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Abstract. Starting from the Hamiltonian model for a solid Earth with an elastic mantle previously
developped by the authors, analytical expressions are derived which give the nutation series corre-
sponding to the plane perpendicular to the angular momentum vector, to the plane perpendicular to the
rotational axis and to the equator of figure, as well as the series that give the polar motion. The effects
of the different perturbations — solid Earth, centrifugal and tidal potentials — are calculated separately.
The corrections due to the elasticity of the mantle, which mostly correspond to the Oppolzer terms,
are calculated with an accuracy of 10~° arc sec., given that the intrinsic observational accuracy has
reached 0.01 mas.
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1. Introduction

The aim of this paper is to derive analytical expressions and the corresponding
numerical series for the perturbations in the rotation of the Earth when the mantle
is assumed to be elastic instead of rigid, and is deformed by the very rotation itself
and by the lunisolar attraction. The periodic perturbations are offered in the form of
the nutations series in longitude and obliquity of the fundamental planes: Andoyer
plane — or perpendicular to the angular momentum vector -, equatorial one and the
plane perpendicular to the rotation axis. We can add the polar motion, which is the
displacement of the rotation axis with respect to the figure axis.

In the present approach we follow essentially the same lines as those described
in our recent Hamiltonian theory for an elastic Earth, published in a set of four
papers (Getino and Ferrdndiz, 1990, 1991a, 1991b, 1992), that is: the introduction
of a system of elastic Andoyer variables to express the Hamiltonian of the problem
and the later application of a canonical perturbation method based on the Lie series
for eliminating the periodic terms. The resulting secular Hamiltonian is studied
in a way analogous to the classic one of Kinoshita’s theory (1977), obtaining the
values of some parameters necessary for numerically evaluating the expressions
giving the perturbations, and, in our case, including the Chandler’s period.
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The advantage of this procedure is that it allows us, clearly and conveniently, to
separate the influence of each kind of the perturbations taken into account (mainly
rigid Earth potential, and centrifugal and tidal variation of the inertia tensor) on
the different variables considered, as well as the secular and periodic effects. It is
also susceptible to an easy adaptation to include new perturbations, such as those
of the second order derived by Kinoshita and Souchay (1990), without having to
reconstruct the theory.

The paper is organized in the following way: In Section 2, a brief description
of the canonical variables used is made, and the principal terms which are consid-
ered in the Hamiltonian are reviewed, without forgetting the important distinction
between the perturbing and perturbed roles played for a body when deformations
are considered. In Section 3 the analytical expressions of the relevant Hamiltonian
are given.

The tidal and rotational potentials are obtained directly using the same proce-
dure, that is, starting from the solutions of the displacement vector of the defor-
mation. The difference with the classical expressions is that both potentials do
not depend on a sole global k;, but they turn out to be functions of respective
coefficients dependent on integrals of functions of the radius and the rheological
parameters.

We then summarize the first order integration for the rigid Earth, presenting
expressions for the nutation of the Andoyer plane, as well as the Oppolzer terms
for the equator and for the plane perpendicular to the rotation axis, and finally
the solutions for the polar motion. Naturally, the results are similar to those of
Kinoshita’s theory. Nevertheless, it seems opportune to devote a few pages on
this basic reference with the aim of making later developments corresponding to
the elastic case both clearer and briefer, also facilitating the interpretation and
comparison of results.

In Section 5 the effect of the centrifugal deformation is studied. The elimination
of periodic terms follows a process analogous to that of the rigid case, and concludes
with the expressions of the perturbations of the fundamental planes, the polar
motion and the interpretation of the results. For the motion of the Andoyer plane
and the Oppolzer terms of the figure axis, the principal effect can be considered as
a coupling with the results of a rigid Earth, so that the coefficient responsible for
the amplitude of the periodic perturbations solely has to be re-examined. On the
other hand, for the Oppolzer terms corresponding to the motion of the rotation axis
or the polar perturbations, new terms appear which cannot be paired with those of
arigid Earth. A similar remark can be done for the secular Hamiltonian.

In Section 6 the same procedure is followed but for the tidal deformation, which
acts through a perturbation induced in the inertia tensor. The effect on the Andoyer
plane is negligible, while this effect diminishes the Oppolzer terms corresponding
to a rigid Earth, which coincides with the results of Sasao et al. (1980) and Kubo
(1991).
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In the last section we proceed to the numerical representation of the previous
results. First of all, the basic constants are calculated in the way above mentioned.
Those corresponding to the deformation which come from geophysical data, are
taken from a previous paper (Getino and Ferrdndiz, 1991a). With them the four
pairs of perturbation series considered — nutations of the three fundamental planes
and polar motion — can be numerically evaluated.

The results, which are shown in tables, are consistent with those published
by other authors [Kubo (1991) and Sasao et al. (1980)]. Taking into account the
fact that some observations reach the internal accuracy level of a few 0.01 mas, as
pointed out by Kinoshita and Souchay (1990), we have retained all the contributions
of the elasticity to the nutation series up to 0.001 mas. This does not mean that the
final series have such an accuracy, since we should also include the second order
corrections of the rigid Earth theory for this to be true. On the other hand, we must
note that some of our values do not coincide with the corresponding previous ones
given by us, since, when obtaining certain perturbing series some errors slipped in,
which mistake was discovered by the first author thanks to the reserve shown by
Kinoshita and Kubo with respect to the old values.

The text is completed by some comments concerning the secular motion and
the Chandler period and appendices detailing mathematical formulations used in
the work.

2. Approaching the Problem

As pointed out in the introduction, we are concerned with the study of the rotational
motion of the Earth for a model with a deformable elastic mantle. In this section
we will describe, in a schematic way, the different terms that will make up the
corresponding Hamiltonian, which will be developed later.

Since the distinction between perturbing bodies and perturbed bodies is essen-
tial when performing the analytical integration of the system, we examine in detail
at the beginning that distinction.

2.1. A NOTE ON PERTURBING AND PERTURBED BODY

Let us consider that an elastic body is deformed by the action of two perturbations:
tidal deformation, due to the gravitational attraction of external bodies, these bodies
being considered as point masses with known orbits, and centrifugal or rotational
deformation, due to the rotation of the elastic body itself. Thus, the bodies which
cause tidal deformation will be perturbing bodies (in the case of the elastic Earth,
the perturbing bodies considered will be the Moon and the Sun).

On the other hand, the external bodies can also be considered as perturbed
bodies, since the potential created by the Earth acts upon them, the Earth being
considered as a non-spherical deformable solid, subject to tidal and centrifugal
deformation.
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We thus see that the external bodies to the one which suffers the deformation
behave as perturbing bodies, that is to say, they cause the deformation of the relevant
elastic body; on the other hand, they behave as perturbed bodies, upon which the
potential created by that elastic body acts. Nevertheless, since the derivatives of the
canonical equations must be taken precisely with respect to the coordinates of the
perturbed bodies (Peale, 1973, Kaula, 1964) it is necessary to make the distinction
from the beginning. Thus we shall represent the coordinates of the perturbing
body with the symbol ~. Moreover, we shall conserve the notation m* and r* for
the mass and the distance from the center to the external body (perturbing and
perturbed), in the case when there is no risk of confusion.

The same reasoning must be applied to the case of the rotational deformation.
So, we shall also use the symbol ~ upon the corresponding coordinates when acting
as perturbing ones.

2.2. TENSOR OF INERTIA

Due to the deformation of the elastic mantle, the tensor of inertia will suffer an
increase. We can then break down this tensor into two parts:

H=H0+Hd,

where I is the tensor in absence of deformation. When it is referred to the principal
axes of inertia, it has the well known expression:

Ag 0 O
Ig=| 0 By 0 |, 2.1
0 0 Cy

where Ag, By and Cj are the principal moments of inertia of the Earth without
deformation.

Now, the increase 114, due to the deformation, depends on the perturbing poten-
tial, so it will be a function of the coordinates of the perturbing bodies. In order to
emphasize this fact, and according to what was explained in the previous paragraph,
it will be written as II;, so that we can write:

=T+ 1. (2.2)

2.3. KINETIC ENERGY AND CANONICAL MOMENTS IN EULER VARIABLES

Taking the Euler angles according to the notation of Goldstein (1972) (see Figure
1), and using the matrices:

0 ' 9 cos?y sinfsiny O
q= (¢>,q‘= (¢>,W= (—-sim/) sin 8 cos ¢ O), 2.3)
Y (] 0 cosd 1
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Fig. 1. Euler and Andoyer angles

the kinetic energy will be
1 .
T = —;—wtﬂw = Eq‘tWtHWq. (2.4)

In order to define strictly the canonical moments, we must take into account the
dependence of the centrifugal potential on the velocity, as studied in Getino and
Ferrdndiz (1992). However, in this work we will take the usual simplification of
considering that the centrifugal deformation is produced at a constant velocity, so
that the canonical moments will be:

Py N
pP= ( P, ) = %% = WTIW§ = Wiy + 1)) Wy . (2.5)

It is interesting to point out that, from (2.5) it can clearly be seen that the moments
thus defined depend on the deformation, so we shall call them Euler’s elastic
moments (Getino and Ferrdndiz, 1990). Then, if we ignore the effect of the non-
sphericity of the Earth when we consider the perturbation I1,, the tensor IT will be
symmetrical, so that the canonical expression of the kinetic energy will be:

T = %th—ln—lw—tp = %PtW_l(Ho +I)~'wtp. (26)
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2.4. ANDOYER’S CANONICAL MOMENTS

As in Getino and Ferrdndiz (1990), we perform a canonical transformation to
convert the former set into a new one similar to the Andoyer’s canonical set, the
new variables being denoted by (A, p, v, A, M, N) (see Figure 1). Two auxiliary
angles o, I are used, related to the canonical momenta through the identities
coso = N/M, cosI = A/M.Itis also useful to consider the expression relating
the angular momentum, this set of variables, and the set in 2.3:

M sino sinvy _
G=| M sing cosv | =WT'P=TIWq = (Il + II4)Wg. V%))
M coso = N

The meaning of the new Andoyer-like variables is quite similar to the meaning
of the classic Andoyer system for a rigid body. But, in our case, the angular
momentum contains also the effect of the elastic deformation of the mantle, and
the new canonical moments too. Due to this, we called them Andoyer’s elastic
moments, for the sake of the shortness. The plane perpendicular to G, in which the
variable p is measured, is simply referred to as Andoyer’s plane. Variable ¢ is the
angle between the angular momentum axis and the figure axis, and I is the angle
of the first vector with the polar axis of the inertial plane (the ecliptic reference
system at a given epoch). So, the differences with the usual Andoyer system for
a rigid body lies in the fact that in the last system the angular momentum does
not contain any deformation contributions and is given simply by Il W ¢ in the
previous notation.

There are, of course, also a function of the deformation, so that we have used
the name of Andoyer’s “elastic” moments (Getino and Ferrdndiz, 1990).

Thus, the kinetic energy in these variables is:

T= %th—la = %Gt(Ho +y)'a, (2.8)

with G given in the first equality (2.7).
2.5. POTENTIAL ENERGY

As for the inertia tensor, the potential can be divided into two terms:
V=W+Vg, (2.9)

where Vj is the potential due to the Earth in the absence of deformation, and V,
is the additional potential due to the redistribution of mass by the deformation.
This potential acts upon the external bodies, the Moon and Sun, now considered
as perturbed bodies, so V3 will not carry the symbol ~.
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2.6. ELASTIC ENERGY

When a planet is deformed, energy is stored inside in the form of elastic strain
energy. The expressions of this energy can be found in Getino and Ferrandiz
(1991a) and Getino (1992). Now, given the fact that the order of magnitude of the
elastic energy due to the tidal deformation is very small with respect to the Kinetic
and potential energies, and that the elastic energy caused by the rotation is constant
under the hypotheses with which we are working, in that follows it is not necessary
to consider these terms.

2.7. REFERENCE TO A MOVING PLANE

We can express the kinetic energy with Andoyer’s elastic variables,
(A, M, N, A, u, v), which relate the fixed system (that is, the ecliptic of the epoch),
to the moving system of Earth’s principal axes, Oxyz. Nevertheless the theories
which deal with the motion of the Earth’s center of mass are referred to the ecliptic
of date. Then we must unify the terms to one reference system only.

