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Abstract. Starting from the Hamiltonian model for a solid Earth with an elastic mantle previously 
developped by the authors, analytical expressions are derived which give the nutation series corre- 
sponding to the plane perpendicular to the angular momentum vector, to the plane perpendicular to the 
rotational axis and to the equator of figure, as well as the series that give the polar motion. The effects 
of the different perturbations - solid Earth, centrifugal and tidal potentials - are calculated separately. 
The corrections due to the elasticity of the mantle, which mostly correspond to the Oppolzer terms, 
are calculated with an accuracy of 10 -6 arc sec., given that the intrinsic observational accuracy has 
reached 0.0l mas. 
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1. Introduction 

The aim of this paper is to derive analytical expressions and the corresponding 
numerical series for the perturbations in the rotation of the Earth when the mantle 
is assumed to be elastic instead of rigid, and is deformed by the very rotation itself 
and by the lunisolar attraction. The periodic perturbations are offered in the form of 
the nutations series in longitude and obliquity of the fundamental planes: Andoyer 
plane - or perpendicular to the angular momentum vector -, equatorial one and the 
plane perpendicular to the rotation axis. We can add the polar motion, which is the 
displacement of the rotation axis with respect to the figure axis. 

In the present approach we follow essentially the same lines as those described 
in our recent Hamiltonian theory for an elastic Earth, published in a set of four 
papers (Getino and Femindiz, 1990, 1991a, 1991b, 1992), that is: the introduction 
of a system of elastic Andoyer variables to express the Hamiltonian of the problem 
and the later application of a canonical perturbation method based on the Lie series 
for eliminating the periodic terms. The resulting secular Hamiltonian is studied 
in a way analogous to the classic one of Kinoshita's theory (1977), obtaining the 
values of some parameters necessary for numerically evaluating the expressions 
giving the perturbations, and, in our case, including the Chandler's period. 
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The advantage of this procedure is that it allows us, clearly and conveniently, to 
separate the influence of each kind of the perturbations taken into account (mainly 
rigid Earth potential, and centrifugal and tidal variation of the inertia tensor) on 
the different variables considered, as well as the secular and periodic effects. It is 
also susceptible to an easy adaptation to include new perturbations, such as those 
of the second order derived by Kinoshita and Souchay (1990), without having to 
reconstruct the theory. 

The paper is organized in the following way: In Section 2, a brief description 
of the canonical variables used is made, and the principal terms which are consid- 
ered in the Hamiltonian are reviewed, without forgetting the important distinction 
between the perturbing and perturbed roles played for a body when deformations 
are considered. In Section 3 the analytical expressions of the relevant Hamiltonian 
are given. 

The tidal and rotational potentials are obtained directly using the same proce- 
dure, that is, starting from the solutions of the displacement vector of the defor- 
mation. The difference with the classical expressions is that both potentials do 
not depend on a sole global k2, but they turn out to be functions of respective 
coefficients dependent on integrals of functions of the radius and the theological 
parameters. 

We then summarize the first order integration for the rigid Earth, presenting 
expressions for the nutation of the Andoyer plane, as well as the Oppolzer terms 
for the equator and for the plane perpendicular to the rotation axis, and finally 
the solutions for the polar motion. Naturally, the results are similar to those of 
Kinoshita's theory. Nevertheless, it seems opportune to devote a few pages on 
this basic reference with the aim of making later developments corresponding to 
the elastic case both clearer and briefer, also facilitating the interpretation and 
comparison of results. 

In Section 5 the effect of the centrifugal deformation is studied. The elimination 
of periodic terms follows a process analogous to that of the rigid case, and concludes 
with the expressions of the perturbations of the fundamental planes, the polar 
motion and the interpretation of the results. For the motion of the Andoyer plane 
and the Oppolzer terms of the figure axis, the principal effect can be considered as 
a coupling with the results of a rigid Earth, so that the coefficient responsible for 
the amplitude of the periodic perturbations solely has to be re-examined. On the 
other hand, for the Oppolzer terms corresponding to the motion of the rotation axis 
or the polar perturbations, new terms appear which cannot be paired with those of 
a rigid Earth. A similar remark can be done for the secular Hamiltonian. 

In Section 6 the same procedure is followed but for the tidal deformation, which 
acts through a perturbation induced in the inertia tensor. The effect on the Andoyer 
plane is negligible, while this effect diminishes the Oppolzer terms corresponding 
to a rigid Earth, which coincides with the results of Sasao et al. (1980) and Kubo 
(1991). 
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In the last section we proceed to the numerical representation of the previous 
results. First of all, the basic constants are calculated in the way above mentioned. 
Those corresponding to the deformation which come from geophysical data, are 
taken from a previous paper (Getino and Femindiz, 1991a). With them the four 
pairs of perturbation series considered - nutations of the three fundamental planes 
and polar motion - can be numerically evaluated. 

The results, which are shown in tables, are consistent with those published 
by other authors [Kubo (1991) and Sasao et al. (1980)]. Taking into account the 
fact that some observations reach the internal accuracy level of a few 0.01 mas, as 
pointed out by Kinoshita and Souchay (1990), we have retained all the contributions 
of the elasticity to the nutation series up to 0.001 mas. This does not mean that the 
final series have such an accuracy, since we should also include the second order 
corrections of the rigid Earth theory for this to be true. On the other hand, we must 
note that some of our values do not coincide with the corresponding previous ones 
given by us, since, when obtaining certain perturbing series some errors slipped in, 
which mistake was discovered by the first author thanks to the reserve shown by 
Kinoshita and Kubo with respect to the old values. 

The text is completed by some comments concerning the secular motion and 
the Chandler period and appendices detailing mathematical formulations used in 
the work. 

2. Approaching the Problem 

As pointed out in the introduction, we are concerned with the study of the rotational 
motion of the Earth for a model with a deformable elastic mantle. In this section 
we will describe, in a schematic way, the different terms that will make up the 
corresponding Hamiltonian, which will be developed later. 

Since the distinction between perturbing bodies and perturbed bodies is essen- 
tial when performing the analytical integration of the system, we examine in detail 
at the beginning that distinction. 

2.1. A NOTE ON PERTURBING AND PERTURBED BODY 

Let us consider that an elastic body is deformed by the action of two perturbations: 
tidal deformation, due to the gravitational attraction of external bodies, these bodies 
being considered as point masses with known orbits, and centrifugal or rotational 
deformation, due to the rotation of the elastic body itself. Thus, the bodies which 
cause tidal deformation will be perturbing bodies (in the case of the elastic Earth, 
the perturbing bodies considered will be the Moon and the Sun). 

On the other hand, the external bodies can also be considered as perturbed 
bodies, since the potential created by the Earth acts upon them, the Earth being 
considered as a non-spherical deformable solid, subject to tidal and centrifugal 
deformation. 
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We thus see that the external bodies to the one which suffers the deformation 
behave as perturbing bodies, that is to say, they cause the deformation of the relevant 
elastic body; on the other hand, they behave as perturbed bodies, upon which the 
potential created by that elastic body acts. Nevertheless, since the derivatives of the 
canonical equations must be taken precisely with respect to the coordinates of the 
perturbed bodies (Peale, 1973, Kaula, 1964) it is necessary to make the distinction 
from the beginning. Thus we shall represent the coordinates of the perturbing 
body with the symbol ~. Moreover, we shall conserve the notation m* and r* for 
the mass and the distance from the center to the external body (perturbing and 
perturbed), in the case when there is no risk of confusion. 

The same reasoning must be applied to the case of the rotational deformation. 
So, we shall also use the symbol ,~ upon the corresponding coordinates when acting 
as perturbing ones. 

2.2. TENSOR OF INERTIA 

Due to the deformation of the elastic mantle, the tensor of inertia will suffer an 
increase. We can then break down this tensor into two parts: 

II = II0 + l i d ,  

where IIo is the tensor in absence of deformation. When it is referred to the principal 
axes of inertia, it has the well known expression: 

A0 0 0 )  
I I0= 0 B0 0 , (2.1) 

0 0 C o  

where A0, B0 and Co are the principal moments of inertia of the Earth without 
deformation. 

Now, the increase lid, due to the deformation, depends on the perturbing poten- 
tial, so it will be a function of the coordinates of the perturbing bodies. In order to 
emphasize this fact, and according to what was explained in the previous paragraph, 
it will be written as lid, SO that we can write: 

II = li0 + Hd. (2.2) 

2.3. KINETIC ENERGY AND CANONICAL MOMENTS IN EULER VARIABLES 

Taking the Euler angles according to the notation of Goldstein (1972) (see Figure 
1), and using the matrices: 

( i )  ( i )  (cOS~o sin0sin~b 0 )  
q =  , 0 =  , W =  -sin~b sin0cos~b 0 , (2.3) 

cos 0 1 
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Fig. 1. Euler and Andoyer angles 

the kinetic energy will be 

T = -~w IIa) = ( t t w t H w ( t .  (2.4) 

In order to define strictly the canonical moments, we must take into account the 
dependence of the centrifugal potential on the velocity, as studied in Getino and 
Femindiz (1992). However, in this work we will take the usual simplification of 
considering that the centrifugal deformation is produced at a constant velocity, so 
that the canonical moments will be: 

P = PC - -~q - w t I I W ( t  = wt(II0  + IId)W(t .  (2.5) 

It is interesting to point out that, from (2.5) it can clearly be seen that the moments 
thus defined depend on the deformation, so we shall call them Euler's elastic 
moments (Getino and Femindiz, 1990). Then, if we ignore the effect of the non- 
sphericity of the Earth when we consider the perturbation Hd' the tensor II will be 
symmetrical, so that the canonical expression of the kinetic energy will be: 

-~- 2 p t W - 1 I I - 1 w - t p  : z 1 p t w - I ( F I °  + I I d ) - I w - t P "  (2.6) T 
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2.4. ANDOYER'S CANONICAL MOMENTS 

As in Getino and Femindiz (1990), we perform a canonical transformation to 
convert the former set into a new one similar to the Andoyer's canonical set, the 
new variables being denoted by (£, #, u, A, M, N)  (see Figure 1). Two auxiliary 
angles (r, I are used, related to the canonical momenta through the identities 
cos ~r = N/M, cos I = A/M. It is also useful to consider the expression relating 
the angular momentum, this set of variables, and the set in 2.3: 

M sin~r sinu ) 
G = M sin a cos u = W-tP  = HWO = (II0 + I-Ia)W(l. (2.7) 

M cos a = N 

The meaning of the new Andoyer-like variables is quite similar to the meaning 
of the classic Andoyer system for a rigid body. But, in our case, the angular 
momentum contains also the effect of the elastic deformation of the mantle, and 
the new canonical moments too. Due to this, we called them Andoyer's elastic 
moments, for the sake of the shortness. The plane perpendicular to G, in which the 
variable # is measured, is simply referred to as Andoyer's plane. Variable cr is the 
angle between the angular momentum axis and the figure axis, and I is the angle 
of the first vector with the polar axis of the inertial plane (the ecliptic reference 
system at a given epoch). So, the differences with the usual Andoyer system for 
a rigid body lies in the fact that in the last system the angular momentum does 
not contain any deformation contributions and is given simply by H0 W ~ in the 
previous notation. 

There are, of course, also a function of the deformation, so that we have used 
the name of Andoyer's "elastic" moments (Getino and Ferr~indiz, 1990). 

Thus, the kinetic energy in these variables is: 

(2.8) 

with G given in the first equality (2.7). 

2.5. POTENTIAL ENERGY 

As for the inertia tensor, the potential can be divided into two terms: 

V = Vo + Va, (2.9) 

where V0 is the potential due to the Earth in the absence of deformation, and Vd 
is the additional potential due to the redistribution of mass by the deformation. 
This potential acts upon the external bodies, the Moon and Sun, now considered 
as perturbed bodies, so Vd will not carry the symbol -,~. 
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2.6. ELASTIC ENERGY 

When a planet is deformed, energy is stored inside in the form of elastic strain 
energy. The expressions of this energy can be found in Getino and Ferr~irldiz 
(1991a) and Getino (1992). Now, given the fact that the order of magnitude of the 
elastic energy due to the tidal deformation is very small with respect to the kinetic 
and potential energies, and that the elastic energy caused by the rotation is constant 
under the hypotheses with which we are working, in that follows it is not necessary 
to consider these terms. 

2.7. REFERENCE TO A MOVING PLANE 

We can express the kinetic energy with Andoyer's elastic variables, 
(A, M, N, A, #, u), which relate the fixed system (that is, the ecliptic of the epoch), 
to the moving system of Earth's principal axes, Oxyz. Nevertheless the theories 
which deal with the motion of the Earth's center of mass are referred to the ecliptic 
of date. Then we must unify the terms to one reference system only. 

Given the great complexity of these theories, it is preferable to express the 
kinetic energy with parameters related to the ecliptic of date, introducing a new 
system of variables, (A ~, M ~, N ~, A ~, #~, # )  which can be interpreted as Andoyer 
elastic variables relating the reference system of the ecliptic of date to that of the 
principal axes. This change of variables leads to the addition of a complementary 
component, RE, to the Hamiltonian referred to the previous inertial frame, as 
described in Kinoshita (1977). 

In what follows, we shall suppress the primes of the new canonical system. That 
will not cause any confusion. 

3. Expression of the Hamiltonian 

According to what was pointed out in the previous section, the Hamiltonian is: 

~ = T + V + RE. (3.1) 

In this section we shall develop each one of these terms and we shall make the 
necessary prior transformations to obtain an adequate expression of the Hamiltonian 
in order to proceed with the first order analytical integration. 

3.1. DEVELOPMENT OF THE KINETIC ENERGY 

First of all, starting from (2.8) we develop the kinetic energy. To do this we need 
to express the inverse matrix (II0 + ~d) -1 , which can be expanded as follows: 

~rI-1 = (I~0 + r id)  -1 ---~ 1-IO1 ( I -~- ~ d  I I o l )  -1 , (3.2) 



124 JUAN GETINO AND JOSI~ M. FERRANDIZ 

I being the unit matrix. Taking into account that the order of magnitude of the 
perturbation fld is small with respect to the unperturbed part, II0, we can perform 
an expansion in series as follows 

( I  "+" fld 1-[O1) -1 = -/--  fld 1"101 + [fld 1"IO1] 2 q- O[[Id I-loll 3. (3.3) 

Up to the second order in fla IIo 1 , sufficient for our study, we have: 

1-I-1 --~ Ho 1 - Ho 1 ~d IIo 1 + Ho 1 fld rio 1 Hd 1-[01. (3.4) 

We can then break down T as follows: 

1 Gt To = -~ n o l  G , 

1 Gt (1-i01 ~ d  i io1 ) G (3.5) T = To + TI + T2 ---+ T1 = --~ 

T 2 = ~ l  Gt (1.i01 ~d/~01 rid i io l  ) G 

where To is the energy corresponding to the rigid body, and T1 and T2 the pertur- 
bations of first and second order by the deformation. 

