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Abstract. Central configurations are critical points of the potential function of the n-
body problem restricted to the topological sphere where the moment of inertia is equal to
constant. For a given set of positive masses my,...,m, we denote by N(m1,...,mnu, k)

the number of central configurations of the n-body problem in R* modulus dilatations
and rotations. If N(my,...,mn, k) is finite, then we give a bound of N(m,,...,mn, k)
which only depends of n and k.
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1. Introduction and Statement of the Results

A very old problem in Celestial Mechanics is the study of the central con-
figurations of the n-body problem. Central configurations are initial posi-
tions of the bodies that lead to particular solutions of the n-body problem
for which the ratios of the mutual distances between the bodies remain
constant. There is an extensive literature concerning these solutions. For a
classical background, see the sections on central configurations in (Wintner
1941) and (Hagihara 1970). For a modern background one can see (Smale
1970a, 1970b) and (Saari 1980). More recent work can be found in (Buck
1989, 1991; Cedé and Llibre 1989; Elmabsout 1988; Meyer 1987; Meyer and
Schmidt 1988a, 1988b; Moeckel 1985, 1989; Palmore 1973, 1975a, 1975b;
Pacella 1987; Perko and Walter 1985; Schmidt 1988; Shub 1970 and Simé
1977.

If r; = (=i, yi, 2i) is the position vector of the sth positive mass m;
relative to the center of mass of the system, then the particles form a central
configuration at time t if and only if there exists some scalar A such that
7; = —Ar; for ¢ = 1,2,...,n. By replacing the acceleration vector #; by the
force vector this equation becomes

T -7
Ary = ij 3
ij=1

reo.
J#i

for 1=1,...,n,
]

which is an equation which is independent of the dynamics. Here r;; is the
mutual distance between the ith and jth particles. It is well known that the
constant A in the above system is positive.
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The central configurations are called collinear when the n bodies are
contained in a straight line, and planar when the n bodies are contained in
a plane.

Let N(mi,...,my, k) be the number of central configurations, modulus
dilatations and rotations, of the n-body problem in IRF with positive masses
miy,..., My, . Of course from a physical point of view the more interesting
cases are for k = 1,2,3.

Moulton (1910) characterized the number of collinear central configura-
tions N(my,...,mn,1) by showing that there exist exactly n!/2 collinear
central configurations of the n-body problem for a given set of positive
masses. Considering non collinear central configurations a natural question
is: is N(mq,...,mp, k) finite for k > 27

Smale (1970a) stated that to solve the above question for the planar
central configurations seems to be a major open problem, and in (Smale
1970b) he conjectured that for almost all positive values of my,...,m,, the
number N(m;,...,my,2) is finite. Here by assuming that N(m1,...,mn, k)
is finite we show how to compute a bound of N(my,...,my,k) which only
depends on n and k. For k£ = 2,3 the bounds are given in the next theorem,
for k > 3 see Remark 3.

THEOREM 1. If N(my,...,mg, k) is finite, then
- N(mq,...,mp,2) < 8(3).2.6("") for n > 4, and
- N(my,...,mp,3) < 10G) . 2.8("2°) forn > 5.

Theorem 1 will be proved in Section 2.

It is well known that the number of planar central configurations modulus
dilatations and rotations for n equal to 2 and 3 are 1 and 5 respectively,
and that the number of spatial (non-planar) central configurations modulus
dilatations and rotations for n = 4 is 1 (see Proposition 2).

2. Proof of the Results

We start this section by summarizing some well-known results on central
configurations (for more details see Dziobek 1900, Chapter 3 of Hagihara
1970 and Meyer and Schmidt 1988a).

Consider the center of mass of the n-bodies at the origin and the function

V=U+6I-1I),

where

v- 3 mm

1<i<ji<n Tij
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is the potential function of the n-body problem,

1 n
I= 5 Z m,'ij?j

1,3=1

is the moment of inertia multiplied by the total mass M = >77-, m;, Iy is a
positive constant, and § = A/M is positive. Then the central configurations
are extrema of the function V, i.e. central configurations are critical points
of the potential U restricted to the topological sphere where the moment of
inertia is equal to a constant. So to find central configurations we must solve
the system

I-1, =0,

wherei =1,...,n.