Given the great complexity of these theories, it is preferable to express the
kinetic energy with parameters related to the ecliptic of date, introducing a new
system of variables, (A, M’, N', X', u’, v") which can be interpreted as Andoyer
elastic variables relating the reference system of the ecliptic of date to that of the
principal axes. This change of variables leads to the addition of a complementary
component, Rg, to the Hamiltonian referred to the previous inertial frame, as
described in Kinoshita (1977).

In what follows, we shall suppress the primes of the new canonical system. That
will not cause any confusion.

3. Expression of the Hamiltonian

According to what was pointed out in the previous section, the Hamiltonian is:
H=T+V + Rg. @B.1

In this section we shall develop each one of these terms and we shall make the
necessary prior transformations to obtain an adequate expression of the Hamiltonian
in order to proceed with the first order analytical integration.

3.1. DEVELOPMENT OF THE KINETIC ENERGY

First of all, starting from (2.8) we develop the kinetic energy. To do this we need
to express the inverse matrix (Il + II;) ™! , which can be expanded as follows:

! = (I + [y)~! = 15 ' (7 + 1, 1157, (3.2)
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I being the unit matrix. Taking into account that the order of magnitude of the
perturbation I, is small with respect to the unperturbed part, I1p , we can perform
an expansion in series as follows

(I + 1,0 = 1 - T, 105 + [T, 105 ')? + O, 11, )2, (3.3)
Up to the second order in ﬁd IIy 1 , sufficient for our study, we have:
DRI § S | PNV P VP | R TRR 1 PR TP 1 P (3.4)

We can then break down T as follows:
1

To = 5thgla,
T=To+Ti+Th—~{ T = ——12—Gt (I ) G, (3.5)

1 ~ ~
T, = EGt (' I, 05 I, I G

where Tj is the energy corresponding to the rigid body, and 77 and 7> the pertur-
bations of first and second order by the deformation.

3.2. TENSOR OF DEFORMATION

As already pointed out, we consider two causes in the deformation: the tidal defor-
mation, which comes from the lunisolar attraction, and the rotational deformation,
due to the Earth’s centrifugal potential. Thus, the matrix of the deformation will
be:

I, =10, +II,. (3.6)

As explained in Getino and Ferrdndiz (1990), the perturbing potential causing the
tidal deformation, at the second order and by unit mass is:
Gm* rr*

Wy = ——-r’Py(cos §), with cosS = — (3.7)
T T

where G is the gravitational constant, r the vector from the origin to the point
within the Earth where the potential is evaluated, r its modulus, and m*, r*, r* are
the mass, the vector from the center of the Earth to the external body (Moon, Sun),
and its modulus.

In the aforementioned work, it was shown that, considering a symmetrically
spherical Earth, under the influence of this perturbing potential, II; is given by:

_ g*\3 [t tiz i
Il; = Dy (T—*) t12 t ta3 |, (3.8)

t13 ta3 133
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with
tyy = 2Py(sin8) — P}(siné)cos2&, t1p = —P¥(sind)sin2@,
tay = 2Py(siné) + P2(sinb)cos2a, t13 = —2P)(sin 8) cos &, (3.9)
tss = —4Py(siné), ty3 = —2P3(siné)sin &,

&6 being the longitude and latitude of the perturbing body referred to the principal
axes of the Earth, a* the semi-major axis of its orbit, and the coefficient D; is given
by:

Gm* 27w

D; = a*3 15

[2p0r <5F2(r) + T2G2(T)> -

dr

the integral being spread over the mantle. The functions py, F; and G5 depend
on the Earth Model used. In Getino and Ferrandiz (1991a) these functions were
computed by Takeuchi’s Model 2, providing the values:

ys3P0 (2Py(r) +r2G2(r)>] dr, (3.10)

6.953379 x 10%c.g.s. for the Moon, A1)
| 3.185508 x 10%c.g.s. for the Sun. '
As for rotation, the disturbing potential by unit mass is
Q
W, = lerz - —I—ersz(cos S'), with cosS' = °e (3.12)

3 3 rQ’

where (2 is the spin angular velocity and r is the position of the field point relative
to the center of mass. The term Q272/3 can be absorbed by the general central field
of the body and will not be considered further (Peale, 1973).

Following a study similar to that of the tidal deformation we find that the
additional contribution in the inertial tensor due to the centrifugal deformation is
{Getino and Ferrandiz, 1991b):

_ Tl T2 T13
U, =Dy | 712 722 723 |, (3.13)
T13 T23 T33
with
r11 = 2P5(cos B,) - P22(cos BT) cos2d,, Ti2= -—P22(cos B,) sin 2@ ,
T2 = 2P5(cos Er) + P}(cos Br) c0s2d,, 113 =—2P}(cos ET) cos &, , (3.14)
r33 = —4P(cos ﬁ,) , 23 = —2P)(cos B,)sin &, ,

&, Br being the longitude and colatitude of §2 referred to the principal axes of the
Earth. These angles are related to the Andoyer variables in the form

Br=5r, @G =7)2—T,. (3.15)
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Furthermore, taking into account that o =~ 10~ , and neglecting the terms of the
second order in o, we can perform the simplifications (Kinoshita, 1977, Kubo,
1991):

Or >0, Vp 2V, 3.16)

but, as we have indicated in subsection 2.1, these simplifications must be done only
after taking the necessary derivatives in the equations of motion.
On the other hand, the coefficient D, is:

Q% 2n 4 2
D, = —?E T[Zpo’r‘ (SFz('l”) +7r Gz(’l‘)) -
dpo
_..5%P0 2
P (2F2(T) +7r Gz(r))]dr, 3.17)
which, for the Earth Model used and taking {2 ~ w3 , has a value of
D, = —1.422689 x 10" c.g.s.. (3.18)

As seen above (3.5), T1 can be broken down as follows:

T, = —%thgl I, I, G,

. (3.19)
Ty, = —Eatngl I, ;' G.

Ty =Ty + T —

As for T , taking into account the expression (3.5), we will have in a similar
way

T =Ty + 1ot + Tt -

However, since the orders of magnitude of the coefficients D, and D; (of dimen-
sions M L?) are

D Dy

L a17x1074, =L ~8x1077,
Co X Co
we can deduce:

Ty (D'r)z -8
o (22 ~3x1078,
To Co/

T ~ 2’2) ~6x 10717,
To C()

Tot &) (-Qi> ~1x10712
To ~ \Co) \Co) — ’

and, for our purposes, it is sufficient to only consider in this term the effect of the
centrifugal deformation, that is:

=T = %Gt (I I, I I, I Y G (3.20)



THE EFFECT OF THE MANTLE ELASTICITY ON THE EARTH’S ROTATION 127

Finally, the kinetic energy can be expressed as:

T=To+ T +Ti+Tor. (3.21)

3.3. POTENTIAL ENERGY

The general expression of the potential of a solid Earth acting upon an external
point (Moon, Sun) has the classical form:

GMm* = R@)" [ .
= - JnPn
Vv { 1+ E ( -~ (sin )+

%
r n=2

n
+ Z P (sin é) (CF cosma + Sy sin ma)] } , (3.22)
m=1
Jn, Crnm and Sy, being the usual coefficients which represent the Earth’s mass
distribution with respect to the reference system being used.

In our case, the main disturbing term corresponds to n = 2, for which we have
the relationships
_20-A-B _, -F 1 -F , A-B -D

= = — :——C
& ?MRL, ' * " MRY’"? MR%’?

T 4MR%’* T 2MR3’

where A, B and C are the principal inertia moments, and —D, —F and —F the
inertia products, we can express it in the most convenient form

, . _A_B
V= GTE {ZC ;4 Py(sind) + [-Fcosa — Esina]l le(sin o)+
,
- -D
+ [A - B cos2a +—sin 204] P2(sin 5)} . (3.23)

According to (2.2) and (3.6), the inertia tensor of our problem can be broken down
in the form

Il =T + I, + II; .
The potential itself can be expanded as follows:
V=W+V.+W, (3.24)
and taking into account (2.1), (3.8) and (3.13) we get:
Gm* [ZC’O — Ay —
2

2r33 — 11 — T2
2

Vo =

B . Ay - B
e 0P2(51n5)+ 04 0P22(sin6)cos2a , (3.25)
y, = & DT[

T*

Py(sin é)+
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~+ (r13 cos a 4 723 sin @) P21 (siné) +

—_ 1
+ (———T” y 2 cos2a+ 5T sin 2a) Pj(sin 5)] , (3.26)
Gm* 2t33 — t11 — t2n .
Vv, = s D, [ 5 Py(sin 6) +
+ (t13 cos & + tp3 sin @) P (sin §) +
tiy — ¢ 1
+ (~—-—” 2 2 cos2a + 2 t12 sin 20‘) P} (sin 6)] : (3.27)

Using (3.11) and (3.18) it is easy to find the order of magnitude of each component
with respect to main term 7p:

Yo -8 Ve -9 Vi -13
— ~6x107°, —~3x1077, —~2x1077.
0 Ty 10
The term V; is much smaller than the others and we can neglect it, so that the
potential energy is reduced to
VeW+V,. (3.28)

By substituting the definitions of r;; given in (3.14), we obtain the required
expression for V,.:

| 1
V., = K. |(1- —;—sinz &, )Py(sin6) + 5 sin 25, P; (sin 6) sin(a + 7,)—

—% sin? &, P} (sin &) cos(2ex + 27,) | (3.29)
where
G *
K. = —6D,—. (3.30)
T

It is worth noting the fact that, in this derivation, both the rotational potential,
V., and the tidal potential, V;, are given respectively a function of the coefficients
D, and D, defined from an integral depending on the radial distance and the
rheological parameters of the chosen Earth model. Thus, these coefficients are
calculated principally as a function of geophysical data. In the traditional approach
(Kaula, 1964, Peale, 1973), the corresponding terms of the potential are written in
a straightforward manner as:

Gm* IRS *, pf
V.= —n—%n—3—®kzP2(cos S'), with cos S’ = r’ , (3.3
3 rr!
where k; is the Love number, and
1 * RS Q.r*
V, = —gkzﬂ?‘m +2 Py(cos §”), with cosS” = Tr (3.32)
¥ ¥
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Equations (3.26) and (3.3) can be given by formulae similar to the last two
ones, in terms of a coefficient that would take the role of a global Love number,
whereas k, is the usual Love number at the Earth surface. There is no contradiction
between these different formulations, as the previous (3.31) and (3.32) are strictly
true only when some hypotheses are verified (Love, 1927), which is not the case
for an accurate model of Earth. Thus these formulations should be understood
as approximations. As for our derivation, it is valid in more general hypotheses
(Getino and Ferrdandiz, 1991a) which can be verified in more modern Earth models
(Takeuchi, 1951, Gilbert and Dziewonski, 1975), and so can be considered more
rigorous.

In this sense, our equations should represent better approximations, as the
procedure followed to obtain them is closer to real phenomenon of the deformations
that actually occur.

3.4. REFERENCE TO A MOVING ECLIPTIC

The complementary term R is written (Kinoshita, 1977):
Rg =M sinl Rg1 + ARgs (3.33)

where:

II d dll
Rp = sinmwcos(A — H)d—-— — sin(A — ) il Rpy=(1- cosw)ﬁ ,(3.34)

dt dt’
m and II being the angles defining the moving reference plane.

4. First Order Integration for a Rigid Earth

As explained in the previous paragraph, the complete Hamiltonian of the problem
is, in our approximation,

H=To+Tir +Tit +Tor +Vo+V; + Rg. @.1)

We now proceed to the first order analytical integration using Hori’s perturbation
method (1966), which eliminates short period terms by the use of a Lie transfor-
mation and an averaging method. However, since the expressions that appear are
very complicated, and since that perturbation method is linear at the first order of
integration, we believe it is preferable to study separately the effects corresponding
to a rigid Earth, to the centrifugal perturbation and to the tidal perturbation. This
will allow us to work with simpler expressions, which will make the reading less
difficult, and on the other hand, to understand more clearly the effects of each of
the above mentioned perturbations.

