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Abstract .  Consider the Earth-Moon-particle system as a Restricted Three Body Problem. 
There are two equilateral libration points. In the actual world system, those points are 
no longer relative equilibrium points mainly due to the effect of the Sun and to the 
noncircular motion of the Moon around the Earth. In this paper we present the problem 
as a perturbation of the RTBP and we look for the dynamical equivalent of L4,s. It turns 
out to be a quasiperiodic orbit. It is obtained for a simplified model but the procedure to 
obtain it is general and can be carried out with an additional computational effort. 

Key words: Quasiperiodic perturbations - quasiperiodic solutions - libration points - 
algebraic manipulators 

1. I n t r o d u c t i o n  

Relative equilibrium solutions or libration points are well known in Celestial 
Mechanics. They or nearby orbits can be useful for space missions. However 
it turns out that  the actual  solar system is more complex. We can define ge- 
ometrical libration points. For instance, for the Ear th-Moon system we can 
define points L4,5 which belong to the instantaneous plane of motion of the 
Moon around the Earth and such that  the distances to Earth and to Moon 
are equal to the actual  distartce from the Moon to the Earth.  The effects 
of the remaining bodies,  specially the Sun, and the noncircular (even non 
elliptical!) motion of the Moon around the Earth,  prevent this point to be a 
relative equilibrium one. Here we write the full problem as a per turba t ion  of 
the RTBP.  We look for a dynamical equivalent of the libration points, that  
is, for a solution of the equations of motion which has, as basic frequen- 
cies, the ones of the perturbing bodies. This can be done in several ways. 
The more general one consists in taking the Hamiltonian with quasiperi- 
odic t ime-dependent  coefficients, then performing canonical t ime-dependent  
transformations ignoring (to some order) the temporal  dependence and look- 
ing for the equilibrium point of the transformed (autonomous up to some 
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order) Hamiltonian system• Another way consists of looking directly for the 
solutions as a quasiperiodic function of time with basic frequencies the ones 
of the coefficients of the equations. The first method is more general allow- 
ing to compute, not only the equivalent of the libration points but also the 
equivalent of the periodic orbits and the tori which are found around L4,5 
in the spatial RTBP. However we have chosen the second approach which is 
more direct. In the subsequent sections we present the equations of motion, 
the simplified model used in this paper, the related expansions, the method 
used to obtain an approximate quasiperiodic solution and the correspond- 
ing manipulator. We end with the results obtained and a comparison against 
direct numerical integration of the model starting at the same point that 
the semianalytical solution. The local behaviour around that solution is also 
discussed showing that it appears to be mildly unstable. 

Previous studies concerning this topic can be found in (Tapley, Schultz, 
1970) where only numerical simulations are presented. An analytical ap- 
proach can be found in (Kamel, Breakwell, 1970). Partial results can also be 
found in (Gdmez, Llibre, Martfnez, Simd, 1987), work done under ESOC con- 
tract 6139/84/D/JS(SC). If we consider only the Elliptic Restricted Three 
Body Problem for the Earth-Moon system skipping the influence of the Sun 
there are some results. The earliest ones can be found in (Szebehely, 1967), 
p. 599. 

2. E q u a t i o n s  of  m o t i o n  

It is known that, taking a system of reference with the origin at the center of 
masses of the solar system and axes parallel to the ecliptic ones, the equation 
of the motion are: 

G M A ( R A  - R) 
= ~ IRA - RI3 ' Ae{ S,E,M, P1 ..... Pk ) 

where G is the gravitational constant, K the position vector of the particle, 
RA the position vector of the body of mass MA, and A ranges over the Sun, 
Earth, Moon and the planets. We ignore all the non Newtonian forces and 
those not coming from the solar system. 

