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Abstract. We present here a group theoretical analysis of the structure of the space ~ of orbits in 
the classical (plane) Kepler problem, and relate it to the description of the Kepler orbits as curves 
in configuration and in velocity spaces. A Minkowskian parametrization in f~ is introduced which 
allows us a clear description of many aspects of this problem. In particular, this parametrization 
suggests us the introduction in f~ of a Lorentzian metric, whose conformal group SO(3, 2) contains 
a seven-dimensional subgroup which is induced by point transformations in the configuration space 
P(. A SO(2, 1) subgroup of this group still acts transitively on X, which is thus identified as 
a homogeneous space for SO(2, 1); each regular Kepler orbit is the trace of a one-dimensional 
subgroup whose canonical parameter automatically equals to the classical anomalies. These results 
are somehow a configuration space analogous of the geometrical structure of the Kepler problem in 
the velocity space previously known. 

Key words: Two body problem, conformal geometry. 

1. Introduction 

It is known since Hamilton's work [1] that the hodographs of the orbits of Kepler 
problem, i.e., the graphs of the velocity vector dx/dt, are either circles, for orbits of 
negative energy, or portion of circles, otherwise. GyOrgyi [2], Moser [3], Osipov 
[4], Belbruno [5], and Milnor [7] gave a very interesting geometric interpretation of 
this fact. The set VE of velocity vectors v such that v.v > 2E, for a fixed energy 
E, can be endowed with a Riemannian structure given by the length element 
dl~, E = 4/[(v 2 - 2E) 2] dv 2. This metric has constant curvature K = - 2 E ,  and 
its geodesics are the hodographs of the Kepler problem for this energy. Then, for 
elliptic orbits (E < 0) the manifold has a spherical geometry, in the parabolic 
case (of null energy) Vo is an Euclidean plane, and for hyperbolic orbits (E > 0) 
the manifold VE is a hyperbolic plane. In either case, the arc-length along the 
geodesics equals to the classical eccentric (resp., parabolic, hyperbolic) anomalies. 
It is also remarkable that these anomalies are proportional to the "fictitious time" 
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s = f dt / Ix( t)  I, called Levi-Civita parameter, which plays an important role in 
the regularization problem for singular orbits [3]. 

Once the energy E has been fixed, we can associate a geodesic in the manifold 
~;e with each Kepler orbit of energy E. In this way the space f~E of the Kepler 
orbits of energy E is identified with the space of the geodesics of VE. The group of 
the corresponding geometry (either SO(3), E(2) or SO(2, 1) respectively) acts in 
a natural way on this space. It is to be remarked that these groups act on the velocity 
space as point transformations and they are not dynamical symmetries in the usual 
sense. This association allows us to understand the connection between the Kepler 
motion and the geodesic flow on spaces of a constant curvature, a relation that has 
been very often used. 

However, there is no similar picture for the Kepler orbits in the configuration 
space X, and the only obvious point transformations in X mapping Kepler orbits 
into Kepler orbits are Euclidean rotations and homotheties; only the first subgroup 
maps orbits of energy E into orbits of energy E. 

In this work we introduce two groups ~o ~ ,  of local point transformations in the 
space f~ of all Kepler orbits, both isomorphic to the conformal group of the (2 + 1) 
dimensional Minkowski space. Each one of these groups has subgroups acting 
as point transformations in either the configuration space and the velocity space. 
Starting from 0v and restricting to the submanifold of orbits with constant energy 
E we recover all the previously known results on the S0(3 ) /E (2 ) /$0 (2 ,  1) 
homogeneous space structure for the sets ~;E or f~E. New results are obtained from 
~c which restore, even in this classical context, a remarkable symmetry between 
configuration and velocity spaces. 

In Section 2 we present the Kepler problem, in order to unify notation and to 
introduce some concepts. 

Section 3 is devoted to describe the Kepler problem in velocity space. We briefly 
review some details of Milnor's description, where some very nice properties of 
the geometry of the Kepler problem appear. As the hodographs are circles, we 
consider there the space of all circles and derive from them the metrics in ~E. 

Next, Section 4 studies the space of all plane Kepler orbits. A particular 
parametrization, called Minkowskian, is introduced and used thoroughly to ex- 
hibit in a clear descriptive way the structure of this space. All collision orbits fit 
naturally into this description as "points at infinity" and the remaining singular 
orbits complete the scheme. 

Once a metric in the space of all orbits has been defined, we study in Section 
5 the groups of isometries and conformal transformations Cc of this metric. This 
conformal group includes a seven dimensional subgroup of transformations in the 
orbit space that are induced by point transformations in the configuration space, 
some of which are not evident at a first sight. This subgroup is isomorphic to the 
2 + 1 Poincar6 group extended with dilations. By analyzing this construction, the 
configuration space k'  for the Kepler problem appears as a homogeneous space for 
SO (2, 1), obtained by taking the quotient by a one-dimensional parabolic subgroup. 
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The action of SO(2,  1) on 2'  is transitive but not primitive, and therefore there is 
neither any invariant Riemannian metric in X nor a unique invariant connection. 
Instead, there is a whole one-parameter family of invariant connections p(c),  
and Kepler orbits are the auto-paralell lines of this family of connections. For 
each Kepler orbit, there is a one-parameter subgroup of point transformations 
in the configuration space 2" mapping the orbit into itself, and the canonical 
parameter for this one-parameter subgroup equals to the anomaly (eccentric / 
parabolic / hyperbolic) along the orbit. This has some interest, as it shows some 
group theoretical meaning of these parameters, long known as the "best" parameters 
in the Kepler problem and in connection with the regularization for collision orbits 
[3]. As far as we know, these groups of point transformations on the Kepler 
configuration space are new and they provide a configuration space counterpart 
for the groups arising in the Moser-Osipov-Belbmno-Milnor (MOBM) approach 
in velocity space. We complete this study by an independent computation of all 
possible sprays [8] (second order differential equation vector fields) in 2", invariant 
under S 0 ( 2 ,  1), with the result that only for the family corresponding to parabolic 
orbits the connection comes from a metric in configuration space. 

In Section 6 we introduce another different construction, which leads to a new 
group Cv. In the same way as some subgroups of Cc are related to transformation 
groups in configuration space, here some subgroups of Cv are related to point 
transformation groups in velocity space; in particular the groups in the MOBM 
approach are recovered when one restricts to the subgroups of Cv mapping the 
submanifolds of constant energy onto themselves. 

Finally, some remarks and comments, as well as an outlook for future work is 
presented in Section 7. 

2. The Kepler Problem in Configuration Space 

The motion of a point of mass m in a conservative field with potential 
V(r)  = - ( k / r )  is called the Kepler problem. Here k is a positive constant, 

and with no loss of generality we shall only consider the case m = 1. The motion 
takes place in a plane because the force is central. It is well known that the problem 
can be split into a geometrical part (determination of the Kepler orbits) and a 
non-geometrical one (time evolution along the orbit). The orbits of this problem 
are generically non-degenerate conics with a focus at the centre of attraction. The 
general equation of non-degenerate conics in polar coordinates (r, 0), with the 
origin at the centre of atraction is: 

P P 
r = = ( 2 . 1 )  

1 + e cos(0 - ¢) 1 + e~ cos 0 + e u sin 0 ' 

where p > 0 is the semi-latus rectum, e = (ex, ey) and e =lelC [0, ec) is the 
eccentricity of the conic. 

As it is well known, if 0 _< e < 1 the conic is an ellipse reducing to a circle 
when e = 0, for e = 1 the conic is a parabola, and when e > 1 the conic is a 
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hyperbola (see Figure la). The angle ¢ corresponds to the direction of the point 
on the conic closest to the origin (periastmn). For e ~ 1, the semiaxis lengths are 
given by 

I P I b - I P I (2.2) 
a - i i _ e  21' ¢ 1 1 - e 2 1  

When the conic is an ellipse or a parabola, the Kepler orbit coincides with 
the conic, but when it is a hyperbola, it is only one of the two branches of the 
hyperbola, (the branch nearest to the origin) which we shall refer to as the Kepler 
branch. From the mechanical point of view, each Kepler orbit has some associated 
constants of the motion as the energy E, the angular momentum L (here scalar, 
so that positive as well negative values are allowed) and the Laplace-Runge-Lenz 
vector R [9, 10], which is a vector pointing out from the origin of coordinates to 
the periastron. The (vector) angular momentum/_, is orthogonal to the plane of the 
motion. For every non degenerate conic there are two possible senses of motion 
along the conic, and hence two different Kepler orbits with opposite values of L, 
related with p by L 2 = k p .  

A practical way to describe at the conic level the fact that there are two Kepler 
orbits for each non-degenerate conic is to allow for negative values of p. So the 
conic (2.1) (as a point set in configuration space) is either described by the triplet 
(p, e, ¢) (with p > 0) or by ( -p ,  e, ¢ + rr). As to the associated Kepler orbit, when 
the angular momentum is positive we shall match it to the triplet (p, e, ¢) with 
p > 0, and when angular momentum is negative we shall match it to the triplet 
( -p ,  e, ¢ + rr). From now on we shall allow negative values forp by following the 
preceding convention. 