We begin this section by performing an integration corresponding to a rigid
Earth, that is, prior to the deformation. The Hamiltonian is reduced to

Hrigia =To+ Vo + Ri . 4.2)



130 JUAN GETINO AND JOSE M. FERRANDIZ

The procedure used can be considered as a simplification of the more general
approach of Kinoshita (1977), since instead of having recourse to the use of action—
angles variables, a reordering of the unperturbed Hamiltonian is performed (passing
the terms in the variable » to the perturbation), which allows us to shorten the
calculations. This procedure has already been used in other problems (as in Henrard
and Moons, 1978, for the case of the Moon) although as far as we know it has
never been published in the case of the Earth.

4,1. PRELIMINARY ARRANGEMENTS

To make the integration easier, we will first consider each one of the terms in (4.2).
Thus, the kinetic energy Tj (see (2.1) and (3.5)) can be written as:

M? - N? (sinzu c052u> N2

To =
0 2 4 T B 26,

(4.3)

which can be broken down in the following way:
To=T¢+T¢ — ) (4.4)

In the same manner, the term Vj can be split into:

o 1., (0 3 06
V¢ = 3K {5 ) Pasind),

Gm* A() - B() (a*
——

Vo=V&+V— ,
m——re— — 2 1
pr 2 r*) P;(sin 6) cos 2ax.

4.5)
V=

where we have introduced the coefficient:

Gm*2Cy — Ay — By
I —
Ky=3 g 5 .

According to the orders of magnitude of these terms (Kinoshita, 1977)

v R
T =107, ?f ~1077,
the Hamiltonian can be broken down into
Ho =Ty,
H=Ho+Hi+Ho—{ Hi =T+ Re+ Vg, 4.7
Hy = V.

(4.6)
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4.2. ELIMINATION OF PERIODIC TERMS

To perform the integration at the first order we divide the Hamiltonian into an
unperturbed part, Ho, and a perturbed part H, that is: Hy;5,4 = Ho + H; . By
using Hori’s method, the initial Hamiltonian is transformed into a new one, easier
to integrate, marked with the symbol * :

Hrigia = Ho +Hi — Myiga = Hy + Hi . (4.8)

The new disturbing term H] will be chosen following a criterion of averages,
that is, H] is defined as the time average of H; with respect to the solution to the
unperturbed problem, with Hamiltonian Hj = Hj. In the absence of resonances
this procedure leads to an asymptotical solution that differs from the real one to the
order of ¢ in time intervals of longitude

1/e, € being the relative magnitude of the perturbation (Sanders and Verhulst,
1985). Thus,the new Hamiltonian (for the first order) will be:

Hy=Ho;  Hi=MHisec. 4.9)

As the secular part of H; we take the terms which do not contain the angular
variables u, v, nor those giving the position of the Moon and Sun. Then, we have:

M2 /11 N /2 1 1
* aQ _ —_
Hy = T§ = —— (——AO +—BO> + = (— — ——) , (4.10)

H: = Rp+ Ve = M*sinI*Rg + A* Ry + Kj(1 — %sinz o*)B%, (4.11)

where the constant coefficient By = B(ggoop) corresponds to the only secular con-
tribution of the expansion of P2?Sil] 8) (see Appendix I). Note that we have used
asterisks to indicate the new variables that result from the canonical transforma-
tion.

4.3. GENERATING FUNCTION AND FIRST-ORDER PERTURBATIONS

In this section, the asterisks used with the canonically transformed variables are
omitted for the sake of simplicity. The generating function of the transformation
is, at the first order:

W = /(H1 —H)dt = /Hlperdt, (4.12)

where this integral must be performed along the solution to the unperturbed system
(Hori, 1966). The solutions which are not constant will concern only the variables
4, v, whose mean motions are:

_dp 171 1
T _2<AO+BO)M0’
dv 1
nu-‘cﬁ—’z‘(a—o—zg’-go*)NO, (4.13)
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My and Ny being constants of the motion. Carrying out the integration along the
solution of the unperturbed Hamiltonian we obtain:

( 1 1>M2—stin21/
W={[—-—— -+
By Ag 4 2n,

1 1 1
+K§ [5(3 cos’ o — )W, — 5 Sin20Ws + - sin® oW | 4.14)

where the terms which belong to the secular part, that is to say, those corresponding
to Bs = Bigo000), are assumed to be excluded. The functions W; are (see Appendix
D:

B; .
W, = Z%—:sm@i,
[

W Zzn gy sin(p — 70;),

W, ZZZn —— zsm(2,u—7'@) (4.15)

with n; = d©;/dt . Obviously, both the secular Hamiltonian and the generating
function are basically the same as those of Kinoshita (1977), as we are referring, in
this paragraph, to a rigid Earth (without deformation), although the expressions are
not identical since he used action-angle variables. The perturbations, both periodic
and secular, will then also be equivalent. However, for reasons of clarity, we prefer
to calculate them, even in a succinct manner, since they will serve as a basis for
the study of the deformations, which will be done later.

The associated canonical transformation can be obtained at the first order by the
equations of perturbation (Hori, 1966), which can be written in a symbolical form
as:

ow ow
Zowe R T Tk

As the generating function depends on the variables g, I, related to the moments
by the equations:

A(A, M,N) = —

coso=£' cos] = —
M’ M’

it is convenient to carry out the derivations with the help of these variables. The

derivation operators are:

—‘?——<8)+-1— o0+ Lcotrd
o~ \oM) T M T a1

9 _ (i>___1__i
ON ~ \ 8N M sino 8¢’
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o 3 1 9
oA (8—A> " MsinIol’ (4.16)

The symbolical derivatives inside the parentheses refer to the partial derivatives,
in an explicit way, with respect to the variables A, M, N.

It is also interesting to get the expressions for the variation of the angles o, I,
which are necessary to fix the position of fundamental planes of the Earth’s rotation.
We can deduce:

Ag = —1 (ZVK_COSO‘LW>
7= Msino \ ov ETA
4 oW
IR S LAY CAL I 417
Al = g7 Bx — au> @.17)

Given that & ~ 107° rad., once the corresponding derivatives have been carried
out, we take the simplification

sino ~ 0, coso~1,

obtaining, in the first place, the following results (neglecting terms in o?)

1 1 cos [ OW,
~ - - — — .18
AO“—K"[ W= Gng et Wt T a1 ] ’ (“4.18)
1 _ 1
Agv =~ Ky [3Wa + —W, — —Wc] , (4.19)
sino 2
cosI oW,
Ao(p+v) = Ko snl 31 (4.20)
1515%
Ago ~ Kg—2, (4.21)
ou
where we have introduced the new coefficient:
K} Gm*2Cy— Ag - B
Kp= =0 - 32M 2207 #0770 (4.22)

M a* 2M ’

while we use the notation A to indicate the perturbations of a rigid Earth. The
most important results for our purposes are those that refer to the motion of the
three fundamental planes, which we shall now study.

4.4, MOTION OF THE ANDOYER’S PLANE

The Andoyer plane, perpendicular to the angular-momentum axis, is determined
by the angles A, longitude of the node, and /, inclination. Their nutations are, with
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the said simplifications in the angle o :

1 oW, 1 9 (B
Ao ~ —Kyg—— = -
oA OinI oI KO sinl 81 ( ) sin®; , (4.23)
1 oW, Ky B; M
A I ~ g —_ _= -
0 KOsinI R ey ( mS)ni cos ©; (4.24)

4.5. MOTION OF THE EQUATORIAL PLANE

This plane is determined by the Euler angles ¢ and 6. To use a notation similar
to that from Kinoshita, we shall call them A; and I; respectively. To obtain their
perturbations we will refer them to the Andoyer variables. According to Kinoshita
(1977), neglecting the terms in o> we have:

sing

A~ A
f +o— snl’

If~I+ocosp. 4.25)

Once the corresponding derivatives have been calculated, we obtain

Ky [OW, .
Ao(6Ap) = Ao(Af = A) = gm_OI [—a——b sinp — Wbcosu]
TCi(T
- Izzn TG0 Gne, (4.26)

Ao(6I5) = Ao(Iy —I) = Ky [%%cosu+Wbsinu] =

Ci T
=KoY, Z a—f—% cos©; . 4.27)

The second members of (4.26) and (4.27) are known as Oppolzer terms for the
plane of figure.

4.6. MOTION OF THE PLANE PERPENDICULAR TO THE ROTATION AXIS

The longitude of the node and the inclination of this plane are designated by A, and
I.. . Their expressions as functions of Andoyer variables are (Kinoshita, 1977):

) C() C()) sinu
Ar = At <1 24y 2Bo/) “sinl’
Cy Co)
I, ~ I+ (1 =24, 2Bq oCoS |t (4.28)
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Their perturbations will be:

_ N Co Go
Bo(8x) = B =) = (1= 7= ) Ao(8y), (4.29)
Bo(el;) = Aolty = D)= (1= 32 = 0 ) AgGety) (4.30)

the second members of (4.29) and (4.30) also being known as Oppolzer terms (for
the plane perpendicular to the rotation axis).

4.7. PERTURBATIONS OF THE POLAR MOTION

Polar motion is defined as the motion of the rotation axis relative to the figure axis
(Kinoshita, 1977), specified usually by the pair of coordinates
Co . Cy
~ —(1—¢e/2)osinv, ~~—(14+¢/2)ocosv, 4.31
vy (1 =c/osiny, gy —pl(1+e/2) @431)
where e is a measure of the triaxiality of the Earth. Calculating their perturbations
we obtain:

IZ

Aoz, —(1 —e/2) KOZZ sin(p + v — 76;) , (4.32)

— TN,

R

Aoyp ———(1 +¢/2)Kp ZZ cos(,u +v—76;). (4.33)

4.8. SECULAR PERTURBATIONS

Given that the Hamiltonian H* contains the angular variable X (see (4.11) and
(3.34)) and its conjugate momentum A (through the angle I), we cannot obtain the
perturbations corresponding to A and 7 analytically, so it is convenient to obtain a
solution in power series of time (Kinoshita, 1977). As for the variables u, v, we
have:

du*  OH* (M +HY)

"W T g T amr T oM+
LAt oM a(HE+ )
T @ T ANt T N+ (4:34)

Once these derivatives have been determined, and with the simplifications: sin o ~
0,coso =~ 1, we finally arrive at the expression:

cos [* 83"
sin [* 8[*

n, = ny + Ko[3B]] (4.36)

R*
ny = m, + 2L +K0[

= - 3&} , (4.35)
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with which:
Ry, cos I* 8B§
sin I'* OSinI* oI

ny, +n, = ny, +n, + 4.37)

4.9. REMARK

It is clear that on studying the rigid Earth in this section, the results obtained for
both periodic and secular perturbations are the same as those given by Kinoshita’s
theory, if we only substitute the principal moments of inertia A, B and C for the
corresponding ones Ag, By and Cp in the absence of deformation. For the same
reason, Kinoshita’s K coefficient, function of A, B and C, is substituted by K|, as
a function of Ay, By and Cy.