3.2. TENSOR OF DEFORMATION 

As already pointed out, we consider two causes in the deformation: the tidal defor- 
mation, which comes from the lunisolar attraction, and the rotational deformation, 
due to the Earth's centrifugal potential. Thus, the matrix of the deformation will 
be: 

fla = Ht + Hr .  (3.6) 

As explained in Getino and Ferrfindiz (1990), the perturbing potential causing the 
tidal deformation, at the second order and by unit mass is: 

Wt - Gin* r2p2(cos S) with cos S = rr* (3.7) 
• T .3 ~ rr* ~ 

where G is the gravitational constant, r the vector from the origin to the point 
within the Earth where the potential is evaluated, r its modulus, and m*, r*, r* are 
the mass, the vector from the center of the Earth to the external body (Moon, Sun), 
and its modulus. 

In the aforementioned work, it was shown that, considering a symmetrically 
spherical Earth, under the influence of this perturbing potential, Ht is given by: 

= t12 t22 t23 , (3.8) 
flit Dt \ r . , /  t13 /;23 ~33 
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with 

tIl = 2Pa(sin ~') - P22(sin 6") cos 2~,  

ta2 = 2P2(sin 6 ) +  Pa2(sin 6) cos 25 ,  

t33 = -4P2(sin ~), 

tl2 = -p2 ( s in  6) sin 2~,  

t13 = - 2 p l ( s i n  6) cos ~ ,  

t23 = -2P~  (sin 6) sin ~ ,  

125 

(3.9) 

~, 6" being the longitude and latitude of the perturbing body referred to the principal 
axes of the Earth, a* the semi-major axis of its orbit, and the coefficient Dt is given 
by: 

Ot -- Gm*a .3 271-15 Jr [2p0T4 (5F2(r) -~- r2G2(?')) - 

r5 dpo 

the integral being spread over the mantle. The functions P0, F2 and G2 depend 
on the Earth Model used. In Getino and Femindiz (1991a) these functions were 
computed by Takeuchi's Model 2, providing the values: 

6.953379 x 1036c.g.s. for the Moon, 
Dt = (3.11) 

3.185508 × 1036c.g.s. for the Sun. 

As for rotation, the disturbing potential by unit mass is 

Wr = l f~ 2 2 l gt2r2pE(cosS~ ) with cosS ~ rl2 (3.12) 
3 r - ' 

where f~ is the spin angular velocity and r is the position of the field point relative 
to the center of mass. The term f22r2/3 can be absorbed by the general central field 
of the body and will not be considered further (Peale, 1973). 

Following a study similar to that of the tidal deformation we find that the 
additional contribution in the inertial tensor due to the centrifugal deformation is 
(Getino and Ferrfindiz, 1991b): 

Hr = Dr r12 r22 r23 , (3.13) 
?'13 r23 r33 

with 

r l l  = 2P2(cos L )  - p 2 ( c o s L )  cos2~r ,  r12 = -P22(cos 3r) sin 2~r ,  

ra2 = 2P2(cos/3r) + P~(cos/3r) cos 2~T, r13 = - 2 p 2 1 ( c o s L ) c o s ~ r ,  (3.14) 

?'33 = -4P2  (cos/~r ), ?'23 = -- 2P21 (cos/~) sin a t ,  

~r,/3r being the longitude and colatitude of 12 referred to the principal axes of the 
Earth. These angles are related to the Andoyer variables in the form 

3 r  = = - ( 3 . 1 5 )  
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Furthermore, taking into account that tr _ 1 0  - 6  , and neglecting the terms of the 
second order in tr, we can perform the simplifications (Kinoshita, 1977, Kubo, 
1991): 

~r - ~r, ur -~ u,  (3.16) 

but, as we have indicated in subsection 2.1, these simplifications must be done only 
after taking the necessary derivatives in the equations of motion. 

On the other hand, the coefficient Dr is: 

~227r~v[2poT4(5F2(r)+r2G2(T)) - 
Dr - 3 15 

r5 dpo - --d-~r (2F2(r )+r2G2(r) ) ]dr ,  (3.17) 

which, for the Earth Model used and taking f~ _~ w3, has a value of 

Dr = -1.422689 x 1041 c.g.s.. (3.18) 

As seen above (3.5), T1 can be broken down as follows: 

Tlr -~ __1 a t  l_io 1 ~i v l_io 1 G,  
T1 = T l r +  Tit ~ 1 Gt (3.19) 

Tit = -- ~ 1-[01 fit n O 1 G. 

As for T2 , taking into account the expression (3.5), we will have in a similar 
way 

T2 = T2r + Tzt + T2 t. 

However, since the orders of magnitude of the coefficients Dr and Dt (of dimen- 
sions M L  2) are 

Dr _ 1.7 × 10 -4 ,  Dt _ 8 × 10 -9 ,  
Co Co 

we can deduce: 

T o -  \ C o l  - - ~ 3 x 1 0 - 8 '  

T2t ,,~ Dt ~ 2 
~ 0  -- ~oo ] ~-- 6 × 10 -17 , 

f2rt Dv~ ( O t )  10_12 

- C o ]  \ C o ]  , 

and, for our purposes, it is sufficient to only consider in this term the effect of the 
centrifugal deformation, that is: 

T2~--T2r=-~I Gt (rio 1 fir 1-[01 fir 1-Io 1) G . (3.20) 
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Finally, the kinetic energy can be expressed as: 

T = To q- Tit + Tit q- T2r. (3.21) 

3.3. POTENTIAL ENERGY 

The general expression of the potential of a solid Earth acting upon an external 
point (Moon, Sun) has the classical form: 

GMm* -1  + ~ ( R e ~  n dnPn(sinS)+ 
V -  r---- 7 -  \ r * )  

n = 2  

m---1 

J~, C~m and S,~m being the usual coefficients which represent the Earth's mass 
distribution with respect to the reference system being used. 

In our case, the main disturbing term corresponds to n = 2, for which we have 
the relationships 

2 C -  A -  B - F  - E  A -  B - D  
,/2 = 2~/ - -~  ' C21 - M R  2 '  Szl - M R S '  C22 - 4--IV~R-~e ' $2 - 2 M R  2 '  

where A, B and C are the principal inertia moments, and - D ,  - E  and - F  the 
inertia products, we can express it in the most convenient form 

V - Gm*r .3 ( 2 C - 2 A -  Bpz(sinS) + [ - F c o s a -  Esina]P~(sin6)+ 

- D  sin 2a] PZ(sin 5)} (3.23) + [ ~ - - ~  cos 2o~ + --~- 

According to (2.2) and (3.6), the inertia tensor of our problem can be broken down 
in the form 

II = no + fi~ + ~ t .  

The potential itself can be expanded as follows: 

V = Vo + V~ + Vt, (3.24) 

and taking into account (2,1), (3.8) and (3.13) we get: 

Gm* [2C0 - Ao - ( A o -  Bop2(sinf)cos2~] (3.25) Vo - B°p2.sin 6) + 
r .3 2 - - - Z - -  ' 

Gin* [2r33 - rl l  - r22p2(sin 5) + 
V~ - 7~  Dr 2 
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+ (r13 cos o~ + r23 sin 00 P21 (sin (5) + 

4 cos2(~+ ~ r12sin2o~ P2(sin(5) , (3.26) 

Vt - Gin*Dr,---5 t [2t33 - t112 - t22p2(sin(5) + 

+ (tl3 cos c~ + t23 sin c~) P~ (sin (5) + 

+ ( t l l  - t22 1 sin 2a )  P~(sin (5)] ~ cos2a + ~ t12 . (3.27) 

Using (3.11) and (3.18) it is easy to find the order of magnitude of each component 
with respect to main term To: 

__,,~V° _ 6 x 10 -8 --_~Vr 3 x 10 -9 __~Vt _ 2 x 10 -13 . 
To ' To ' To 

The term Vt is much smaller than the others and we can neglect it, so that the 
potential energy is reduced to 

V _~ V0 + V~. (3.28) 

By substituting the definitions of rij given in (3.14), we obtain the required 
expression for Vr: 

, [  3 2 1 sin 2~rp~ (sin (5) sin(o~ + ~ r ) -  Vr = K '  r (1 - ~sin2~)Pz(sin(5) + 

1 sin2 ~rP~(sin (5) cos(2c~ + 2~)]  (3.29) 
4 

where 

Gin* 
KI~ = - 6 D ~  ~-~ . (3.30) 

It is worth noting the fact that, in this derivation, both the rotational potential, 
Vr, and the tidal potential, Vt, are given respectively a function of the coefficients 
Dr and Dt  defined from an integral depending on the radial distance and the 
rheological parameters of the chosen Earth model. Thus, these coefficients are 
calculated principally as a function of geophysical data. In the traditional approach 
(Kaula, 1964, Peale, 1973), the corresponding terms of the potential are written in 
a straightforward manner as: 

r*.  r t 
Vt - Gm*m~RSr.3r~3 kxP2(cosS~), with cosS I - r.r~ , (3.31) 

where k2 is the Love number, and 

1 ?T~*R 5 
V ~ = - L k 2 ~ 2 2 ' ~ : e P 2 ( c o s S  ") with cosS" f~.r*  ' = f~r* (3.32) 3 r *~ 
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Equations (3.26) and (3.3) can be given by formulae similar to the last two 
ones, in terms of a coefficient that would take the role of a global Love number, 
whereas k2 is the usual Love number at the Earth surface. There is no contradiction 
between these different formulations, as the previous (3.31) and (3.32) are strictly 
tme only when some hypotheses are verified (Love, 1927), which is not the case 
for an accurate model of Earth. Thus these formulations should be understood 
as approximations. As for our derivation, it is valid in more general hypotheses 
(Getino and Femindiz, 1991a) which can be verified in more modem Earth models 
(Takeuchi, 1951, Gilbert and Dziewonski, 1975), and so can be considered more 
rigorous. 

In this sense, our equations should represent better approximations, as the 
procedure followed to obtain them is closer to real phenomenon of the deformations 
that actually occur. 

3.4. REFERENCE TO A MOVING ECLIPTIC 

The complementary term RE is written (Kinoshita, 1977): 

RE = M sinI RE1 + ARE2, 

where: 

dII _ sin(A dTr RE1 = sinTrcos(A -- I I)-~-  - 7r)-d-~- ; 

(3.33) 

RE2 = (1 -- c o s ~ ) - ~ , ( 3 . 3 4 )  

7r and II being the angles defining the moving reference plane. 

4. First Order Integration for a Rigid Earth 

As explained in the previous paragraph, the complete Hamiltonian of the problem 
is, in our approximation, 

7-I = T0 + T l r  +Tlt+T2r + V0 + Vr + R E .  (4.1) 

We now proceed to the first order analytical integration using Hori's perturbation 
method (1966), which eliminates short period terms by the use of a Lie transfor- 
mation and an averaging method. However, since the expressions that appear are 
very complicated, and since that perturbation method is linear at the first order of 
integration, we believe it is preferable to study separately the effects corresponding 
to a rigid Earth, to the centrifugal perturbation and to the tidal perturbation. This 
will allow us to work with simpler expressions, which will make the reading less 
difficult, and on the other hand, to understand more clearly the effects of each of 
the above mentioned perturbations. 

We begin this section by performing an integration corresponding to a rigid 
Earth, that is, prior to the deformation. The Hamiltonian is reduced to 

~'~rigid : TO q- Yo -~ R E .  (4.2) 
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The procedure used can be considered as a simplification of the more general 
approach of Kinoshita (1977), since instead of having recourse to the use of action- 
angles variables, a reordering of the unperturbed Hamiltonian is performed (passing 
the terms in the variable v to the perturbation), which allows us to shorten the 
calculations. This procedure has already been used in other problems (as in Henrard 
and Moons, 1978, for the case of the Moon) although as far as we know it has 
never been published in the case of the Earth. 

4.1. PRELIMINARY ARRANGEMENTS 

To make the integration easier, we will first consider each one of the terms in (4.2). 
Thus, the kinetic energy To (see (2.1) and (3.5)) can be written as: 

M 2 - N 2 [ sin 2 u cos: u'~ N 2 
T o -  2 ! \ Ao + - - - ~ 0  J / + 2--~o' (4.3) 

which can be broken down in the following way: 

( T ~ =  M 2 1 1 2 1 1 ) & A0 £ '  
T°=T~+Tb°- - '+  I ( M Z _ N 2 )  ( 1 1 )  (4.4) 

T0b=4 /30 ~00 COS2U. 

In the same manner, the term V0 can be split into: 

1 , a* 3 
v 0 a = ~ K ~ ( ~  -) P2(sin~), 

Vo= + Vo _ _  ( -  (4.5) 
Vo b = Gm* A o -  Bo p2(sin3) cos2a.  

a .3 4 \ r* ] 

where we have introduced the coefficient: 

' 3 Gm* 2Co - Ao - Bo (4.6) 
K° = a .3 2 

According to the orders of magnitude of these terms (Kinoshita, 1977) 

v0a~ Vo = 10_ 8 ,,~ 10_13 .RE ~ 10_ 7 
To ' To To ' 

the Hamiltonian can be broken down into { ~o=T~, 
7"( = 7-[0 + "HI + 7-[2 --* "HI T b + RE + V(~ , (4.7) 

7-/2 Vo b. 
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4.2. ELIMINATION OF PERIODIC TERMS 

To perform the integration at the first order we divide the Hamiltonian into an 
unperturbed part, 7-/0, and a perturbed part 7-/1, that is: 7-[rigid = 7-/0 + ~1 • By 
using Hori's method, the initial Hamiltonian is transformed into a new one, easier 
to integrate, marked with the symbol * : 

~-~rigid = 7"[0 + 7-[1 ""+ ~t~:igid = "]"~; q- 7-~ .  (4.8) 

The new disturbing term ~ will be chosen following a criterion of averages, 
that is, 7-/~ is defined as the time average of 7-/1 with respect to the solution to the 
unperturbed problem, with Hamiltonian ~ ;  = 7-/0. In the absence of resonances 
this procedure leads to an asymptotical solution that differs from the real one to the 
order of e in time intervals of longitude 

l /c ,  e being the relative magnitude of the perturbation (Sanders and Verhulst, 
1985). Thus,the new Hamiltonian (for the first order) will be: 

~ ;  = 7-/-0 ; 7-/~ = 7-/1 sec. (4.9) 

As the secular part of 7-/1 we take the terms which do not contain the angular 
variables #, v, nor those giving the position of the Moon and Sun. Then, we have: 

7-/; = T~ = 4 + + T Ao ' (4.10) 

3 
7-l~ = R E  + Voasec = M *  s inI*RE1 + A*RE2 + K~(1 - ~ sin 2 a*)B~,  (4.11) 

where the constant coefficient ~ = B(ooooo ) corresponds to the only secular con- 
tribution of the expansion of P21sin 6) (see Appendix I). Note that we have used 
asterisks to indicate the new variables that result from the canonical transforma- 
tion. 

