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The problem 

Assume that compositional variation is observed in a 
vegetation sample. If this variation is directed, meaning 
that it is not without a clearly defined trend, response to a 
directed environmental influence is indicated. An ordina- 
tion algorithm is sought which can predict local levels of 
environmental influence based on observed composi- 
tional characteristics of the vegetation. 

Algorithms 

The predictive use of ordinations is not novel (see Orl6ci 
1978), but the proposed algorithms differ considerably. 
In one group of methods, prediction is based on simple 
averaging, 

~ j  = ~ v ~ ; x . / r . ; ;  h = 1 . . . . .  p (1) 

(Whittaker 1967). )7~ is a prediction of the level of environ- 
mental influence at point j of a given environmental 
gradient X at which the quantity of species h is Yh;. The 
optimum of species h is at Y h. The optima X a . . . .  Xp are 
given a priori. Y4 is the sum of all Yhj at Xj for all of the 
p species. 

It is a weakness of(l) that it does not make provision for 
the possibility of species optima not being symmetrically 
dispersed about X; on the predicted gradient, and for the 
unequal performance Yhj of species at their optima. The 
predictions based on (I) can thus be very unreliable. 

The algorithm, PROD, which is the subject of further 
discussions in the present paper, incorporates the notion of 
species response directly. The steps include: 
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1. Statement of a general hypothesis (H) which describes 
the exact functional form of species response. 
2. Computation of ordination scores (co-ordinates for 
quadrats) which are completely consistent with H. 
3. Interpretation of the ordination scores as predictions, 
considered proportional in quantity with the levels of 
environmental influence. 

Description of PROD 

In predictive ordination the computational problem is to 
derive t sets of co-ordinates for n points, 

X ~ I XI1 "' Xln 1 
Lx...x,.j 

The X u are assumed to be proportional to the actual 
levels of environmental influence, as they are also com- 
pletely consistent with the measured responses on p 
species, 

and with a hypothesis (H) which specifies the functional 
form Yij = 0 c (Xijlm3) of the trajectory of average re- 
sponse, conditional on a single parameter or a parameter 
set m i. 

Based on f (Xlm), the anticipated compositional dis- 
tance d(j,kli), :corresponding to a A(j, kl t) = [Xu--Xik] 
separation on the Rh gradient is proportional to 

dZU, k It) = ~ :{f(Xlm) - f ( X  + A(j, k))[m) } 2dX (2) 
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The composite compositional distance is proportional to 

dZ(j ", k) = ~ aa(j, kl0, i = 1 , . . . ,  t (3) 

H can of course be defined to apply to individual species 
responses and not just to an average. For the hth species, 
Yh~j = f (XJm~h) is the hypothesis and d (j, k,I h, i) is the 
compositional distance. The composite compositional 
distance is proportional to 

ae( j , k )  = Z Z d 2 ( j ' , k [  i ,h); h = 1 . . . . .  p ; i  = 1 . . . . .  t. 

This assumes that the species responses are independent. 
Now if d (j, k) is used for the ordination distances, the 
co-ordinate set X which minimizes stress, 

a2(D; 8 ) =  1 - p Z ( D ;  8), (4) 

between the ordination distances (D) and the observed 
compositional distances (8) is the best predictive ordina- 
tion possible under the given H. p(D ;8) measures correla- 
tion on a zero to one scale. 

The function f (Xlm) may be of a complex shape, in 
which case a may not be stationary, but strongly varying 
between k consecutive segments o f  f (Xlm).  This can be 
detrimental if excessive, and it requires remedies. The 
solution is conceptually simple: compute a different 
8q, q = 1, . . . ,  k, for each segment. The computational 
consequences may however be severe. 

Examples 

A linear hypothesis (LH) is rarely appropriate, but if the 
gradient is short, LH may be plausible. If all p trajectories 
have the same sense, the function takes the very simple form 
of 

f(Ylm) = b X + c  (5) 

In any linear case, the desired predictions are obtained 
as the component scores in the following algorithm: 

1. Compute compositional distances 6 based on 

3(j,k) = [2(1-- COSajk)]'~ (6) 

where ajk is the subtending angle of two quadrat vectors. 