5. Effect of the Rotational Deformation

In this section we shall study, following the same steps as before, the perturbations
due to the centrifugal deformation. According to (4.1), the contribution to be added
to the Hamiltonian, due to the effect of the rotation is:

Hrot = Tir +Dop + ;. 5.1

Before proceeding to its integration, we shall study each one of its terms.
5.1. PRELIMINARY ARRANGEMENTS

By means of (3.13), (3.14), (3.15) and (3.19), the expression of T7,, after some
calculations, will be:

2 102 2
T, = D,.{[ZN ~ (M? - N?) (Sm T+ ")] (1—2sin25,)—

C? A5 Bj 2
3(M2 N?) <sin21/ cos’ U) sin® &, cos 27, +
_z — —— T
2 A3 B} '
3 M2~ N? . -
+ 5 ——Z(;EO—— sin 2v sin? o, Sin 27, +

+3Mzs'n2 sin 24, ( 1 sinv sin 7, + 1 cosvcosf/') (5.2)
~——sin2osin26, { — sinvsinv, + — . .
2 C() 4 Ao " By "

As in the previous section, it is convenient to transform this expression in order to
separate first order terms from those with the coefficient By ! — Ay !, Taking into
account the trigonometric relationships:

2

1
cos T = —2~(1 +cos2z), sin’

1
z= 5(1 — cos2z),
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after some calculations we get:

Ty, :Tlar +T]br1 (5-3)
where
IN? 1 2 5 1 1 3. 2~
= 0 g -0 (G 57| 0 - Fawian
200 - N (4 5 ) vt cos2(y — ) +
8 Ay By oree Y
2 1
%%-0 <—1i—0 + B—O) sin 20 sin 25, cos(v — ﬁr)} , (54)
11 M2-N2/1 1 3
b e —_ 4+ (1 - ZsinF 2
Tir = Dr (Bo Ao) { 2 (Ao " Bo) ( 2 S o) cosavt
'3 » 1 1
-,-4(M — N?)sin? &, [(Ao )COS2VT
1/1 1 ~
+2 (BT) — A_()) cos2(v + Vr)] +
2
+%% sin 20 sin 25, cos(v+17r.)} : (5.3)
0

From (3.20) we can get the expression of T5,. In this formal expression, this
term is very complicated, but we have shown that &, ~ ¢ ~ 107 rad,, and, in
addition,

o, behaves as constant when calculating the perturbation equations. Thus, we
shall neglect the terms in &2, so that:

Tyr = Ts. + Ty, (5.6)

where:

8N? 1 1 3 M?
Ty = D? M?* - NHY | — b
o {[03“ )<A3 B3>J+200

2 1 1 1 1 . . ~
% ol + B) " Zg + Eg sin20 sin 26, cos(v — ¥,.) ¢ ,(5.7)
and:

2

1 3IM
TS = DE{(MZ N?) <B3 A3> cos21/+-2--a X

X i(—l——i) L L sin2¢ sin 25 v, 5.8
co \Be 4 B2 n 20 sin 26, cos(v + 7,.) ¢ ,(5.8)
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Finally, from (3.29) and (3.28) we have:

1 3 1 :
V, = 5K; (1-— 5 sin® 5,) Py + 5 $in25 Py, — %sinz arpzr] ,

where, for the sake of brevity, we have used the notation,
Py = (a*/r*)’Py(siné),
P, = (a*/r*)*P)(sin6)sin(a + 7,),
Py, = (a*/r*)*P3(sin 6) cos 2(a + 7).
The expression of Py, obtained directly from Appendix I, is:

a\3 _ 3 ,
(;) Py(sind) = 5(3COS o— 1);Bicos@i—
3,
) staE ; Ci(t)cos(p — 76;) +
3,
+Z sin” o ET: z; Di(t)cos(2u — 70;),

while those of remaining Py, and P,, are:

P, =3 [% sin 20 Z z Bicos(v — U, — 70;)+
T

(5.9)

(5.10)

+%(1 +coso)(—1+2coso) Z Z Ci(r)cos(p +v —Vp —76;) —

1 -
-2 sino(1+coso) ;;Di(f) cos(u+v — v, — T@i)] , (5.11)

Py = -3 [% sin? o XT: z; Bjcos(2v — 20, — 70;)+

+sino(1 + coso) Z Z Ci(t)cos(p + 2v — 20, — 70;) +
T 1

+%(1 + coso)? 2; Z D;(7) cos(2u + 2v — 27, — T@i)] . (5.12)

5.2. ELIMINATION OF PERIODIC TERMS

In a similar way as in the previous section we break down the Hamiltonian part of

the rotational perturbation as follows:

Hiw =Tf + T4 + V.,
Hrot = Hir + Hor — b b
Hop = T, + T4, .

(5.13)
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For the first order integration we consider the transformation:
Hip — HTT = Hisee = Tlaf,- + Tz%« + Vr'seca (5.14)

where T, and T3, are given by (5.4) and (5.7) respectively, while, taking into
account (5.11), (5.12) and Appendix I

1 3 1
Visee = =KL |(1 - 3 sin® &, )Py + 5 Sin2G, Piy ~ %sinz G.Py| , (5.15)

3 sec

with

3.
P()sec = 3(1—§sm20)BE,

9 . ~
Pirsec = 5 sin 20 By cos(v — ), (5.16)
Prrsec = —9sin? o By cos(2v — 27;).
We have maintained the terms in v — 7, in H}; since, once the corresponding

derivatives have been carried out, after identifying o, ~ o and 7/, ~ v, these terms
will give secular contributions.

5.3. GENERATING FUNCTION AND FIRST-ORDER PERTURBATIONS

The corresponding generating function at the first order, and omitting the asterisk
for the sake of simplicity, will be:

W, = /(le - Tr) dt = /leper dt = /V;"per dt,

resulting in
1 ! 3 2~ r L. r 1. 2~ 7

W, = —3—KT (1- 5 sin o )Wg + Esm20rW1 ~ ;s o W; |, (5.17)
with

- 3 ., 1. |
Wy =3|(1- —2—s1n o)W, — §s1n2aWb+Zs1n oW, ,

, 3. 1
Wi =3 Zston—i- 5(_1 +coso)(—1+2coso)Wyy —

1
-Zsmcf(l+cosa)ch ,

, 3. ) 1
W] = -3 [—2— sin? cWaq + sin o(1 +coso)Wa + Z(l + cos 0)2W2C] , (5.18)
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where W,, W, and W, are those shown in (4.15), the rest being:

B; . ~
Wie = Z p— sin(v — 7, ~ 76;),

7

Wlb—zz s1n(u+u—ur—r®)

ch—zzzn sm(2,u+u—1/,.—'r®)

Wy = }: _E:n sin(2v — 2v, — 70;),

Wy = ZZ "u gy sin{p + 2v — 20, — 76;),
i
Dl(T) . ~
ch = ; Z m Sll’l(2[L +2v — 21/,,. — T@i) . (519)

Note that to obtain the above expressions we have taken into account that
n, x~ n;;r.

After performing the derivatives with respect to the variables which do not have
the symbol ~, we can express &, and 7, as functions of the Andoyer variables.
Following Kinoshita (1977) we get

&Ts—i—a + 0(d%),

but, the effects we are dealing with being very small, we can make the approxima-
tion (Kubo, 1991):

Or ~ 0, Up ™.

Now, with the simplifications sino = 0,cosc = 1, except for the terms where
sin o appears as a divisor, by means of (4.16) and following a similar procedure to
that described in subsection 4.3, the canonical equations of the perturbation are:

1 1 cos I OW,
Anp >~ K, [——3Wa — gi—ﬁ—;Wb + EWC -+ sl ol
oW, - lch] (5.20)
2 27| ,
Av~ K, [3Wa + -_I——Wb — lWC - §W1a + 1W1c (5.21)
_ sing 2 2 2 ’
Ar(p+v) ~ K, S8 LWa (5.22)

"sinI oI ’
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Avo ~ K, ?—K’l (5.23)
o’

where we have introduced the new coefficient,

3K/ Gm*
K, = == =-18D, a——% (5.24)

and we use the notation A, to indicate the perturbations due to the centrifugal
deformation.

5.4. PERTURBATIONS OF THE FUNDAMENTAL PLANES

Andoyer’s Plane:

With the previous results, and following a similar approach to the case of the
rigid Earth, we obtain:

1 0w, 1 8 B

~ —K,—— = - 0; 5.25
Ark "sin] oI smIaI(n,)sm v (5.25)
1 oW, K, i
~ = -_— i 1 . 5.26
Al = Ky sin] O\ sin] ‘;‘( ms) n; cos ©; (5.26)
Equatorial Plane:
In the same way, we have:
K, [oW,
Ar(6Xf) = sinI [ o siny — W, cosu}
TCi(T)
N smI ZZ Ny — TN sin ©;, (5.27)
BW .
A (6If) =~ K, [—B_ﬂb cos it + Wy sin ,u}
= K, Z Z cos ©; . (5.28)

- n,t — TN,

Plane perpendicular to the rotation axis:

It is not so easy, as in the previous case, to get the perturbations ccrresponding
to this plane. This is because the angles A, and I, which determine it are obtained
through the inertia tensor (see Kinoshita, 1977), so that, when dealing with a
deformable Earth, their expression as a function of Andoyer variables is not that
given by (4.28), corresponding to the rigid Earth. To make the present part easier
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to read, we have included the method followed to obtain these new expressions in
Appendix IL

Then, the expressions of the angles related to the plane perpendicular to the rota-
tion axis when considering the centrifugal deformation, and with the simplifications
detailed in the Appendix II, are:

1 Co Co
A 2 A+ — 1~ — - — i
P A T [( 24, 2BO)US‘H“+
1 1 - . ~
+3D, (-—— + ——) [osinp — &, sin(p +v — 7, (5.29)
4y By
Co Co
I ~ T+ {1--2_ 2
+( 74, 230>acos,u+
1 1
+3D, (—- + ———) [ccosp —Grcos(p+v — ). (5.30)
Ap By

Taking into account the results above, the perturbations due to the centrifugal
deformation, taking v = v, after carrying out the corresponding derivations, are:
Co Co

1 1
r L e r 1- A - T r 1o =
AL (6M) [K ( 2Aq 2B0>+3D(KO+K)( +Bo>] X

T7C;i(T)

smlzzn —Tnz sin©i, (53D

Co Co (1 1 )1

AL(6I,) ~ [K (1 o 2BO)+3D,(1r<0+1r<,,) 0" Bo) | *
O;. 32
xzzz:n“_ﬂllcos (5.32)

The above equations have been written in that way in order to obtain a more
compact expressions of the (6.36) and (6.37), which include all the effects. Let us
note however that the term in D, K, is of a greater order than the rest, since it is
of the second order in D,, and the others of the order of Ky D,.. Nevertheless, it
cannot be suppressed since its value is only slightly less (see (3.18)).

5.5. PERTURBATIONS OF THE POLAR MOTION

The polar motion is also obtained from the inertia tensor, so its expression must be
modified. After the calculation which is detailed in Appendix III, we have:

Co

Ty ~ —

P AO

Co 6D, 6D, _ -
o~ —— Oy . 34
Yp ~Bo K A )acosz/+ o G cosz/r)] (5.34)

6D, ) 6D, . . _
[(1 - —50—> asmu-l——a Or smyr)] , (5.33)
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By means of the equations (5.20)—(5.23), the corresponding perturbations due
to the centrifugal deformation are:

C[) 6Dr

Arzp = - [Ko— o (Kot Ko) }Zzn _Tnzslnu+y—fe)(,s35)
Co 6 D:

Aryp_—BO[ Co ]Z;n#~7 cos(p + v — 7G$H.36)

5.6. SECULAR PERTURBATIONS

As we have seen in (5.14), the contribution to the perturbed secular Hamiltonian
is:

Tr =Tf‘r +T2ar+v7'seca

whose terms are given by (5.4), (5.7) and (5.2). To obtain the corresponding
perturbations, we carry out the adequate derivations with respect to the variables
without the symbol ~. Once taken, we can identify 0 = ¢, and v = 7, obtaining

the following results, after neglecting the terms in o2

. cos I* 335 " 2 a
ey, = T T + D, M*Qu +2D; M*Qs, (5.37)
§n* ~ D.N*Q.+2D*N*Qq, (5.38)
where

0= (hrh) b
“* 7 Co\A By A: B}’

0 __6_<L+_1_)_i RIS 20 N SO
b= 2\4 " By) G \A2 "B A BY

4 1 1 3 /1 1
%=t et m e )
8 1 1 6 /1 1 3 /1 1
Qd_EE—AE—B_Q—Ei(AO+§()->+6;(A_%+§g->. (5.39)

We have used the symbol 4, to indicate the perturbation due to the rotation. Finally,
from (5.37) and (5.38) it is clear that

cos I* 335} LA [ 403]

6r(ny, +ny) ~ K, [ (5.40)

sinI* OI* C2 Co
Note that in these last expressions we have taken into account the simplification

M~-N=M(-coso)~0.
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5.7. DISCUSSION OF THE RESULTS

Periodic Perturbations:

Let us study the periodic perturbations including the effect of the rigid Earth
and of the centrifugal deformation. From expressions (4.20), (4.21), (5.22) and
(5.23) we have, using the notation Ay, to indicate the perturbations due to these
two effects together:

cos I OW, K cosI oW,

Aor(p +v) = (K0+K) ol ol BT a1 (5.41)
ow, oW,
~ = Kopp—, 5.
Doro = (Ko + K )—— Em = Kp o5 (5.42)
where we have introduced the coefficient:
* [2C)— 49— B
Ko = Ko+ K, = 2 [2C0=Ao=Bo_cp 1 (5.43)

a* M 2

Comparing (5.41) and (5.42) with the corresponding equations of Kinoshita
(1977) for a rigid Earth, we see that they are the same if we replace Kinoshita’s
coefficient X by our Kj,, so that the perturbations have the same expression with
only a change of coefficients. This change is quite logical: Kinoshita’s coefficient
K comes from the secular part of the potential energy, which in this case is
solely the rigid Earth potential Uy only, while, when the centrifugal deformation
is considered, we have two potentials, Uy and U,,from which we get the new
coefficient Ky, = Ko + K.