However, this system of reference is not the best for this problem. Let us 
consider instead a system of reference with the origin in one of the instan- 
taneous equilateral points and the axes defined by the unit vectors el ,  e2, 
e3 given as follows: 

rEM rEM A rEM 
e l  -- ITEM[ '  e 3 - ~  ItEM ArEM[ e2 ~- e 3 A e l ,  

where r E M ( t  ) is the position vector of the Moon with respect to the Earth. 
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In order to satisfy Kepler's third law we modify the mass of the Earth, 
considering the remaining mass as a perturbation. 

The units of length, time and mass are normalized so that the angular 
velocity of rotation, the sum of the masses of the Earth and the Moon and 
G are all equal to one. With this, the distance between the Earth and the 
Moon is also equal to one. (For a detailed description of the system see 
(G6mez, Llibre, Martlnez, Sim6, 1987)). 

Now, taking into account the complete solar system, the Lagrangian of 
the problem and the equations of the motion can be written. 

Then, the terms which contain Legendre polynomials (except these com- 
ing from the RTBP) are expanded as power series in x, y, z. Its coefficients 
are known functions of the positions of the bodies of the solar system. For 
a short time interval it can be assumed that those positions, and therefore 
the coefficients, are quasiperiodic functions of time. 

A computation of these coefficients using a Fourier analysis shows that 
the relevant frequencies are the ones of the following four angles: 

1. The mean longitude of the Moon (equal to 1, because of the choice of 
the units). 

2. The mean longitude of the lunar perigee. 
3. The mean longitude of the ascending node of the Moon. 
4. The mean elongation of the Sun. 

All the contributions with amplitude less than 5 • 10 -4 are dropped in or- 
der to keep a manageable number of terms. This leads to the fact that the 
perturbations coming from the planets, the radiation pressure and the as- 
pherical terms coming from the Earth and Moon can be neglected (for more 
details about all the process of computation see (G6mez, Llibre, Martfnez, 
Sim6, 1987)). 

The equations of the motion are 

= 

/ = 

P(7)[ x - zF~(1 -#M)  x+xF~ ] - r ~  E r~------~#M -- XE(1 - 2#M) + P(1) + 

+P(2)x  + P(3)y + P(4)z + P(5)& + P(6)y, 

P(7)[ y - y E f l - # M ) - y - y E  ] - r~pE , r3pM #M--YE +n(8 )+P(9)x+ 

+P(10)y + P(11)z + P(12)~ + P(13)9 + P(14)/:, 

p ( 7 ) [  z . _  r~M #M Z ] ra--~w (1 - # M ) -  + P(15) + P(16)x + n(17)y + 

+P(18)z  + P(19)~ + P(20)~, 

where rFE, rpM denote the distances from the particle to the Earth and 
Moon, respectively, given by r~pE = (x -- xE) 2 -t- (Y -- YE) 2 Jr z 2, r2pM = 
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(Z q- ZE) 2 q- (y  -- yE)  2 q- Z 2. We recall ZE = --1/2, YE = --vf3/2 for L4 and 
XE = --1/2, YE = V~/2  for L5. The functions P ( i )  are defined as 

m m 

P(i) = Ai,o + Y~ Ai,jcosOj + y~ Bi,jsinOj, 
j=l j=l 

with 0~ = ujt,~ + ~oj and the value tn denotes the normalized time. 

In order to find a proper method to deal with this problem the following 
simplifications are introduced: 

1. The problem is considered planar. 

2. Only the two more relevant frequencies are retained, namely 

a) Frequency of the mean elongation of the Sun (¢). 

b) Difference between the frequencies of the mean longitude of the 
Moon and the mean longitude of the lunar perigee (M). 

After these simplifications we obtain a system that  contains the same basic 
difficulties as the original one, but it is easier to compute. 

The study of the complete system will be done in a further work. 