4.3. GENERATING FUNCTION AND FIRST-ORDER PERTURBATIONS 

In this section, the asterisks used with the canonically transformed variables are 
omitted for the sake of simplicity. The generating function of the transformation 
is, at the first order: 

~-Llperdt , (4.12) 

where this integral must be performed along the solution to the unperturbed system 
(Hori, 1966). The solutions which are not constant will concern only the variables 
#, u, whose mean motions are: 

n ,  ----- d----/= 2 0 Bo  

° 1 
nu = d--[ = 2 Ao N o ,  (4.13) 
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Mo and No being constants of the motion. Carrying out the integration along the 
solution of the unperturbed Hamiltonian we obtain: 

W = ( B  0 ~--0) M z - N 2 s i n 2 v  
4 2n~- + 

[1 1 1 ] 
+K~ (3 cos 2 a - 1)Wa - ~ sin 2crWb + -~ sin 2 ~Wc , (4.14) 

where the terms which belong to the secular part, that is to say, those corresponding 
to B~o = B(ooooo), are assumed to be excluded. The functions Wi are (see Appendix 
I): 

Wa = ~ __Bi sin Oi,  
• n i 

Z 

Wb = ~ C',('r) s i n ( . - T ( g i ) ,  
"r i l t #  - -  T i t  i 

Wc = "7"'-7 n .  ~-'~.S-~. 2 - - - 7 n  s in (2 / , -  tO / ) ,  (4.15) 

with ni = dOi/dt .  Obviously, both the secular Hamiltonian and the generating 
function are basically the same as those of Kinoshita (1977), as we are referring, in 
this paragraph, to a rigid Earth (without deformation), although the expressions are 
not identical since he used action-angle variables. The perturbations, both periodic 
and secular, will then also be equivalent. However, for reasons of clarity, we prefer 
to calculate them, even in a succinct manner, since they will serve as a basis for 
the study of the deformations, which will be done later. 

The associated canonical transformation can be obtained at the first order by the 
equations of perturbation (Hori, 1966), which can be written in a symbolical form 
as: 

OW OW 
A ( A , M , N )  = - O ( , ~ , # , v )  ; A ( ) ~ , # , u ) -  O(A,M,N)"  

As the generating function depends on the variables a, I, related to the moments 
by the equations: 

N A 
C O S O ' =  - -  " C O S I =  

M '  M '  

it is convenient to carry out the derivations with the help of these variables. The 
derivation operators are: 

o °  co 4, OM : + ~cotcr~--~ + ~ , 

ON M sin a Oa ' 
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0 ( ~ A )  1 0 (4.16) 
0A M sin I OI 

The symbolical derivatives inside the parentheses refer to the partial derivatives, 
in an explicit way, with respect to the variables A, M, N. 

It is also interesting to get the expressions for the variation of the angles 0., I ,  
which are necessary to fix the position of fundamental planes of the Earth's rotation. 
We can deduce: 

Act -- M sin 0. cos 0. , 

1 t ow  ±ow  
A I  - M s i n I  ~ - - ~  cos 0 # ]  " (4.17) 

Given that 0. ~- 10 -6 rad., once the corresponding derivatives have been carried 
out, we take the simplification 

sin 0. ~ 0, cos 0. ~ 1, 

obtaining, in the first place, the following results (neglecting terms in  0 .2 ) 

1 1 COS IOWa ] 
Ao# ~- Ko -3Wa - sin---~Wb + ~Wc + ~ln7 -Of J ' (4.18) 

1 Wb 1Wc , (4.19) A0u ~ K0 3Wa + sin 0. 

Ao(# + u) "~ Ko c°s I  OWa 
s lnI  OI ' (4.20) 

Ao0. ~_ KoO0--~ b , (4.21) 

where we have introduced the new coefficient: 

Ko - K~ Gm* 2Co - Ao - Bo 
M - 3 ~ ~-~  , (4.22) 

while we use the notation A 0 to indicate the perturbations of a rigid Earth. The 
most important results for our purposes are those that refer to the motion of the 
three fundamental planes, which we shall now study. 

4.4. MOTION OF THE ANDOYER'S PLANE 

The Andoyer plane, perpendicular to the angular-momentum axis, is determined 
by the angles A, longitude of the node, and/,  inclination. Their nutations are, with 



134 JUAN GET1NO AND JOSI~ M. FERRANDIZ 

the said simplifications in the angle a • 

AoA ~- - K o  sin I O----f-- - Ko Y~ sin I OI sin O i ,  (4.23) 
i 

10Wo_Ko ~ " 
A0I --~ K ° s i n I  0A s i n i ~ ( - m s ) ,  cosOi .  (4.24) 

Z 

4.5. MOTION OF THE EQUATORIAL PLANE 

This plane is determined by the Euler angles ¢ and 0. To use a notation similar 
to that from Kinoshita, we shall call them A/and  Iy respectively. To obtain their 
perturbations we will refer them to the Andoyer variables. According to Kinoshita 
(1977), neglecting the terms in a z we have: 

a sin # . I f  -~ I + ~r cos # .  (4.25) 
A I ~ A + sin I ' 

Once the corresponding derivatives have been calculated, we obtain 

Ao(6 s) = 

 o(Sb) = 

K0 [OWb q 
A0(Af - A) - sin# - Wb cos#] = 

sin I [ 0/z 
I 

= Ko ~ r_C~(r) s inOi ,  
sin I i nu - ~-ni 

Ao(If  - I) ~- Ko [~--~cos# + Wbsin#] = 

---- COS O i  • 
"t" i n l t  - -  TTbi  

(4.26) 

(4.27) 

The second members of (4.26) and (4.27) are known as Oppolzer terms for the 
plane of figure. 

4.6. MOTION OF THE PLANE PERPENDICULAR TO THE ROTATION AXIS 

The longitude of the node and the inclination of this plane are designated by Ar and 
I~.  Their expressions as functions of Andoyer variables are (Kinoshita, 1977): 

&) 
-- 2Ao a sin---I ' 

I~ "~ I + ( 1  Co C o ) c r c o s # .  
- 2 Ao  2 B o  

(4.28) 
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Their perturbations will be: 

= (, Co Co ) 
2Ao 2Bo Ao(6A/) ,  

A o ( 6 I r ) =  Ao(Ir - I)  -- (1 2AoC° 2-~0) Ao(6 I / ) ,  

(4.29) 

(4.30) 

the second members of (4.29) and (4.30) also being known as Oppolzer terms (for 
the plane perpendicular to the rotation axis). 

4.7. PERTURBATIONS OF THE POLAR MOTION 

Polar motion is defined as the motion of the rotation axis relative to the figure axis 
(Kinoshita, 1977), specified usually by the pair of coordinates 

Co C°(1 + e / 2 ) a c o s ~ ,  (4.31) X p ~ -  ~o(1 - e/2)o-sin u ,  YP~--B--oo 

where e is a measure of the triaxiality of the Earth. Calculating their perturbations 
we obtain: 

C~0-) sin(# + ~, - TOi) ,  (4.32) Co (1 - e/2)Ko ~ ~ n .  - "cni A O X p  ~'~ ~ T i 

Co (1 + e/2)Ko ~ ~ Ci(r) (4.33) 
AOYp ~- - B--o cos(# + v -- r~)i) • 

r i n~ --  T n  i 

4.8. SECULAR PERTURBATIONS 

Given that the Hamiltonian 7-/* contains the angular variable A (see (4.11) and 
(3.34)) and its conjugate momentum A (through the angle/), we cannot obtain the 
perturbations corresponding to A and I analytically, so it is convenient to obtain a 
solution in power series of time (Kinoshita, 1977). As for the variables #, u, we 
have: 

d#* 07-/* _ 0(7-/~ + 7-/;) 
$ _ _  _ _  - -  

dt OM* OM* ' 

dr,* (97-/* 0(7-/~ + 7-(~) (4.34) 
n* - dt - ON* ON* ' 

Once these derivatives have been determined, and with the simplifications: sin c~ _~ 
0 ,  cos o- _~ 1, we finally arrive at the expression: 

= n.  + R~, + ~:o [ c o s t  oB~ ~] 
n ;  

sin I ' - - - ~  [ sin I* OI* 3 J , (4.35) 

* Ko[ ~] n u = nu + 3 , (4.36) 



136 JUAN GETINO AND JOSI~ M. FERRANDIZ 

with which: 

, 0t3" 
* * - -  0 n~ + nu = n~ + nu + R~I + Ko cos I 

sin I* ~m P 0I* 
(4.37) 

4.9. REMARK 

It is clear that on studying the rigid Earth in this section, the results obtained for 
both periodic and secular perturbations are the same as those given by Kinoshita's 
theory, if we only substitute the principal moments of inertia A, B and C for the 
corresponding ones A0, B0 and Co in the absence of deformation. For the same 
reason, Kinoshita's K coefficient, .function of A, B and C, is substituted by K0, as 
a function of Ao, B0 and Co. 

5. Effect of the Rotational Deformation 

In this section we shall study, following the same steps as before, the perturbations 
due to the centrifugal deformation. According to (4.1), the contribution to be added 
to the Hamiltonian, due to the effect of the rotation is: 

7-lrot = Ylr + Y2r + Vr. (5.1) 

Before proceeding to its integration, we shall study each one of its terms. 

5.1. PRELIMINARY ARRANGEMENTS 

By means of (3.13), (3.14), (3.15) and (3.19), the expression of Tit, after some 
calculations, will be: 

Tlr = D r  [ c g - ( M Z - N 2 ) \ - ' ~ 0 2  + Bo 2 ] ]  5sin2~,)- 
{ sin 2 u cos z u -3(M2- x2/k N ) sin   c°s2   + 

3 M 2 - N 2 
q- sin 2v sin 2 ~r sin 2~r + 

2 AoBo 

3M2 ( ~ 0  1 )} 
+~--~0 s in2a  sin2~r sinu sin~r + ~00 cosucos~ r  . (5.2) 

As in the previous section, it is convenient to transform this expression in order to 
separate first order terms from those with the coefficient B o  I - Ao 1 . Taking into 
account the trigonometric relationships: 

1 
(1 + cos2x) sin2x = 1(1 - cos2x) ,  COS 2 X = ~ 
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after some calculations we get: 

TIr = T~r + Tbr, 

where 

+3(M2 - N2) ( ~  ° 

3 M 2 ( 1  1 )  

+~-C70 N+N 

_ 3  
- -  - 2(M2 - N2) (~o2 + B~) ]  (1 ~ sin2 ~r)+ 

+ s in2 ~r cos 2(v - ~ )  + 

sin 2o. sin 2~r cos(v - vr) 
J 
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(5.3) 

(5.4) 

1) (, ,)] } 
x ~o /3o • - B g .~2 sin2o-sin2arcos(v+Yr) ,(5.8) 

where: 

T~r = D 2 [Co 3 + ( M  2 - N  2) + + ~ x  

× ~ 7/o+N - N + N  
and: 

Tbr = D 2 (M 2 - N  2) Bo 3 c o s 2 v + ~ - ~ o  x 

sin 2o- sin 2fir cos(v - vr) } ,(5.7) 

(1){ ( )  Tblr = Dr Bo Ao M Z -  N 2 1 1 ( 1 _ 3  2 ~00 + Boo 2 sin2 fir) cos 2v + 

+ ~ ( M  2 - N z) sin2 fir + cos 2~r+ 

1 ~)] + 
+ ~ ( 1  ° Ao) c°s2( v +  

3 M 2 } 
+4 -~o  sin 2a sin 2ff~ cos(v + ~ )  . (5.5) 

From (3.20) we can get the expression of T2r. In this formal expression, this 
term is very complicated, but we have shown that ~ _~ a -'~ 10 -6 rad., and, in 
addition, 

fir behaves as constant when calculating the perturbation equations. Thus, we 
shall neglect the terms in if2, so that: 

T2r = T~r + Tbr, (5.6) 
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Finally, from (3.29) and (3.28) we have: 

1K, [ 3 1 1 2 ] Vr : 3 r (1 - ~sin2~r)P0 + ~sin2~rPlr - ~sin ffrP2r , (5.9) 

where, for the sake of brevity, we have used the notation, 

Po = (a*/r*)3P2(sin6), 

P l r =  (a*/r*)3pl(sin6)sin(c¢ + ur), 

P2r = (a*/r*)3pZ(sin6)cos2( c~ + ur). 

The expression of P0, obtained directly from Appendix I, is: 

( a )3  P2(sin6):  ~(3cos2~r-1) y~BicosOi - 
i 

_3 sin2a ~ E Ci(r) cos(lz - rOi) + 
2 

r i 

3 +-~sin2 a ~ ~ Di(-c)cos(2#- rei) ,  (5.10) 

while those of remaining Pit and P2r are: 

Pit = 3 [ ~ s i n 2 ~  y~ Bicos(v- ~r i 

+2(1 + cos a)(-1 + 2cos or) ~ ~ Ci(7") cos(# + u -  ur - vOi ) -  
r i 

-lsina(14 + c o s a ) ~ r  ~ i  Di (~- )cos(2#+U-~r- re / ) ]  , (5.11) 

Par = -3 ~sin a ~ B i c o s ( 2 v -  2~r - rO / )+  
r i 

+ sina(1 + cosa) ~ ~ Ci(~-) cos(# + 2u - 2~r - 7Oi) + 
r i 

+1(1 + c°s°')2 E E Di(T)cos(2/z + 2 u -  2~r--TOi)]. (5.12) 
-r i 

5.2. E L I M I N A T I O N  OF PERIODIC T E R M S  

In a similar way as in the previous section we break down the Hamiltonian part of 
the rotational perturbation as follows: 

{ 7-tlr = T~r + T~r + Vr, 
7"frot = ~lr + 7~2r ---+ (5.13) 

U2r = + T r. 
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For the first order integration we consider the transformation: 

7-(.it ---+ 7-(~r = ~lsec = T?r + T~r + Vr,~e, (5.14) 

where T~r and T~ are given by (5.4) and (5.7) respectively, while, taking into 
account (5.11), (5.12) and Appendix I: 

3 ~ ( 1 - 2 s i n 2 ~ r ) P ° + 2 s i n 2 ~ P l ~ - 4  sin ~P2~ , 
see 

with 

P08ec 

(5A5) 

5.3. GENERATING FUNCTION AND FIRST-ORDER PERTURBATIONS 

with 

3 1 1 ] 
= 3 (1 - ~sin2~r)Wa - ~ sinZcrWb + ~sin2crWc , 

= 3 sin2~rWla + ~ (1  + COSCr)(--1 + 2COScr)Wlb -- 

1 sin~(1 + cos t )Wit ]  
4 ' 

W~ -= - 3 [ 3 s i n Z ~ W z ~ + s i n o - ( l + c o s o - ) W z b + l ( l + c o s c r ) Z W z c ]  , (5.18) 

The corresponding generating function at the first order, and omitting the asterisk 
for the sake of simplicity, will be: 

wr = f (~l~ - ~;r) dt = f ~l~pe,.dt = f V~p¢rdt, 

resulting in 

W~ = -~K' r l  , (1 - ~3 sina~r)W ~ + ~ sin2~rW1 r - ~ sin2 ~ W ~  , (5.17) 

3 sin2 or) B~0 3(1-  
9 

Pl~'sec = ~ sin2o~B'6o cos(v - ur), (5.16) 

P2rsec = - 9  sin2 cr/~0 cos(2v - 2~r). 