Now we study the variation of the fundamental planes. From (4.23), (4.24),
(5.25) and (5.26) we have, for the Andoyer’s plane:

1 8 (B
A r >~ - 19 5.44
or\ KOT sinl oI ( ) sin ©; (544)
AgT ~ Kor (—ms)—%- cos ©;. (5.45)
sin [ ; n;

As for the Equatorial plane, from (4.26), (4.27), (5.27) and (5.28), the Oppolzer
terms are

Aon(6rg) = oo ZZ D)o (5.46)

sin [ Ny — Tn,

Ci T .
AOT‘ (5If) =~ Ko.,. E E .n_-j(—’r)—’n,_ COsS @i . (547)
7 T TR

T
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Comparing these expressions with those of Kinoshita, the correspondence
between the coefficients K and Ky, is also clear. The effect of the centrifugal
deformation is reduced to an expression similar to that corresponding to the rigid
Earth.

In the same way, for the Oppolzer terms of the plane perpendicular to the rotation
axis, from (4.29), (4.30), (5.31) and (5.32) we have:

Agp(62,) ~ DO [(1——0"———Cl>+31) (1 1)] x

sinf 240 2By Ay By
TC(
X Z Z py— sin ©; , (5.48)
Co G 1 1
AOT(6[T) ~ Kor [(1 - EA—O - E) +3D, (:4'; + Ea)} X
7Ci(T)
i 5.4
XZ;—-——-—-”“_TniCOS@ (5.49)

while for the polar motion, neglecting the triaxiality of the Earth, from (4.32),
(4.33), (5.35) and (5.36), we have:

C
Arzp ZQKOT ( ) ZZ =7 sin(p +v —76;),  (5.50)

Ci
Aryp = BO KOT (

) ZZ cos(,u +v—-710;). (5.51)

Secular Perturbations:

Using the notation &, to indicate the secular perturbations due to the rigid
Earth and the centrifugal deformation, from (4.35), (4.36), (4.37), (5.37), (5.38)
and (5.40), we have:

R%, cos I* aBA

* —3KoB: + D, M*Q,

bormy = SR+ Ko s o = 3K0By + @
b 2D2rQy, (552)
borny, = 3 KoBS + D, N*Q. + 2D2N*Qq, (5.53)
And finally:
R cosI* 0BL 4N~ 4D?
* * El 0
r ~ —== 4 Ko, — D, . .

or(m + 1) sin I* + o sinI* OI* + o T Co (5-54)

Here we can remark the appearance of new terms. To evaluate their order of
magnitude we need to know the value of the coefficient Kj,, which will be studied
in section 7.
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6. Effect of the Tidal Deformation

We study now the effect of the tidal deformation. From the complete expression of
the Hamiltonian (4.1), we can observe that the tidal perturbation is reduced to the
term:

He =Tt 6.1)
Let us now look at the expression of this perturbation.

6.1. PRELIMINARY ARRANGEMENTS

Starting from (3.8), (3.9) and (3.19), the term T7; will be:

2N? sinfv  cos?v ~
Tlt:Dt{l}Eg——(Mz—NZ)<A(2) +—‘B—g~ P0+

1 2 _ a2 -

+5—A£A—-ELV—~ sin 2v P, sin 2& +
050

1 sinfvy cos?v\ ~ N
+§(M2—-N2)( yy ————Bg—>P20052a+

M ~ /1 1

— sin20 P | — si &+ — in & , 6.2
+C§sm o 1(A0 smucosa+Bocosysma>} 6.2)

where we have used the notation
B, = (a*/r*)’*P(sind), m=0,1,2.

Using a procedure analogous to that of section 5 for the case of the centrifugal
deformation, this expression can be broken down into two parts:

Ty = Tf, + Th, 6.3)
where
. 2N?2 1, ., .1 1\ =
Tu—Dt{[—c-,g—“z(M - N%) Zg-i-—B—% Py—
——1-(M2 — N?) (—1— + —1—>21320032(&+ v) +
8 Ay Bo
1 M? 1 1\ s
2 S = in(& 6.4
+2 o sin2¢ (Ao —+ B()) P sm(a—l—u)} , 6.4)

M*—N2[[1 1 ~ ~
b Dt{-———— [(— — -—) Pycos2v + Pycos2a) —
1t 2 A B2 ( )
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1/1 1\2 -
—‘4- (A_o - —B—O) PZCOS2(OZ—V)} -~
1M2<1

1 . = L
y. ~B-5> sin 20 P sin(@ — 1/)} . (6.5)

2 Gy

As concerning the term 717, the expression of Py can be found directly in
Appendix I, and for the remaining two spherical functions it can be easily deduced
that:

-~ 3. ~ ~ ~
Pysin(a+v)=3 [Z sin 2027: Xl: Bicos(V — v — 70;)+
+ —;—(1 +cosd)(—1+2cosd) Zr:zi:@(f)cos(ﬁ +7—v—-716;)—

_ % sin&(1 + cos &) Z Z Di(r)cos(2i + 7 — v — 'réi)] , (6.6)

Py cos2(a + v)=-3 B sin? & }; Zl: B; cos(2v — 2v — Té¢)+
+ sing(1 + cos o) Z Z@(T) cos(fi + 20 — 2v — 70;) +

+ (1+cosa ZZD ) cos(2i + 20 — y—re)} (6.7)

6.2. ELIMINATION OF PERIODIC TERMS

Using a similar procedure to that followed in previous sections, H; is broken down
into:

Hiy = Tlat y
HZt = let .
For the first order integration we carry out the transformation:

*
Hit — H]t = Hitsec =

~ [[2N2 1 1 1 3
= D.B~ ______M2 N2 L 22
¢ 0{[03 2( )<A2+B§)} 3(1 5 sin 7) +

Hi = Hui + Hoy — { (6.8)

9 1\?
+=(M?* - NY) ( > sin® & cos 2(V — v) +
8 * B,

9 M2 (
+____

1
ic \T B()) sin 20 sin 2 cos(¥ — 1/)} (6.9)



148 JUAN GETINO AND JOSE M. FERRANDIZ

where, for the sake of simplicity, we have omitted the asterisks. As in previous
sections, for the secular part we have retained the terms which do not contain the
variables p, v, or those of the position of Moon and Sun, and also preserving the
terms in ¥ — v, which will give secular contribution as explained in subsection
5.2

6.3. GENERATING FUNCTION AND FIRST-ORDER PERTURBATIONS

The generating function corresponding to the first order transformation (6.9) is
(omitting the asterisks again):

W, = / (Hue — ML) dt = / Hitper dt,

from which we get

2N* 1., a1 1

MZ-N?/1 1 2~t 1M2 1 1Y . . =
— =+ = —— [ — 4+ — ) sin20 W{ p(6.10
8 (A0+Bo> 2 Gy (A0+Bo> sin20 Wy 0(6.10)

Wi+

with
_ 03 = 1= 1, =
W¢ = 3|(1—Zsin"6)W, — zsin26 Wy + —sin g We|
L 2 2 4
- r ~ 1 N =
Wi =3 %sinZ&Wla—f-E(l+cosa)(—1+2¢osa)W1b—

1 o~
~7 sing(1 + cos7)Wy| ,

— r —~ — 1 —
Wi =3 é sin? & Waq + sin5(1 + cos &) Wap + 7L +cosE)2Wgc] , (6.11)

where each one of these functions is

B .~
W = Z—-—sm@i,
ng

i
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Citr) . . . ~
W, = ZZ——'%sm(p+l/—-y—T@i),
: 1
— Di(r) . .. 5
Wi = — —sin(2u+ U —v —~ 70,
le Z; 277:;;—7’714 ( H v 1)7

IW2a = Z
~ C; _Cy(r) i
Wa = ZZ ny — 'rn,

— : '7- R ~ ~ ~
Wye = zT: ; ﬁ?)ﬁ: sin(2f + 20 — 2v — 76;). 6.12)

SIIl(2V - 20 -76;),

in(fi + 20 — 2v — 16;),

Through the perturbation equations and taking into account the fact that the
variables with the symbol ~ behave as constants, we obtain, with the usual simpli-
fications in o

1 1\~ 1/1 1\?~
At/.t ~ 3MDt [— (_+"'—> Wa+‘ (’_‘,"“') W2C+

A2 B2 4\4, " By
1 1 1 3~ 1
(=) (2 + —Tyy — —Wc , 6.13
+Co (Ao * Bo) (2 6T Sing 1 ! )] (©.13)
4 1 1\~ 1/1 1\~
~ e | Wym = [— 4+ =) Wy| —
AtV_3Dt{N|:<C§+A2+Bg>W 4(A0+BO> ZJ
M1 1 3~ 1~
ey LI i) ¢ 6.14
Co <A0+Bo>< Wi +sm 1o 1>} (6.19)
N ~
Ap+v) ~ 12Dt02W (6.15)
N/1 1)\ W,
Ao ~ — )
= 3D (Ao + Bo) po (6.16)

using once again the simplification M ~ N, and the notation A; to indicate that
these perturbations are produced by the tidal deformation. Once these derivatives
have been carried out we can identify 0 = 7, v = .

6.4. PERTURBATIONS OF FUNDAMENTAL PLANES

Andoyer’s Plane:

The nutations of this plane are obtained directly from the perturbations equa-
tions. With the usual simplifications, we have:

Ath~0, A ~0. (6.17)
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Equatorial Plane:
Through (4.25) we obtain:
Di3M /1 1N[. oWy, —_

A(bAf) ~ —_— 4 — A}

¢(6A5) sl Cy <Ao + Bo) [sm,u 5 +cos,uW1b] , (6.18)
3M /11 Wy . —

Ay(6If) ~ Dy—{ — + — —_— , )

+(61f) "G (Ao + Bo) [cosu » smp,Wlbjl (6.19)

Taking into account the expression of Wy, in (6.12), and identifying the variables
after taking the derivatives, we finally obtain:

7Ci(71)
) ~ =K is )

Ag(8A5) tSlnIZZl:n“—rn, sin© (620
_Gi(r) _

A(817) ~ —K; Z Z p—— cos ©;, 6.21)
where we have introduced the new coefficient

M1 1
K;=3D — 6.22
¢ 'Co (Ao + Bo> (622)

which gives the order of magnitude of the tidal perturbation.

Plane perpendicular to the rotation axis:

As in the case of the centrifugal deformation, the tidal deformation would give
rise to a variation in the equations (4.28) of the rigid Earth. This dependence will
be given quantitatively by the coefficient D;. However, as D;/Cy ~ 8 x 1078 (see
section 3), we can neglect this effect, and we shall calculate the tidal perturbation
of these angles starting from the equations (4.28).

