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Abstract. It is well known that in artifical satellite theory special techniques must be employed 
to construct a formal solution whenever the orbital inclination is sufficiently close to the critical 
value cos -1 ( i /v /5) .  In this article the authors investigate the consequences of introducing certain 
relativistic effects into the motion of a satellite about an oblate primary. Particular attention is paid 
to the critical inclination(s), and for such critical motions an appropriate method of solution is 
formulated. 
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1. Introduction 

In an untypical article Brumberg and Kovalevsky (1986) set out to define and 
classify the unsolved problems in Celestical Mechanics. One of the mathematical 
problems they identified concerns the relativistic effects on the motion of artificial 
or natural satellites about an oblate primary, not necessarily Earth. In particular, 
they drew attention to the possible development of power series solutions for cases 
involving "relativistic resonance". This problem they classified as Type BV; that 
is an important mathematical problem of (now) age less than 20 years. 

In two recent papers, Soffel et al. (1988) and Heimberger et al. (1990), the 
relativistic effects on the motion of a satellite about an oblate body were inves- 
tigated. Using Gauss's form of the planetary equations Soffel et al. determined 
the secular, the short-periodic and the long-periodic relativistic perturbations in 
the Keplerian elements to the first order in Jz, the usual oblateness parameter. In 
the later paper the authors treated essentially the same problem using canonical 
Lie series methods. In addition, an important second-order "mixed" perturbation, 
due to the Newtonian quadrupole field and the Schwarzschild acceleration, was 
included in the analysis. Neither of the aforementioned papers, however, addressed 
the phenomenon of resonance associated witht he Critical Inclination Problem in 
artificial satellite theory. The purpose of the current contribution is to investigate 
how the relativistic effects can be suitably incorporated into the resonance theory 
when the orbital inclination of the satellite is at or close to a critical value. 

The Critical Inclination Problem is a well-known and extensively researched 
problem in the theory of artificial satellite motion. The review article (Jupp, 1988) 

Celestial Mechanics and Dynamical Astronomy 52: 345-353, 1991. 

(~) 1991 Kluwer Academic Publishers. Printed in the Netherlands. 



346 A.H. JUPP AND V.A. BRUMBERG 

documents the discovery, analysis and controversial development of this subject. 
In its simplest form the Critical Inclination Problem is an example of the more 
general Ideal Resonance Problem, first identified by Garfinkel (1966). Detailed 
investigations of the Ideal Resonance Problem, principally by Garfinkel and Jupp, 
have led to formal series solutions. A feature of these formal solutions is that the 
series are developed in terms of the square root of a small parameter, a device 
used first by Bohlin, and subsequently described by Poincar6 (1893). The essential 
features of the Ideal Resonance Problem and its solutions may be gleaned from 
Jupp and Abdulla (1984, 1985) and Jupp (1987), and the other relevant papers 
referenced therein. 

In the current article the aforementioned knowledge of the Critical Inclination 
Problem and Ideal Resonance Problem is applied to the relativistic motion of 
a satellite about a general oblate body. It is assumed here that the oblateness 
effect is at least as significant as the relativistic effect. Consequently solutions are 
constructed in powers of d12/2. If the relativistic terms were to dominate, expansions 
in powers of c -1 might be more appropriate. 

2. The Construction of the Long-Period Hamiltonian 

Since the phenomenon of resonance is here associated with the long-period be- 
haviour of the satellite's motion, the construction of the required long-period Hamil- 
tonian will be described only in outline form; more details are given in Heimberger 
et al. Adopting their notation, the Lagrangian of a satellite moving about a central 
body, in the Einstein form of the Post Newtonian gravitational field is, 

l v 2  l [ l v 4  1U2 3 ] + Vv 2 , (1) 

where v is the satellite's velocity and U its gravitational potential energy. Retaining 
only the principal (Keplerian) and the second zonal harmonic (J2) terms in U the 
corresponding Hamiltonlan may be written. 

H 2 #2 #4R2 (_a') [ 1 3 H 2 3 _(1 ~-~)_ cos 2( f  + 9)]. 
, - H -  + 

] 
- 2 - + r  8 J + t c2L 4 

H 2 H z 
d2#6R24c2L---------- T [ 1 - 3  ~ - 3  ( 1 -  + 9)] + ~--g) cos 2(f  x 

3 x [2 (a) 4- ~ ( a ) ' ]  , (2) 

in which (L, G, H, (1), 9, (h)) are the usual Delaunay variables, # is the product of 
the universal constant of graviation and the central body's mass and R is the mean 
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equatorial radius of the central body. Further, r is the radial distance and f the true 
anomaly of the satellite, a is the semi-major axis of the instantaneous elliptic orbit 
and c is, as usual, the velocity of light. Of course, both r and f are dependent upon 
L, G and I through the standard relations of Keplerian motion. 

