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Abstrac t .  Central  configurations axe critical points of the potential  function of the n- 
body problem restricted to the topological sphere where the moment of inert ia  is equal to 
constant. For a given set of positive masses m l , . . . ,  mn we denote by N ( m l , . . . ,  ran, k) 
the number of central configurations" of the n-body problem in 1t k modulus di latat ions 
and rotations. If N ( m l , . . . ,  ran, k) is finite, then we give a bound of N ( m l , . . . ,  ran, k) 
which only depends of n and k. 

K e y  w o r d s :  N-body  problem, central configuration 

1. I n t r o d u c t i o n  and  S t a t e m e n t  of  t h e  Resu l t s  

A very old problem in Celestial Mechanics is the study of the central con- 
figurations of the n-body problem. Central configurations are initial posi- 
tions of the bodies that lead to particular solutions of the n-body problem 
for which the ratios of the mutual distances between the bodies remain 
constant. There is an extensive literature concerning these solutions. For a 
classical background, see the sections on central configurations in (Wintner 
1941) and (Hagihara 1970). For a modern background one can see (Smale 
1970a, 1970b) and (Saari 1980). More recent work can be found in (Buck 
1989, 1991; Ced6 and Llibre 1989; Elmabsout 1988; Meyer 1987; Meyer and 
Schmidt 1988a, 1988b; Moeckel 1985, 1989; Palmore 1973, 1975a, 1975b; 
Pacella 1987; Perko and Walter 1985; Schmidt 1988; Shub 1970 and Sim6 
1977. 

If ri = (zi,  yi, zi) is the position vector of the ith positive mass mi 
relative to the center of mass of the system, then the particles form a central 
configuration at time t if and only if there exists some scalar A such that 
ri = -)~ri for i = 1 ,2 , . . .  ,n. By replacing the acceleration vector rl by the 
force vector this equation becomes 

~t 
Z r i -- rj 

/~ri = mj r.3. for i = 1 , . . . , n ,  
j = l  1.7 

which is an equation which is independent of the dynamics. Here rij is the 
mutual distance between the ith and j th  particles. It is well known that the 
constant A in the above system is positive. 
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The central configurations are called collinear when the n bodies are 
contained in a straight line, and planar when the n bodies axe contained in 
a plane. 

Let N ( m l , . . . ,  m,~, k) be the number of central configurations, modulus 
dilatations and rotations, of the n-body problem in ll~ k with positive masses 
m l , . . . ,  m,~ . Of course from a physical point of view the more interesting 
cases are for k = 1,2, 3. 

Moulton (1910) characterized the number of collinear central configura- 
tions N ( m l , . . .  ,m,~, 1) by showing that  there exist exactly n!/2 collinear 
central configurations of the n-body problem for a given set of positive 
masses. Considering non collinear central configurations a natural question 
is: is N ( m l , . . .  , an ,  k) .finite for k >_ 2? 

Smale (1970a) stated that  to solve the above question for the planar 
central configurations seems to be a major open problem, and in (Smale 
1970b) he conjectured that  for almost all positive values of m l , . . . ,  m,~, the 
number g ( m l , . . . ,  m,~, 2)is finite. Here by assuming that  N ( m l , . . . ,  mn, k) 
is finite we show how to compute a bound of N ( m l , . . .  ,mn,k)  which only 
depends on n and k. For k = 2, 3 the bounds are given in the next theorem, 
for k > 3 see Remaxk 3. 

THEOREM 1. If  N (ml , . . . ,m ,~ , k )  is finite, then 

- N(ml , . . . ,m ,~ ,2 )  <_ 8( i ) .  2.6("~-2) for n >_ 4, and 

- g ( m l , . . . , m , ~ , 3 )  _< 10(i) .  2.8(n~ -3) for n >_ 5. 

Theorem 1 will be proved in Section 2. 
It is well known that  the number of planar central configurations modulus 

dilatations and rotations for n equal to 2 and 3 are 1 and 5 respectively, 
and that  the number of spatial (non-planar) central configurations modulus 
dilatations and rotations for n = 4 is 1 (see Proposition 2). 

2. P r o o f  o f  the  Resu l t s  

We start this section by summarizing some well-known results on central 
configurations (for more details see Dziobek 1900, Chapter 3 of Hagihara 
1970 and Meyer and Schmidt 1988a). 

Consider the center of mass of the n-bodies at the origin and the function 

V = U + / f ( I -  I0) ,  

where 

U -- ~ mimj 
l<i<j<n riJ 
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is the potential function of the n-body problem, 

l f i  mimjr2 j 
I = ~ i,j=l 

is the moment of inertia multiplied by the total  mass M = ~-~i~l mi,  I0 is a 
positive constant,  and ~ = A/M is positive. Then the central configurations 
are ex t rema of the function V, i.e. central configurations are critical points 
of the potential  U restricted to the topological sphere where the moment  of 
inert ia  is equal to a constant. So to find central configurations we must solve 
the system 

I - I o  = O, 
OU 

- -  O ,  
Oxi 
OU 

-:  O, 
Oy~ 
Ou 

= O~ 
Ozi 

where i = 1 , . . . , n .  