Finally, introducing a new notation, the equations that  we have studied 
are: 

xE(1 2#)J +ql+q2x+q3yT  
1 

$ = qo x ~P;- ZE (1 -# ) "  Zr~,M+ Z.___E # - -  _ 

+q4~ + qsg, 

= qo Y:Y--EI--#r3pE "----r3 M # -  YE +q6+qTY+qSS:+q9~], 

(2.1) 
where xE, YE, rpE and rpM are defined as above, q0,.. •, q9 are functions of 
time: 

6 

qi = E Aij cos Oj + Bij sin Oj, 
j=o 

with 00 = 0, 01 = 2 ¢ - M ,  02 = ¢,  03 = M,  04 = 2¢, 05 = 2M and 06 = 2 ¢ +  
M. The values of ¢ and M are given by ¢ = 0.9251959855t + 5.0920835091 
and M = 0.9915452215t + 2.2415337977. We recall that  the origin of time 
is in the year 2000.0, and that  27r units of it are equivalent to a sidereal 
periode of the Moon. The coefficients Aij, Bij are given in Table I. 
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TABLE I 
Fourier coefficients of the perturbations. 
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i j Aq Bq 
0 0 1 .0047 0.0000 
0 1 0 .0315  0.0000 
0 2 -0.0008 0.0000 
0 3 0.1644 0.0000 
0 4 0 .0266  0.0000 
0 5 0.0134 0.0000 
0 6 0.0042 0.0000 
1 0 0.0014 0.0000 
1 1 0 .0000  0.0016 
1 4 0.0000 -0.0142 
1 6 0.0000 -0.0016 
2 0 1 .0076 0.0000 
2 1 0 .0315  0.0000 
2 2 -0.0008 0.0000 
2 3 0 .1650  0.0000 
2 4 0 .0266  0.0000 
2 5 0 .0135  0.0000 
2 6 0 .0043  0.0000 
3 1 0 .0000  0.0018 

i j Aq B# 
3 4 0.0000 -0.0165 
3 6 0.0000 -0.0018 
4 1 0 .0000 -0.0169 
4 3 0.0000 -0.1079 
4 4 0.0000 -0.0295 
4 5 0.0000 -0.0088 
4 6 0.0000 -0.0038 
5 0 2 .0000 0.0000 
5 1 0 .0382  0.0000 
5 2 -0.0011 0.0000 
5 3 0 .2176 0.0000 
5 4 0 .0429  0.0000 
5 5 0 .0148  0.0000 
5 6 0 .0053 0.0000 
6 0 0 .0025 0.0000 
6 1 0 .0017  0.0000 
6 4 -0.0143 0.0000 
6 6 -0.0016 0.0000 
7 0 1 .0076 0.0000 

i j Aq Bq 
7 1 0 .0335  0.0000 
7 2 -0.0009 0.0000 
7 3 0 .0165  0.0000 
7 4 0 .0102  0.0000 
7 5 0 .0135  0.0000 
7 6 0 .0023  0.0000 
8 0 -2.0000 0.0000 
8 1 -0.0382 02000 
8 2 0 .0011 0.0000 
8 3 -0.2176 0.0000 
8 4 -0.0429 0.0000 
8 5 -0.0148 0.0000 
8 6 -0.0053 0.0000 
9 1 0.0000 -0.0164 
9 2 0 .0000  0.0005 
9 3 0.0000 -0.1079 
9 4 0.0000 -0.0295 
9 5 0 .0000 -0.0088 
9 6 0 .0000 -0.0038 

3. Expans ion  o f  the  equat ions  

We consider the potential  V = 1-g + __e__ and let ~ be the angle between 
r p E  r p M  

the vectors (XE, YB) and (x, y). We denote by p2 the term x 2 + y2. Then 

1 1 oo 

rpE ~ / 1 _  2 p c o s ~ + p  2 = ZpnPn(cos~)  (3.1) 
n=O 

where P,~ is the Legendre polinomial of degree n: 

1 d '~ 
P=(w) = 2,~n [ dw n (w 2 - i) ~ = y ~  an,kw '~-2k. 

k=O 

Here [~1 denotes the integer part of ~ and 
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Substituting these expressions in (3.1) one obtains 

[~] 
= ~ p~ ~ ,~,,,k cos ~-2k ~ = 

r p E  
n=O n - O  

n=O k=O 

(3.2) 

Finally, in order to obtain the expansion for L4 (the L5 case can be done 

with an identical process) we put XE = --½, YE = v ~ 2  and (3.2) becomes 

~o [~] 1 = ~ ~/3~,~(~ + v%)~-~% ~ + y~)~, 

r p E  n=o k=O 
(3.3) 

where 
( - 1 ) " - k ( 2 . -  2k)! 