2. Extract the non-zero eigenvalues (2) and eigenvectors 
= "62"" k" ~z 62-62 ,  (g) o fQ,  with elements qi k - 0 . 5  t t/, ) - o j -  ~+ 

(Orl6ci 1978), and adjust the j th  element in the ith eigen- 
vector Xq so that X~a + . . . + X ~ , - - ) . i  for any i. The 

adjusted X~j are the predictions sought. 
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3. Compute correlations between the t sets of predictions 
and the measured environmental variables to establish the 
identity of the most likely influential factors. 

It is generally believed that a non-linear hypothesis 
(NH) is more appropriate than a linear one. There is 
however no agreement between the proponents of NH 
regarding the most likely functional form of the response 
trajectory. That this may vary depending on species and 
site conditions is conceivable. It is however often felt 
that the trajectories conform to a universal curve which is 
continuous (Curtis & McIntosh 1951, McIntosh 1967), 
and more or less bellshaped (Whittaker 1956, van Groene- 

woud 1965). It has been described as Gaussian for 
m = (a,1), 

fiX[a, 1) = exp - ( X - a ) 2 / 2  (7) 

Standardization is implied. Let us assume that this is 
indeed the case. The average response at point j on the 
ith gradient is given by 

Yij  = exp - ( X i j - a i ) 2 / 2  ( 8 )  

With such a trajectory for Y, the expected compositional 
distance is proportional to 

1 { e _ ( X _ a i ) 2 / 2  - d2(j, k l i )= ~/Tr 

exp - (X+ ]X~j- X~k [ -- a)2/2}2dX 

= 2(1 - Suk ) (9) 

The compositional distance is a chord distance, since 

Sij k = e -  (X  u -  X~k)2/4 (10) 

is a similarity measure in the interval with end points zero 
and one. 

The composite distance is given by (3). Since a t does 
not appear in Si,jk, and since the standard deviations 
are assumed unity in all cases, the same H applies irre- 
spective of species. 

What has been given as (9) is what Gauch has described 
in 1973. He has in fact offered an algorithm to obtain a 
single set of predictions. Another possibility is to embed 
dO, k) in the Kruskal & Carmone (1972) algorithm which 
has the advantage of supplying not one but t independent 
sets of n predictions for quadrats. 

Reaffirming that the objective is to obtain the predictions 
(which are the elements in X), the steps in PROD are as 
follows: 

1. Compute 6 with elements, 



6(j, k) = [2(1 --COS~jk)]~j < k = 2, . . . ,  n (12) 
The ~k are quantities measuring subtending angles where 
position vectors meet in the zero origin. 

2. Specify t, the number  of independent environmental 
influences affecting compositional variation. 

3. Select t sets of n arbitrary numbers to serve as first 

approximations for the unknown Xij. 

4. Compute the dO', k) values according to formulae (3), 
(9), (10) and examine the stress, ~, in (4). 

5. If a is stable, or less in value than a specified threshold 
limit, stop. If not, change the Xi~ a little to further reduce 

stress and continue at step 4. 

The final set of  X values are the desired predictions. 
These have to be examined for correlations with environ- 
mental variables to establish the identity of the predicted 

influence. 

Discussion 

The Gaussian assumption underlies several formal al- 

gorithms, each capable of producing predictions (lO. 
The algorithm of Gauch (Gauch, Chase & Whittaker 
1974) and that of  Johnson (1973) are iterative. The latter 
incorporates the statistical notions of estimation. Another 
algorithm, devised by Ibm & van Groenewoud (1975), is 
based on eigenanalysis. 

The advantages of the algorithm described in the present 
paper are several fold. First, it can be generalized to 
functions other than the Gaussian provided that their 
integral exists. Second, it relies on a distance matrix. 
Once the sample distances are computed, no further 
access is needed to the basic data. Third, it yields not one 
but t sets o fn  co-ordinates. A program is available for the 

linear case. One for non-lhlear cases is in the developmental 
stage. 
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Summary 

An algorithm is described for predictive ordination. The 
functional form of species response is required, but it need 
not  be Gaussian. Any integrable function is acceptable. 
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