The energy E is related with the geometrical parameters of the orbit, eccentricity 
and semi-latus rectum by 

k k(1 - e 2) 
E -  - for 0 < e < l  

2a 2 l p  I 

E = 0  for e = l  

k k(e 2 -- 1) 
E -- -- for e > 1, (2.3) 

2a 2 1 P l  

where a is the focal semi-axis of the ellipse or the hyperbola respectively. Some- 
times a different convention amounting to have positive a for elliptical orbits and 
negative a for hyperbolic orbits has been used [11]. Kepler orbits with the same 
energy have also the same value of the focal semi-axis. Formulas (2.3) and the 
expression for the angular momentum can be written in a more compact form 

E - k ( e 2  - 1) 
, L = sign (p)v/k -] p I. (2.4) 

2 1 p l  
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The Laplace-Runge-Lenz vector R lies in the plane of the orbit, points to the 
periastron, and its length is ke, namely R = sign (p) (ke cos ~b, ke sin qS). It does 
not depend on the sense of motion along the orbit. The four constants E, L, Rx, R v 
are not functionally independent but they are related by 

2ELZ'~ k z = k z 2 E L  z, (2.5) a 2 =  1 +  k2 ] + 

and therefore 2EL 2 = -kZ(1 - eZ). Notice that the Kepler problem is the classical 
example of the so-called super-integrable systems [12]. 

The energy can take values in the real line/R. Once a value E of the energy 
is fixed, the ranks of the (scalar) angular momentum L and of the modulus R of 
R are given in the following table: 

k k 
L 

R 

0 < e < l  e = l  e > l  

( E < O )  ( E = O )  ( E > O )  

[ 

[0,+k) k 

Note that R =  0 if and only if the orbit is circular (e = 0). 
Another constant of motion which will appear later is 

2E 
C -  L2. (2.6) 

From the former expressions the relationship of C with the geometrical parameters 
of the orbit is, for E # 0, 

_ 1 ) 1  _ 
C = p---T- - sign (e - 1 b2. (2.7) 

Hence the orbits of the family with constant value of C are ellipses with the same 
value of the non-focal semiaxis for C < 0, parabolas for C = 0, and hyperbolas 
with the same value of the non-focal semiaxis for C > 0. 

From now on, 12 will denote the set of all (plane) Kepler orbits and 12 + the 
subsets of all regular orbits, 12 + = f~+ t3 f~-, the sign in the superscripts meaning 
the positive or negative orientation of the orbit, L > 0 or L < 0 respectively. They 
are three-dimensional manifolds. A subindex like E in 12z will always mean the 
submanifold of all orbits of energy E, with the obvious meaning for symbols like 

In addition to all the regular orbits (characterized by L # 0), there are non- 
regular orbits, obtained as limits of regular orbits when some of their geometrical 
and/or physical parameters tend to particular values. From the point of view of 
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configuration space, there are two kind of non-regular orbits: the collision orbits 
(L = 0 and finite E), and a set of  more singular orbits, characterized by values of E 
and/or L equal to -4-oo, whose consideration is required for reasons of mathematical 
convenience, although they are of course highly non-physical. We warn the reader 
that usually only regular and collision orbits are considered at all. 

Let us first describe the collision orbits. In order to allow a continuous variation 
of Kepler orbits of  fixed energy E as L ~ 0 it is natural to adopt the so called 
Reflection Convention [13, 7]: I f  an orbit has L = 0 (x and dx /d t  are linearly 
dependent for  some initial time to), the particle falls towards the origin and when 
it hits this point, x(t) is reflected back along the same half-line. The reflection 
convention allows us to discuss the problem of identification between half-lines 
through the origin as (degenerate) conics and collision Kepler orbits. Fix E to some 
value (say E < 0) and let L ~ 0 from positive values; the Kepler ellipse of fixed 
semiaxis a flattens out and tends towards a straight line segment with lenght 2a and 
one end at the origin (collision "elliptic" orbits). The same construction holds for 
E = 0 and E > 0 collision orbits, where parabolas or hyperbolas flatten out and 
tend towards a semi-infinite half-line with one end at origin (collision parabolic 
and hyperbolic orbits). Hence each half-line through the origin corresponds to an 
infinite family, parametrized by E, of  collision orbits. For E # 0 these orbits are 
limits of  orbits of  fixed a when b ~ 0. 

The remaining singular orbits fall into the following classes: 
1. Circular orbit at the origin. This is a single orbit, which arises, for instance, as 

the limit of  circular orbits when a = b tend towards 0. It has energy E = - c~ ,  
and angular momentum L = 0; as a curve in configuration space it reduces to 
a single point at the origin. 

2. Circular orbits at infmity. These are two single orbits, limits of circular orbits 
when a = b tends towards c~. For these orbits E = 0 and L = 4-oo; they 
correspond to a circle of infinite radius. 

3. Hyperbolic "angle" orbits. When a and b tend towards 0 with fixed b/a, the 
Kepler branch of hyperbolic orbits tends to two half-asymptotes, making an 
angle with vertex at the origin. Formally such conics have a finite e > 1, but 
E = ~z and L = 0. There is one such orbit for each oriented angle with vertex 
at the origin (a half-asymptote marked as in and the other as out); note that this 
includes the case where the half-asymptotes are colinear. 

4. Hyperbolic "straight" orbits. When b ~ co, but ae - a is constant, the Kepler 
branch of hyperbolas tends towards a straight line not passing through the 
origin but at a fmite distance of it. Formally these orbits have e = ~ ,  E = cc 
a n d L  = +co.  

From the point of  view of  configuration space, these are the relevant classes of 
singular orbits; note that we have considered the circular orbit at the origin as a 
single orbit, though formally we could have considered as being different all the 
limits of ellipses when a --+ 0, b ~ 0 while b/a is fixed. In a similar way, we could 
consider other formal limits, in particular of  parabolic and hyperbolic orbits "at 
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Fig. 1. a) Geometrical elements of elliptical and hyperbolical Kepler orbits in configuration space X. 
b) The hodographs for the same orbits in the velocity space 12. 

infmity" in configuration space in addition to the single "circular orbit at infinity". 
A more explicit and detailed description of the structure of all regular, collision 
and singular orbits is in progress and will appear in a forthcoming paper. 

3. The Kepler Problem in Velocity Space 

As explained in the Introduction, the hodographs of regular motions in the Kepler's 
problem, i.e., graphs of the velocity vector dx/dt, are either circles (for negative 
energy) or arcs of circles (for zero or positive energy). These circles degenerate into 
straight lines through the origin in velocity space for collision orbits (see [7] for 
a detailed description). Before entering into the nice geometrical structure hidden 
behind these velocity circles we shall give an explicit description. Let us start with 
regular orbits. As t varies, the velocity vector drddt, moves along a circle, which 
together with its orientation, determines a Kepler orbit in a unique way (Figure lb). 

Notice that two orbits differing only in the sense of motion have associated the 
same velocity circle, traversed with different orientations. Consider first regular 
orbits with L > 0, and let us introduce cartesian coordinates (vx, vy) in the velocity 
plane, so that v~ + v2u + 2gvx + 2 f v  u + c = 0 is the equation of a circle centred at the 
point ( - 9 ,  - f )  and with a radius r = V'9 z + f2 _ c. Let us remark that in order to 
the parameters f ,  9 and c represent a circle they must satisfy g 2 + f2 _ e > 0 and 
therefore circles are represented by points under the paraboloid c = g z + f2 in the 
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space of triplets (g, f ,  c) (see e.g. [14]). In this open set, (g, f ,  c) gives a coordinate 
system for the space of circles of a given orientation, which are in a one-to-one 
correspondence with the set of regular orbits of a given sign of L. Using simple 
trigonometry the angle a between two circles is given by 

1 
cos a - 2rlr-----~[2glg2 + 2flf2 - Cl - c2], (3.1) 

and therefore the angle da between two neighbouring circles can be written as 

d(~2 = ~1 [(f2 _ c ) d f f 2  + (if2 _ c ) d f 2 _  

¼dc 2 + g dg dc + I dS dc-  2aS dy da]. (3.2) 

The angle between two neighbouring circles with the same value of the parameter 
cis 

1 
d(~2 = • [(f2 _ c)dg2 + (g2 _ c)df2 _ 2gf df dg]. (3.3) 

The ratio ~ will be called the eccentricity of the circle with respect to the r 

origin; the reason for that denomination is, of course, that it equals to the value of 
the eccentricity of the corresponding Kepler orbit in configuration space. 