4'~-k(n - k) !k ! (n-  2k)!" 

To perform the expansion (3.3) through the construction of an algebraic 
manipulator it is better to change the order of the sums: 

[~1 N 1 = ~ ( x ~  + y:)~ ~ Z~,k(~ + v%)~_:k, 

r p E  k=o n=2k 

where N denotes the expansion order wanted. With a similar computation 
it is obtained that 

[~1 N 
1 = E ( x 2  + y2)k E ~n,k(--X + v~y)  n-2k 

rpM k=O n=2k 

and, finally, 

V _ 
1 - p  # + 
r p E  r p M  

[~] N 
~ ( ~  + ~)k ~ ~,k [(1 - .)(~ + V%) ~-~ + . ( -~  + V%) ~-~] 
k=O n=2k 

Now, using a program which takes advantage of the particularities of the 
latter expression, the expansions of av av "~x and -~y are obtained. Thereafter, the 
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TABLE II 
Coefficients of the expansions in (3.4) 

i j ~q flq 
0 O 0.O0O00000D+00 0.OOOOO000D+00 
1 0 -0.25000000D+00 0.12674707D+01 
0 1 0.12674707D+01 0.12500000D+01 
2 0 0.12806055D+01 -0.32475953D+00 
1 1 -0.64951905D+00 -0.40247600D+01 
0 2 -0.20123800D+01 -0.97427858D+00 
3 0 -0.11562500D+01 -0.13202820D+01 
2 1 -0.39608460D+01 0.38437500D+01 
1 2 0.38437500D+01 0.71295227D+01 
0 3 0.23765076D+01 0.93750000D-01 
4 0 -0.43830247D+00 0.19282597D+01 
3 1 0.77130388D+01 0.32777402D+01 
2 2 0.49166103D+01 -0.14005255D+02 
i 3 -0.93368364D+01 -0.84611433D+01 
0 4 -0.21152858D+01 0.II163609D+01 

differential equations have been expanded,  so that  (2.1) becomes 

[ E ] = qo ~qx'y; 
Li+J <L J 

~t = qo [ E ~ijxiY j] 
Li+j<_L J 

+ ql + q2x + qsY + q4 .~ + qs~l 

+ q6 + qTx + qs& + q9Y 

(3.4) 

where the coefficients ai j  and/~ij  are given in Table II. From now on we 
shall take L = 4 and, as we shall see later, this will be enough to have an 
accuracy similar to the a c c u r ~ y  of the perturbat ions.  

4. T h e  m e t h o d  

We want to find a quasiperiodic solution of the preceeding system, i.e., a 
solution expressed in terms of cosine and sine of angles depending on ¢ and 
M in the following form: 

y = 

o o  

E xl(j ,k) cos(j¢ + kM) + x2(j,k)sin(j¢ + kM), 
j,k=-oo 

o o  

w(j,k)cos(j¢ + kM) + y2(j,k)sin(j¢ + kM). 
j , k = - ~  

(4.1) 
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The problem is now to find the coefficients zl,  x2, Yl, Y2 of these series that 
satisfy the equation of the motion. 

Our approach to the problem is semianalytical, this is, we shall not find 
exactly these coefficients but some numerical aproximations of them. 

The method that we have used is essentially to substitute expresions 
(4.1) of z and y in the equations (3.4), make the computation of the oper- 
ations analytically (by means of an algebraic manipulator) and then solve 
the resultant system numerically. 