Of course we must subtract from the topological sphere where the moment
of inertia is constant the set of all collisions A where the potential U is not
defined, i.e. A is the set of elements of the form (r13,...,7m-1) € R(:)
such that 30, mym;r% = Ip and ry; = 0 for some 1 < i < j < n.

If we want to find the extrema of V for the planar central configurations
(i.e. zi = 0for 1,2,...,n) by using the variables r;; rather than the variables
(zi,4:;) we must take into account the fact that the number of necessary
relations among the n(n — 1)/2 mutual distances r;; in order that the n
bodies lie all in a plane is (n — 2)(n — 3)/2. To prove this assertion we
note that in the case n = 4 only one condition is needed to specify that
the tetrahedron formed by these four points has volume zero. Suppose now
that the number of conditions to specify that n points lie in a plane are
(n — 2)(n — 3)/2. Then we shall prove by induction that (n — 1)(n — 2)/2
conditions are required in order that n+ 1 points lie in a plane. Let A and B
be two of the first » points. Clearly to assure that the n + 1 points lie all on
a plane we have to add the conditions obtained by setting equal to zero the
volume of the tetrahedrons formed by A, B, the (n + 1)th point and each of
the remaining n— 2 points among the first n ones. These n —2 conditions are
new because they involve the (n+1)th point. Hence the number of necessary
relations is n — 2 + [(n — 2)(n — 3)/2) = (n — 1)(n — 2)/2.

The condition to assure that four points r; (¢ = 1,2, 3,4) lie all on a plane
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in terms of the mutual distances r;; is that the function

0 7‘%2 7‘%3 "'%4 1

7'%2 0 133 194

F(ry,ro,m3,m4) =det | 13, 72, 0 13, 1
"%4 "'34 T§4 0 1

1 1 1 1 0

e

is zero because F is a positive constant by the square of the volume of the
tetrahedron formed by the four points (for more details, see Dziobek 1900
and Hagihara 1970).

In short the problem of finding the planar central configurations is equiv-
alent to find the extrema of V under (n — 2)(n — 3)/2 conditions of type
F = 0. More precisely, it is sufficient to find the extrema of the function

Vp=U+5(I—Io)+p1F1+...+plﬂ, l=(n—2)(n—3)/2,

with Lagrange’s indeterminate multipliers é and px for k= 1,...,1.
Proof of Theorem 1 in the planar case. After differentiating Vp with
respect to 7;;; 6, px and the extrema of V are found from the following set

of (3) + 1+ (*;?%) polynomial equations in the variables 7;;, § and py:

{
OF;

mym;(8rf; — 1) + 2r; EPk“a‘;‘;f =0,
k=1 1)

I-Io = 0,

F. =0,

wherel1<i<j<nand k=1,...,l

Since N(m,...,my,,2) is finite by hypothesis, from Bezout’s Theorem it
follows that the number of real solutions of the above polynomial system is
at most the product of the degrees of the above (5) + 1+ (";2) polynomials,
ie 8().2.6("7), .

Now we want to find the extrema of V' for the spatial central configura-
tions by using the variables r;; instead of the variables r; = (z;, 3;, 2). Then
we must take account of the fact that the number of necessary relations in
the space of n(n — 1)/2 mutual distances r;; in order that the n bodies lie
all in IR? is (n — 3)(n —4)/2. As for the planar central configuration we shall
prove this assertion inductively on n. In the case n = 5 only one condition is
needed to specify that the hypertetrahedron in IR* formed by five points has
volume zero. Suppose now that the number of conditions to specify that n
points lie in IR? are (n — 3)(n —4)/2. Then we shall show that the number of
conditions in order that n+ 1 points lie in R3 are (n —2)(n —3)/2. Let A, B
and C be three of the first n» points. Clearly to assure that the n + 1 points
all lie on IR? we have to add the conditions obtained setting equal to zero
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the volume of the hypertetrahedrons in IR* formed by A, B, C, the (n+1)th
point and each of the remaining n ~ 3 points among the first n ones. These
n — 3 conditions are new because they involve the (n + 1)th point. Hence the
number of necessary relations is n —3+[(n—3)(n—4)/2] = (n—2)(n-3)/2.