If the terms factored by c -2 in (2) are omitted there remains what is usually called 
the main problem in artificial satellite theory. This is the problem which was so 
elegantly solved by Brouwer (1959). Borrowing from earlier ideas of von Zeipel 
he tackled this problem in three stages. First, the short-period terms (i.e. those 
dependent upon l) were "removed" using a canonical transformation of variables. 
The remaining long-period problem is then governed by a Hamiltonian depending 
upon U, H ~, G ~ and 9 ~ only, where the primes indicate the transformed variables. 
This single-degree-of-freedom system was then further simplified using a second 
canonical transformation of variables to "remove" the long-period terms (i.e. those 
dependent upon 9t). Finally, the remaining secular problem, being independent of 
all angle variables, was very simply solved. 

Heimberger et al. used essentially the same approach in their analysis of the 
relativistic problem associated with (2). However, instead of employing what is 
generally known as the von Zeipel method they chose instead to use a method 
based on Lie series, as expounded by Hori (1966) and Deprit (1969). The removal 
of the short-period terms, as outlined above, leads to the long-period Hamiltonian. 

m = r-r~ + u~ + ~r~ + . . . ,  

with 
#2 

H ~ -  2L 2 , 

#4J2[i~2 ( 1 - 3  ~ - ~ ) - - -  
H[ = 4L3G 3 

(3) 

3# 4 L 5 

n 2 n 4 L 6 ~ _ _ / 1 _ 3  a2"~ 2 ~8 ~ + ~ ) + ~  ~ + 

(4) 

(5) 

H ~ - - - - 3  #6J2R4 5 L 5 (1 
32L 10 [4 ~-g 

H 2 H 4 1 L 7 G 2 
~ (1-~ -~ ~ ( z ~ - a ) ~  

4 G ~-2 G-4/ 2 G 7 

H 2 H 4 
(1-  ,6 ~ +,~ ~ )  cos ~] + 

/.t6 d2 R2 H 2 G G z 
+ +~+~ [0 -~ ~)(~6+ 1~+-~9 z~) + 

For convenience and simplification of presentation the primes on the Delaunay 
variables in (4)-(6) have been dropped. The expressions for H~ and H~ have been 
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taken directly from Heimberger et al. The second-order term has been assembled 
as follows: 

1 H~=-F{ + ((Hz> + (r2)). (7) 

Here F2* is the non-relativistic term, taken from Brouwer (1959), with k2 = 

1 (<HE) + <F2)) is the relativistic term assembled from the for- J2 R2 /2, while 

mulas given by Heimberger et al. The Delaunay variables L' and H '  (written here 
as L and H), incorporating the short-period perturbations, are clearly constants. 
The reduced problem has just one degree of freedom and, as such, may readily be 
written in the form of the Ideal Resonance Problem. 

3. A R~sum6 of the Ideal Resonance Problem 

In its standard form the Ideal Resonance Problem (I.R.R) is characterised by the 
Hamiltonian F,  satisfying the equations 

- F ( x , y )  = B(y) + 2e 2A(y) sin 2 x ,  

(8) dx OF dy OF 

dt Oy ' dt Ox " 

The resonance manifests itself through the function B(y), which is such that its 
first derivative OB/Oy vanishes for some value of y, say Y0. Further, it is assumed 
that e is small and that in the neighbourhood of y0 the product AO2B/Oy 2 = AB"  
is of the same order of magnitude as B. Lastly it is necessary that AB"  is positive 
within the domain of resonance. If, however, this condition is not fulfilled a simple 
change of variables is sufficient to recover the standard form of the I.R.P. 

This is not the place to describe the various methods which have been devised 
to construct formal series solutions of this system. The interested reader should 
initially consult Garfinkel 0956), Jupp (1969) and Jupp and Abdulla (1984). It is 
sufficient here to enumerate some of the chief features of the solutions. 

(i) The series solutions are expansions in powers of e. 

(ii) The solutions involve Jacobi elliptic functions and integrals. 

(iii) The phase plane associated with system (8) comprises regions oflibration and 
circulation, partitioned by separatrices - analogous to the simple pendulum 
phase plane. Indeed, the I.R.R describes a perturbed simple pendulum. 

Of the two solutions, i.e. those of Garfinkel and of Jupp, it has been established 
in the last cited paper and its sequel that the solution due to Jupp is appreciably 
the more accurate in deep resonance. The essential differences between the two 
solutions are described in the 1984 article. Further, it should be noted that the 
singularity at the separatrix, alluded to at the bottom of page 412 in that article has 
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subsequently successfully been removed (Jupp, 1987). In virtue of the preceding 
statements the solution due to Jupp will be utilised in the current work. Accordingly, 
the first-order libration solution, as given by Equations (13)-(15) in the 1984 paper, 
is 

1 
x = s in- l (ksnw)  + -~ epob3 kcnw s in- l (ksnw)  , (9) 

Y = Yo + e Po kcnw + 

1 
e2p2k [k(1)3cn2w + 51sn2w) + 2b3snwdnw sin-l(ksnw)] (10) 

6 

w = woo - ~0t.  (11) 

To avoid confusion with earlier notation the small parameter e here replaces # o f  
the previously published papers. The definitions of the constant coefficients Po, b3, 
51 and &0 are to be found in the last cited paper. In these expressions the Jacobi 
elliptic functions have modulus k and the constants k and woo are determined from 
the initial conditions. 