The first problem of this method is to find a good expression of the series 
x, y that allows us to reduce the number of coefficients to a manageable one 
without loosing significant information. 

The biggests coefficients of these series are always located near the diag- 
onal ( h e , - n M )  and that suggested us to use the following expressions for 
x and y: 

NM 
x = x(1) + ~(x(2i)cos(iM) + x(2i + 1)sin(iM))+ 

i=1 
Nq, N M - j  

+ ~-~( ~ (z(4j(NM + 1) + 2i)cos(j~b + iM)+ 
j = l  i=-NM-j  

+x(4j(NM + 1) + 2i + 1) s in(j¢ + iM))), 
NM 

y = y(1) + ~(y(2i)cos(iM) + y(2i + 1)sin(iM))+ 
i=1 

N¢ NM--j 

+~-~( ~ (y(4j(NM+l)+2i)cos(j¢+iM)+ 
j = l  i=-NM-j  

+y(4j(NM + 1) + 2i + 1) s in(j¢ + iM))), 

(4.2) 

where NM and ArC are some values that we can fix arbitrarily, and they 
represent, respectively the "dispersion" allowed for the coefficients from the 
diagonal and the longitude of it. 

Now, the problem can be reduced to the search of the solution of the 
following system 

a l ( X ,  y) = f , ( x ,  y, 4) - = 0 
(4.3) 

where 
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Because x and y are considered as a function of its coefficients, we can see 
our problem as the search of the zero of a function: 

F : R 2p ) t t  2p 
( x ( 1 ) , . . . , x ( p ) , y ( 1 ) , . . . , y ( p ) )  , ) ( f l  - ~ , f 2  - ~)) (4.4) 

where p = (2N¢ + 1)(2NM + 1) and in the computation of f l  and f2 we keep 
the same kind of terms used for x, y. 

The numerical method that we have used to solve this equation is a 
Newton continuation method.  

Thus, the general scheme of the method is the following: 
We consider a m-th approximation of the system (4.4), F (m). Then,  we 

compute the Jacobian of the system as usual, using the following expressions 

OF~m) ,~(m) OF(m) ,~p(m) • "~ k Oz O:i: '-'~ k O~ 
Ox ( j )  = Ox Ox(j-----) + O-~- " Ox(j----~ + 0---=~-- O x ( j ) '  

OF~,~) ~ ( m )  ~P('~) Oil '-'~ k . 0~) _ ~'~ k O y  '~" k ~ p ( m )  

Oy( j )  - Oy Oy(j-----) + 0~) Oy(j------) + Ofl Oy( j ) "  

The relationship between ¢, M and t and (4.2) allows finally to write the 
corresponding expressions for 0~ 0~ 0" 0" Y~~, 0x-7~, 0~--~, 0 ~ ,  in each case. 

Actually, we took a first degree aproximation to the system, and the 
solution of this system is found in one iteration. The following step consisted 
in adding the next order terms. By means of a continuation method,  using as 
the initial condition of every iteration the solution obtained in the preceeding 
one it has been possible to get the solution when quadratic terms were 
included in the equation. The third degree terms and the quartic ones could 
be added without needing of continuation, and finally we have obtained a 
solution of the fourth degree aproximation to the system that  is also a good 
aproximation to the solution of the system. We shall see this further on. 

Before finishing this point we must make an important  remark. Using 
the method explained below, the matrix of the system we must solve in 
every step was of 2p x 2p. Because the final values for ArC and N M  are, 
respectively, 70 and 30 and not all the coefficients are significant, we need 
to solve a smaller system containing only the most significant coefficients. 

The central point of this is how to choose these coefficients. After each 
iteration we have two series, &, ~, which are approximations to the solutions 
of the system. If we substitute now these series ~, ~ in F( m} we obtain a 
series F(m)(&, ~) from which we can choose its biggests coefficients and add 
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them to the ones that  take part into the Newton method.  In this way the 
list of elements to keep for z and y is modified on line as required. 