Of course we must subtract  from the topological sphere where the moment  
of inert ia  is constant the set of all collisions A where the potential U is not 

defined, i.e. A is the set of elements of the form (r12,. . . ,  rn--l,n) e ]R(~) 
mimjr2j = and = 0 for some 1 < i < j < n. such that  ~i,j=l Io rij _ _ 

If we want to find the ex t rema of V for the planar central configurations 
(i.e. zi = 0 for 1 , 2 , . . . ,  n) by using the variables rij ra ther  than the variables 
(x~, yi) we must  take into account the fact that  the number  of necessary 
relations among the n ( n -  1)/2 mutual  distances rij in order that  the n 
bodies lie all in a plane is (n - 2 ) ( n -  3)/2. To prove this assertion we 
note that  in the case n = 4 only one condition is needed to specify that  
the te t rahedron formed by these four points has volume zero. Suppose now 
that  the number  of conditions to specify that  n points lie in a plane are 
( n -  2 ) ( n -  3)/2. Then  we shall prove by induction that  ( n -  1 ) ( n -  2)/2 
conditions are required in order that  n + 1 points lie in a plane. Let A and B 
be two of the first n points. Clearly to assure tha t  the n + 1 points lie all on 
a plane we have to add the conditions obtained by setting equal to zero the 
volume of the te t rahedrons formed by A, B, the (n + 1)th point and each of 
the remaining n -  2 points among the first n ones. These n - 2 conditions axe 
new because they involve the ( n +  1)th point. Hence the number  of necessary 
relations is n - 2 + [ ( n -  2 ) ( n -  3)/2] = (n - 1 ) ( n -  2)/2. 

The condition to assure that  four points rl (i = 1,2, 3, 4) lie all on a plane 
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in terms of the  mutua l  distances rij is tha t  the funct ion 

F ( r l , r 2 , r 3 , r 4 ) = d e t  

0 7"122 r123 7"124 1 \  
r122 0 r223 r224 1 
r23 ~'23 0 7"24 I 
rl 0 
1 1 1 1 

is zero because F is a positive constant  by the  square of the  volume of the  
te t rahedron  formed by the  four points  (for more  details, see Dziobek 1900 
and Hagihara  1970). 

In short  the  problem of finding the planar central configurations is equiv- 
alent to find the  ex t rema of V under  (n - 2)(n - 3) /2  conditions of type  
F = 0. More precisely, it is sufficient to find the ex t rema of the function 

Vp = U + ~(I  - Io) + PlF1 + . . .  + pzFt, l = (n - 2)(n - 3) /2,  

with Lagrange's  inde terminate  multipliers ~ and Pk for k = 1 , . . . ,  I. 
Proof of  Theorem I in the planar case. After differentiating Vp with 

respect to  rij; ~, Pk and the ex t rema of V are found from the following set 
of (i) + 1 + (n~-2) polynomial  equations in the variables rij, 6 and Pk: 

OFk m, j( qj- 1)+ 2r 3 E o 2j = 0, 
k=l 

I - I o  = O, 

Fk = O, 

where 1 < i < j ~ n and k = 1 , . . . , I .  
Since N ( m l , . . . ,  m~, 2) is finite by hypothesis ,  from Bezout 's  Theorem it 

follows tha t  the  number  of real solutions of the above polynomial  system is 
at most  the  p roduc t  of the degrees of the above (~) + 1 + (n~2) polynomials ,  

i. e. 8(~).  2.6("~2). 
Now we want to find the ex t rema of V for the  spatial central configura- 

tions by using the variables rij instead of the variables ri = (xi, yl, zi). Then  
we mus t  take account  of the fact tha t  the  number  of necessary relations in 
the space of n(n - 1)/2 mutua l  distances rij in order tha t  the n bodies lie 
all in ]K s is (n - 3)(n - 4)/2.  As for the  planar central configuration we shall 
prove this assertion inductively on n. In the case n = 5 only one condit ion is 
needed to specify tha t  the hyper te t rahedron  in ]K4 formed by five points  has 
volume zero. Suppose now tha t  the  number  of conditions to specify tha t  n 
points  lie in ]K3 are (n - 3)(n - 4) /2.  Then  we shall show tha t  the number  of 
conditions in order tha t  n + 1 points  lie in ]Ra are (n - 2)(n - 3)/2.  Let A, B 
and C be three of the first n points.  Clearly to assure tha t  the  n + 1 points  
all lie on ]K3 we have to add the conditions obta ined set t ing equal to zero 
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the volume of the hypertetrahedrons in ~4  formed by A, B, C, the ( n +  1)th 
point and each of the remaining n - 3 points among the first n ones. These 
n - 3 conditions are new because they involve the (n + 1)th point. Hence the 
number of necessary relations is n -  3+  [ ( n -  3 ) (n -4 ) /2 ]  = ( n -  2 ) ( n -  3)/2. 