The non-singular circulation solution is displayed in Equations (13)-(15) in the 
1987 paper; for reasons of economy of space this solution is not reproduced here. 
Then, by letting k ~ 1 in the libration solution or n ---, 1 in the circulation solution, 
the first-order separatrix solution is obtained; the result is given by Equations (17)- 
(19) in the 1987 paper. 

It can be seen that in each of these first-order solutions the expression for y, 
the momentum variable, includes terms in e 2. In fact this bonus is an important 
and useful feature of Jupp's method; indeed all the second-order terms in e z in the 
expressions for y are given by each of the three first-order solutions. Similarly, the 
second-order solutions contain all the terms in e 3 in the formulas for y. 

It was stated earlier that it is necessary that the product A B "  is of the same 
order of magnitude as B. Should this not be the case then the problem is classified 
as "abnormal", and altemative methods of solutions must be used. An example of 
such a problem arises in the main problem of artificial satellite theory when the 
orbital eccentricity is small and, at the same time, the orbital inclination is close to 
the critical value cos- 1 (1/x/~) .  

4. Application to the Relativistic Satellite Problem 

A comparison of the long-period Hamiltonian, given by Equations (3)-(6), with 
the Ideal Resonance Problem, defined by Equations (8), suggests the following 
identifications: 

x = g ,  y = G ,  

#4R2 

B(G)  - 4LaG 3 

(12) 

H 2 3# 4 L 5 
+ +sma.erterms, 
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G 2 H 2 H 2 G 2 
( 1 -  -~-) ( 1 -  ~ - -~ ) [ J2RZ(1 -  15 - ~ )  + 24 --~-] . 

(14) 

Without any loss of generality the leading term in H ~ has been omitted in the 
expression for B since L is a constant of the motion. [It is perhaps timely to 
recall that while L and H are constants in (13) and (14), they do incorporate the 
short-period perturbations.] As a further convenience the Hamiltonian H ~ has been 
factored by d~-I before the identifications were m a d e -  this is essentially equivalent 
to a linear scaling of time. 

Resonance is associated with the vanishing of the first partial derivative of 
B with respect to the momentum variable G. Accordingly, the differentiation of 
Equation (13) leads to 

H 2 G 2 
Bt-OBoG - 3~#4R2 ( 1 - 5  ~ -  - 4fl ~-~) + O(J2) , 

in which fl is the positive non-dimensional relativistic parameter defined by 

/3 = H2/RZeZJ 2 . 

(15) 

(16) 

Neglecting, for the time being, the terms of O(J2), it is easily seen that in the 
non-relativistic case, with fl = 0, B t vanishes when H2/G z = 1/5; this corre- 
sponds to the orbital inclination i = cos-l(1/x/5) ,  called the critical inclination. 
For satellites whose orbital inclinations are at or close to this critical value, the 
"classical" theory of Brouwer is inapplicable and other theories must be adopted; 
for example, the theory of the I.R.P. 

In virtue of Equation (15), in the relativistic case, the zeroes of the leading term 
in B t corresponds to 

H2/G 2 = cos 2 i0 = [1 + V'(1 - 80fl)]/10. (17) 

Clearly the roots are real provided/3 _< 1/80. For 0 _</3 < 1/80 two critical values 
of the inclination exist for each value of/3, while for fl = 1/80 the single critical 
value is i0 = cos-l(1 x/T0) - 71.6 °. Since B ~ is singular for i = 7r/2 and fl > 0, 
polar orbits need to be treated as a special case of the relativistic problem; this will 
not be attempted here. The effect of the omitted terms of order Jz is to shift by 
a small measure the values of the exact resonance from those given by (17). The 
small shifts from these critical values depend upon the size of the orbit, as govemed 
by the major axis, the orbital eccentricity and also the relativistic parameter 3. 