It is important  to note that  all the operations involved in the computat ion 
of the function have been made with all the coefficients, and it is only in 
the resolution of the linear system where we use the selected ones. This is 
because we can not choose, a priori, which ones are the most significant and, 
on the other hand, the operations involved in the function (such as product  
of series) produced many new components. If we had worked only with a 
small number of coefficients in all the operations we would have lost much 
information. With this method all the operations are done to lose as little 
information as possible. Using the results above, we corrected the coefficients 
dynamically and accurately. 

5. T h e  m a n i p u l a t o r  

In order to do all the computations in an easy way we have implemented 
an algebraic manipulator that  can deal with Fourier series of the type ex- 
plained below. This manipulator has to do four main operations: product  
and derivatives (of first and second orders) of the series and conversions be- 
tween series with selected coefficients and series with all the coefficients, in 
both ways. 

These four operations have been increased with two more: the square of 
a series and the product  of a series by an unitary series (only one coefficient 
different from 0). These last operations were not necessary, but  they must be 
done very often and, in order to optimize the computations,  we built them. 

The nucleus of the manipulator consists in two routines that  allow us to 
separate the operations explained before from the actual disposition of the 
terms inside the vectors that  we used to store them. These routines are, in 
fact, the only ones that  know this disposition. One of these routines returns, 
given an index of the vector, the coefficient of ¢ and M and if the component 
is either a sine or a cosine. The other routine returns the index of the vector 
of a sin(j, ¢ + kM) or cos(j¢ + kM). 

The other routines of the manipulator simply apply the formulae for each 
operation and they call these routines to know the information about the 
computat ion of the vectors they are working with. 

There is another routine of the manipulator which compares all the com- 
ponents of the vector with a threshold value, dropping all of them that  
are less than this tolerance. This routine is called after each operation of 
the manipulator and it allows us to pay attention only to the meaningful 
components,  preventing the program from an uncontrolled growth of the 
vectors. 
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Fig. 1. Continuous line: semianalytical solution of the linearized system. Dotted line: 
numerical solution of (2.1) with the same initial conditions as the semianalytical 
one. Initial epoch: year 2000.0. Time interval: 90 days. Projections on the (x, y) 
plane with normalized units (1 unit = distance Earth-Moon at the epoch). A poly- 
gonal is plotted with a time interval of 1 day between consecutive vertices. 
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Fig. 2. Same as Figure 1 but the semianalytieal solution corresponds to the system 
up to second order. 
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Fig. 3. Same as Fig. 1 but the semianalytical solution corresponds to the system 
up to third order. Time interval: 192 days. 
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Fig. 4. Same as Fig. 1 but the semianalytical solution corresponds to the system 
up to fourth order. Time interval: 192 days. 
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Fig. 5. Euclidean norm of the error between the solutions plotted in Fig. 4. in the 
phase space versus time in days. 
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Fig. 6. Projection on the (x, y) plane of the unstable eigenvector of the 
pseudo-monodromy matrix for the time span of Fig. 4. The variational equations 
associated to (2.1) and the initial conditions of Fig. 4 have been used. The initial 
vector is unitary (in the phase space). 
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Fig. 7. Same as Fig. 6 but  for the stable eigenvector. 
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Fig. 8. Same as Fig. 6 bu t  for the real par t  of  the eigenveetor with complex eigen 
value (of  modulus  close to  1). 
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Fig. 9. Same as Fig. 8 but for the imaginary part. 

6. Resu l t s  

In this part the results obtained with these computations are presented. The 
dominant coefficients of the fourth order solution are given in Table III. 