Thus, with equation (4.28), and by means of the previous results (6.13) to (6.17),
we obtain:

Kt Co 7C; (7' “n O
Ae(62r) = “sinl (1 240 ~2_13—0) ZZ Ty — TN i, 6.23)
Co
Ay(6l,) ~ —K, (1 24 2B0> Zzn T 08 ©i. (6.24)

6.5. PERTURBATIONS OF THE POLAR MOTION

For the effect of the tidal perturbation on the polar motion the procedure used for
the plane perpendicular to the rotation axis described above is valid, so that, after
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neglecting the effect of the triaxiality of the Earth, we get:

Az, ~ ~Ki— Co Z Z sm(,u +v-16;), (6.25)

n—’T

Ayp ~ Z E cos(,u +v—-76;). (6.26)

Ny — TN

6.6. SECULAR PERTURBATIONS

Starting from (6.9), with the help of (4.16) and the results (6.13) to (6.17), the
canonical equations for the secular perturbations are:

1

3 1 1 1 1
, | 2 == 6.2
Bemy 3DtBaM [C’o (Ao * Bo) A(z) Bg] ’ ©.27)

R

. (6.28)

4 1 1 3 /71 1
on), ~ 3ADBXIN* |+ —=5 + = M*— (———+——)
e ! [ (cg+Ag +Bg> Co \4y " By

where the symbol 6; is used to indicate the tidal perturbation. From these two
expressions above and taking into account M/ ~ N once more, we can write

12N*
575(71* + TL*) ~ _Dt Bi
K v 0 Cg

(6.29)

6.7. DISCUSSION OF THE RESULTS

Periodic Perturbations:

We now express the total periodic perturbations, by adding the effects corre-
sponding to a rigid Earth, to the rotational deformation and to the tidal deformation.
From the expressions (5.41), (5.42), (6.15) and (6.16) we have, using the notation
A to indicate the total periodic perturbations:

cos I oW, M
Alp+v) = K0r T3] + 12D, C’ZW
Ao = Ko, IV 4 Jraidn ,
ou ov

which becomes, when identifying variables after taking derivatives:

cos [ a9 ([ B; 12M
A(/z—i—u)_KOTSlnI az() @+Dt Z sm@“ (6.30)
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Ao ~ (Ko, — Kt) ZZ mp—— cos(p — 70;). (6.31)
i H s

Let us now study the variation of the fundamental planes. From (5.44), (5.45)
and (6.17) we have, for Andoyer’s plane, or plane perpendicular to the angular
momentum:

1 0 /B
A ~ —KOT e 2T ( ) sin®;, (6.32)
Ko B; .
= T i (——ms)ni cos ©;. (6.33)

As for the plane of the equator of figure, from (5.46), (5.47), (6.20) and (6.21),
the Oppolzer terms are:

7C; (T)
~ - —— Q,, 6.3
A(8Ag) = (Kor — Kt " nI E EZ - gl (6.34)
~ E E ;. 6.35
(5If) Kor Kt z n” e —— COS ( )

For the plane perpendicular to the rotation axis, from (5.48), (5.49), (6.23) and
(6.24), we have:

A(6A) = [(KOT—Kt) (1— Co C°>+3D Ko,(l +i)] x

240 2B, Ao
T7C;(7)
©;, 6.36
smIZZn -~ TN, sin (6.36)
Co Cy ( 1 1 )]
- — = D, Koo | — + —
A(ST,) [(KOT K,) (1 o 230) +3D, Kor (-4 )] %
7Ci(7)
X Zr: ; m cos©;. (637)
Finally, for the polar motion, from (5.50), (5.51), (6.25) and (6.26):
Co 6 D,
Armp = 'A_' [(KOT' - Kt) — Kor Co :! X
X Z Z sm(u +v-16;), (6.38)
Co 6 D,
Aryp = __B_ [(KOT - Kt) ~ Ko, Co X
XZZ cos(p +v —76;). (6.39)

; nu—T i
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Once the expressions (6.32)-(6.39) have been obtained, we can interpret the
role the tidal deformation plays, the following results standing out:

i) Concerning the Andoyer’s plane, normal to the angular-momentum vector,
the tidal perturbation gives a negligible contribution, at the order of accuracy with
which we are working.

ii) However, this perturbation acts upon the Oppolzer terms of the planes per-
pendicular to the axis of figure and the axis of rotation, as well as the motion of the
pole. Its contribution consists in diminishing the effect of the perturbations for rigid
Earth and centrifugal deformation, as the coefficient K; appears with a negative
sign. This coincides with the results exposed by Kubo (1991).

Finally, we should point out that just as we have included the coefficients K and
K, respectively for the effects of the rigid Earth and of the centrifugal deformation
in a single coefficient: Ky, = Ky + K., we could add to Ky, the coefficient of
the tidal deformation K}, as in the previous expressions it appears as Ky, — K.
Nevertheless for reasons which will be exposed in the following section we prefer
to group Ky and K, in one single coefficient.

Secular Perturbations:

Using the notation ¢ to indicate the total secular perturbations, from the equa-
tions (5.52), (5.53), (5.54), (6.27), (6.28) and (6.29) we have:

R} cos I* 9B ,
o, = sinEIl* O sin I* ap? _S(KO-Kt)Ba-i-DT M*Q, +
1 1
+2D2M*Qb_3DtM*Bi (___*_—) ’ (6.40)

sy =~ 3(Ko— Ki)Bs+ D N* Q. +2D; N*Qq +

v

4 1 1
3AD)N*BX| — + — + — 6.41
2055 (Gt e ) o
Ry, cos I'* BBg 4N* 4D?
* Y~ Kor = * Tl . (6.
6(ny, +n;) anr THRe e T 2 D, +3D:B: + Co (6.42)

which clearly shows the secular contribution of the tidal perturbation.

7. Numerical Representation of the Earth’s Rotation.

In this section we give the numerical values of the perturbations we have studied
in the previous ones and which are represented by the equations (6.32)-(6.42). For
this, we need to evaluate numerically the coefficients Ky, and K.
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7.1. CALCULATION OF COEFFICIENTS

The value of K; can be obtained directly. Starting from (6.22), and making the
approximations M = Cyws (see (2.7)) and Ay ~ By, we have

Ap, the moment in absence of deformation, can be written: Ag = A— A A, where A
is the total moment and A A the increment due to the deformation. As explained in
subsection 3.2, this increment is: AA = A, A + A;A, corresponding respectively
to the rotational and to the tidal deformations. The orders of magnitude of these
increments with respect to the unperturbed moment of inertia are given by the
coefficients D, and Dy, being 1.7 x 10™* and 8 x 10~° respectively. So that, we
can write:

1

Kt26DtUJ3 ﬁ6Dt(«d3z,

_
A—-AA
neglecting the products of the deformations. Then, using the values w3z =
4746599 x 10'0 sec.arc/Julian century (Seidelmann, 1982), and A = 8.094 x
10*gr.cm?. (Danby, 1962), and taking into account the value of D; (3.11), we
obtain

Ky = 2446'6204/cy., Ko = 1120'8549/cy., (7.1)

However, the value of Ky, cannot be obtained directly. Starting from its def-
inition (5.43), and taking once again the approximation M = Cjws, it can be
expressed as

D,

G’m ZC() - A() — B()
—6—|, 7.2
a* w3 2Cy Co 7:2)

K()'r =

that depends on the value of (2Cy — Ag — By)/(2Ch), which, of course, is different
from the value of (2C — A — B)/(2C) corresponding to the usual dynamical
ellipticity H of Kinoshita (1977) for a rigid Earth.

The value of Ky, can be found by a procedure similar to that developed by
Kinoshita (1977) to obtain H, and improved by Kinoshita and Souchay (1990). We
think there is no need to reproduce the method in this paper, but only to summarize
some facts. First, the resulting Hamiltonian after the eliminations of periodic terms
is

2

M* 1 1 N 2 1 1
* ~ — - R T T I * s I* *
H 4 (AO + BO) + — 4 ( ) + M*sin E1l +

2 *
+A* R + (Kp +3K,) B + —5— (D +D§E+3Dt ) , (1.3)
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where all the terms in sin o have been neglected since no derivatives have to be
taken with respect either to M or 0. Notice that Ky + 3 K| = M Ky, , according to
(4.22), (5.24) and (5.43), and that the term D, ‘§6 does not modify the calculation,
since it is very small and is affected by the symbol ”~” (no derivatives of it are
to be taken). In order to compute dA\*/dt and dI*/dt the function (7.3) is the
same as that found by Kinoshita. Moreover, the accuracy of the solution can be
improved in a standard way by adding to this Hamiltonian the second order secular
terms. Because of their smallness, we have only to take into account the second
order terms corresponding to a rigid Earth, that can be taken from Kinoshita and
Souchay.

Then, we can apply the procedure used by those authors to the Hamiltonian and
get completely analogous results, after replacing the dynamical ellipticity H by
H, + H, (proportional to K, ), where
2Cy — Ag — By D,

H, =-6— (7.4)

Ho = 2Co ’ Co

Taking the most up to date values of Kinoshita and Souchay (1990) for Ky, Koo
and H, we have:

H = Hy + H, = 0.0032739567, (7.5)

with which we get:

Gm(
Ko = 3;3— [Ho+H,]=

(3
m_ 17

= 3[Hy+ H,] —— — — =7567"768157/]J. 7.6
3[ 0+ r]m+m®F3 7 7/ ey, ( )

Gm

Koo = ©[Ho+H,]=
a@

= 3[Hy + H,] mo n@ = 3475"413512/J.cy, (7.7)

m(+ me + Mg w3

in arc sec. per Julian century. From these values we can then calculate Hy. Taking
Co ~ C = 8.11 x 10* (Danby, 1962), and D,, = —1.422689 x 10*! (both in c.g.s.
units) (3.18), we get:

H, =0.00105251 = Hp=H - H, = 0.00222145. (7.8)

The coefficients Hy and H, have a simple dynamical interpretation. H rep-
resents the dynamical ellipticity of the actual Earth, and H, represents the part
of the ellipticity induced by the rotation. A similar concept already appears in
Newcomb (1892), who carried out a rough estimation of the ratio between the
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said ellipticity, € in his notation, and the actual ellipticity, €, obtaining a value
€ [e = 292/849 ~ 0.34, very close to that determined following our much more
elaborated procedure: H, /H ~ 0.32. On the other hand, Hy would represents the
hypothetical ellipticity corresponding to the Earth without the deformation due to
the rotation.

With the help of these results we can now numerically evaluate the different
perturbations.

7.2. PERIODIC PERTURBATIONS

Motion of Andoyer’s Plane:

Let us first calculate the variations of the Andoyer’s plane, which, as we have
shown, is not affected by the tidal perturbation. Developing the expressions (6.32),
(6.33), and according to the Appendix I, we have, for the nutation in obliquity:

Ae = Al =

0) ?’COS2 €y — 1

1
= Ko Z (A ) cos e — A, - —Af) sin eo) cos ©; +
(

6sin €0 4

0)3COS e—1 1 2) . ‘
+KOT®Z ( i _—6311—60_— - ZA' SN €g ®COS 0;, 7.9

while for the nutation in longitude, taking into account the fact that (Kinoshita,
1977):

o (.1.31) _ 1 0B; B; dngq

91 \ni) = mar ~™war
we get:
Ay = —AX=
_ 1 0) _ )) cos2¢p 1)
= Koy {ZZ: o KA A sep + - A,
—ms zB,i 3_n§l} sin©; +
n; sineg Oeg (
1 0 1 .2 .
+Koro XZ: py (Ai) - EAi))QCOS €0 sin ;. (7.10)

The expression of Ong/d¢p can be found in Kinoshita and Souchay (1990), eq.

(2.14.2). For the coefficients Ag ) we have used the values of Kinoshita (1977) with
the corrections given by Kinoshita and Souchay (1990).
The corresponding perturbation series can be found in Table I and II.
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Motion of the Equatorial plane of Figure:

165

Starting from expressions (6.34) and (6.35), the Oppolzer terms corresponding

to this plane will be:
A(8Af) = (Kor( — Ky() ¥

1,40 2)_
—A; 1 A;
XE [nu—nz( SAi coseo + 5 ( + cos€p)

—— (1 +cosep)(—1+ ZCOSEO)A,})) +
2 sin€g

1 0) 1 2)
—_— | A 1 —coseg)A:+
+n“+ni <2 . Cos €y + 4( €0)A;

_1 (1 —cosep)(—1 —2cos eo)A2)>] sin ©; +
2 sin €y (

‘|"(K07'® - Kt@)

®

( 2A?)coseo-l— (1+coseo)A2))+

nu—ni

1 0) 1 2)) )
A; —(1 — A 9;,
ey (2 ; coseo+4( cos €9) A; @sm i

A(8I5) = (Kor( — Ky() %

1 o) . 1. 2)
}: =A% sin2¢q — ~ 1+ AV
X [n“ - (4 ;. sin2¢ 4smeo( cos €g) A;

+5(1 + cosep)(—1+ 2cos eo)A3)> +

1 1 o 1 2)
A, 2 - 1- A;
+n,4+n,~ (4 ;. sin eo+4smeo( cosep) A+

+%(1 —cosep)(—1~ ZCOSEQ)A?):‘ cos©; +
(

+(K0r® - Kt@) X

i

1 1
+ (—A(-)) sin2¢q + 3 sin ep(1 — cos eo)Af))] cos ©;.