The conditions to ensure that the ten mutual distances between the five
points rq,...,7s allow for a geometric realization in IR? is that the function

0 7‘%2 "%3 7'%4 7'%5

Tzz 2 7'%3 ’%4 ’"%5

G(r1,72,73,74,75) = det :53 :%3 rg Tg“ :%5
14 T24 T34 45

7'%5 7‘%5 7'%5 7'25 0

1 1 1 1 1

O = e e e

is zero because G is a constant by the square of the volume of the hyperte-
trahedron in IR* formed by the five points r1,...,75 (for more details, see
Meyer and Schmidt 1988a and Schmidt 1988).

In short the problem of finding the spatial central configurations is equiv-
alent to finding the extrema of V under (n — 3)(n — 4)/2 conditions of type
G = 0. More precisely, it is sufficient to find the extrema of

Vs=U+6I-IL)+pGi+...+pGr, h=(n-3)n-4)/2,

with Lagrange’s indeterminate multipliers § and p; for k = 1,...,h.

Proof of Theorem 1 in the spatial case. After differentiating Vs with re-
spect to 7;;; 6, px and the extrema of V are found from the following set of
(%) + 1+ ("3%) polynomial equations in the variables r;;, § and py:

3 3 h BGk

mim; (6735 — 1)+2Te,‘2pk-aﬁ =0,
k=1 17

I-I =0,

Gy =0,

where1<i<j<nand k=1,...,h

Since N(my,...,my,3) is finite by hypothesis, from Bezout’s Theorem
it follows that the number of real solutions of the above polynomial sys-
tem is at most the product of the degrees of the above polynomials, i.e.
10(3) . 2.8("2"). .

PROPOSITION 2. Given 4 positive masses there is a unique spatial central
configuration of the 4-body problem modulus dilatations and rotations.
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Proof. The system of polynomial equations in the proof of Theorem 1 for
the spatial case becomes

67'?]- -1=0,
I-1I, = 0.
So the proposition follows. .

The proof of Theorem 1 can be extended in a similar way to the case
k > 3. Then we obtain:

REMARK 3. If N(ma,...,mn, k) is finite for k > 3 then we can obtain that
N(my,...,mn, k) < [2(k+2)]G) -2 2k + 1))("27) |
ifn>k+2

In what follows we analyse the bound given by this method for the
collinear n-body problem.

The condition to assure that three masses m;, m; and my lie on a straight
line in terms of the mutual distances 7y, is that the function H = r;; —rjx —
Tk; is zero. Since the number of necessary relations of type H among the
n(n — 1)/2 mutual distances in order that the n bodies all lie in a straight
line is (n — 1)(n — 2)/2, to find the collinear central configurations we must
find the extrema of the function

Ve=U+6I-L)+pH1+...+ pH;, m=(n-1)(n-2)/2,

with Lagrange’s indeterminate multipliers é and p; for k= 1,...,m.
After differentiating Vo with respect to r;;; 6, px and the extrema of V'
are found from the following set of (5) + 1+ (ngl) polynomial equations:

— OHy

m,-mj(ér?j -1)+ 1‘,-2]- ZpkaT’j =0,
k=1 '

I-1, =0,

Hy =0,

where 1 <i<j<nand k=1,...,m.

From Moulton’s results we know that N(my,...,my,1) is finite, so from
Bezout’s Theorem it follows that the number of real solutions of the above
polynomial system is at most the product of the degrees of the above poly-
nomials in the variables r;;, 6 and py , i. e. 4() . 2.1("7") = gn?-nt1,

Of course, the exact number of collinear central configurations for the
n-body problem n!/2 satisfies that n!/2 < o’ -n+1 for p > 2. Clearly, this
inequality is due to the fact of the existence of complex roots which are not
real, to the multiplicities of the different roots, and that some roots can be
at infinity.
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