The relation between (g, f ,  c) and the parameters of the Kepler orbit in config- 
uration space and with the constants of motion is 

i R* 
k ( e s i n ¢ , - e c o s ¢ )  - (g' f )  = sign (p) -~l  I L l  

k(e 2 - 1) 
c - - 2E  

Ipl 

k 
r = v/-k] p I =  (3.4, 

I L l '  

where R* is the dual vector (in the plane) to R,  R* = (Rv, -Rx) .  
Conversely, for the orbits associated to the velocity circle (g, f ,  c), the values 

of the energy, angular momentum, Laplace-Runge-Lenz vector and the constant C 
in (2.6) are: 

c 
E - - -  

2 

k 
L =  

x/g2 + f2  _ C 
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k 
R = ( - f , g )  

x/g2 + f2 _ c 

c = c( 2 + f2  _ c) 
k2 (3.5) 

Let us denote by CE the circle of radius x/2 I E I and centered at the origin. It 
is clear from (3.4) and (3.5) that for E < 0 the velocity circles intersect CE in two 
diametrically opposite points, they pass through the origin for E = 0, and they are 
orthogonal to the circle CE for E > 0 .  Notice that for positive energy the centre 
of the velocity circle lie outside of the circle CE, and that the possible velocity 
vectors satisfy v 2 > 2E, so the hodograph point moves along the part of the circle 
extemal to CE. 

There is a completely similar description for regular orbits with L < 0, so there 
is a one-to-one correspondence between regular Kepler orbits and oriented circles 
in velocity plane V. 

Hodographs of collision orbits are straight lines passing through the origin in 
the velocity space. They fit neatly in the former scheme: for each value of energy E 
there are two (oriented) straight lines through the origin that automatically satisfy 
the corresponding requirement (cutting the circle CE in antipodal points for E < 0, 
passing through the origin for E = 0 and cutting orthogonally the circle CE for 
E > 0). Moser [3] gave a picture of the space of all elliptic orbits of a fixed 
energy. The idea for such a construction is implicit in the previous description, as 
for a fixed negative energy (say E), a stereographic projection of a 2-sphere of 
radius ~ placed in 3-dimensional Euclidean space into its equatorial plane 
(identified to the velocity plane), carries great circles of the 2-sphere precisely into 
velocity circles (or straight lines through the origin) associated with Kepler orbits 
for energy E. 

Following Osipov [4], and Belbruno [5, 6], Miinor [7] pointed out that an 
essentially similar construction could be performed for parabolic and hyperbolic 
orbits of fixed energy. For hyperbolic orbits with energy E, the inverted velocity 

1 vectors w = (v/v2), varies over the interior of the circle }w [< ~ and in terms 
of w the hodographs of Kepler problem are arcs of circles orthogonal to the 
circle I w 1= 1 and interior to it. The Lobachevski plane can be realized as 

1 placed in a Minkowskian three- the (space-like) 2-pseudosphere of "radius" 
dimensional space. A stereographic projection into the two-dimensional Euclidean 
plane passing through the origin (again identified to the inverted velocity plane) 
carries the geodesics of the 2-pseudosphere (Lobachevski plane) precisely into 
velocity circles (or straight lines through the origin) associated with Kepler orbits 
with energy E. For E = 0, the space of inverted velocity vectors has the structure 
of an Euclidean plane, because circles through the origin are carried onto straight 
lines (geodesics of the Euclidean plane) by the inversion w = (v/v2). 

For these three cases, the metrics have the standard Riemmanian form 
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w 2 

dl2'E = (1 + (-2E)wZ) 2 

and in terms of coordinates v, 

4 dv 2 
dl2v,E = (v  2 - 2E)2" 

The space f~E of all Kepler's orbits of energy E can therefore be identified with the 
set of oriented geodesics of the manifold ~)S; both spaces are dual in the geometric 
sense [15, 16]. The groups of isometrics of the metric dlZ,E (SO(3), E(2), SO(2, 1) 
respectively) maps geodesics into geodesics and therefore acts also on fiE. If the 
distance between two geodesics (as points in f~E) is defined as the angle between 
the geodesics (as oriented lines in VE), this distance comes from a metric, and the 
group (SO(3), E(2), S0(2, 1)) also acts in f~E as isometrics. As dlZ,E is conformal 
to the euclidean metric, the angle between geodesics computed in VE coincides 
with the euclidean angle (3.3). In terms of a new coordinate system (e, ¢) in f~+ 
(Sec. 2.1), we obtain for the "dual" metrics the following results: 

i) E < 0. The metric induced on f~E, i.e., dual of dlZ,E is described in each 
"half" ft~ by 

dsZ]n~- 1-1 ezde 2 + eZdCZ, 0 < e < 1. (3.6) 

This metric is definite positive and has positive constant curvature. We will call 
this metric cospheric because the manifold fiE is dual to VE, whose geometry is 
spherical for E < 0. Note that these coordinates cover only f~+, but the same E 
expresions also hold when the coordinates (e, ¢) for the set of orbits of energy E 
with opposite orientation (as given in 2.1) are used. 

ii) E > 0. The induced metric is now the cohyperbolic one: 

da2ln~ 1 2 = e--~-i-_ 1 d e  - e 2 d ¢  2, 1 < e. (3.7) 

This metric has signature (+, - )  and positive constant curvature. In this case the 
manifolds f~E are dual to ~;E, whose geometry is hyperbolic. 

4. The Space of All Kepler Orbits 

Let us first consider the regular orbits (L # 0) as curves in configuration space. 
These orbits lie on non-degenerate conics, whose equation can be written in the 
form 

1 
- = Z + X c o s 0  + Ysin0. (4.1) 
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where Z = l/p, (X, Y) = (e~/p, eu/p ). Note thatp ¢ 0, but with the conventions 
given in Section 2, p can have negative values. Henceforth each regular orbit 
can be parametrized by a point (Z, X, Y) in l~ 3. The admisible range of Z is 
( -co ,  O) tO (0, c~) while the ranges of X and Y are ( -c% c~) so the domain of 
regular orbits is ~R 3 - { Z = 0 }; each half-space Z > 0 or Z < 0 corresponds 
to orbits in Q+ or Q- respectively. For reasons to be discussed later we shall call 
Minkowskian such parametrization. It is easy to obtain the expressions for the 
constants of motion in terms of this parametrization 

E = k(Z2 - -  X 2  - -  y2) 

21zl 

~/ k 
L = sign ( Z ) I Z l  

R = ksign (z)  ( X ,  Y )  . (4.2) 

The couple of orbits with different orientations corresponding to the same conic 
are characterized by (Z, X, Y) and ( - Z ,  X, Y), and thus the change of direction 
of motion along the conic is represented by the reflection in the plane Z = 0 in the 
model. This Minkowskian parametrization allows us to display in a simple way 
many interesting geometric properties of the space of orbits. The first question is: 
given a point (Z, X, Y), (Z ~ 0) in ft, how can we find its Kepler orbit as a curve 
in configuration space?. Let us identify the configuration space X with cartesian 
coordinates (x, y) with the plane z = 0 of an auxiliar three dimensional space 
/R3 (z, x, y). Writing the equation (4.1) in the form 

1 = Zr  + X x  + Yy  (4.3) 

(with x = r cos 0, y = r sin 0 and therefore x z + yZ = r2), (4.3) appears as the 
solution of the system of equations 

Zz  + X x  + Yy  = 1 

Z2 = X2 + y2 (4.4) 

and hence the curve corresponding to (4.3) is the projection on the Oxy plane, along 
the Oz axis, of the intersection of the plane (4.4a) with the cone (4.4b). Notice that 
the plane (4.4a) is the polar plane (with respect to the quadric z2+x 2 +yZ = 1) of the 
point of coordinates (Z, X, Y) in the auxiliar space. Hence we obtain the following 
simple geometrical construction relating the point (Z, X, Y) in ft ± (L ~ 0) with 
the corresponding Kepler orbit: 

Let us consider in ~R3(z, x, y) the plane with characteristic vector (Z, X, Y) 
through the point of coordinates 1 (Z, X, Y). Its intersection with the Z2+X2+y2 
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Fig. 2. Relation between the Kepler orbit as a conic in configuration space and as a point (Z, X, Y) 
in the space of orbits ft. The plane is the polar of the point (Z, X, Y); its intersection with the cone, 
projected on the OXY plane gives the Kepler orbit. 

cone z z - x 2 - y 2  = 0 is a conic whose (x, y) projection is the configuration space 
Kepler orbit ( Z, X ,  Y )  (Figure 2). 

Indeed, it can be checked by direct calculation that the curves obtained by 
following this procedure are conics in the plane (x, y) with focus at the origin, and 
that they exhaust all regular Kepler orbits. 

The converse is the following: From the Kepler orbit (the configuration space 
being identified with the plane (x, y) as before), lift it to the cone z 2 - x 2 - y 2  = O. 
This gives a curve which is contained in some plane whose polar point (respect 
to the cuadric Z 2 -[- X 2 q- y2 = 1) is on the line through the origin and normal (in 
euclidean sense) to the plane; if d is the distance from the plane to the origin, the 
polar point is at a distance d ~ = 1/d. The  coordinates (z, x, y) of this polar point 
are the Minkowskian coordinates (Z, X, Y) of the Kepler orbit. 

It follows clearly from this construction (and also from (4.2a)) that points in the 
interior of the cone correspond to elliptical orbits while those on the cone describe 
parabolas and exterior points represent hyperbolic orbits. Notice that either the 
polar plane associated to the point (Z, X, Y) has no intersection with the opposite 
sheet of the cone (corresponding to the "opposite" sign of Z), or the intersection 
with the opposite sheet of the cone corresponds to the non-Keplerian branch of 
the hyperbola. On the other side, if a Kepler orbit has coordinates (Z, X, Y), with 
Z > 0, the point ( - Z ,  X, Y) corresponds to the Kepler orbit on the same conic but 
with opposite orientation, so the polar planes of points (Z, X, Y) and ( - Z ,  X, Y) 
are related by a reflection in the plane Z = 0. After that discussion, the name of 
Minkowskian parametrization appears more natural. 