As for the values of the coefficients, from (7.1), (7.6) and (7.7):

1 1
X Z [n — ( 0) sin2ep — i sin ep(1 + cos eo)Af)> +
I 1

(7.11)

(7.12)

Kop(— Ky = 51210147757 /L.cy,  Koro — Kio = 2354'558612/J.cy (7.13)
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Thus we remark that the tidal perturbation diminishes considerably the amplitude
of the Oppolzer terms.

The previous series (7.11) and (7.12) gather the first order contributions to the
nutation of a rigid Earth and the corrections due to the elasticity. Nevertheless, in
order to make the comparison with other studies easier, and to increase the accuracy,
we have found convenient to add to those series a few second order corrections of
lunar origin. As pointed out firstly by Kubo (1982), some significant second order
contributions to the nutations in obliquity and longitude appear when considering
the whole Hamiltonian for the rotation of the Earth and the orbital motion of the
Moon. A more complete study of this effect has been carried out by Kinoshita and
Souchay (1990).

More precisely, we have added to the series the corrections

— A\ = —0.0433sinQ + 1.191sin2Q —
—0.083sin(2F — 2D + Q) — 0.016sin(2F + Q),

—~AJI = 0.102cos2 — 0.227 cos2Q) +
+0.074cos(2F — 2D + Q) + 0.012cos(2F + Q). (7.14)

The three remaining terms in expressions (7.38) and (7.39) of Kinoshita and
Souchay have not been included since they do not share the frequency with any
first order term.

The resulting nutation series are given in Tables I and II. Let us remark that the
corrections (7.14) have been used in all the concerned terms throughout the rest of
the paper. These tables are referred to the Epoch J2000.0, and have been arranged in
the same way. In the first column a label number is given to identify each term, and
in the second one the period, with a sign corresponding to the sign of the argument
of the trigonometric function. In the third column we have the argument, of the
cosine for the obliquity and of the sine for the longitude. The next columns give
the coefficients corresponding to the different contributions to the nutations, using
1 mas as the unit. Columns 4 — 7 show the effects of the rigid Earth with rotational
deformation only, giving first of all the Oppolzer terms for the axes of figure and
of rotation, and then the nutations of both axes. These nutations were obtained
by adding corresponding Oppolzer terms to that of Andoyer’s plane (Column 10,
headed by —AI for the obliquity and —AAM for the longitude). Columns 8 and 9
contain the contribution to the Oppolzer terms of tidal origin. The last five columns
show the final coefficients for our model of a rigid Earth with elastic mantle.
Column 10 gives the nutation of the angular momentum, which is not altered by
tidal deformation. Columns 11 and 12 show the Oppolzer terms (obtaining by
adding up columns 4 and 8, and 5 and 9 respectively) whose amplitudes decrease
with respect to a.rigid Earth or a rigid Earth with rotational deformation. The
last columns give the total nutations of the axes of figure (—AIf, —AAy) and of
rotation (—AI., —AM,).
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Motion of the plane perpendicular to the rotation axis:

Putting together the expressions (6.36) and (6.37) which give the Oppolzer
terms corresponding to this plane we can write:

A@M) = o IZ;% s, (7.15)
Cy(7)
= K, o;, 7.16
D Dl (7.16)
where
_ Co _ Gy (L41)
Ka. = (K0r - Kt) (1 - i—A—O 230) + 3KOTD Ao + Bo > (717)

and we treat (7.15) and (7.16) in a way similar to (7.11) and (7.12). With the value
of D, given by (3.18), the simplifications used in Subsection 7.1, and taking into
account that (1 — Cy/2A4¢ ~ Cy/2By) ~ —Hy, we have, in arc sec. per Julian
century:

Ko = —19"321938/J.cy, Ko = —8'879428/J.cy. (7.18)
The results are gathered in Tables I and IIL.

Polar motion:

Starting from (6.38) and (6.39) we get:

Az, = K Z Z sm(p, +v-16;), (7.19)
-Ay, = C‘)K Z 2 o i—('r cos(u+v~716;), (7.20)
where
D,
Ky = (Kor — K;) ~ 6 Kop —- G (7.21)

To evaluate this coefficient we take Cy = 8.11 x 1044c.g.s., (Danby, 1962),
which gives

Ky = 5129113168 /J.cy , Ko = 2358"216639/J.cy . (7.22)
The most significant terms are listed in Table III.

7.3. SECULAR PERTURBATIONS AND CHANDLER PERIOD

The secular perturbations can be evaluated using equations (6.40), (6.41) and (6.42).
Letus look specifically at the most significant fact, referring to the Chandler period.
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Coefficients of POLAR MOTION. Epoch J2000.0. Units: amplitude = 0.001
arc sec.; period = days. The table shows the coefficients of (C/A) sin() and
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TABLE III

—(C/B) cos() for z,, and y, respectively

COEFFICIENTS
Argument (©) p+v—©0 ptv+0
No. 1 I' F D Q Period | Amplit. | Period | Amplit.
19 1 0 0 2 0 09742 0062 10378  0.066
22 1 0 0 0 0 1.0430 0346 09696  0.322
30 0 0 0 2 0 10783 0059 09409  0.052
39 -1 0 0 0 1 09695 0064 1.0432 -0.010
511 0 2 0 1 11294 -0.172 09052  0.020
54 1 0 0 0 1 10428 0069 09697 -0.009
65 0 0 2 0 1 10850 -0.864 09360  0.109
68 0 0 0 0 1 10048 0809 10051 -0.118
72 -1 0 2 2 2 11230 -0.172 09094  0.006
737 -1 0 2 0 2 10437  0.125 09690  -0.005
8 2 0 2 0 2 11775 -0.126 08766  0.004
8 1 0 2 0 2 11293 -0913 09053  0.031
97 0 0 2 2 2 11707 -0.151 0.8804  0.005
99 0 0 2 0 2 10848 -4579 09361  0.170
105 0 1 2 -2 2 10133 -0.117 0997  0.115
106 0 0 2 -2 2 10105 -1.987 09995 1962

From (4.13) and (6.41) we can write:
2 1 1
( ————— ) No+ 3Ky B% +

ny, =mn, +6n, =

l(_g____l___l_)__ZCO_AO_BO_ 1 (CO—A0)2+(C()—B())2
2\Cy Ay By~ 202 2C3 Ag By
Q. = 2 2Cy — Ay - By 41 (Co — Ao)* | (Co— Byp)?
‘T 20 203 A2 B |
6 2Co — Ao — By Ag—C
Qi = ——y—2 0000 [2A0(A0 ~ Co)? + (A3 - 003)] -

1
2

+N* (D, +3D:B%) Q. +2D; N* Qq,

where N is the constant value of the variable N*. To evaluate this expression we
can arrange the different terms as follows:

(7.23)

_Cg

2Ch

Co 4y

K
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By —Cy

2 3 3
_—C'(‘)‘—Tg— [2BO(BO - CO) + (BO - CO)] .

Then, neglecting the products of the differences Ay — Cy, By — Cy, taking into
account the expression of Ky in (4.22), and performing the simplifications Ny ~
N* ~ Cp w3, we obtain finally:

2Cy — Ap — Bo

e (1 + K .24
n, 2CO UJ3( + )’ (7 2 )
with
D, D! 6 3Gmy 3Gm@
12—% Dy B+ D Bg) — B — Bg .(7.25
K= 2C + cz C’o( t B+ Dio Bo) a?wg ( PR o (7.25)
Giving numerical values, it results that K = —3.11 x 104, Then, we can conclude
that the main part of n}, is:
20y — Ay — B
n = ———0——2—0—‘;—2 ws = —~Hows, (7.26)

where Hy is the component of the actual ellipticity H introduced in (7.4), whose
value is given by (7.8). Thus, the period P of the variable v, in absolute value,
becomes:

Pro 450days . (7.27)
H,

This period corresponds to the free Eulerian oscillation of the Earth (in this
case for the deformable model considered), and according to the usual terminology
(Jeffreys and Vicente, 1957), P can be referred to as the Chandler period.

It is well known that for a rigid Earth, the use of the ellipticity H = (2C ~
A — B)/(2C) =~ 0.00327 leads to a value of 305 days for the Eulerian period of
v, which differs notably from the observational results. However, in our derivation
we get a period of around 450 days, which fits reasonably well with the observed
values of the Chandler period (Lambert, 1980 and 1988, Melchior, 1983).

Thus the previous mathematical developments prove that for an elastic Earth,
the Chandler period does not depend on the actual (or usual) ellipticity of the
planet, but on a hypothetical ellipticity Hy obtained from the former by removing
the contribution to it of the centrifugal deformation, that is, the ellipticity induced
by the rotation itself. The authors cannot resist the temptation to consider that
ellipticity Hy as being in some sense “free”, since it is not affected or “forced”
by the rotational deformation and besides, it is in harmony with Chandler’s period
which plays the role of "free” Eulerian period.

In any case, to give an intuitive physical explanation of this phenomenon that
is both brief and at the same time clear, is not an easy task, and the literature is
of no great help. Thus, a textbook of a general nature with the prestige of that of
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Goldstein says of Chandler’s period: "In effect some part of the earth follows along
with the shift in the rotation axis, which has the effect of reducing the difference
in the principal moments of inertia and therefore increasing the period” (p. 212,
second edition). This description does not seem to be very-exact, and perhaps it
would be better to speak of an increase in the difference of moments of inertia due
to the rotation since, according to our mathematical derivations, it does not affect
the period of precession.

For the reader who are interested in the physical explanation of our results we
would refer them to the above-mentioned article by Newcomb (1892) who, on
using a very simplified mathematical model, insists on physical considerations that
are possibly not very easy to understand in the light of the few occasions he is
quoted. '

Finally, we must point out that although the obtained value of 450 days is
slightly superior to those given by the latest experimental results (436-440 days),
the fact that we have not considered the deformation produced in the liquid core
must be taken into account as it shortens the value of this period (Vicente, 1961,
Herring et al., 1991).

8. Discussion of Results

In order to evaluate the theory, some tables are given in which our numerical results
are compared to those obtained by other authors. In Table IV and V, the values
obtained for the nutations of the three fundamental planes are compared to those
given by the theories of a rigid Earth, of first order (Kinoshita, 1977, reduced to
the Epoch J2000.0) and of second order (Kinoshita and Souchay, 1990). For the
sake of brevity, only the terms of greatest amplitude have been considered. The
number of the first column is the same as the label term in Tables I and II. For the
Andoyer plane the agreement with the Kinoshita and Souchay values is very good
as expected, since that plane is not affected by the tidal deformation. The slights
differences should be originated by the second order rigid corrections.

Concerning the nutations of the axes of figure and of rotation, discrepancies do
appear (less than 1 mas) due to the decrease in amplitude of the Oppolzer terms
caused by the elasticity.

In Table VI we show the comparison between Oppolzer terms calculated by
us and those given by other authors (Sasao et al., 1980, and Kubo, 1991) with
similar hypotheses about the elastic properties of the Earth. The values shown are
the differences with those corresponding to Kinoshita (1977). It can be seen that
the greatest differences amount to a few 0.01 mas, with the exception of the term
99, semimonthly, for which the differences are of the order of 0.1 mas, with the
value of Kubo in obliquity and that of Sasao et al. in longitude.

In the last table, the principal nutations of the figure axis are compared to those
of other theories for a non-rigid Earth. We have chosen those of Capitaine (1978)
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TABLE VI

TIDAL EFFECTS of Oppolzer terms for the FIGURE PLANE. The results show the differences
with Kinoshita (1977). Unit 0.0001 arc sec. S.0.S. = Sasao, Okubo and Saito (1980). Kubo = Kubo
(1991).