First we check the quality of the linear approximation. We consider the 
semianalytical solution of the linearized system and we take the value of this 
solution at t = 0 as an initial condition for numerical integration of the model 
equations (2.1). This is shown on Figure 1. The same process is made for the 
semianalytical solutions of the equations of 2nd, 3th and 4th order and the 
results are shown in Figures 2, 3 and 4. These plots show that the solution 
of the linear and quadratic systems are not good approximations to the 
numerical solution of the model. For this reason we consider the euclidean 
norm of the difference between numerical and semianalytical solutions. This 
allows to see that, in the quartic case, we have a degree of accuracy similar 
to the accuracy of the perturbations. Plots of the error in this case can be 
seen in Figure 5. Note that the error shows an exponential behaviour due 
to the existence of an unstable direction. 

To compute the local behaviour associated to this orbit we observe that, 
after 192 days, the solution passes near (in the four-dimensional phase space) 
the initial conditions and it suggests to compute a pseudo-monodromy ma- 
trix, obtain its eigenvalues (shown in Table IV) and use the corresponding 
eigenvectors to get a linear approximation to the invariant manifolds. Fig- 
ures 6 to 9 represent, in linear approximation, the behaviour inside each one 
of these manifolds. These results seem to show the existence of three invari- 
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TABLE III 
Fourier coefficients of the quasiperiodic final solution which satisfy that 
X/x( i , j , k )2+y( i , j , k )  2 > 5 - 1 0  -4 . The values o f /  and j are the coefficients 
of ¢ and M (see section 2), and k indicates if it refers to a cosine or a sine 

(0 = cosine, 1 = sine). 

i j k x( i , j ,k)  y( i , j ,k)  
0 0 0 0.115257D-01 -0.877293D-02 
0 1 0 0.226069D-01 -0.132180D-01 
0 1 1 -0.529571D-02 -0.117557D-01 
0 2 0 0.165964D-02 -0.121897D-02 
0 2 1 -0.322429D-03 -0.114187D-02 
2 - 4  0 -0.571189D-03 0.595989D-03 
2 - 4  1 -0.335783D-03 -0.421593D-03 
2 - 3  0 -0.795810D-02 0.600651D-02 
2 - 3  1 -0.362805D-02 -0.425411D-02 
2 - 2  0 -0.294875D-01 0.162597D-01 
2 - 2  1 0.989340D-02 -0.984482D-02 
2 - 1  0 -0.285269D-02 0.133790D-01 
2 - 1  1 0.200583D-01 -0.760429D-02 
2 0 0 -0.191681D-02 0.148359D-01 
2 0 1 0.174897D-01 -0.314588D-02 
2 1 0 0.137323D-04 0.135286D-02 
2 1 1 0.141434D-02 -0.435312D-03 
4 - 5  0 0.526449D-03 -0.239412D-04 
4 - 5  1 -0.424884D-03 0.689134D-03 
4 - 4  0 0.132698D-02 -0.226398D-03 
4 - 4  1 -0.359551D-02 0.273513D-02 
4 - 3  0 0.728474D-03 -0.335751D-03 
4 - 2  1 0.563396D-03 -0.136330D-03 

ant manifolds associated with this orbit. One of them is slightly unstable  
and gives this nature to the orbit,  another one is stable and the last one 
looks like a central manifold. 

7. C o n c l u s i o n  

It has been shown that  the equilateral libration points of the Ear th-Moon 
system using the R T B P  have a dynamical equivalent in the real problem 
close to a quasiperiodic solution which reaches a distance from the instan- 
taneous geometrical libration point of 0.134 nondimensional units (~  5- 104 
Km.). This is the maximum distance using the coefficients of the fourth or- 
der solution and a time span of 100 years (from 1950.0 to 2050.0). The orbit 
is mildly unstable,  the errors increasing, in a exponential way, by less than 
1% per day. To keep a spacecraft close to this orbit s tat ion keeping would 
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TABLE IV 
Eigenvalues of the pseudo-monodromy matrix 

-0.562891D+00 + 0.821943D+00~-1 
-0.562891D+00 - 0.821943D+00v/-L-f 

0.607630D+01 
0.170180D+00 

be necessary but only small manoeuvres, once every year would be required. 
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