In terms of this Minkowskian parametrization the submanifolds f ~  of regular 
orbits with constant energy E are characterized according to (4.2), by the equations: 

( Z + e _ X 2 _ y 2  (4.5) = -~-, sign (Z) = ~. 
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Fig. 3. (a) The submanifolds f~E of constant energy in the orbit space. (b) A section Y = 0 showing 
how the submanifolds f ~  depend on E. All energies are measured in k units. 

The first equation involves ~ and E only through its product, and for E # 0, this 
equation is that of a two-sheet hyperboloid centred at the point with coordinates 

,E 0 0~ and vertices at ( - -2¢E,0,0)  and (0,0,0).  Each sheet of this hyper- ( - - k  ~ ~ ] '  k 
boloid is completely contained in a half-space Z < 0 or Z _> 0, so taking into 
account the second equation, the upper sheet of the hyperboloid corresponds to f~+, E 
while the lower one corresponds to f~-E" For E = 0, these hyperboloids reduce 

to a cone with vertex at (0, 0, 0), whose sheets will be called f~o + and f~o. This 
structure is depicted in Figure 3. 

We can make use of this construction in order to give a geometric character- 
ization of the submanifolds f~+, f~E" Orbits with fixed E correspond to points 
(Z, X,  Y) satisfying (4.5). By using the relation between points (Z, X,  Y) and 
Kepler orbits as curves in the configuration space, it is easy to translate (4.5) into a 
condition on the planes (polar planes of points (Z, X, Y)) whose intersection with 
the cone Z 2 - X 2 - y2  = 0 gives the Kepler orbit through OZ projection on the 
OXY plane. The result is that these polar planes are always tangent to a paraboloid 
inscribed in this cone. The easiest way to proof this is to note that rotational in- 
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variance allows simplification by considering only points with Y = 0. Let us first 
consider E < 0, so for Z > 0 (orbits in f~+), equation (4.5) reads: 

Z ]E[) 2 - X 2 - V 2 =  2. (4.6) 

The intersection of (4.6) with the plane Y = 0 is a hyperbola 

z -- I EI(1 ÷coshx)  X = [ E----~] sinhx, (4.7) 
k k 

and the intersection with Y = 0 of the corresponding polar planes are given by the 
equations 

I E I  [Z(1 + c o s h x ) +  Xsinhx] = 1. (4.8) 
k 

The envelope of such a family is obtained by eliminating the parameter X between 
the preceding equation and the one obtained by derivation of it with respect to the 
parameter: 

(Z sinh X + X cosh X) = 0. 

From this the parametric equation of the envelope is: 

Z = k cosh X X = k sinh X (4.9) 
I E I ( 1  ÷ coshx) I EI (1  + coshx)" 

By elimination of X and restoring Y, we obtain that all the planes polar to points 
in f ~  are tangent to 

Z -  ] m l ( x 2 ÷ y 2 ) +  k (4.10) 
2k 21E I" 

This is a paraboloid inscribed in the cone Z 2 = X 2 + y2, and the point of tangency 
varies over the portion of the paraboloid with x/X 2 ÷ y2 < ~-I (see Figure 4). For 
E > 0 and L > 0, the same procedure leads to the paraboloid 

Z =  E 2 k -~-~(X ÷ y 2 )  2E, (4.11) 

but now x/X 2 ÷ y2 > ~-T" Orbits with L < 0 give the portions of paraboloids 
obtained from the preceding one by a reflection in the OXY plane, and finally, when 
E = 0 the orbits correspond to intersections of the cone with planes orthogonal to 
its generatrices. These results appear without further comments and ascribed to A. 
B. Givental" in a book by Arnold [17]. The same kind of construction also leads to 
descriptions for the set of all orbits with fixed angular momentum, orbits that pass 
through a point, etc., some of which are also reported in [17]. 

For instance, the set of orbits of fixed angular momentum L is a plane parallel to 
the OXY-plane, Z = sign (L)(k/L2). The submanifolds of orbits with constant 
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Fig. 4. Planes tangent to the paraboloids (4.10) and (4.11) give, by intersection with the cone and 
projection on the O X Y  plane all Kepler orbits of energies E and - E .  In particular, planes tangent 
to the paraboloid along the circle of contact with the cone give the collision orbits. 

value of C = 2 E l L  2, to be denoted by Oc,  are described by the equation Z z - 
X 2 _ y2 = - C ,  and therefore they coincide for C # 0, with the family of one 
and two-sheet hyperboloids centred at (0, 0, 0), and with the cone ft0 for C = 0. 

Let us now consider the set of all Kepler orbits passing through a point P in the 
configuration space, say with polar coordinates (r0, 0o). With the parametrization 
(4.1), Z, X, Y must  satisfy either of the two equations 

1 
- -  = Z + X cos 00 + Y sin 00, (4.12a) 
T0 

1 
= Z - X cos 00 - Y sin 00, (4.12b) 

--TO 

which are the equations of two planes in the (Z, X, Y) space, to be called respec- 
tively l i p  +, and l i p - ;  both planes are related by a reflection in the (X, Y) plane 
and their intersection 7P is a straight line in the plane Z = 0, which is the polar 
of the point P (relative to X z + y2  = 1), with the configuration space identified 
to the plane (X, Y)). It is easy to see by direct calculation that the points in l i p  + 
with Z < 0 (resp. in l i e -  with Z > 0) correspond to hyperbolas whose Keplerian 
branch does not pass through/9  (while the other branch pass through/9),  and we 
obtain (Figure 5a): 

The Kepler orbits passing through a point/9 in configuration space lie on a 
wedge made up from two half-planes whose intersection is a straigth line 7p. 
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2 

(a) (b) 
Fig. 5. (a) The "wedge" of all Kepler orbits through a fixed point P in configuration space. Each 
half-plane contains all orbits of a given orientation, and the intersection of each half-plane with the 
cone contains the parabolic orbits, which separate the elliptic orbits (in the interior of the cone) 
from the hyperbolic orbits (outside the cone). (b) All Kepler orbits through two fixed proper points 
in configuration space. Each half-line moves from the hyperbolic straight orbit 7P tO 7Q, through 
hyperbolic orbits, to a parabolic orbit (in the intersection with the cone), then to elliptical orbits, 
and crossing again another parabolic orbit, to hyperbolic orbits towards the hyperbolical angle orbit 
which corresponds to the point "at infinity" along the line. 

The Kepler orbits passing through two points P and Q in the configuration 
space lie on the intersection of the two wedges of P and of Q; the intersection 
consists of a "vertical" angle, made with two half lines meeting in a single point 
7P fq 7Q on the plane Z = 0 (see Figure 5b). 

It is easy to see that not every (afflne) half-plane appears as associated to a point 
in configuration space; in order to the plane A Z  + B X  + C Y  = D represents 
such a set of  orbits its coefficients have to be related by A 2 - B 2 - C 2 = 0. And 
not every half straight line in the orbit space fl corresponds a family of orbits 
through two points P,  Q in configuration space. In fact, let us consider two orbits 
(Z1, XI,  Y1) and (Zz, Xz, Y2). The straight line determined by them is given by 

Z - Z I  Y - Y l  X - X I  
Z2 - Zl  ~¢2 - Y1 X2 - X I '  

or in terms of the one-parameter family of planes defining the line (for Y2 - II1 ~ 0) 

~[(Y2 - Y 1 ) ( x  - x i )  - ( x 2  - X l ) ( Y  - ~ ) ] +  

+ u [ ( Y 2  - ~ ) ( z  - Z l )  - ( z z  - z ~ ) ( Y  - ~ ) ]  = o.  
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The points of intersections of orbits (Z1, XI,  Y1) and (Z2,)(2, Y2) will corre- 
spond to planes in this family satisfying the above-mentioned relation that in our 
case tums out to be 

/k2(y2 - g l )  2 q- [/~(X2 - X l )  q- # ( Z 2  - Z1)] 2 = #2(] ,~ _ ]i1)2. 

For # = 1, the discriminant of this binomial expression in A is 

D = 4(Y2 - Y 1 ) z [ ( x 2  - X l )  2 n t- (Y2 - Y1) 2 - (Z2 - Z1)  21 (4.13) 

and thus, 
1. If D > 0 there exist two intersection points. 
2. If D -- 0 the orbits are tangent. 
3. If D < 0 there is no intersection of the two orbits. 