We have maintained the terms in v - ~ in ~ '1  since, once the corresponding 
derivatives have been carried out, after identifying ~ _~ o- and fir --- v, these terms 
will give secular contributions. 
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where W a ,  

W l a  = 

Wb and W~ are those shown in (4.15), the rest being: 

B--A- / s in(v  - ~r - rOi) ,  
i - - T n i  

Wlb = ~ Y ~  Ci(v) s i n ( # + u - ~ - v O i ) ,  
7" i I t #  - -  TT~ i 

W l  c .~- 
~ ~ Di(T) s i n ( 2 # + u - P ~ - r O i ) ,  

• 2 n #  - ~ n i  

W2a = ~ B__( s i n ( 2 u  - 2 ~ r  - 7Oi), 
i - - T n i  

W2b = ~ ~ Ci(T) s i n ( / z + 2 u - - 2 ~ - - r O i ) ,  
7 i n u - -  T i t i  

~ Di(~-) sin(2# + 2 v -  2 ~ r  - ~ - ® i ) .  ( 5 . 1 9 )  Wzc = . 2 n ~ - v n i  

Note that to obtain the above expressions we have taken into account that 
nu ~-- ny r. 

After performing the derivatives with respect to the variables which do not have 
the symbol ~,  we can express ~ and ur as functions of the Andoyer variables. 
Following Kinoshita (1977) we get 

C 
= + 

but, the effects we are dealing with being very small, we can make the approxima- 
tion (Kubo, 1991): 

Y~ ~_cr, ~,r ~ v .  

Now, with the simplifications sin a = 0, cos a = l, except for the terms where 
sin a appears as a divisor, by means of (4.16) and following a similar procedure to 
that described in subsection 4.3, the canonical equations of the perturbation are: 

1 1 cos I OWa 
A~# ~ Kr - 3 W ~ -  sin-'-'-~ Wb + -~W~ + sin~ 0~- + 

3 W _ 1 1 +~ la ~Wlcj , (5.20) 

[ 1 1 3 1 1 A~u-~K~ 3 W a + s i n  W b - ~ W c - ~ W l a + ~ W l c  , (5.21) 

At(# + v) --~ Kr cos I OWa (5.22) 
s in/  OI ' 
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owb 
K r  ' (5.23) 

where we have introduced the new coefficient, 

3Kr~ - l S D ~  Gin* (5.24) 
K~ - M - a*3 M ' 

and we use the notation A r to indicate the perturbations due to the centrifugal 
deformation. 

5.4. PERTURBATIONS OF THE FUNDAMENTAL PLANES 

Andoyer' s Plane: 

With the previous results, and following a similar approach to the case of the 
rigid Earth, we obtain: 

__1 __OWa- 10(Bi. 
ArA ~- - K r s i n i  OI K r ~ s i n l O i  ~-/)sinOi (5.25) 

i 

1 0 W a  K,. N--~(_ms)BicosOi.  (5.26) 
A r I  "~ Kr  sin~ 0--A- - sin~ i ni 

Equatorial Plane: 

In the same way, we have: 

Ar(6Af) ~- Kr [OWb s in#- -  Wbcos#] 
s in /  [ 0# 

K~ TCi(~-) sin 6)i, 
-- sin i ~ ~ n-u--_ T--ni 

iowa__ 1 A~(SII) ~_ K~ [--O-~-cos#+ Wbsin# 

"r i n t ~  - -  T r ~ i  

(5.27) 

(5.28) 

Plane perpendicular to the rotation axis: 

It is not so easy, as in the previous case, to get the perturbations corresponding 
to this plane. This is because the angles fir and Ir which determine it are obtained 
through the inertia tensor (see Kinoshita, 1977), so that, when dealing with a 
deformable Earth, their expression as a function of Andoyer variables is not that 
given by (4.28), corresponding to the rigid Earth. To make the present part easier 
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to read, we have included the method followed to obtain these new expressions in 
Appendix II. 

Then, the expressions of the angles related to the plane perpendicular to the rota- 
tion axis when considering the centrifugal deformation, and with the simplifications 
detailed in the Appendix II, are: 

, [ (  co 
Ar ----- A + ~  1 c r s in#+  

2A0 

+3Dr (A~ + B~) [or sin# - ~r sin(# + v - ~r)] ] , (5.29) 

ir ..~ i + (1 Co Co) 
- 2Ao 2B0 a c o s # +  

(¼ + ¼) 
Taking into account the results above, the perturbations due to the centrifugal 

deformation, taking v = ~ after carrying out the corresponding derivations, are: 

[ ( 2ffoo) (1  1 ) ]  At(5)%) --~ Kr 1 Co Co + 3 Dr(Ko + Kr) Ao + Bo x 
2Ao 

1 r ~ .  "rCi(~')sin Oi, (5.31) 
X s~nf . 17,tz - -  T T ~  i 

×EE 
r i 

Co Co 
) (' ')I +3Dr(Ko+Kr) ~ o + ~ o  x 2Ao 2Bo 

C/(r) cos Oi. (5.32) 
n ~  - T n i  

The above equations have been written in that way in order to obtain a more 
compact expressions of the (6.36) and (6.37), which include all the effects. Let us 
note however that the term in Dr Kr is of a greater order than the rest, since it is 
of the second order in Dr, and the others of the order of K0 Dr. Nevertheless, it 
cannot be suppressed since its value is only slightly less (see (3.18)). 

5.5.  PERTURBATIONS OF THE POLAR MOTION 

The polar motion is also obtained from the inertia tensor, so its expression must be 
modified. After the calculation which is detailed in Appendix III, we have: 

Co [(1 6D~)  6Dr ] 
Xp ~-- Ao Co a sin r, + ~ ~r sin Fr) , (5.33) 

Co 1 cr cos r, + ~r COS Vr) (5.34) YP ~ BO Co ] ~ " 
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By means of the equations (5.20)-(5.23), the corresponding perturbations due 
to the centrifugal deformation are: 

C o [  6 D r ,  ] ~ .  Ci('r) sin(# + u - "r•i)(,5.35) 

[ 6D~. ]~i Ci(7) Co Ko - ----~o (Ko + K~) cos(# + u - T0[~36) 
Aryp "~ - B--o . nlz - zni  

5.6. SECULAR PERTURBATIONS 

As we have seen in (5.14), the contribution to the perturbed secular Hamiltonian 
is: 

whose terms are given by (5.4), (5.7) and (5.2). To obtain the corresponding 
perturbations, we carry out the adequate derivations with respect to the variables 
without the symbol ~. Once taken, we can identify 0. = ~r and u = ~T, obtaining 
the following results, after neglecting the terms in 0-2: 

, cos I* OB 0 
6rn u ~-- Kr  s in i  ~ Oi ~ + DTM*Qa + 2D~M*Qb,  (5.37) 

6,.n* ~- DrN*Qc + 2DZ~N*Qd, (5.38) 

where 
' 

Qa : ~oo + a 2 Bo z '  

Qb : + + A-7+ B---~ ' 

4 1 1 3 ( 1  1 )  

=  +A7 Co ' 

8 1 1 6 ( 1 I) 3 (~__~ ~02) 
Qd -- (5,3 A3 ° B3 ° C 2 -~o + ~ + ~ + " (5.39) 

We have used the symbol 5~ to indicate the perturbation due to the rotation. Finally, 
from (5.37) and (5.38) it is clear that 

6r(n u + n*) ~-- K~ sin/* 0I* J + ~ D~ + Co ] " (5.40) 

Note that in these last expressions we have taken into account the simplification 

M -  N -  M(1 - cos 0.) -~ 0. 
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5.7. DISCUSSION OF THE RESULTS 

Periodic Perturbations: 

Let us study the periodic perturbations including the effect of the rigid Earth 
and of the centrifugal deformation. From expressions (4.20), (4.21), (5.22) and 
(5.23) we have, using the notation A0r to indicate the perturbations due to these 
two effects together: 

cos I OW~ _ Kor cos IOWa (5.41) Aor(# + u) (Ko + K ~ . s m l  OI s in /  OI ' 

OWb OWb = K o ~ - - ,  (5.42) (Ko + 
0# 

where we have introduced the coefficient: 

3Gm* [2C°- A ° -  B° -6D,,] (5.43) 
K0r = KO + Kr - a,3M 2 " 

Comparing (5.41) and (5.42) with the corresponding equations of Kinoshita 
(1977) for a rigid Earth, we see that they are the same if we replace Kinoshita's 
coefficient K by our K0~, so that the perturbations have the same expression with 
only a change of coefficients. This change is quite logical: Kinoshita's coefficient 
K comes from the secular part of the potential energy, which in this case is 
solely the rigid Earth potential Uo only, while, when the centrifugal deformation 
is considered, we have two potentials, Uo and U~,from which we get the new 
coefficient K0~ = K0 + hr .  

Now we study the variation of the fundamental planes. From (4.23), (4.24), 
(5.25) and (5.26) we have, for the Andoyer's plane: 

1 o 
Ao~ A _~ - / (or  ~ sin 10I  sin Oi, 

i 

(5.44) 

A0rI "" ~sin/(°rI ~-'~(-m5) n~ ./c°s Oi " .  • (5.45) 
z 

As for the Equatorial plane, from (4.26), (4.27), (5.27) and (5.28), the Oppolzer 
terms are 

Aor(6A/) --- sinK°rI ~ ~ .  nuTSi(TA-- Tni sinOi, (5.46) 

"~ cos Oi. (5.47) 
"r i ?Z# - -  T n  i 
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Comparing these expressions with those of Khloshita, the correspondence 
between the coefficients K and K0~ is also clear. The effect of the centrifugal 
deformation is reduced to an expression similar to that corresponding to the rigid 
Earth. 

In the same way, for the Oppolzer terms of the plane perpendicular to the rotation 
axis, from (4.29), (4.30), (5.31) and (5.32) we have: 

sin I 2Ao + 3 Dr + x 

× ~ E  !C--/(~-) sinOi, (5.48) 
i n #  - -  T n i  

[(, co c0)+3   £)] 
2Ao 2Bo + x 

× ~ ~ ~-c,(~-) cosei, (5.49) 
T i n u - -  T n i  

while for the polar motion, neglecting the triaxiality of the Earth, from (4.32), 
(4.33), (5.35) and (5.36), we have: 

( 6Dr ~ ~ ~ Ci('r) sin(#+ u - "rOi) (5.50) C°Ko~ 1 
ArXp ~ ~ Co ] . n ~ -  7hi 

Aryp --"~ Co (~ 6D~'~ C,(~-) cos(# + ~,- ~-O,) (5.5~) 
Co J $ o; 

Secular Perturbations: 

Using the notation 60r to indicate the secular perturbations due to the rigid 
Earth and the centrifugal deformation, from (4.35), (4.36), (4.37), (5.37), (5.38) 
and (5.40), we have: 

cos I* 013" 
* R~:I + Kor o 3KoB~ + DrM*Q,~ 60rnl~ "~ sin/* sin/* 0I* 

+ 2D2M*Qb, (5.52) 

* 2 * 60rn~, -~ 3KOB~o+DrN*Qc+2DrN Qd, (5.53) 

And finally: 

6or(n; q- n*) ~-- R -E1  COS/* OB o 4N* [ 4D~] 
sin I* + K0~ sin I -----S OI* + ~ Dr + Co ] " (5.54) 

Here we can remark the appearance of new terms. To evaluate their order of 
magnitude we need to know the value of the coefficient Ko~, which will be studied 
in section 7. 
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6. Effect  o f  the Tidal  De format ion  

We study now the effect of the tidal deformation. From the complete expression of 
the Hamiltonian (4.1), we can observe that the tidal perturbation is reduced to the 
term: 

7-it = Tlt. (6.1) 

Let us now look at the expression of this perturbation. 

6.1. PRELIMINARY ARRANGEMENTS 

Starting from (3.8), (3.9) and (3.19), the term Tit will be: 

{ [  2N2 / sin2v cos2/J)] 
Tit = Dt [-~-o2 - ( M Z - N 2 ) \ - - ~  + B2 j ] ] /3o+  

1 M z - N z 
q sin 2u/32 sin 2~ + 

2 AoBo 

+l(M2-N2)(sin2vA2 c°s2v)/32cos2~+Bo 2 

+ ~ sin 2o'/31 sin u cos ~ + cos u sin ~ 

where we have used the notation 

/3m = (a*/r*)3P~n (sin ~), r e=O,  1,2. 

(6.2) 

where 

1 2 
(M2-N2) (~0 -}-B00) /32COS2(~+U)+ 

1M 2 (1 1 ) } 
+~'-~-'o sin2o. ~oo+~oo /31sin(~+u) , 

1) 
5g  +   co 2a) - 

(6.3) 

(6.4) 

Using a procedure analogous to that of section 5 for the case of the centrifugal 
deformation, this expression can be broken down into two parts: 
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 (Ao - 4 

2 Co Ao /3o sin2a/51sin(5- u) . (6.5) 

As concerning the term T a the expression of Po can be found directly in It, 
Appendix I, and for the remaining two spherical functions it can be easily deduced 
that: 

/~1 sin(~ + u ) = 3  [3 sin2~ ~-r E i / ~ i  COS(~ -- /]  -- T ~ i ) ÷  

÷ ~ ( l  ÷ COSff)(--I ÷ 2COSff) E E Ci(T) COS(~ ÷ ~ -- l/ -- T O i )  -- 
"r i 

--1--sin~'(I +cos~)EE£)i(T)COS(2~Z+'ff--U--7"~)i)] , (6.6) 
4 -r i 

/Sz c°s2(~ + u) = -3  [ 3 sin2 ~ ~ y~/~i c°s(2~ - 2u - r~)i)+ r 

+ sin~(1 + cos~) ~ ~ 0i(r) cos(~ + 2 ~ -  2 u -  T~)i) + 
r i 

+1(1 ÷ c ° s ~ ) a ~ £ ) i ( r ) c ° s ( 2 ~ ÷  2 u -  2u-'c~)i)] i (6.7) 

6.2. ELIMINATION OF PERIODIC TERMS 

Using a similar procedure to that followed in previous sections, 7-/t is broken down 
into: 

'Hit = T~, 
7-[t = 7-{lt + 7-[2t --+ (6.8) 

7-f 2t : T~t. 
For the first order integration we carry out the transformation: 

"JLlt ~ 7 ~ t  = 7-~ltsec = 

= D t ~  o [ C2o (M2-N2)  ~-~02+~--~ 3 ( 1 - ~  sin2a) + 

+9 (M2-  N2) (~---~ + B---~)2sin2~ cos2(~- u) + 

+4-~o ~oo +B00 sin 2o s in2acos(~-u)  , (6.9) 
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where, for the sake of simplicity, we have omitted the asterisks. As in previous 
sections, for the secular part we have retained the terms which do not contain the 
variables/z, u, or those of the position of Moon and Sun, and also preserving the 
terms in ~ - u, which will give secular contribution as explained in subsection 
5.2 

