ,94770 .96031 .97168 

.50 . 9 3 1 4 9  . 9 4 6 4 6  .96091 
• 55 . 9 1 1 3 8  . 9 2 8 6 7  .94666 
.60 .88636 .90575 .92774 
.65 . 8 5 5 1 0  . 8 7 6 1 2  .90245 
.70 .81568 .83757 .86838 
.75 . 7 6 5 3 7  . 7 8 6 9 4  .82197 
• 80 .69996 .71951 .75786 
• 85 .61252 .62787 ,66751 
.90 .49050 .49931 .53625 
• 95 . 3 0 7 9 4  . 3 0 9 2 4  .33589 
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