It tums out to be extremely useful to endow the space (Z, X, Y) with a flat 
Lorentzian metric, given by 

do 2 = d Z  2 - d X  2 - d Y  2 (4.14) 

When rephrased in terms of do z, all the former results become very clear. Elliptic 
orbits are interior to the "light-cone" of the origin, parabolic orbits lie on the 
light-cone and hyperbolic orbits are in the exterior of the cone. The submanifolds 
of constant C are Minkowski spheres centered at the origin, the submanifolds of 
constant L are space-like planes orthogonal to the Z axis, and the submanifolds 
of constant E and L < 0 or L > 0 are the sheets of the Minkowski (space-like) 
spheres centered at points on the Z axis. The condition A 2 - B 2 - C 2 = 0 on 
the coefficients of the plane representing orbits through some fixed point P in 
configuration space means that the plane is isotmpic, whereas the straight (half) 
lines corresponding to orbits through two points P and Q are always space-like 
lines that meet the ligth-cone of the origin. 

The meaning of the Lorentzian character of the metric is that, according to 
the classification in (4.13), two near Kepler orbits can fall into three different 
categories: 

1. they intersect at some point P,  
2. they are tangent or 
3. they do not intersect at all. 

'Fhese three altematives correspond respectively to do 2 < O, do 2 = O, do z > O. 

Hence a particle (a space-craft) moving in a Kepler potential will stay in a fixed 
Kepler orbit until the engines are powered, and then the family of its instantaneous 
osculating Kepler orbits will describe a curve in the orbit space which is generically 
space-like, being only null for the case of an impulse along the instantaneous 
direction of motion; this curve cannot be time-like. 

Collision Kepler orbits (L -- 0) and singular orbits fit neatly into the scheme 
of this "Minkowski space of Kepler orbits" and provide a concrete realization of a 
compactification of  this space (compare [ 18]). Let us first remark that collision and 
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singular orbits are characterized either by L = 0 or by infinite values of the energy 
and/or angular momentum. Therefore, one could expect that in the (Z, X, Y) space 
they are either "at infmity" (as L = 0 implies Z = +co), or in the plane Z = 0, 
where the two half-spaces of regular orb!ts meet. 

Regular orbits with energy E lies on (4.5), and if we let L ~ 0 (say from 
positive values), while keeping fixed the parameter ~b which controls the direction 
of the periastron of the orbit, the representative point in the space (Z, X, Y) goes 
to the infinity (with Z > 0) along one branch of a "vertical" hyperbola contained 
in (4.5). It is only natural to associate the limit orbit to the point "at infinity" along 
the asymptote, which is an isotropic line. We have a different asymptote for each 
value of the energy, so we obtain a whole/~ of points "at infinity" along isotropic 
directions with fixed ~b, and all them correspond to collision Kepler orbits. We 
could also have obtained the same collision orbits as limits of orbits with fixed 
energy and L < 0, as L ~ 0 from negative values which gives another "cylinder 
at infinity along isotropic lines" on the Z < 0 half of isotropic lines. Of course, 
these two cylinders must be identified via a reflection in the XY plane, because on 
the ground of the Reflection Convention, there is only one Kepler orbit for each Er 
and on each half-line through the origin in X. Collision orbits are in a one-to-one 
correspondence with these points "at infmity along isotropic lines" in the space 
(Z, X, Y) (Figure 6). 

The remaining singular orbits are unphysical, but from the mathematical point 
of view fit very comfortably in the same scheme. For instance, the circular orbit at 
the origin in X' correspond to the "point at infinity" along time-like lines; there are 
two such points (limits Z ~ oo and Z ~ -oo,  which must however be identified) 
so we get a single "point at infinity" on time-like lines through the origin. Similarly, 
each hyperbolic angle orbit is the single "point at infinity" along a space-like line 
through the origin. Notice that for all these orbits, Z = -4-oo. 

The remaining singular orbits are the hyperbolic straight orbits. As they have 
L = -4-oo, we could expect that there Z = 0, and indeed for Z = 0, (4.1) is the 
equation of a straight line. Thus, the plane Z = 0 that separates the two half- 
spaces of regular orbits contains the hyperbolic straight orbits; equation (4.2) is 
even formally correct for it gives the infinite values for E and L characteristic of 
these orbits. There is a detail worth of notice here: each point (0, X, Y) must be 
associated to two Kepler orbits, differing by the direction along its straight line, so 
really we must imagine the "plane" Z = 0 as two disconnected copies o fR  2, each 
one in the boundary of the set of orbits with a given orientation. For our purposes, 
the (unphysical) identification of this pair of (also highly unphysical) orbits tums 
out to be adequate. Finally, the two circular orbits at infmity corresponds to the two 
"copies" of the point (0, 0, 0) in ~. 

The readers can try to see by themselves that the geometrical construction 
linking the point (Z, X, Y) to the Kepler orbit as a curve in configuration space 
still works for all the non-regular orbits, giving always the degenerate conic on 
which the Kepler orbit lies. Actually, all the geometrical descriptions which have 
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Fig. 6. A schematical diagram of the submanifolds of collision and singular orbits as points "at 
infinity" and on each side of the plane Z = 0 in Ra(Z, X, Y). The circular orbit at the origin 
appears as the point at infinity along time-like directions. Collision orbits are the points at infinity 
along isotropic directions, while hyperbolic angle orbits are the points at infinity along space-like 
directions. Orbits on Z = 0 are the hyperbolic straight orbits. The complete space f~ is obtained by 
glueing two similar halves with identification of the pair of points at infinity which correspond to 
each L = 0 non-regular orbit. 

been stated only for regular orbits extend very naturally to include the singular 
orbits. For instance, the edge of the "wedge" of Kepler orbits passing through P 
corresponds to the hyperbolic straight orbits, lying on all straight lines through P 
in configuration space. The "vertical angle" of Kepler orbits through two points 
in configuration space includes, in the point ~,p N "/Q, tWO hyperbolical straight 
orbits (on the straight line from P to Q and from Q to P in 2') and also two 
hyperbolic angle orbits for the points "at infinity" along the two half lines. We do 
not devote here more room to this description, which will be considered in more 
detail elsewhere. 

5. The Conformal Group Cc 

There are various transformation groups ofisometries or conformal transformations 
asssociated to the metric do 2 = d Z  2 - d X  2 - d Y  2 in f~, namely 

1. A "Lorentz group"/~c of the metric (proper ortochronous linear isometries), 
isomorphic to the connected component of the identity of S 0 ( 2 ,  1). 
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2. A "Poincar6 group" Pc of the metric (proper ortochronous affine isometries), 
which includes translations and is isomorphic to the semidirect product R 3 ®Z;o 

3. A "Weyl group" l/Vo obtained by adjoining dilations to Pc [19]. The new 
transformations are not isometries, but only conformal transformations. 

4. The full conformal group Cc of the metric, isomorphic to SO(3, 2). 
Note that the three groups L;c, "Pc and Wc act globally in fL while Cc acts only 

as a local transformation group. 
In this section we shall study these transformation groups, and in particular their 

relationship to some groups of transformations in the configuration space X. 
The standard form of the conformal group action on Minkowski space is [20] 

0 0 
Y = - Y - o - x  + X O y  (5.1) 

0 0 
KI  = - X - ~  - Z o x  , 

0 0 
K2 = - Y - g 2  - Z o Y  

0 0 0 
190-- O Z ' P~ - O X ' 192-  O Y 

D = Z 0---0-- X 0--~- 0 
OZ + OX + Y OY 

Co = - ( Z  z + X 2 + y2) - 2 Z X  - 2 Z Y  o--- ~ 

CI = 2 Z X  ~---~ + (Z2+ X 2 -  Y 2 ) ~  x + 2 X Y  0 
OY 

C2 = 2 Z Y  + 2 X Y  + (Z 2 _ X 2 + y2) OY" 

The subgroup/:c is generated by J, KI,  K2 and Pc includes these generators 
and also Po, PI, P2. The group }/Vc, which contains Pc as well as the extra generator 
D, being an affine-linear subgroup of Co, maps planes into planes. In view of the 
previous geometrical description, this subgroup can be expected to be induced by 
point transformations in the configuration space X, and as we will see next, this is 
indeed the case. 