6.3. G E N E R A T I N G  F U N C T I O N  A N D  FIRST-ORDER PERTURBATIONS 

The generating function corresponding to the first order transformation (6.9) is 
(omitting the asterisks again): 

f f 

Wt J(~lt- 7l~t) dt  = J ?-[ltper d t  , 

from which we get 

wt D, [c  a 2  +B-7 

with 

W~ = 3 ( 1 - ~ s i n  2 ~ ) W a - ~ s i n 2 ~ W b + - ~ s i n  2~Wc , 

W~ = 3 [ ~ s i n 2 Y W l a + ~ ( 1  +COS~)(--I+2cos~)Wlb-- 

--41 sin ~(1 + cos ~)Wlc] , 

rW~= 3 [3sinZ~Wza +s in~( l+cos~)Wzb + l ( l + c o s ~ ) Z w 2 c ] ,  (6.11) 

where each one of these functions is 

wo = Z ~ sin 6~ 
• 'rt i 'b 

T n i  
.r i ' ~ l t  

N D i ( ~ - )  

N /3i sin(F - u - rg3i ) ,  wlo = ~ - 7 ; i  
i 
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F ib  = ~ C,(r) s in(fi+~-u-r6)i) ,  
r i r~ t z - -  7"hi 

- -  Di(~- ) 
W,~ = r ~  Z 2 ~ 7 : 7 n  i sin(2fi + ~ -  u -  r~)i) ,  

i 

W2a = ~ /~/ sin(2~ -- 2u -- rg)i) 
i - T n i  

r i I t #  - -  T n i  

Di(~- ) 
W2c = ~r ~i 2 ~  ~7ni sin(2fi + 2~--  2u - Tel), (6.12) 

Through the perturbation equations and taking into account the fact that the 
variables with the symbol ,-, behave as constants, we obtain, with the usual simpli- 
fications in a: 

Atlt ~-- 3 M Dt - 1 -t- ~ r a  Jr- "~ -1- W2e-b 

+ - 

Atu "v 3Dr N 4 +  Z---~o + Wa- '~  "Zo +-~o W2c - 

Co ~+Voo ~ lo+.  Wlb- smcr ~Wlc (6.14) 

U ~ ,  (6.15) At(# + u) "~ 12Dt( .6 

Ate--~ 3 t~o  ° ~oo + Boo 0---7-' (6.16) 

using once again the simplification M -~ N, and the notation At to indicate that 
these perturbations are produced by the tidal deformation. Once these derivatives 
have been carried out we can identify cr = ~, u = ~. 

6.4. PERTURBATIONS OF FUNDAMENTAL PLANES 

Andoyer' s Plane: 

The nutations of this plane are obtained directly from the perturbations equa- 
tions. With the usual simplifications, we have: 

AtA --~ 0,  AtI ~- O. (6.17) 
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Equatorial Plane: 
Through (4.25) we obtain: 

[ - ] 
s in/  Co + sin#---b--~-+cos#~Wlb , (6.18) 

[ - . 
~x,(eb) ~- S~o N + Voo cos. o~ 

Taking into account the expression of Wlb in (6.12), and identifying the variables 
after taking the derivatives, we finally obtain: 

sin_~ r ~  ,~. ~-C,(T)sinOi,  (6.20) 

At(Mf) ~-- - K t ~  Ci(T) cosOi,  (6.21) 
7" i n #  - -  T n i  

where we have introduced the new coefficient 

¼) 
Co + ' 

which gives the order of magnitude of the tidal perturbation. 

(6.22) 

Plane perpendicular to the rotation axis: 
As in the case of the centrifugal deformation, the tidal deformation would give 

rise to a variation in the equations (4.28) of the rigid Earth. This dependence will 
be given quantitatively by the coefficient Dt. However, as Dr~Co ~- 8 × 10 -8 (see 
section 3), we can neglect this effect, and we shall calculate the tidal perturbation 
of these angles starting from the equations (4.28). 

Thus, with equation (4.28), and by means of the previous results (6.13) to (6.17), 
we obtain: 

At(SAt) ~ - Kt (1 Co Co ) ~ i  "rCiO-) sinOi ' (6.23) 
- sin-'--I 2Ao 2-'Bo . n u - - T n i  

"~ cos Oi. (6.24) 
2Ao . n~ - Tn~ 

6.5. PERTURBATIONS OF THE POLAR MOTION 

For the effect of the tidal perturbation on the polar motion the procedure used for 
the plane perpendicular to the rotation axis described above is valid, so that, after 
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neglecting the effect of the triaxiality of the Earth, we get: 

~i  Ci(T) sin(# + u - vOi), (6.25) Atxp - K t  . n# -- Tni 

~ el(7) cos( .  + u - 7Oi). (6.26) AtYp ~ Kt ~ . n ;  ~ "r--'-ni 

6.6. SECULAR PERTURBATIONS 

Starting from (6.9), with the help of (4.16) and the results (6.13) to (6.17), the 
canonical equations for the secular perturbations are: 

6tn*~"~3DtB~"M*[~-~(~o+B---o) I u A~ , (6.27) 

5tn* ~- 3Ptl~o N* 4 + A--~o + Co + , (6.28) 

where the symbol 5t is used to indicate the tidal perturbation. From these two 
expressions above and taking into account M -~ N once more, we can write 

12N* 
5t(nt, + n*) ~- Dt BY5o C2 ° (6.29) 

6.7. DISCUSSION OF THE RESULTS 

Periodic Perturbations: 
We now express the total periodic perturbations, by adding the effects corre- 

sponding to a rigid Earth, to the rotational deformation and to the tidal deformation. 
From the expressions (5.41), (5.42), (6.15) and (6.16) we have, using the notation 
A to indicate the total periodic perturbations: 

c o s  I OWa M ~ 
A ( #  + u) = Kor s in~  0 ~ -  + 12 Dt ~ , 

K OWb OWlb 
AO-~ O r - - ~ + K t  0"--'~ 

which becomes, when identifying variables after taking derivatives: 

A(# + u), .~/~ C O S I  O ( B i )  1 2 M ~ B i  
- °r sin---'--/~- ~-i sin@i + Dt--~o . n--( 

z 

sin Oi , (6.30) 
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Aa ~-- (Kor - Kt) ~ ~ Ci(~-) cos(# - TOi). (6.31) 
"r i n t `  - T n i  

Let us now study the variation of the fundamental planes. From (5.44), (5.45) 
and (6.17) we have, for Andoyer's plane, or plane perpendicular to the angular 
momentum: 

1 0 fB.___~i~sinO/ 
AA _~ -K0r  Y~, s inI  OI \ n i ]  (6.32) 

i 

Kor ~ ( _ m s )  Bi cosOi. (6.33) 
A I  "~ s inI  i ni 

As for the plane of the equator offigure, from (5.46), (5.47), (6.20) and (6.21), 
the Oppolzer terms are: 

sin(gi, (6.34) 
T C i ( T )  

A((~Af) ~ (/(Or - Kt) ~ ~" a t, - rni 
7- i 

A(5/y) - (K0r - Kt) ~ Ci(T) COSOi. (6.35) 
~" i % - -  T?~i  

For the plane perpendicular to the rotation axis, from (5.48), (5.49), (6.23) and 
(6.24), we have: 

~ [(Kor-Kt) (1  Co 2~o) (To B---~)] 2Ao + 3 Dr Ko~ + × 

1 "cCi(T) sin Oi, (6.36) 
r i 

2Ao + × 

× ~ rCi(r) cos(9,. (6.37) 
~- i n #  - -  T n i  

Finally, for the polar motion, from (5.50), (5.51), (6.25) and (6.26): 

Co[ 6Dr 1 
Arxp ~- ~ (Kor-Kt)-Kor Co J × 

× ~ Ci('c) sin(# + u - TOi), (6.38) 
.r i nt` -- rni 

A y p  ,'~ r 

Co[  6Dr ]  
(Kor-Kt)-KOr Co J × 

× Z cos(  + - 
"r i n t `  - -  TTL i 

(6.39) 
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Once the expressions (6.32)-(6.39) have been obtained, we can interpret the 
role the tidal deformation plays, the following results standing out: 

i) Concerning the Andoyer's plane, normal to the angular-momentum vector, 
the tidal perturbation gives a negligible contribution, at the order of accuracy with 
which we are working. 

ii) However, this perturbation acts upon the Oppolzer terms of the planes per- 
pendicular to the axis of figure and the axis of rotation, as well as the motion of the 
pole. Its contribution consists in diminishing the effect of the perturbations for rigid 
Earth and centrifugal deformation, as the coefficient Kt appears with a negative 
sign. This coincides with the results exposed by Kubo (1991). 

Finally, we should point out that just as we have included the coefficients K0 and 
Kr respectively for the effects of the rigid Earth and of the centrifugal deformation 
in a single coefficient: K0r = K0 + Kr, we could add to K0~ the coefficient of 
the tidal deformation Kt, as in the previous expressions it appears as Ko~ - Kt. 
Nevertheless for reasons which will be exposed in the following section we prefer 
to group K0 and K~ in one single coefficient. 

Secular Perturbations: 

Using the notation 5 to indicate the total secular perturbations, from the equa- 
tions (5.52), (5.53), (5.54), (6.27), (6.28) and (6.29) we have: 

5ha* ~_ ~R*E' + Ko,. c°sI*  OB° 3(//0 - Kt)B~ + D~. M* Q~, + 
sin I* sin I* OI* u 

+ 2 D2 M* Qb-  3 Dt t~o + , (6.40) 

5n* ~- 3(Ko-  Kt)BYz + Dr N* Qc + 2D2 N* Qd+ 
U 

(_C_~o 1 _~)  + 3 D t N,  t~  ° 4 + A--~o + , (6.41) 

5(n~, + n~,) -~ sin R*E!I* + Kor--sin I* 0I*° + __C~ [D" + 3DtB~o + Co ] " (6.42) 

which clearly shows the secular contribution of the tidal perturbation. 

7. Numerical Representation of the Earth's Rotationr 

In this section we give the numerical values of the perturbations we have studied 
in the previous ones and which are represented by the equations (6.32)-(6.42). For 
this, we need to evaluate numerically the coefficients K0r and Kt. 
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7.1. CALCULATION OF COEFFICIENTS 

The value of Kt  can be obtained directly. Starting from (6.22), and making the 
approximations M = Cow3 (see (2.7)) and A0 ~- B0, we have 

6 M  ~_ 6DtW3 
Kt  = Dt AoCo Ao " 

A0, the moment in absence of deformation, can be written: A0 = A - AA, where A 
is the total moment and AA the increment due to the deformation. As explained in 
subsection 3.2, this increment is: AA = ArA + AtA ,  corresponding respectively 
to the rotational and to the tidal deformations. The orders of magnitude of these 
increments with respect to the unperturbed moment of inertia are given by the 
coefficients Dr and Dr, being 1.7 x 10 -4 and 8 x 10 -9 respectively. So that, we 
can write: 

1 1 
K t ~ - 6 D t w 3  A - A A  ~ 6 D t w 3  ~ ,  

neglecting the products of the deformations. Then, using the values w3 = 

4.746599 x 101° sec.arc/Julian century (Seidelmann, 1982), and A = 8.094 x 
10449r.cm2. (Danby, 1962), and taking into account the value of Dt (3.11), we 
obtain 

Kt( = 2446"6204/cy., Kt® = 1120'~8549/cy., (7.1) 

However, the value of Kor cannot be obtained directly. Starting from its def- 
inition (5.43), and taking once again the approximation M = Co w3, it can be 
expressed as 

3Gin* [ 2 C o - A o - B o _ 6 D r ]  / G  
a*3w3 t 2-Coo CoJ ' 

(7.2) 

that depends on the value of (2C0 - Ao - Bo)/(2Co), which, of course, is different 
from the value of (2C - A - B ) / ( 2 C )  corresponding to the usual dynamical 
ellipticity H of Kinoshita (1977) for a rigid Earth. 

The value of K0r can be found by a procedure similar to that developed by 
Kinoshita (1977) to obtain I-I, and improved by Kinoshita and S ouchay (1990). We 
think there is no need to reproduce the method in this paper, but only to summarize 
some facts. First, the resulting Hamiltonian after the eliminations of periodic terms 
is 

 .2(1 N.2(  , 1) M'sin, R , 
4 A-oo + B-oo + - T  -Ao / ~  + + 

2N'2 ( 24 3Dtff~-.~, (7.3) 
+A*R~2 + (K~ + 3K~)/~ + ~ D~ + D.~oo + ° /  
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where all the terms in sin a have been neglected since no derivatives have to be 
taken with respect either to M or o'. Notice that K~ + 3 K~r = M Kor, according to 

(4.22), (5.24) and (5.43), and that the term Dt ~oo does not modify the calculation, 
since it is very small and is affected by the symbol ",-~" (no derivatives of it are 
to be taken). In order to compute dM/dt  and dI*/dt the function (7.3) is the 
same as that found by Kinoshita. Moreover, the accuracy of the solution can be 
improved in a standard way by adding to this Hamiltonian the second order secular 
terms. Because of their smallness, we have only to take into account the second 
order terms corresponding to a rigid Earth, that can be taken from Kinoshita and 
Souchay. 

Then, we can apply the procedure used by those authors to the Hamiltonian and 
get completely analogous results, after replacing the dynamical ellipticity H by 
Ho + H ,  (proportional to K0r), where 

2C0 - A0 - B0 Dr 
H0 = , H r  = - 6  ( 7 . 4 )  

2Co Co 

Taking the most up to date values of Kinoshita and Souchay (1990) for K0r (, K0ro 
and H, we have: 

H --- H0 + Hr  --- 0.0032739567, (7.5) 

with which we get: 

/(or ( = 3 - ~  [Ho + Hr]  = 
a(w3 

Kor® 

= 3 [H0 + H r ]  m( 1 n~ 
T/~( --[- m ~  F 3 w 3 

= 3 Gmo 
a3w3 [Ho "+" Hr]  = 

= 3 [Ho + Hr] rnG 
m (  -q- m ®  --~ m@ 02 3 

= 7567"768157/J.cy, (7.6) 

- -  = 3475"413512/J.cy, (7.7) 

in arc sec. per Julian century. From these values we can then calculate H0. Taking 
Co -~ C = 8.11 x 1044 (Danby, 1962), and Dr = -1.422689 × 1041 (both in c.g.s. 
units) (3.18), we get: 

Hr  = 0.00105251 > H0 = H - H r  = 0.00222145. (7.8) 

The coefficients Ho and t t r  have a simple dynamical interpretation, t I  rep- 
resents the dynamical ellipticity of the actual Earth, and Hr  represents the part 
of the ellipticity induced by the rotation. A similar concept already appears in 
Newcomb (1892), who carded out a rough estimation of the ratio between the 
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said ellipticity, e ~ in his notation, and the actual ellipticity, e, obtaining a value 
e'/e = 292/849 " 0.34, very close to that determined following our much more 
elaborated procedure: H r / H  _~ 0.32. On the other hand, H0 would represents the 
hypothetical ellipticity corresponding to the Earth without the deformation due to 
the rotation. 

With the help of these results we can now numerically evaluate the different 
perturbations. 