It was stated earlier that the Ideal Resonance theory is not applicable when AB" 
is other than the same order of magnitude as B. On differentiation with respect to 
G, Equation (15) yields 

Bit --3#2R2 ( - 2  + 15 COS 2 i + 4/3 sec 2 i) + (18) 
-- 2L3G 5 ... 
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and, setting e = j~12, (14) may be re-written 

A = - 3  #6R2e2 sin2 i 
64L3G7 (1 - 15 cos 2 i + 24/3sec 2 i) . (19) 

The libration centre corresponds to G = Go, 9 = 0 where B~(Go) = 0. There 

i = i0 + O(J2), as given by (17), and e = e0 = ~/(1 -GZ/L2) .  Accordingly, 
evaluating B" and A at G = Go there result 

- ± 3 4R2 
./iV, 1 _ 80/3) + .. . ,  (20) 

2L3GS0 

3#6R4e 2 sin z io (5 9 ~ ( 1  80/3)) (21) 
Ao = - 128L3G 7 q: - , 

where the upper and lower signs correspond with the upper and lower signs re- 
spectively in (17). 

It follows that the relativistic problem is an "abnormal" case of the I.R.E if 
either /3 ~ 1/80 or /3 _~ 7/810 or e0 ,2_ 0. On the contrary, if none of the 
above conditions applies then the relativistic Critical Inclination Problem may be 
classified as an I.R.E Moreover, the product AoB~' is positive, as required, provided 
0 < / 3  < 7/810. If, however, 7 /180 > /3 > 1/80 then AoB~' is negative. In this 
case replacing 9 by ~ + 7r/2 readily converts the problem into I.R.E standard form. 

As has already been stated, the I.R.E is a perturbed simple pendulum, whose 
phase plane incorporates regions of libration and circulation partitioned by sep- 
aratrices. Garfinkel (1966) introduced the practical distinction between deep and 
shallow resonance. In cases of deep resonance the standard "classical" theories, e.g. 
Brouwer (1959), are inappropriate and special theories, e.g. the I.R.E theory, must 
be employed. Deep resonance in the present application includes all the libration- 
ary motions, the separatrices and the circulatory motions close to the separatrices. 
The remainder of the circulatory motions make up the shallow resonance region, 
in which the classical theories are adequate to describe the motion with sufficient 
accuracy. 

It has been shown in the relativistic problem that if 0 < /3 < 1/80 then two 
critical values of the inclination exist for each value of/3. Theoretical difficulties 
could be encountered if the two regions of deep resonance, associated with each 
of the critical values, are such that "overlapping" occurs. In the absence of over- 
lapping, however, each critical inclination may be treated as a separate and distinct 
I.R.E problem. Garfinkel (1966) showed that in deep resonance the inclination is 
always within 1 ° of the critical value, so the scope for overlapping is quite small. 

The period of libration, T,  is determined from the formulas (Jupp, 1969) 

T = 4K/epoB~' (22) 

pZ = 4Ao/B~' . (23) 
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In virtue of (20) and (21) it is easily seen that 

#Reosin i0 19 q: 5(1 - 8 0 f l ) - 1 / 2 ]  1/2 (24) 
P0 -- 4G0 

The period of libration is minimised at the libration centre, where K = 7r/2. 
Accordingly, substitution yields 

167rx/~ 3 (1 _%2)3 1 (25) 

with 

D(/3) = 143(1 - 80/~) :F 9(3 - 40fl) ~/(1 - 80/~)11/z , (26) 

and in which the mean motion n is defined by n2a 3 = #. 
In the non-relativistic case/~ = 0, D(0) = 4 and Equation (25) agrees with 

Garfinkel's calculations. 
The period is minimised for a(1 - e0) = R and eo = 0.5, so that 

T > 36 "12(~/2nD-/3) " (27) 

5. Conclusions 

The principal results established in the earlier sections are here summarised. The 
nature of the problem, and its subsequent solution, depends upon the value of the 
relativistic parameter/~ defined by (16) as follows: 

(i) /~ = 0: The non-relativistic critical inclination case, which may be solved 
using a direct application of the I.R.E 

(ii) /~ ~_ 0: In this case it is likely that the omitted higher-value zonal harmonic 
terms, e.g. those in J22, J3, J4 ,  .. . .  are as significant as the relativistic term. 

(iii) 0 < fl < 7/810, 7/810 < /3 < 1/80: Two critical values of the inclination 
occur for each value of ft. The theory of the I.R.E may be used, unless there 
is an overlapping of the resonances. 

(iv) fl ~_ 7/810, fl _~ 1/80: Two a b n o r m a l  cases, for which the standard I.R.P. 
theory does not apply. 

(v) fl > 1/80: In this case no critical inclination exists. However, for values of/~ 
close to 1/80, B ~ may be sufficiently small to require an I.R.E treatment. On 
the contrary, when/~ is such that B ~ is not small (i.e. O(ff2) 1/2) the problem 
is no longer one of deep resonance; in these circumstances a classical theory 
(e.g. Brouwer, 1959) suffices. 

(vi) /~ >> 1: The relativistic terms dominate the oblateness terms so that expan- 
sions in powers of c -1 , rather than the more usual c -E, would be appropriate. 
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