In terms of polar coordinates (r, 0) in X (identified to JR 2 - { 0 }), or (q, 0) 
where q = 1/r, the equation of the regular Kepler orbit parametrized by (Z, X, Y) 
is, respectively: 

1 
r =  

Z + X c o s 0  + Ysin0 

q = Z + X cos 0 + Y sin O. (5.2) 
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Let us start by asking whether some of the transformations in C~ are induced 
by point transformations in the configuration space X. The criterion for this is the 
following: Let 

E(q, 0; Z,X,Y)  =_ Z + X c o s 0  + YsinO- q = 0 (5.3) 

be the equation of an orbit in configuration space (for fixed Z, X, Y); alternatively 
(5.3) could be looked at as the equation of the set of orbits through a fixed point 
in configuration space. A one parameter group exp (Ae) of point transformations 
in the configuration space, generated by A, induces a one-parameter group of 
transformations, say exp (Ae) in the space of orbits if it maps Kepler orbits into 
Kepler orbits, this is, if there exists a function A(q, 0; Z, X, Y; e) such that 

E(expAe(q, 0); Z, X, Y) = A(q, 0; Z, X, Y; e)E(q, 0; exp Ae(Z, X, Y)) 

because the zero set of the function E(exp (Ae)(q, 0); Z, X, Y) transforms in the 
zero set of E(q, 0; exp (Ae)(Z, X, Y)). Taking the derivative at e = 0, we obtain 

AE - AE = AE, (5.4) 

where A = (d/de)A(q, O; Z, X, Y; e)1,=0- More explicitly, a vector field in f2, 

o 0 0 
A = aZ(Z,X,Z) + a X ( Z , X , Z ) - ~  +aY(Z ,X ,Y)o  Y 

can be considered as induced from an infinitesimal transformation in configuration 
space if there exists an infinitesimal generator 

o 0 
A---a°(q,O) +aq(q,O)-~q 

in X and a function A(q, 0; Z, X, Y) such that (5.4) holds. 
Furthermore, in this case the geometric interpretation already tell us that the 

subgroup of Cc for which these equations have solutions includes as generators at 
least J, fix, K2, Pz, P2, Po and D. An explicit study of the equations confirms 
this, and also shows that (5.4) cannot be satisfied for any generator A linearly 
independent of this set. The corresponding generators in configuration space are 
given by 

o o o 
J = 0-"'0' P 0  --'-- ~qq, ~ 1  z.z COS 0 , P 2  = Sin - -  JD = q~qq, 

 ,= cos0_O Oq + sinO , i(2 = qsinO - c o s 0  . (5.5) 

Hence the (2 + 1) Weyl group Wc (which acts in the standard way in f~) also 
acts in a non-standard way as a transitive group of point transformations in the 
configuration space X of the Kepler problem. The Lorentz subgroup Z~c acts on f~ 
in a non-transitive way, but transitively on the submanifolds Oc, Z 2 - X 2 - y2 = 
- C ,  which corresponds to Kepler orbits with a fixed value of C = 2E Z-r. By 
exponentiation of (5.5) we obtain this action as: 
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exp(aJ ) ( r ,  0) = (r, 0 + a) 

exp(xKx) (r, 0) = (r(cosh X + sinh X cos 0), 0') 

e x p ( x K u ) ( r  , 0) = (r(cosh X + s inhx  sin 0), 0") 

where O' and 0 '1 are functions of X and 0, given respectively by 

sin 0 
sin 0 ~ = 

cosh X + sinh X cos 0'  

and 

sin O" = sinh X + cosh X sin 0 
cosh X + sinh X sin 0'  

cos O' = sinh X + cosh X cos 0 
cosh X + sinh X cos 0 

(5.6) 

(5.7a) 

cos 0 
cos 0 I' = (5.7b) 

cosh X + sinh X sin 0'  

This action is not primitive [21] (as 0 = const, gives an invariant foliation), and 
the fundamental vector fields are 

0 X j -  
O0 

0_o XK1 = - r  cos Or + sin 0 

O O 
X/~z = - r  sin 0 ~ - cos 0-~-z,, 

Or ou 

and in coordinates (q, 0) these expressions become 

0 ZJ-- 
0 0  

(5.8a) 

~q 0 
I K ,  = qcos0  + sin0~-~ 

XK~,= qs in0~q cos0 O .  (5.8b) 

Notice that there are three different strata for the action of Z:c in f~ according to 
the sign of C: 

1. The strata C < 0 includes all elliptical Kepler orbits. For a fixed value, say 
C = -t~ 2, the Kepler ellipses have the same non-focal semiaxis, and all 
possible eccentricities e < 1. As a representative in O c  we can choose a circle 
q --~ to. 

2. If C = 0 the eccentricity is e = 1, i.e., the conics in this stratum are all 
parabolas and a convenient representative is q = 1 + cos 0. 

3. For C > 0, the Kepler branches of  hyperbolas appear; as a particular repre- 
sentative for fixed C =/~2 we can choose the hyperbola q = t~(1 + v ~ c o s  0). 
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The point to be remarked now is that for each fixed value of C, the Kepler 
orbits in O c  determine a two-parameter family of conics in X, and we can ask 
whether they can be considered as the geodesic curves of a connection in X and if 
so, whether this connection is the Levi-Civita connection defined by a Riemannian 
metric in X. Therefore we now investigate whether a second order differential 
equation vector field F of the spray type [8] exists such that its integral curves are 
the given family of curves. 

A method for the determination of such sprays for each family consists on 
elliminating (Z, X, Y) in terms of q, vq, 0 and vo by making use of the total time 
derivative of the equations of the generic conic in the family. We prefer a different 
procedure and we will study each case separately. 

5.1. C - 0 ORBITS. (PARABOLAS) 

Take now the two-dimensional family of Kepler orbits O0 (i.e., E -- 0, and hence 
parabolic orbits). Let q = ( l /p ) (1  + ex cos 0 + e u sin0) be the general equation 
of such a conic depending on two parameters (here e 2 + e2u = 1). Note that the 
basic fundamental vector fields of the action of SO(2, 1) are given in (5.8b), so 
any fundamental vector field X can be written as a linear combination of them. 
Then, there must exist coefficients az, ax and ar such that 

X : az ( -  ff-O ) + ax [q cos O ff---q + Sin O ff-S-~ ] + ay [q sin O -ff-q cos0~0] ,  (5.9) 

and the requirement of : I  to be tangent to the conic E = 0 is X EIz=  o = 0, i.e., 
explicitly: 

az(-e~ sin 0 + ey cos 0) + a x  [e~ + cos 0] + a r  [eu + sin 0] = 0, 

and as this must  be true for any angle 0, we obtain 

ax = -azey  ay = azex. 

Any vector field X tangent to the given conic is therefore proportional to 

Io  = q(-evcosO + ex s in0)~q  - (1 + evsinO + ex cos 0 ) ~  0 (5.10a) 

or from (5.8b) 

•0  = l J -- Ey.I~K1 -1- e x l K 2 .  (5. lOb) 

We can now look for local coordinates adapted to the vector field I 0  (see e.g., [8] 
p. 153). We choose the family of parabolas 

1 + cos 0 
q - , (5.11) 

P 
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where the eccentricity vector points in the positive Ox-direction, namely ex = 1 
and e u = 0; any other parabola carl be obtained from (5.11) by some rotation 
around the origin. The vector field tangent to these orbits is: 

1"0 = X j  + X g  2. (5.12) 

We are now looking for local "adapted" coordinates 81 and 82 such that 

X0sl = 1, Xos2 = 0. (5.13) 

This leads to a system of partial differential equations 

081 qsinO Osl - (1 + c o s  = 1 Oq 0)--~- 

^, 082 
sin 0-~o- - (1 + cos v) ~ = O, (5.14) q 

to be solved by the method of the characteristics. In particular, a solution of the 
system is given by 

o 
sl = - 1 + cos 0 

q 
82 - -  (5.15) 

1 + cos 0 
As the result is independent of p, the same parameter sl is appropriate for all conics 
in this family. A parametric description of the orbits based on the natural parameter 
h = sl is given by 

2 
q(h) - 

p(1 + h 2) 

O(h) = - 2  arctan h. (5.16) 

Now, taking time derivatives twice in each expression of (5.16) and eliminating 
p and h it is easy to check that 

302 -- q20 

2q 

//= 002, (5.17) 
q 

from which we obtain the expression for the spray giving rise to the parabolic orbits 

0 0 3v 2 -q2v2  0 VqVO 0 
F (c=°) = Vq-~q__ + vo-~ + 2q cOv----qq + - -  - - "  (5.18) 

q Ovo 

It is notewhorthy that the natural parameter h = sl (5.15a) is but the so-called 
parabolic anomaly which is the analog for E = 0 of the better known eccentric 
anomaly. 
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5.2. C < 0 ORBITS. (ELLIPSES) 

Let C = - a  2 < 0. Here as E < 0 we have e < 1. The equation of a Kepler 
orbit in the family of fixed C depends on two independent parameters ex, e u, (with 
ex 2 d- ey 2 < 1), and is 

(1 + ex cos 0 + ey sin 0). (5.19) q 
X/(1 - e2) 

A vector field X as in (5.9) is tangent to such an elliptical orbit if 

a z ( - e ,  sin 0 + e u cos 0) + ax(e~ + cos 0) + ar(eu + sin O) = 0 

and this leads to 

a x  ---- - - a z e y ,  a y  ---- azex~ 

so the general solution for X is proportional to 

1 
.~_  -- (l~~_ e 2 ) [ X j  -- eyXK1 --~ exXK2]. (5.20) 

As X_ generates a compact subgroup, the factor ~ has been introduced 

in (5.20) in order to get a range from zero to 27r for the natural parameter in a 
complete turn. Coordinates adapted to this vector field are found in a similar way 
to the former case. Specializing the calculations to the family of orbits with ey = 0, 
they have to be determined from the system of partial differential equations 

1 081 _ (1 + ecosO) Osl] ~ [ q e sin O -~q - ~ 1 = 1  

Os2 Os2 
q esin0 -~q - (1 + ecos0)  - ~ -  = 0. (5.21) 

The equation determining Sl leads to 

dO d81 
- -  ( 5 . 2 2 )  ' 

1 + ecosO _ e 2) 

and therefore sl is given (up to an additive constant) by 

8, [- too. 
tan ~- = - + e 
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Notice that (5.23) is the very well known expression for the eccentric anomaly, 
which appears here as a group theoretical parameter which describes the unfolding 
of a Kepler conic as the orbit (in the group theoretical sense) of apoint in configura- 
tion space under the one-parameter subgroup generated by X_. The same happens 
in the parabolic and hyperbolic orbits. We stress the fact that these anomalies, 
whose role in this problem is well known, appear here with a group theoretical 
meaning. 