7.2. PERIODIC PERTURBATIONS 

Motion of Andoyer's Plane: 
Let us first calculate the variations of the Andoyer's plane, which, as we have 

shown, is not affected by the tidal perturbation. Developing the expressions (6.32), 
(6.33), and according to the Appendix I, we have, for the nutation in obliquity: 

Ae = - A I  --- 

=Kor(~j"~-m------~5(A:'cos,o-A 0,3c°s2e°-I ~A2) sin co) cos Oi + 
i ni 6 sin e0 ( 

+Kor® ~ ms (_AO) 3c°s2 eo -1 1A2) ) 
• - n---i- 6--~xneo ~ i sineo cos(9/, (7.9) 
z ® 

while for the nutation in longitude, taking into account the fact that (Kinoshita, 
1977): 

10.,  o.o 

we get: 

/ x ~  = _ / x ; ~  = 

cos 2co 1) 1 A2)~ 
n--~'l [ ( A ° ) - 2  i /  co+ s i n e o A i ]  - = Kor( ? cos 

Bi Onn ~ sin Oi + 
-m5_2 sin e0 0e0 I~i J ( 

1 (A~) 1A2)) cose0sinOi. (7.10) +K°r® Z 
z 

The expression of Onfl/Oeo can be found in Kinoshita and Souchay (1990), eq. 
(2.14.2). For the coefficients A~ ) we have used the values of Kinoshita (1977) with 
the corrections given by Kinoshita and Souchay (1990). 

The corresponding perturbation series can be found in Table I and II. 
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Motion of  the Equatorial plane of  Figure: 

Starting from expressions (6.34) and (6.35), the Oppolzer terms corresponding 
to this plane will be: 

A(~;V) = (Ko,( - K~()x 
[ 1 

X . ~ ,u  - -  ~'/'i 

, ) 
2sine----~(1 + coseo)(-1 + 2coseo)A~ ) + 

1 
-t A~ )cose0 + (1 - -  -- COS eo)Ai + 

nlt + ni 

1 )J  s i n (9 i + (  + ~ ( 1  - cos co)(-1 - 2cos eo)A~ ) 

+(Ko,® -/is®) × 

E X 
n t, ni 2 

q - - -  A°) cos eo + (1 - coseo)A~ ) s i n e / ,  (7.11) 
n~ + rti ® 

A(6L,) : (Ko,( - K~()x 

x - A °) sin 2co - sin co(1 + cos 
• n/~ Tbi 

+1(1 eo)A~ )) + cos co)(-1 + 2cos + 

+ - -  A°) sin2eo + s ineo(1-coseo)A~)+ 
n~t + ni -4 

cos eo)(-1 - 2cos eo)A~ ) cosOi + 
( 

+(KOr® -- Kt®) X 

~ .  [ 1 {1AO ) 1 eo)A~) ) x - sin 2co - sin co(1 + cos + 
• n ,  h i \ - 4  i -~ 

4- - -  cos Oi.  nu + n i 4 Ai sin2eo +-~s ineo(1-coseo)A~ ) ® 

As for the values of the coefficients, from (7.1), (7.6) and (7.7): 

Ko~( - Kt( = 5121':147757/J.cy, 

(7.12) 

t(OT®--Kt® = 23547558612/J.cy,(7.13) 
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Thus we remark that the tidal perturbation diminishes considerably the amplitude 
of the Oppolzer terms. 

The previous series (7.11) and (7.12) gather the first order contributions to the 
nutation of a rigid Earth and the corrections due to the elasticity. Nevertheless, in 
order to make the comparison with other studies easier, and to increase the accuracy, 
we have found convenient to add to those series a few second order corrections of 
lunar origin. As pointed out firstly by Kubo (1982), some significant second order 
contributions to the nutations in obliquity and longitude appear when considering 
the whole Hamiltonian for the rotation of the Earth and the orbital motion of the 
Moon. A more complete study of this effect has been carded out by Kinoshita and 
Souchay (1990). 

More precisely, we have added to the series the corrections 

- AA = -0.0433 sin f~ + 1.191sin 2f~ - 

- 0.083 sin(2F - 2D + f~) - 0.016 sin(2F + ~2), 

- - A I  = 0.102cosf~ - 0.227 cos 2f~ + 

+0 .074cos(2F  - 2D + f~) + 0.012cos(2F + f~). (7.14) 

The three remaining terms in expressions (7.38) and (7.39) of Kinoshita and 
Souchay have not been included since they do not share the frequency with any 
first order term. 

The resulting nutation series are given in Tables I and II. Let us remark that the 
corrections (7.14) have been used in all the concerned terms throughout the rest of 
the paper. These tables are referred to the Epoch J2000.0, and have been arranged in 
the same way. In the first column a label number is given to identify each term, and 
in the second one the period, with a sign corresponding to the sign of the argument 
of the trigonometric function. In the third column we have the argument, of the 
cosine for the obliquity and of the sine for the longitude. The next columns give 
the coefficients corresponding to the different contributions to the nutations, using 
1 mas as the unit. Columns 4 - 7 show the effects of the rigid Earth with rotational 
deformation only, giving first of all the Oppolzer terms for the axes of figure and 
of rotation, and then the nutations of both axes. These nutations were obtained 
by adding corresponding Oppolzer terms to that of Andoyer's plane (Column 10, 
headed by - A I  for the obliquity and - A A  for the longitude). Columns 8 and 9 
contain the contribution to the Oppolzer terms of tidal origin. The last five columns 
show the final coefficients for our model of a rigid Earth with elastic mantle. 
Column 10 gives the nutation of the angular momentum, which is not altered by 
tidal deformation. Columns 11 and 12 show the Oppolzer terms (obtaining by 
adding up columns 4 and 8, and 5 and 9 respectively) whose amplitudes decrease 
with respect to a rigid Earth or a rigid Earth with rotational deformation. The 
last columns give the total nutations of the axes of figure ( - A / y ,  --AAf) and of 
rotation ( -AI , , ,  -AA~). 
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Motion of the plane perpendicular to the rotation axis: 

Putting together the expressions (6,36) and (6.37) which give the Oppolzer 
terms corresponding to this plane, we can write: 

Ko 
= sin----~ ~ _ _ w  s ine~ ,  (7.15) 

i nt' - T n i  

A(5I~) = Ka ~ ~ Ci('r) cosOi ,  (7.16) 
-c i nt~ - -  T ? Z i  

where 

co co) 
2Ao - 2Bo + 3 K o r D ~  + , (7.17) 

and we treat (7.15) and (7.16) in a way similar to (7.11) and (7.12). With the value 
of Dr given by (3.18), the simplifications used in Subsection 7.1, and taking into 
account that (1 - Co/2Ao - Co/2Bo) ~ -Ho,  we have, in arc sec. per Julian 
century: 

Ka( = -19"321938/J.cy , Ka o = -8,879428/J.cy. (7.18) 

The results are gathered in Tables I and II. 

Polar motion: 

Starting from (6.38) and (6.39) we get: 

COK b C / ( T )  sin(# + u - T(~i), (7.19) 
~- i 

C°Kb C i ( ' r )  cos(# + u - r(~i) ,  (7.20) 
~ i 

where 

Kb = (Kor - Kt) - 6 Kor D---L. (7.21) 
Co 

To evaluate this coefficient we take Co = 8.11 x 1044c.g.s., (Danby, 1962), 
which gives 

Kb( = 5129,113168/J.cy,  Kb® = 2358"216639/J.cy. (7.22) 

The most significant terms are listed in Table III. 

7.3. SECULAR PERTURBATIONS AND CHANDLER PERIOD 

The secular perturbations can be evaluated using equations (6.40), (6.41) and (6.42). 
Let us look specifically at the most significant fact, referring to the Chandler period. 
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TABLE III 

Coefficients of POLAR MOTION. Epoch J2000.0, Units: amplitude = 0.001 
arc sec.; period = days. The table shows the coefficients of (C/A) sin() and 
-(C/B) cos() for xp and yp respectively 

COEFFICIENTS 
Argument (O) # + v - O /~ + v + O 

No. 1 1' F D [2 Period I gmplit. I Period ] Amplit. 

19 1 0 0 -2 0 0.9742 0.062 1.0378 0.066 
22 1 0 0 0 0'  1.0430 0.346 0.9696 0.322 

30 0 0 0 2 0 1.0783 0.059 0.9409 0.052 
39 -1 0 0 0 1 0.9695 0.064 1.0432 -0.010 

51 1 0 2 0 1 1.1294 -0.172 0.9052 0.020 

54 1 0 0 0 1 1.0428 0.069 0.9697 -0.009 
65 0 0 2 0 1 1 .0850  -0.864 0.9360 0.109 

68 0 0 0 0 1 1.0048 0.809 1 .0051  -0.118 
72 -1 0 2 2 2 1.1230 -0,172 0.9094 0.006 

73 -1 0 2 0 2 1.0437 0.125 0.9690 -0.005 

82 2 0 2 0 2 1 .1775  -0.126 0.8766 0.004 

88 1 0 2 0 2 1 .1293  -0,913 0.9053 0.031 
97 0 0 2 2 2 1 .1707  -0.151 0.8804 0.005 
99 0 0 2 0 2 1 .0848  -4.579 0.9361 0.170 

105 0 1 2 -2 2 1 .0133  -0.117 0.9967 0.115 

106 0 0 2 -2 2 1 .0105  -1.987 0.9995 1.962 

From (4.13) and (6.41) we can write: 

• ° , 
n v = n v + ~ n ~ ,  = ~ Ao 

+N* (Dr + 3 DtBY6o ) Qc + 2 D ] N* Qa, (7.23) 

where No is the constant value of the variable N*. To evaluate this expression we 
can arrange the different terms as follows: 

Aom l) Ao = -  

2 2 C o - A o - B o  + 1 [ ( C o - A o )  3 ( C o - B  ] 
Co 2 2Co ~ o  3 [ A 2 + 20)3 

Bo J ' 
QC 

6 2 C o - A o - B o  

Qd = co3 2Co 
Ao - Co 

- U~?T [2Ao(Ao - Co) 2 + (A30 - C03)] - 
C~Ao 



THE EFFECT OF THE MANTLE ELASTICITY ON THE EARTH'S ROTATION 169 

Bo - Co 
- ~  75 r .[2Bo(Bo - Co) 2 + (Bo 3 - Co3)] 
C Bo 

Then, neglecting the products of the differences Ao - Co, Bo - Co, taking into 
account the expression of/40 in (4.22), and performing the simplifications No 
N* ~ Co ~3, we obtain finally: 

2Co - Ao - Bo 
n~,* _~ 2Co oa3(1 + K)  , (7.24) 

with 

DT 12D!  + 6 D 3Gm( 3Gm o 
K = 2~oo+  zC~ -~oo ( t ( B ( + D t ® B ® )  ,~,.,2B( ,-575,.,2 B®.(7.25) 

a( ~3 ~®u¢3 

Giving numerical values, it results that K = -3 .11  x 10 -4. Then, we can conclude 
that the main part of n* is: 

2C0 - Ao - Bo 
n~, _ ~3 = - H 0  ~3, (7.26) 

2c0 

where H0 is the component of the actual ellipticity H introduced in (7.4), whose 
value is given by (7.8). Thus, the period P of the variable u, in absolute value, 
becomes: 

1 
P _~ - -  _~ 450days. (7.27) 

H0 

This period corresponds to the free Eulerian oscillation of the Earth (in this 
case for the deformable model considered), and according to the usual terminology 
(Jeffreys and Vicente, 1957), P can be referred to as the Chandler period. 

It is well known that for a rigid Earth, the use of the ellipticity H = (2C - 
A - B ) / (2C)  "~ 0.00327 leads to a value of 305 days for the Eulerian period of 
u, which differs notably from the observational results. However, in our derivation 
we get a period of around 450 days, which fits reasonably well with the observed 
values of the Chandler period (Lambert, 1980 and 1988, Melchior, 1983). 

Thus the previous mathematical developments prove that for an elastic Earth, 
the Chandler period does not depend on the actual (or usual) ellipticity of the 
planet, but on a hypothetical ellipficity H0 obtained from the former by removing 
the contribution to it of the centrifugal deformation, that is, the ellipticity induced 
by the rotation itself. The authors cannot resist the temptation to consider that 
ellipficity H0 as being in some sense "free", since it is not affected or "forced" 
by the rotational deformation and besides, it is in harmony with Chandler's period 
which plays the role of "free" Eulerian period. 

In any case, to give an intuitive physical explanation of this phenomenon that 
is both brief and at the same time clear, is not an easy task, and the literature is 
of no great help. Thus, a textbook of a general nature with the prestige of that of 
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Goldstein says of Chandler's period: "In effect some part of the earth follows along 
with the shift in the rotation axis, which has the effect of reducing the difference 
in the principal moments of inertia and therefore increasing the period" (p. 212, 
second edition). This description does not seem to be veryexact, and perhaps it 
would be better to speak of an increase in the difference of moments of inertia due 
to the rotation since, according to our mathematical derivations, it does not affect 
the period of precession. 

For the reader who are interested in the physical explanation of our results we 
would refer them to the above-mentioned article by Newcomb (1892) who, on 
using a very simplified mathematical model, insists on physical considerations that 
are possibly not very easy to understand in the light of the few occasions he is 
quoted. 

Finally, we must point out that although the obtained value of 450 days is 
slightly superior to those given by the latest experimental results (436-440 days), 
the fact that we have not considered the deformation produced in the liquid core 
must be taken into account as it shortens the value of this period (Vicente, 1961, 
Herring et al., 1991). 

8. Discussion of Results 

In order to evaluate the theory, some tables are given in which our numerical results 
are compared to those obtained by other authors. In Table IV and V, the values 
obtained for the nutations of the three fundamental planes are compared to those 
given by the theories of a rigid Earth, of first order (Kinoshita, 1977, reduced to 
the Epoch J2000.0) and of second order (Kinoshita and Souchay, 1990). For the 
sake of brevity, only the terms of greatest amplitude have been considered. The 
number of the first column is the same as the label term in Tables I and II. For the 
Andoyer plane the agreement with the Kinoshita and Souchay values is very good 
as expected, since that plane is not affected by the tidal deformation. The slights 
differences should be originated by the second order rigid corrections. 

Concerning the nutations of the axes of figure and of rotation, discrepancies do 
appear (less than 1 mas) due to the decrease in amplitude of the Oppolzer terms 
caused by the elasticity. 

In Table VI we show the comparison between Oppolzer terms calculated by 
us and those given by other authors (Sasao et al., 1980, and Kubo, 1991) with 
similar hypotheses about the elastic properties of the Earth. The values shown are 
the differences with those corresponding to Kinoshita (1977). It can be seen that 
the greatest differences amount to a few 0.01 mas, with the exception of the term 
99, semimonthly, for which the differences are of the order of 0.1 mas, with the 
value of Kubo in obliquity and that of Sasao et al. in longitude. 