The conditions to ensure that the ten mutual distances between the five 
points r l , . . . ,  r5 allow for a geometric realization in IK 3 is that the function 

G(r l ,  r2, r3, r4, rb) = det 

o rl~ rh rh r1~5 1 \  
rl~2 o r]~ r~, rh 1 

1 

1 1 1 1 1 

is zero because G is a constant by the square of the volume of the hyperte- 
trahedron in JR. 4 formed by the five points r l , . . . ,  r5 (for more details, see 
Meyer and Schmidt 1988a and Schmidt 1988). 

In short the problem of finding the spatial central configurations is equiv- 
alent to finding the extrema of V under (n - 3)(n - 4)/2 conditions of type 
G = 0. More precisely, it is sufficient to find the extrema of 

Vs = U + 8 ( I -  Io) + plGI + . . .  + phGh, h = ( n -  3 ) ( n - 4 ) / 2 ,  

with Lagrange's indeterminate multipliers * and pk for k = 1 , . . . ,  h. 
Proof of Theorem 1 in the spatial case. After differentiating Vs with re- 

spect to rij; 8, Pk and the extrema of V are found from the following set of 
(~) + 1 + (n23) polynomial equations in the variables rij, ~f and Pk: 

h OGk 
m,mj(er~ - 1) + 2T~ ~ :  Pk 0r 5 - 0, 

k = l  

I - I 0 =  O, 

Gk = O, 

where 1 _< i < j < n and k = 1 , . . . , h .  
Since N ( m l , . . .  ,m,~,3) is finite by hypothesis, from Bezout's Theorem 

it follows that the number of real solutions of the above polynomial sys- 
tem is at most the product of the degrees of the above polynomials, i.e. 
10(~). 2.8("~-z). 

PROPOSITION 2. Given 4 positive masses there is a unique spatial central 
configuration of the 4-body problem modulus dilatations and rotations. 
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Proofi. The  system of polynomial  equations in the proof  of Theorem 1 for 
the  spatial  case b e c o m e s  

5r 3 - 1  = 0, 

I - I o  = O. 

So the proposi t ion follows. • 
The  proof  of Theorem 1 can be extended in a similar way to the case 

k > 3. Then  we obtain: 

R E M A R K  3. I f  N ( m l , . . .  ,m,~, k) is finite for k > 3 then we can obtain that 

N ( m l , . . .  ,mn, k) <_ [2(k + 2)]( i ) .  2 .  [2(k + 1)]("~-k), 

i f n > _ k + 2 .  

In what  follows we analyse the bound given by this me thod  for the 
collinear n-body problem. 

The  condit ion to assure that  three masses mi, mj and mk lie on a straight  
line in terms of the mutua l  distances rth is tha t  the funct ion H = r i j  - r i k  - -  

rki is zero. Since the number  of necessary relations of type  H among  the 
n(n - 1)/2 mutua l  distances in order tha t  the n bodies all lie in a straight  
line is (n - 1)(n - 2) /2,  to find the collinear central configurations we mus t  
find the ex t rema of the function 

Vc = U + 5 ( 1 -  Io) + plHI + . . .  + ptHI, m = ( n - 1 ) ( n -  2)/2, 

with Lagrange's  indeterminate  multipliers 5 and Pk for k = 1 , . . .  ,m.  
After  differentiating Vc with respect to rid; 5, Pk and the ex t rema of V 

are found from the following set of (2) + 1 + (n~l) polynomial  equations: 

OHk 
mimj(5r  3 - 1 ) +  r ?. ~ P k  Or,j ,3 -- O, 

k=l  

I - - I  0 - : 0 ,  

Hk =0,  

where 1 _< i < j _< n and k = 1 , . . . , m .  
From Moulton 's  results we know tha t  N ( m l , . . . ,  m,~, 1) is finite, so from 

Bezout 's  Theorem it follows tha t  the number  of real solutions of the above 
polynomial  system is at most  the product  of the degrees of the above poly- 
nomials in the  variables rij, 5 and  Pk , i. e. 4 ( i ) .  2.1(n~-l) = 2 '~2-n+1. 

Of course, the exact number  of collinear central configurations for the 
n-body problem n!/2 satisfies tha t  n!/2 < 2 '~2-n+1 for n >_ 2. Clearly, this 
inequality is due to the fact of the existence of complex roots which are not  
real, to the multiplicities of the different roots,  and tha t  some roots can be 
at  infinity. 
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