Period Argument OBLIQUITY | LONGITUDE
No. (days) 1 I' F D € S.0S. Kubo Authors S.0.S. Kubo Authors
22 2725 1 0 0 0 O +32  +3.0 +3.03 -0.3 -0.3 -0.29
68 -67984 0 0 0O O 1 +33 431 +3.11 -11.0 -10.5 -10.64
99 137 0 0 2 0 2 -207 -199 -20.08 +56.1 +53.8 +54.50
100 -33992 0 0 0 0 2 -0.1 -0.1 -0.03 +0.2  +0.2 +0.25
102 3653 0 1 0 0 0 +0.4 404 +0.46 +0.0 +0.0 +0.01
103 3652 0 -1 2 -2 2 +0.1  +0.1 +0.04 -0.2 -0.2 -0.17
105 1217 0 1 2 -2 2 -0.5 -05 -0.48 +1.4 +14 +1.35
106 1826 0 0 2 -2 2 -9.0 -8.6 -871 +24.5 +23.5 +23.71

whose hypotheses are similar to those of this paper, and Wahr (1981). The values
of the first have been taken from Capitaine (1978), referring them to the Epoch
J2000.0 with the help of the secular variations given by Kinoshita. For the obliquity,
the agreement with Capitaine’s values is very good. The differences reach 0.1 mas
only for the terms in Q and in I’ + 2F — 2D + 2, so that all the significant figures
given by the said author are identical to ours, with the above mentioned exception.
In longitude the discrepancies with Capitaine reach 1 mas for the term in €2, and
are of the order of 0.1 mas for the other ones. As expected, the differences with the
Wahr’s calculations are greater, since this theory includes a liquid core.
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Appendix 1. Development of Spherical Functions

In order to transform the spherical functions which appear in the perturbed terms
of the kinetic energy and of the potential, a particular case of Wigner’s theorem
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TABLE VII
Comparison with NON-RIGID theories for nutation in OBLIQUITY and LONGITUDE of the FIGURE

Period Argument —-Aly —A)f

No. (days) | 1 I F D Q Capit. | Wahr l Authors | Capit. l Wahr Authors

19 318 1 0 0 -2 0 -0.1 -0.128 -15.8 -14.955
22 275 1 0 0 0 O -0.7 -0.7 -0.667 67.7 71.2 67.750
30 148 0 0 0 2 0O -0.2 -0.111 6.3 6.038
34 95 -1 0 2 2 1 0.5 0.494 -1.0 -0.964
39 274 -1 0 0 0 1 32 2.991 -5.8 -5.518
51 91 1 0 2 0 1 2.7 2.496 -5.1 -4.873
54 277 1 0 0 0 1 33 -3.167 6.3 6.018
64 71 0 0 2 2 1 0.3 0.316 -0.7 -0.624
65 136 0 0 2 0 1 19.1 200  19.068 -36.9 -38.6 -36.737
68 -67984 0 0 0 0 1 92279 9202.5 9228885 17282.7 -17199.6 -17282.870
72 96 -1 0 2 2 2 2.6 2.419 -59 -5.644
73 271 -1 0 2 0 2 -5.3 -5.082 12.3 11.771
82 69 2 0 2 0 2 13 1.248 -3.1 -2.924
86 239 1 0 2 -2 2 -12 -1.175 29 2.724
87 56 1 02 2 2 0.3 0.307 -0.8 -0.721
88 91 1 02 0 2 122 129 12.207 -28.6 -30.1 -28.496
97 71 0 0 2 2 2 1.6 1.553 -3.8 -3.636
99 137 0 0 2 0 2 929 977 92918 -2164  -2274  -216.085
100 33992 0 0 0 0 2 -901 -89.5 -90350 2079 206.2 209.047
102 3653 0 1 0 0 O -0.1 5.4 -0.094 1255 142.6 125.835
103 3652 0 -1 2 -2 2 -9.5 -9.253 21.7 21.349
105 1218 0 1 2 -2 2 215 224 21625 -49.7 -51.7 -49.926
106 1826 0 0 2 -2 2 5525 573.6 552497 -12752 -1318.7 -1275.166

(1959), given by Kinoshita, will be used. The application of this theorem is detailed

in Kinoshita (1977), and Getino (1989), obtaining the following results:

a 3 . 3 2
(;) Py(sin ) = 5(3cos o-1) z,‘:Bi cos©; —

——;— sin2¢ Z Z Ci(r)cos(pn — 70;) +
T i

43
4

sin? o Z Z D;(7)cos(2u — 76;),

(A1.1)
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2\’ pisi ) =25 2 B;si
= Py (sind)cos o = 1 sin O'XT: ; i sin(y — 70;) +
3 .
+§ Zp(l + pcosa)(—1+2pcosa) Z Z Ci(r)sin{p + pv — 70;) —

——251na(1+pcosa ZZD sin(2u + pv — 76;), (Al1.2)

a\? . : 9 .
(;) PJ)(sin§)sina = 7 s1n202 Z Bjcos(v —760;) +
+= Z(1+pcosa)( 14 2pcosc) ZZC Yeos(u + pv — 76;) —

~7 Zpsin a(l + pcoso) Z Z Di(t)cos(2u+ pv — 70;),  (Al.3)
p T 4

3
(2) P?(sin §) cos 2a = —; sin® o Z Z B;cos(2v — 10;) —
T -
—-SZpsma(1+pcosa ZZC cos(u + 2pv — 70;) —
——Z 1+pcosa)ZZZD cos(2u + 2pv — 70;), (Al.4)
(gf PZ(sin §) sin 2 = 2sin2 o Z ZBi sin(2v — 70;) +
T 2 2 =5
+3 Z sincg(1 4 pcoso) Z Z Ci(r)sin(u + 2pv — 70;) +
P T i

3 ) .
+Z zp: p(1+ pcosa) 27—: ; D;(7)sin(2u + 2pv — 76;), (A1.5)

where p = +1,7 = %1, and the functions B;, C;(7) and

D;(r) are:

1
B;= —é(3coszl— 1)47 - %SinZIAf) - ZSmZIA?)’

Ci(t) = —%stIAO) 1+ 7cosl)(— 1+27'cosI)A1)

2(
%sml(l +7'cosI)A2)

Dz(T) = —-;-sm IA)+TSIHI(1+TCOSI) 1 —*(1+TCOSI)2A) (A1.6)
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The numerical values of the coefficients Ag ) were given in the said paper by
Kinoshita. In our computation we have used the updated values by Kinoshita and
Souchay (1990). As for the argument ©;, we have:

9, = mll( + malg + m3F + mga D+ msQ),

with i = (my1, mp, m3, my, ms),

F=l+y,
D = l(+g(+h(——l@~—g®—h®,
Q= h(—)\,

where [, g(, h( are the Delaunay variables for the Moon, and /g, go, he are the
Delaunay variables for the Sun.

Appendix 2. Plane Perpendicular to the Rotation Axis

In this appendix we briefly describe the procedure followed to obtain the expres-
sions of the longitude of the node, A,, and inclination I,., of the plane perpendicular
to the rotation axis of a deformable Earth. This method is an adaptation of that used
by Kinoshita (1977) for a rigid Earth. Thus, using the same notation for the Euler
angles, hy, Iy and ¢, we first of all introduce the matrices:

hy sinIfsing cosg O Ga
g=| I |, W=|sinlfcos¢p —sing 0 ), G=|Gy |,
¢ cos ¢ 0 1 G
where G gives the angular moment. Then, through (2.7) we have:
M sinosiny _
G=| Msinocosv | =TIW¢ = (Il + II3) W4,
M coso

where II is the inertia tensor, which, as we have seen in section 2 is broken down
into an unperturbed and a perturbed part, which we show as:

A0 O B dit diz di3
Ho=|0 By 0 |, Oy = | diz dpp do3 |,
0 0 G di3 dp3 da3
d;; being the components of the deformation. So, we can deduce:
G=W I, +1Iy)7'G.

Developing the inverse of the inertia tensor in power series (see (3.4)), we can
break down the matrix ¢ as follows:

do = WL, 'G,

T 0T
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go corresponding to the rigid Earth, and 64 to the deformation. The first step in this
process consists in determining ¢ as a function of the Andoyer variables.

Using the above expression and performing the corresponding operations we
obtain ¢ as function of the Euler angles, ¢, and the components of the angular
moment G, as follows:

ilfo _ .1 (omqﬁ +COS¢Gy>,

sinIy \ Ao By
I = Cilsoquz— Si—goﬁGy,
do = go — cot I (Si;fGﬁ C(§0¢Gy> : (A2.1)
Shy = —SmlIf [cosqs(z‘i—‘;—oc; CESG +Bd22,0c; ) +

+sm¢( Ga +Ad1; G +A%153G2ﬂ’
Hf:—¢%¢CLGr+j%J;+j%?%)+

+sin¢<Ad1; Ga +C§§G +§do%—oc:z) ,
6(}) = — (A_U(l)lé_oG Bd2éOG + Cg;G ) —cosIfékf. (A2.2)

Now, taking into account the relationships of the Euler angles with those of Andoyer
(Kinoshita, 1977) up to the first order in o

If~I+ocosy, hf:/\+aSlAIL, ¢p~=u+v—ocotlsinu,
we will obtain first of all, neglecting the terms in o(1/Ay — 1/ By):
hipo ~ ——MP Iro~MQ ¢3~M MPycot] A2.3
fo = oz MPy,  Igo 0, Po o ocotl, (A2.3)
where we have used the notation (Kinoshita, 1992):
1/1 1 171 1
Php==-—+— =—=
0 (Ao + ) ocosp, Qo 2 (Ao Bo) osin g, (A2.4)

Let us now calculate the increase of these angles. As we have said in sections
5 and 6 the main perturbation is due to the rotational deformation, so the tidal
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deformation will not be taken into account, since its order of magnitude is greater
than o. Then, starting from (A2.2), we can make d;; = r;;, and taken into account
the relationships (3.13)—(3.16), we obtain

1 M
6hf —7M3P1 , 5If ~ MRQ, 6¢ ~ 2R—C—;- — MRPicotl, (A25)

with the notation:

D,
R=22"
Co’
P, = 1 (L-i- L )[acos 35, cos(p + v 0,
) Ay Bo oo g &
1 1 1
Q = ( +——> [osinp — 3G, sin(p + v — 7)) . (A2.6)
Ay B

To get these expressions above, as well as neglecting the terms in Ag — By and
those in o2, we have chosen to take the approximations:
D, D, D, D,

O—7 =0 O—% ™~ 0

A2 - AoCo ’ 32 ByCy ’

since the resulting error is to the order of 10~13, while, on the other hand, it notably

simplifies the results.
Then, from (A2.3) and (A2.5) we can deduce:

hf ——fMP If_MQ,¢__(1+2R)C£—MPcotI, (A2.7)
0
where now:
P=Py+RP, Q= Qo+ RQ1, (A2.8)

and in this way, we have ¢ as a function of the Andoyer variables. Through these
relations we shall find the desired expressions of A, and I,. To do this let us start
with the relationships (Kinoshita, 1977):

ff coshy + d)SinIf sinhy = wsinl, sinh,,
ff sinhy — <i>sinIf coshy = —wsinl.cosh,,
hf + qi)cosIf = wcosl,.
Introducing the expressions we have found for ¢ and ¢ into these relationships, and

taking into account the fact that when ignoring the terms in o2

W~ ——(1 +2R),
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after same calculations we obtain
Co Co
6. =1 -1 ~ {1—-—
r r ( 2A0 2B0>0'COS/J,+

1 1
+3D, (—— + ——> [ccosp —Grcos(p+v —1,)], (A2.9)
Ao Bo

1 Co Co
S\, = ~ 1= Lo
Ar=Ar = A sin I [( 24¢ 2B0) osinp +

1
+30, (o +

which are the desired expressions.

]; > [osiny — &, sin(p + v — 7)]| , (A2.10)
0

Appendix 3. Polar Motion

Using an analogous procedure to that developed in Appendix 2, here we shall
obtain the expressions of the polar motion, which is defined as the motion of the
rotation axis relative to the figure axis (Kinoshita, 1977):

S _ Yy
p= w
From G = Ilw, and developing IT~! as previously described, we have:

wp = HJIGL
fw = I3 ', G,

which results in, neglecting terms in o2

w=w0+6w—>{

. M
Wy = ——0OSINV, Wy X 5-0COSV, W, A3.1
z0 AO s 40 BO ) 2 CO i ( )
while their increases, with the same simplifications as in the previous appendix,
will be:

bwy ~ ——R(—osinv + 36, sinv,),
Ag

Swy ~ B —R(—ocosv + 35, cos ),
M

bw, ~ =2R, (A3.2)
Co

with R = 2D,./Cjy. Given that, with the level of accuracy within which we are
working, w ~ M (1 + 2R)/Cy, from (A3.1) and (A3.2) we finally obtain:

C 6D,
Ty - [(1 — ) osinv + 9-—llar sin I/T)] , (A3.3)
Ao Co Co
C 6D, o~ ~
Yp = [(1 - ) ocosv + §—D—ar cos I/T):l , (A3.4)
"By Cy Co

which are the desired expressions.
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