In the last table, the principal nutations of the figure axis are compared to those 
of other theories for a non-rigid Earth. We have chosen those of Capitaine (1978) 



T
A

B
L

E
 IV

. C
om

pa
ri

so
n 

w
it

h 
R

IG
ID

 t
he

on
es

 f
or

nu
ta

ti
on

in
 O

B
L

IQ
U

IT
Y

. 
E

po
ch

 J
20

00
.0

. 
U

ni
t 

= 
0.

00
1 

ar
c 

se
c.

 K
=

K
in

o
sh

it
a(

1
9

7
7

).
 

K
S

 =
K

in
os

hi
ta

 
an

d 
S

ou
ch

ay
 (

19
90

).
 

P
er

o
d

 
A

rg
um

en
t 

(c
os

in
e)

 

N
o.

 
(d

ay
s)

 
1 

1'
 

F 
D

 

19
 

-3
1.

8 
1 

0 
0 

-2
 

22
 

27
.5

 
1 

0 
0 

0 

30
 

14
.8

 
0 

0 
0 

2 

34
 

9.
5 

-1
 

0 
2 

2 

39
 

-2
7.

4 
-1

 
0 

0 
0 

51
 

9.
1 

1 
0 

2 
0 

54
 

27
.7

 
1 

0 
0 

0 

64
 

7.
1 

0 
0 

2 
2 

65
 

13
.6

 
0 

0 
2 

0 

68
 

-6
79

8.
4 

0 
0 

0 
0 

72
 

9.
6 

-1
 

0 
2 

2 

73
 

27
.1

 
-1

 
0 

2 
0 

82
 

6.
9 

2 
0 

2 
0 

86
 

23
.9

 
1 

0 
2 

-2
 

87
 

5.
6 

1 
0 

2 
2 

88
 

9.
1 

1 
0 

2 
0 

97
 

7.
1 

0 
0 

2 
2 

99
 

13
.7

 
0 

0 
2 

0 

10
0 

-3
39

9.
2 

9 
0 

0 
0 

10
2 

36
5.

3 
0 

1 
0 

0 

10
3 

36
5.

2 
0 

-1
 

2 
-2

 

10
5 

12
1.

8 
0 

1 
2 

-2
 

10
6 

18
2.

6 
0 

0 
2 

-2
 

--
A

I 

R
ig

id
 E

ar
th

 

f2
 

K
 

I 
K

S
 

0 
0.

0 
0.

00
0 

0 
0.

0 
0.

00
0 

0 
0.

0 
0.

00
0 

1 
0.

5 
0.

46
6 

1 
3.

0 
3.

04
5 

1 
2.

3 
2.

34
4 

1 
-3

.1
 

-3
.1

07
 

1 
0.

3 
0.

29
1 

1 
18

.3
 

18
.3

19
 

1 
92

28
.6

 
92

29
.5

78
 

2 
2.

3 
0.

22
5 

2 
-5

.0
 

-4
.9

62
 

2 
1.

1 
1.

12
6 

2 
-1

.1
 

-1
.1

44
 

2 
0.

3 
0.

27
0 

2 
11

.3
 

11
.3

30
 

2 
1.

4 
1.

40
5 

2 
88

.5
 

88
.5

21
 

2 
-9

0.
2 

-9
0.

36
8 

0 
0.

0 
0.

00
0 

2 
-9

.2
 

-9
.1

90
 

2 
21

.4
 

21
.4

32
 

2 
55

0.
6 

54
9.

66
0 

N
on

-R
ig

id
 

E
ar

th
 

A
ut

ho
rs

 

0.
00

0 

0.
00

0 

0.
00

0 

0.
46

6 
3.

04
5 

2.
34

4 

-3
.1

08
 

0.
29

1 

18
.3

14
 

92
29

.5
75

 

2.
25

3 

-4
.9

62
 

1.
12

6 

-1
.1

44
 

0.
27

0 

11
.3

27
 

1.
40

7 

88
.5

16
 

-9
0.

36
7 

0.
00

0 

-9
.2

37
 

21
.5

13
 

55
0.

59
8 

R
ig

id
 E

ar
th

 

K 
I 

K
S

 

-0
.2

 
-0

.1
87

 

-1
.0

 
-0

.9
76

 

-0
.2

 
-0

.1
62

 

0.
5 

0.
50

8 

3.
0 

2.
96

6 

2.
6 

2.
56

6 

-3
.2

 
-3

.1
94

 

0.
3 

0.
32

8 

19
.4

 
19

.4
21

 

92
27

.7
 

92
28

.5
70

 

2.
5 

2.
49

5 

-5
.1

 
-5

.1
37

 

1.
3 

1.
30

4 

-1
.2

 
-1

.1
90

 

0.
3 

0.
32

3 

12
.6

 
12

.6
15

 

1.
6 

1.
61

8 

95
.0

 
94

.9
56

 

-9
0.

2 
-9

0.
34

4 

-0
.1

 
-0

.0
14

 

-9
.3

 
-9

.2
13

 

21
.6

 
21

.5
94

 

55
3.

4 
55

2.
43

0 

N
on

-R
ig

id
 

E
ar

th
 

A
ut

ho
rs

 

-0
.1

28
 

-0
.6

67
 

-0
.1

11
 

0.
49

4 

2.
99

1 

2.
49

6 

-3
.1

67
 

0.
31

6 

19
.0

68
 

92
28

.8
85

 

2.
41

9 

-5
.0

82
 

1.
24

8 

-1
.1

75
 

0.
30

7 

12
.2

07
 

1.
55

3 

92
.9

18
 

-9
0.

35
0 

-0
.0

94
 

-9
.2

53
 

21
.6

25
 

55
2.

49
7 

-/
x

/~
 

R
ig

id
 E

ar
th

 

K 
I 

K
S

 

0.
0 

0.
00

1 

0.
0 

0.
00

3 

0.
0 

0.
00

1 

0.
5 

0.
46

6 

3.
0 

3.
04

5 

2.
3 

2.
34

3 

-3
.1

 
-3

.1
07

 

0.
3 

0.
29

1 

18
.3

 
18

.3
15

 

92
28

.6
 

92
29

.5
81

 

2.
3 

2.
25

1 

-5
.0

 
-4

.9
61

 

1.
1 

1.
12

5 

-1
.1

 
-1

.1
44

 

0.
3 

0.
27

0 

11
.3

 
11

.3
26

 

1.
4 

1.
40

4 

88
.5

 
88

.5
00

 

-9
0.

2 
-9

0.
36

8 

0.
0 

0.
00

0 

-9
.2

 
-9

.1
90

 

21
.4

 
21

.4
31

 

55
0.

6 
54

9.
65

1 

N
on

-R
ig

id
 

E
ar

th
 

A
ut

ho
rs

 

0.
00

0 

0.
00

3 

0.
00

0 

0.
46

6 

3.
04

5 

2.
34

4 

-3
.1

07
 

0.
29

1 

18
.3

12
 

92
29

.5
77

 

2.
25

2 

-4
.9

62
 

1.
12

6 

-1
.1

44
 

0.
27

0 

11
.3

24
 

1.
40

6 

88
.5

00
 

-9
0.

36
7 

0.
00

0 

-9
.2

37
 

21
.5

13
 

55
0.

59
1 

o > z t'-
 

©
 

z > r~
 

©
 

z 



T
A

B
L

E
 V

. C
om

pa
ri

so
n 

w
it

h 
R

IG
ID

 th
eo

ri
es

 f
or

 n
ut

at
io

n 
in

 L
O

N
G

IT
U

D
E

. E
po

ch
 J

20
00

.0
. 

U
ni

t 
=

 0
.0

01
 a

rc
 s

ec
. 

K
 =

 K
in

os
hi

ta
 (

19
77

).
 K

S
 =

 K
in

os
hi

ta
 a

nd
 S

ou
ch

ay
 (

19
90

).
 

P
er

io
d 

N
o.

 
(d

ay
s)

 
f~

 

19
 

-3
1.

8 
0 

22
 

27
.5

 
0 

30
 

14
.8

 
0 

34
 

9.
5 

1 

39
 

-2
7.

4 
1 

51
 

9.
1 

1 

54
 

27
.7

 
1 

64
 

7.
1 

1 

65
 

13
.6

 
1 

68
 

-6
79

8.
4 

1 
-1

72
84

.9
 

72
 

9.
6 

2 

73
 

27
.1

 
2 

82
 

6.
9 

2 

86
 

23
.9

 
2 

87
 

5.
6 

2 

88
 

9.
1 

2 

97
 

7.
1 

2 

99
 

13
.7

 
2 

10
0 

-3
39

9.
2 

2 

10
2 

36
5.

3 
0 

10
3 

36
5.

2 
2 

10
5 

12
1.

8 
2 

10
6 

18
2.

6 
2 

A
rg

um
en

t 

(s
in

e)
 

1 
1'

 
F 

D
 

1 
0 

0 
-2

 

1 
0 

0 
0 

0 
0 

0 
2 

-1
 

0 
2 

2 

-1
 

0 
0 

0 

1 
0 

2 
0 

1 
0 

0 
0 

0 
0 

2 
2 

0 
0 

2 
0 

0 
0 

0 
0 

-1
 

0 
2 

2 

-1
 

0 
2 

0 

2 
0 

2 
0 

1 
0 

2 
-2

 

1 
0 

2 
2 

1 
0 

2 
0 

0 
0 

2 
2 

0 
0 

2 
0 

0 
0 

0 
0 

0 
1 

0 
0 

0 
-1

 
2 

-2
 

0 
1 

2 
-2

 

0 
0 

2 
-2

 

--
A

A
 

R
ig

id
 E

ar
th

 

K
 

I 
K

S
 

-1
4.

9 
-1

4.
94

5 

67
.7

 
67

.6
88

 

6.
0 

6.
01

7 

-0
.9

 
-0

.8
73

 

-5
.7

 
-5

.7
04

 

-4
.4

 
-4

.3
91

 

5.
8 

5.
81

9 

-0
.5

 
-0

.5
45

 

-3
4.

3 
-3

4.
30

4 

-1
72

85
.2

02
 

-5
.2

 
-5

.1
94

 

11
.4

 
11

.4
46

 

-2
.6

 
-2

.5
97

 

2.
6 

2.
64

0 

-0
.6

 
-0

.6
23

 

-2
6.

1 
-2

6.
13

4 

-3
.2

 
-3

.2
42

 

-2
04

.1
 

-2
04

.1
75

 

20
7.

9 
20

9.
09

5 

12
5.

5 
12

7.
23

4 

21
.2

 
21

.1
97

 

-4
9.

5 
-4

9.
43

3 

-1
26

9.
9 

-1
26

7.
79

9 

N
on

-R
ig

id
 

E
ar

th
 

A
ut

ho
rs

 

-1
4.

94
4 

67
.6

89
 

6.
01

9 

-0
.8

72
 

-5
.7

03
 

-4
.3

91
 

5.
82

0 

-0
.5

45
 

-3
4.

29
6 

-1
72

85
.1

97
 

-5
.1

96
 

11
.4

46
 

-2
.5

98
 

2.
63

9 

-0
.6

23
 

-2
6.

12
6 

-3
.2

45
 

-2
04

.1
65

 

20
9.

09
2 

12
5.

83
5 

21
.3

05
 

-4
9.

62
0 

- 1
26

9.
96

7 

--
A

~
 s 

R
ig

id
 E

ar
th

 

K
 

] 
K

S
 

-1
5.

0 
-1

4.
96

0 

67
.8

 
67

.7
76

 

6.
0 

6.
04

4 

-1
.0

 
-1

.0
07

 

-5
.4

 
-5

.4
34

 

-5
.1

 
-5

.0
96

 

6.
1 

6.
10

9 

-0
.7

 
-0

.6
61

 

-3
7.

8 
-3

7.
87

3 

-1
72

81
.5

 
-1

72
81

.7
98

 

-5
.8

 
-5

.8
48

 

11
.9

 
11

.9
21

 

-3
.1

 
-3

.0
73

 

2.
8 

2.
76

5 

-0
.8

 
-0

.7
67

 

-2
9.

6 
-2

9.
59

7 

-3
.8

 
-3

.8
14

 

-2
21

.5
 

-2
21

.6
02

 

20
7.

9 
20

9.
02

9 

12
5.

5 
12

7.
23

5 

21
.3

 
21

.2
60

 

-5
0.

0 
-4

8.
98

8 

-1
27

7.
5 

-1
27

5.
38

2 

N
on

-R
ig

id
 

E
ar

th
 

A
ut

ho
rs

 
K

 

-1
4.

95
5 

-1
4.

9 

67
.7

50
 

67
.7

 

6.
03

8 
6.

0 

-0
.9

64
 

-0
.9

 

-5
.5

18
 

-5
.7

 

-4
.8

73
 

-4
.4

 

6.
01

8 
5.

8 

-0
.6

24
 

-0
.5

 

-3
6.

73
7 

-3
4.

2 

-1
72

82
.8

70
 

-1
72

84
.9

 
-5

.6
44

 
-5

.2
 

11
.7

71
 

11
.4

 

-2
.9

24
 

-2
.6

 

2.
72

4 
2.

6 

-0
.7

21
 

-0
.6

 

-2
8.

49
6 

-2
6.

1 

-3
.6

36
 

-3
.2

 

-2
16

.0
85

 
-2

04
.1

 

20
9.

04
7 

20
7.

9 

12
5.

83
5 

12
5.

5 

21
.3

49
 

21
.2

 

-4
9.

92
6 

-4
9.

5 

-1
27

5.
16

6 
-1

26
9.

9 

--
A

A
~

 

R
ig

id
 E

ar
th

 
N

on
-R

ig
id

 

E
ar

th
 

I 
K

S
 

A
ut

ho
rs

 

-1
4.

94
5 

-1
4.

94
4 

67
.6

88
 

67
.6

89
 

6.
01

7 
6.

01
9 

-0
.8

73
 

-0
.8

72
 

-5
.7

05
 

-5
.7

04
 

-4
.3

89
 

-4
.3

89
 

5.
81

8 
5.

82
0 

-0
.5

45
 

-0
.5

45
 

-3
4.

29
2 

-3
4.

28
7 

-1
7 

28
5.

21
3 

-1
72

85
.2

05
 

-5
.1

92
 

-5
.1

94
 

11
.4

44
 

11
.4

45
 

-2
.5

95
 

-2
.5

96
 

2.
64

0 
2.

63
8 

-0
.6

23
 

-0
.6

22
 

-2
6.

12
3 

-2
6.

11
7 

-3
.2

40
 

-3
.2

43
 

-2
04

.1
18

 
-2

04
.1

20
 

20
9.

09
5 

20
9.

09
2 

12
7.

23
4 

12
5.

83
5 

21
.1

97
 

21
.3

05
 

-4
9.

43
3 

-4
9.

61
9 

12
67

.7
74

 
-1

26
9.

94
7 



THE EFFECT OF THE MANTLE ELASTICITY ON THE EARTH'S ROTATION 173 

TABLE VI 

TIDAL EFFECTS of Oppolzer terms for the FIGURE PLANE. The results show the differences 
with Kinoshita (1977). Unit 0.0001 arc sec. S.O.S. = Sasao, Okubo and Saito (1980). Kubo = Kubo 
(1991). 