The computation of the spray giving rise to these elliptic orbits is made up 
similarly to the preceding case. In terms of the natural parameter ~ = 81 the orbits 
are written 

~ / ~ -  e 1 + tan 2 z ~ 
q(~)=t~ + e  l + ~ t a n  22 g'  

(5.24) 

and by elimination of the parameters e and ~, by taking time derivatives, and after 
a tedious computation we will arrive to 

~0, 21(3~ 2 ) c2~22 q 
- -  - -  - - ,  ( 5 . 2 5 )  q = -- qO 2 + 

q 

or in other words, the spray is given by 

59 59 VqVO 59 r(c=-~:) = Vq~q + v o - ~  + - -  
q Ova 

1 ( 3~02 __ q~2) .+. /,~2 V2] 59 

q 5-q] o~q (5.26) 

5.3. C > 0 ORBITS. (HYPERBOLAS) 

The complete discussion is very similar to the preceding one. In this case the 
adapted coordinate Sl is given by: 

81 l e -  1 tan~, tans-= (5.27) 

and also equals to the hyperbolic anomaly. The spray, not very surprisingly, tums 
out to be 

q aT~ [~q ~ o7~" (5.28) 
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The one-parameter subgroups mapping a given Kepler orbit (Z, X, Y) into 
itself can also be found in a more systematic way. The vector field X ( z , x , v  ) must 
be the generator of the isotopy group of the point (Z, X, Y) in f~, so this point 
must be a zero of the vector field X ( z , x y  ) = u X j  + AXK~ + #XK2. Taking into 
account the explicit expressions for the fundamental vector fields in f~, 

0 0 
x j  = + so-- V 

0 0 
= + Z o-- 

0 0 
XKy = Y-~-~ + Z OY 

we obtain 

(5.29) 

A X  + # Y  = AZ - u Y  = # Z  + v X  = 0, (5.30) 

and the general solution for this system gives a vector field proportional to 

X(z ,x ,y )  = Z X j  - YXK1 + X X K z  (5.31) 

which has (5.10) and (5.20) as particular cases. 
The family of sprays I'(c) whose geodesics are the Kepler orbits can also be 

found by a direct computation of the more general geodesic spray in 2" invariant 
under the action (5.6) of /~o To find this more general invariant spray, let us lift 
the action (5.6) to a new action on the tangent bundle T ( ~  2 - { 0 }); the complete 
lifts of the fundamental vector fields (5.6) are given by 

0 

00 

o 
X ~ = - r  cos 000r + sin 0 - (vr cos 0 - r sin Ovo) + cos Ovo Ovo 

O 
X c = - r s i n 0  --~ 

K2 Or 
- - cos 0 O - (vr sin 0 - 

o 
r cos Ovo) + sin Ovo Ovo" 

(5.32) 

The invariance condition for the spray r is expressed by 

X c [ j , r ]  = Ar 

XC [ K , , P ] = / W ,  (5.33) 

with A and # arbitrary functions, because [X~,  F] = uI ~ is a consequence of the 2 
previous ones. Let us assume that the field P is locally expressed as 
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0 ,9 ,9 ~ ,9 + 9  
r = v, Or + vo-~  + f `gv, `gvo 

where f and g are functions of r, 0, Vr, re, quadratic in the velocities. Then the first 
invariance condition (5.33) means that f and g do not depend on 0, and A vanishes 
because of 

[X~,, r] - `gf ,9 ,gg ,9 
,9o ,gv--, + ,9-~ ,9vo" 

In a similar way the invariance underX~c ~ leads to # = 0, and to 

,gg Og ff--~gvo r-~r + v, ~v - vo + g = 0  

--VO ~--gvr -- VO 2 = 0 

`gf ,gf Of 
r-~r + Vr~v ~ - V e r y  ° - f + rye 2 -- 0 

`gf 
-rve-~v ~ + 2vev~ + rg = O. (5.34) 

The general solution for the first pair of equations (5.34), taking into account that 
f and g must be quadratic in the velocities is 

rOY, 
g - -  - -  + vol(rvo), 

r 

where l is an homogeneous function of degree one, and as a conseouence of the 
regularity conditions we get: 

VOVr 
g - -  - -  + arvo 2, (5.35) 

r 

with a some real number. Analogously, the quadratic solution of the second sub- 
system is 

(1 ) 
f = ~ + arv~vo + ~r  + br 3 vo 2, (5.36) 

where b is a real number. 
Therefore the expression of the spray field I" depends on two parameters, a and 

b, and is given by 

ro,  = + I ) ] o + + a r v ,  vo + \ : r +  × --`gv, 

Iv 7, arvo2] , 37a  
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and in the coordinates induced by q and 0, 

0 cO 3 2 a q b ,  O I~a'b=Vq-~q -'}-VO-'~nt- ['~qVq-4 --q VqVO -- ('~-'}- q) VO 2] X --OVq 

+U 0 +#1  o 
Ovo " (5.37b) 

This is the most general spray invariant under the action (5.6), and the family r (C) 
is included as the particular case a = 0, b = C. 

0M, o~eover since the coefficients of the connection P ~,b in the local basis 

b } are given in the general case by (5.37b), we see that the non-zero {N 
components of the conection are 

3 ,  a q b 
11, - ~-q r 1, = r h  - 2~' r h  = ~ + 

a 
1 p22 = _ _ .  P122=P21--  2q'  q 

From (5.38), the curvature tensor 

a e a e a R~cd = OcI'~d -- OdPbc -- PbcPed + PbdPec, 
can be computed; for instance 

b 
= - - -  r 2 1 P e 2  + r 2 2 F e l  ~-~ + - -  

(5.38a) 

(5.38b) 

(5.39) 

Another interesting point is whether or not the sprays F(C) (i.e., (5.37) for 
a = 0) are Riemannian or Lagrangian. To start with, the spray pO,O is easily seen 
to be geodesic, and can be considered as a Riemannian connection for the metric 

1 1 
ds 2 = -45 dq 2 + -q dO 2, (5.41) 

or in other words, the Euler-Lagrange equations for the Lagrangian 

1 02 102 (5.42) L o = ~ 5  -t-q 

are the equations of the geodesics for the spray F °,°. But all the other sprays in 
the family are neither Riemannian nor Lagrangian, i.e., associated to a regular 
Lagrangian L ([81, Chapter 13). To see it, take into account the preceding result 
for the case a = b = 0; in the general case the Lagrangian would be L = Lo + bL1 
and then the Euler-Lagrangian equations for L1 are 

0. (5.43) 
a Cage  o-7 q ' ~-~ v-aa-j ao 

a 2 

4q z . (5.40) 
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The second equation tell us that there exists a function f(O, q, (1) such that LI 

Of ~, and then the first Euler-Lagrange equation becomes 
00 

) b02 d oaf 0 Oaf b ~_ (5.44) 
OOOq q 

and this equation has no solution for f when b ~ 0. The proof of the non existence 
of a Lagrangian L for the spray (5.37b) with a = 0 but b ~ 0 can also be carded 
out in a much more geometric way, using for instance the theory developed by 
Klein [22]. 

Retuming to (5.5), we have there a local group in the configuration space, map- 
ping Kepler orbits into Kepler orbits. Some of these transformations correspond to 
non-complete vector fields, and a proper discussion requires the explicit introduc- 
tion of a compactification of X. Our main purpose here has been only to discuss 
the group £:~ which is the configuration space analogue of the groups involved in 
the MOBM construction. We do not enter in a deeper study of the action of the 
Weyl group in the configuration space given in (5.5). 

6. The Conformal Group C~ 

In the former section we introduced a SO(3, 2) group acting on the space of orbits 
~2, which has a subgroup of transformations }/Vc induced by point transformations 
in configuration space. In particular, on each submanifold ~3c of all orbits with a 
fixed value of C, the subgroup of SO(3,2) mapping Oc into itself is a SO(2, 1) 
subgroup (the "Lorentz subgroup" Z:c), and e c  appears as a homogeneous space 
for SO(2, 1). Furthermore, as this subgroup £:¢ is contained in W~, its action is 
induced by a group of point transformations in the configuration space X. As a 
homogeneous space for S0(2, 1), X is identified to the quotient space of SO(2, 1 ) 
by a parabolic subgroup; this action is not primitive, but has a one-parameter 
family of invariant connections, p(c), and all Kepler orbits of fixed C, as curves 
in configuration space, are but the autoparalell lines of the connection F(c). 

All this bears some analogies with the results referred in Section 1, where for 
each value of the energy E there is a group of point transformations in the velocity 
space ~)E which also induces an action on the set f~E of all Kepler orbits with 
energy E. So both spaces ))E and f~z are homogeneous spaces for the groups 
S0(3)/E(2)/S0(2,  1), according to the sign of E. 