Period Argument I OBLIQUITY I LONGITUDE 
No. (days) 1 1' F D f~ S.O.S. Kubo Authors S.O.S. Kubo Authors 

22 27.5 1 0 0 0 0 +3.2 +3.0 +3.03 -0.3 -0.3 -0.29 
68 -6798.4 0 0 0 0 I +3.3 +3.1 +3.11 -11.0 -10 .5  -10.64 
99 13.7 0 0 2 0 2 -20.7 -19 .9  -20 .08  +56.1 +53.8  +54.50 

100 -3399.2 0 0 0 0 2 -0.1 -0.1 -0.03 +0.2 +0.2 +0.25 
102 365.3 0 1 0 0 0 +0.4 +0.4 +0.46 +0.0 +0.0 +0.01 
103 365.2 0 -1 2 -2 2 +0.1 +0.1 +0.04 -0.2 -0.2 -0.17 
105 121.7 0 1 2 -2 2 -0.5 -0.5 -0.48 +1.4 +1.4 +1.35 
106 182.6 0 0 2 -2 2 -9.0 -8.6 -8.71 +24.5 +23.5  +23.71 

whose hypotheses are similar to those of  this paper, and Wahr (1981). The values 
of  the first have been taken from Capitaine (1978), referring them to the Epoch 
J2000.0 with the help of  the secular variations given by Kinoshita. For the obliquity, 

the agreement  with Capitaine's values is very good. The differences reach 0.1 mas 
only for the terms in f2 and in l' + 2 F  - 2D + 2[2, so that all the significant figures 
given by the said author are identical to ours, with the above mentioned exception. 
In longitude the discrepancies with Capitaine reach 1 mas for the term in f~, and 
are of  the order of  0. I mas for the other ones. As expected, the differences with the 
Wahr's  calculations are greater, since this theory includes a liquid core. 
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Appendix 1. Development of Spherical Functions 

In order to transform the spherical functions which appear in the perturbed terms 
of  the kinetic energy and of  the potential, a particular case of  Wigner 's  theorem 
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TABLE VII 

Comparison with NON-RIGID theories for nutation in OBLIQUITY and LONGITUDE of the FIGURE 
PLANE. Epoch J2000.0. Unit = 0.001 arc sec 

Period[  Argument [ -AIr [ -AAI 
No. (days) 1 1' F D ~ Capit. Wahr I Authors Capit. I Wahr [ Authors 

19 -31.8 1 0 0 - 2  0 -0.1 -0.128 -15.8 -14.955 
22 27.5 1 0 0 0 0 -0.7 -0.7 -0.667 67.7 71.2 67.750 
30 14.8 0 0 0 2 0 -0.2 -0.111 6.3 6.038 
34 9.5 -1 0 2 2 1 0.5 0.494 -1.0 -0.964 
39 -27.4 -1 0 0 0 1 3.2 2.991 -5.8 -5.518 
51 9.1 1 0 2 0 1 2.7 2.496 -5.1 -4.873 
54 27.7 1 0 0 0 1 -3.3 -3.167 6.3 6.018 

64 7.1 0 0 2 2 1 0.3 0.316 -0.7 -0.624 
65 13.6 0 0 2 0 1 19.1 20.0 19.068 -36.9 -38.6 -36.737 
68 -6798.4 0 0 0 0 1 9227.9 9202.5 9228.885 17282.7 -17199.6 -17282.870 
72 9.6 -1 0 2 2 2 
73 27.1 -1 0 2 0 2 
82 6.9 2 0 2 0 2 
86 23.9 1 0 2 -2 2 
87 5.6 1 0 2 2 2 

88 9.1 1 0 2 0 2 
97 7.1 0 0 2 2 2 
99 13~7 0 0 2 0 2 

100 -3399.2 0 0 0 0 2 
102 365.3 0 1 0 0 0 
103 365.2 0 -1 2 -2 2 
105 121.8 0 1 2 -2 2 
106 182.6 0 0 2 -2 2 

12.2 

92.9 
-90.1 

-0.1 

21.5 
552.5 

2.6 2.419 -5.9 -5.644 
-5.3 -5.082 12.3 11.771 
1.3 1.248 -3.1 -2.924 

- 1.2 - 1.175 2.9 2.724 
0.3 0.307 -0.8 -0.721 

12.9 12.207 -28.6 -30.1 -28.496 
1.6 1.553 -3.8 -3.636 

97.7 92.918 -216.4 -227.4 -216.085 
-89.5 -90.350 207.9 206.2 209.047 

5.4 -0.094 125.5 142.6 125.835 
-9.5 -9.253 21.7 21.349 
22.4 21.625 -49.7 -51.7 -49.926 

573.6 552.497 -1275.2 -1318.7 -1275.166 

(1959) ,  g i v e n  b y  K inosh i t a ,  wi l l  be  used .  The  a p p l i c a t i o n  o f  this  t h e o r e m  is de t a i l ed  

in K i n o s h i t a  (1977) ,  and  G e t i n o  (1989) ,  ob t a in ing  the  f o l l o w i n g  resul ts :  

=  (3co  o , rB cos   
i 

_ 3  sin 2or ~ ~ C~(T) c o s ( #  - r O i )  + 
2 7- i 

3 
+ 4  sin2 ~ E E Di(r)cos(2# - r O i ) ,  

r i 
( A I . 1 )  
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3 +~ 

3 
4 

P21(sin 5) cos ~ = ~ sin2a ~ ~ Bi sin(u - rOi) + 
r i 

~ p ( 1  + pcosa)(-1 + 2pcoscr) ~ ~ Ci(r)s in(# + pv - rOi) - 
p r i 

E sin or(1 + p c o s a ) E E D i ( r ) s i n ( 2 # + p u - r O i ) ,  (A1.2) 
p r i 

9 
3P~(s inS)s ina  = ~ sin2a ~ ~ Bi cos(v - rOi) + 

3 
+~ ~ ( 1  + pcosa)(-1 + 2pcosa) ~ C i ( r ) c o s ( #  + pu - zOi) - 

p r i 

3 x _ - psin~(1 + p ~ o s ~ ) Z  Z D~(~)~os(2. + p~ ~O~), (11.3) 
p r i 

3 P~(sin 5)cos 2a = - ~  sin 2 ~ ~ ~ Bi cos(2v - rOi) - 
r i 

p r i 

- ~  ~ ( 1  + 3  p cos cr) 2 ~ ~ Di(r) cos(2# + 2pv - rOi), (A1.4) 
p r i 

9 
3p2(s inS)s in2a  = ~sin 2 o" E E Bisin(2v - rOi) + 

r i 

+3 y~ sin ~(1 + pcos ~) ~ y~. Ci(7-) sin(# + 2 p v -  "rOi)+ 
p r i 

3 p ¢ o s f f ) 2 E  sin(2# 2pv rOi) (A1.5) +~ ~-~ p(1 + ~ Di(r) + - , 
p r i 

where p = -t-1, r = +1, and the functions Bi, Ci(r) and 
Di (r) are: 

1 . l) 1 2 2) 
Bi = - (3cos2I -1)A ° ) - ~ s m 2 I A  i - ~sin I A  i , 

C~0-) 

D~0-) 

= _4sin2," AO, + "2~1 + Tcos,)~-~ + 2~cos,)A~' + 

"r I )A  2) + ~ sin I (1 + ,  cos 

1 sin2 1 A °) + r s i n I  (1 + r cosI)AJ ) 1(1 + r cosI)2A~ ) .(A1.6) 
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The numerical values of the coefficients A~ ) were given in the said paper by 
Kinoshita. In our computation we have used the updated values by Kinoshita and 
Souchay (1990). As for the argument Oi, we have: 

Oi = rnll( + rn21® + m3F + rn4D-+ rn5Q, 

with i = (T/Zl, ~Z2, f~3, m4, rn5), 

F = I ( + 9 ( ,  

D = l ( + 9 ( + h ( - l o - g o - h ® ,  
f~ = h ( - A ,  

where l(, g(, h( are the Delaunay variables for the Moon, and 1 o, go, he  are the 
Delaunay variables for the Sun. 

Appendix 2. Plane Perpendicular to the Rotation Axis 

In this appendix we briefly describe the procedure followed to obtain the expres- 
sions of the longitude of the node, At, and inclination I t ,  of the plane perpendicular 
to the rotation axis of a deformable Earth. This method is an adaptation of that used 
by Kinoshita (1977) for a rigid Earth. Thus, using the same notation for the Euler 
angles, hf,  I f  and ~b, we first of all introduce the matrices: 

0 =  i f  , W =  s in I  Icos~b -sinq~ 0 , G =  Gv , 
cos ~b 0 1 Gz 

where G gives the angular moment. Then, through (2.7) we have: 

( M sincr s inu ) 
G = M sin a cos v = IIW(1 = (rio + IIa)W(t, 

M cos a 

where II is the inertia tensor, which, as we have seen in section 2 is broken down 
into an unperturbed and a perturbed part, which we show as: 

II0 = 0 Bo 0 , Ha = d12 d22 d23 , 
0 0 (70 d13 d23 d33 

dij being the components of the deformation. So, we can deduce: 

4 = w - l ( n 0  + f i d ) - lG .  

Developing the inverse of the inertia tensor in power series (see (3.4)), we can 
break down the matrix 0 as follows: 

Oo = W-q-IolG, 
(1 = (10 + 6(1 --, 

6(t = - w -  l l I o  l ~ d I I o l  G , 
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q0 corresponding to the rigid Earth, and ~ to the deformation. The first step in this 
process consists in determining ~ as a function of the Andoyer variables. 

Using the above expression and performing the corresponding operations we 
obtain ~ as function of the Euler angles, q, and the components of the angular 
moment G, as follows: 

1 f/sin ¢ G cos ¢ . \ 
h s o -  sinSs t A0 x + --b-7-o G") ' 

~f/o __ c°sCG~ sin+e-: 
A0 Bo "~y, 

G~ f sin + cos ¢ \ 
~o - co t I y  | ~ G ~  + ----fi---Gu} , (A2.1) 

Co \ - ~ 0  D O /  

1 [ { d12 Gz d22 G d23 Gz ~ ~hs - siyb cos+ \ ~  + z~ y + , - ~  ) + 

+ sin+ \~-~ +A--~0 + A---~0 ] 1 '  

(dllGx d12 Gy di3 Gz) ~ ¢ s = - c o s + \ ~  +A--~ +a - - ~  + 

( d12 Gx d22G d23 Gz) +sin+ \A---~ + B~ "+ B--~ ' 

( d13 Gz d23 Gu d33Gz ~ cos/y6hy (A2.2) ~=-\A--7-~7o +B-~o +~ J- 
Now, taking into account the relationships of the Euler angles with those of Andoyer 
(Kinoshita, 1977) up to the first order in o-: 

sin # IINI+o'cos#, hf ~ A + O'si--~7, + -"~ # + v - crcot ls in#,  

we will obtain first of all, neglecting the terms in or(1/Ao - 1/B0): 

! • M 
Aso ~- s~nzMPo bo ~- MQo, ¢0 -~ - -  - m P o c o t S ,  

' C0 

where we have used the notation (Kinoshita, 1992): 

P 0 = ~  + ~rcos#, Q 0 = - ~  + crsin#. 

(A2.3) 

(A2.4) 

Let us now calculate the increase of these angles. As we have said in sections 
5 and 6 the main perturbation is due to the rotational deformation, so the tidal 
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deformation will not be taken into account, since its order of magnitude is greater 
than o-. Then, starting from (A2.2), we can make dij = r/j, and taken into account 
the relationships (3.13)-(3.16), we obtain 

M 
6Jzf ~_ silnlMRP1, 6If ~_ MRQ1, 6~ ~- 2R-~o ° M RP1 c o t ~  (A2.5) 

with the notation: 

D~ 
R = 2~--~0 , 

P1 = - ~  + [0- cos # - 3 ~  cos(# + u - ~)1 ,  

QI = ~ + [0- sin # - 33~ sin(/z + u - ~ ) ] .  (A2.6) 

To get these expressions above, as well as neglecting the terms in A0 - B0 and 
those in 0-2, we have chosen to take the approximations: 

D~ D~ D~ D~ 
~ o 'B0 0-'-~oo~-0-AoCo ' a - ~ o -  Co' 

since the resulting error is to the order of 10 -13 , while, on the other hand, it notably 
simplifies the results. 

Then, from (A2.3) and (A2.5) we can deduce: 

s l U M P ,  If  ~_ MQ , ~ -  (1 + 2R)~-----0-- M P c o t I  , (A2.7) hs 

where now: 

P = Po + RP1, Q = Oo + RQ1, (12.8) 

and in this way, we have 0 as a function of the Andoyer variables. Through these 
relations we shall find the desired expressions of Ar and It.  To do this let us start 
with the relationships (Kinoshita, 1977): 

~f COS hf  + ~ sin I f  sin hi  = co sin Ir sin h r ,  

/:f sin hf - ~9 sin Iy cos hf = - w  sin I~ cos hr ,  

/~S + ~ cos I I = ~ cos L .  

Introducing the expressions we have found for ~ and q into these relationships, and 
taking into account the fact that when ignoring the terms in 0-2: 

M 
_ + 2 n ) ,  

t J0 
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after same calculations we obtain 

6Ir = Ir - I "~ (1 C° C ° ) a c o s # +  
- 2Ao 2Bo 

+ 3 D r ( - ~ o + - - ~ o ) [ a c o s # - ~ r c o s ( l z + u - ~ r ) ] ,  (A2.9) 

co co) 
6,kr = ,kr - A ~- sin I 2Ao 2--fro a sin # + 

+ 3 D r ( A ~ + ~ o ) [ a s i n # - ~ r s i n ( # + u - ~ r ) ] J  , (A2.10) 

which are the desired expressions. 

A p p e n d i x  3. P o l a r  M o t i o n  

Using an analogous procedure to that developed in Appendix 2, here we shall 
obtain the expressions of the polar motion, which is defined as the motion of the 
rotation axis relative to the figure axis (Kinoshita, 1977): 

&x 0dy 
Xp = ~ , y p  - -  - -  

From G = Hw, and developing I1-1 as previously described, we have: 

which results in, neglecting terms in a2: 

M M M 
w~o -~ ~ooaSinu, wyo -~ ~oaCOSU, ~vzo-~ ~oo' (A3.1) 

while their increases, with the same simplifications as in the previous appendix, 
will be: 

6w~ -- A~R(-~r sin v + 3 ~  sin ~ ) ,  

6Wy ~-- ~-----~R(-acosv + 3~rCOS~), 

M 
$W z " -~oo 2R , (A3.2) 

with R = 2Dr~Co. Given that, with the level of accuracy within which we are 
working, ca -~ M(1 + 2R)/Co, from (A3.1) and (A3.2) we finally obtain: 

] Co 1 a sin u + - - ~  sin ~ )  (A3.3) 
x,  ~" A'---o Co Co a~ , 

[ (  6Dr~ 6Dr_  ~ , ]  Co 1 ¢ cos u + ~ (A3.4) 
YP "~ B o  C o  ,] C o  o r  c o s  l / r )  ] , 

which are the desired expressions. 
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