In view of the results in Section 5, it is natural to ask whether these groups of 
transformations appear as subgroups of a larger group in the orbit space. The first 
obvious idea is to look for these groups as subgroups of Cc induced by point trans- 
formations in the velocity space ~;. But a detailed study shows that the subgroups 
of Cc mapping each submanifold f~e into itself do not provide the MOBM groups 
when acting on f~E and, even more generally, that they are not induced by point 
transformations in ~;E. 
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Symmetry between configuration and velocity spaces in our problem could be 
restored by considering another group of transformations, to be called C~, in the 
space of all orbits. As an abstract group Cv is also a SO(3,2)  group, though the 
action on fl is different. We only give a statement of the results; in some aspects 
the ideas are very similar to those in Sect. 5, but there are also some important 
differences, in particular as the orbits with E = 0 and the non-regular orbits fit into 
this new scheme in a different way. 

Let us first introduce a new parameter ~ defined by 

Z 2 _ X 2 _ y 2  1 - e 2 
= = (6.1) 

2Z 2p 

In terms of ~ the energy can be rewritten as 

if O < e < l  

k i l l ,  if l < e .  

(6.2) 

The focal semiaxis is a = 2--~" The triplet (~, e~, eu) is a good coordinate system 
in the set of  all regular orbits with E ¢ 0, and it can be used to introduce there 
another coordinate system (~, X, v) defined by 

~ e x  ~ e y  f o r  E < O, (0 < e < 1), 

~e~ ~ey for E > 0, (1 < e). (6.3) 

The new coordinates are related inside the c o n e  Z 2 - X 2 - y 2  = 0 to the old ones 
by: 

v / Z 2  _ X 2 _ y 2  
(~, X, v) = (Z, X, Y). (6.4) 

21Zl 

It is easy to derive from this that Z 2 - X z - y2 = 4(2((2 _ X2 _ v2). This, and 
similar relations which holds outside the cone, show that all the regular Kepler 
orbits with E < 0 (resp. > 0) h a v e  ( 2  _ ~ 2  _ v 2 > 0 ( r e s p .  ( 0 ) .  The equations 
of the submanifolds 9rE are: 

E 2 
E < O ,  E = - s i g n ( ~ ) k ~ ,  ( Z _ x 2 _ v 2 =  k --~ 

g 2 
E > 0 ,  E = sign (~)k( ,  (2 _ xz _ v 2 _ _ k "--~-" (6.5) 
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We now introduce an auxiliar Minkowski space,//73 ((, X, v) with the flat metric 
ds 2 = d( 2 - dx 2 - dv 2, and we identify the open subsets f~E<0, and f~E>0 in 
f~ with respectively the interior and the exterior of the cone by means of (6.3). In 
particular, the submanifolds f~E (E # 0), appear as Minkowski's spheres (space- 
like for E < 0 and time-like for E > 0) of the auxiliar Minkowski space. We remark 
that when considered as a metric in f~, ds 2 is only defined in the open subset f~E#0, 
and when trying to extend it to f~E=0, the metric becomes necessarily singular. We 
shall see next how the conformal group of the metric ds 2 acting in the standard 
way in the anxiliar Minkowski space ((, X, v), contains, as subgroups mapping 
the submanifolds f~E (E # 0) into themselves, the groups arising in the MOBM 
construction. 

The infinitesimal generators, i.e., the fundamental vector fields, are represented 
by the same expressions (5.1) with the replacements of(Z, X, Y) by ((, X, v). Since 
dilations apply spheres into spheres of the same type (i.e., they conserve the sign 
of the energy, E - ,  e~E), we can restrict our study to the representative spheres 
f~k, and f2_k (i.e., (E /k )  = -t-1). The subgroups leaving stable a generic manifold 
fiE are conjugate to the corresponding subgroups of f~k, or f~-k by a dilation of 
rate l E l / k .  

We shall consider first the case of f~-k. Let Cv_ k denote the subgroup of C,~ trans- 
form ing ~2_ k into itself. A complete set of vector fields/[i such that 1[i f -  k If_ ~ = O, 
where fE denotes the function fE = (2 _ )~2 _ v2_ sign (E)(E2/k2),  is spanned 
by 

1 C J, KI,  F,~, Ai = ~( i - Pi) for i = 0 , 1 , 2 .  (6.6) 

It is easy to check using the commutation rules that these vector fields gen- 
erate a S0(3 ,  1) subgroup, so we have Cv,E=-k ~ S0(3 ,  1). Subgroups of 
S0(3 ,  1) isomorphic to S0(2 ,  l) and E(2) are generated by J, K1,/£2 and 
J, -42 - K2, -A1 + K1 respectively, while J, A1 and A2 generate a compact 
maximal subgroup isomorphic to SO(3). 

When a similar study for E = k and f~k is carried out, the subgroup preserving 
f/k is generated by 

1 C J, [£1, [(2, Bi = ~ ( i + P / )  for i = 0 , 1 , 2 ,  (6.7) 

and the group Cv,E=k is now a group isomorphic to S0(2 ,  2). Another interesting 
S0(2 ,  1) subgroup (see later on) is the one generated by J, B1 and B2. Other 
SO(I ,  2) and E(2) subgroups are also contained in C~,E=k ..~ S0(2 ,  2). 

The relation with the groups of isometries of the metrics (3.6) and (3.7) in 
Section 3 becomes much more transparent in terms of parameters ((, e, qS): 
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( 

ds 2 = ~ d~2 

t -d~ 2 

{2 1 e2d¢2) ' 
1 ~ e 2 (1---ff~ de2 + 

~2 l e2d¢2) 
e 2 Z 1 (1--7-~ de2 + 

if O < e < l  

if 1 < e  

(6.8) 

while the expresions for the basic fundamental vector fields of Cv in these coordi- 
nates are for 0 < e < 1 

0 
g = - -  (6.9a) 

o¢ 

K1 = - cos¢ (1  - e 2 ) ~  e + - -  
sine 0 

e a¢  

K2 = - sine(1 - e2) O 
cos ¢ 0 

e a¢  

r 2 0 
Po - ICVL-J- --° 

lv/-f-Z~-e 2 Or Oe 

e 0__ ~ a C x / 1 - e  2 0 
P 1 - - c o S ¢ ~ O r  cos¢  +s in  

r Oe er 0¢ 

P 2 - - s i n ¢  l v ~ _ e  2 O sine v /T-  e2 O C X / 1 - e  z O 
Or r Oe cos er 0¢ 

0 
D = r ~ r  

1 0 x , / ~ a  
Co= + e  

1V]-S~- d Or r Oe 

C1---cos¢ e ~r 0 ¢ ~ / 1 - e  2 0 r 2 c o s ¢ ~ r ~ - r s i n  e 0¢ 

. e C2 = s m ¢ ~  r 2 0  

and for 1 < e 
0 

o¢ 

_ _ sin ¢ lx/]- :~_ e2 r 0 + r c o s C V q - -  e 2 0 
e 0 ¢ '  

(6.9b) 

0 
[£1 : - - C O S ~ ( e  2 -- 1)~--~e --I- - -  

sine 0 
e 0¢ 
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K2 = sin ¢ (e z - 1) ~-e 
cos  ¢ O 

e o¢ 

1 0 _ e ~ r ~  e 
Po= e2x~-:--i_lo ~ 

P1 = - cos ¢ ~ Or cos ¢ ~ 0e + sin ¢ er 0 ¢  

e 0 ~ - 1 0  
P2 = - sin ¢ ~ sin ¢ 

x/e z - 1 Or Oe 
COS ~ -  

v ~ Z - m o  
er 0 ¢  

0 
D ~ r  q 

Or 

r E 0 v / ~ - I  0 
C0 ~ e - -  

Or r Oe 

e 
c,  = cos  r2 r - c o s 0  - - r s i n e  - -  

v ~ - l o  
e o¢ 

e : -  
C 2 = s m C ~ r  2 - s i n C ~ r  r c o s C X / ~  1 0 

e 0¢" 

The restriction of these vector fields and of the metric to the submanifolds f~E is 
very simple because a constant E implies either 0 _ e < 1 or 1 < e, and reduces 
there to a constant ~. Thus, up to a global sign ( -  for 0 _< e < 1, and + for 1 < e), 

E 2 

1 - e z ~ de2 +ezdC2 " (6.10) 

For every fixed value of E the subgroup Cv,E leaves conformally invariant the 
metric (6.10). Coming back to the particular case of f~+k we have the following 
results: 

i) Case f~-k: 
All the elements of Cv,E=-k act by conformal transformations of the metric 

(6.10). In particular, the elements of the subgroup SO(3) generated by J, A1, A2, 

while being conformal transformations of (6.10), are also isometries of the follow- 
ing metric (of course conformal to (6.10)) 

ds 2 = 1 1 - e z de2 + eZd¢2' 0 < e < 1. (6.11) 

This can be easily checked by calculating the Killing vectors of the metric (6.11) 
and comparing with the restrictions to ~ = const, of (6.9a/b). This metric coincides 
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with (3.6), and therefore the action of SO(3) on the submanifold f~E=-k coincides 
with the action in the MOBM construction. The relation with the standard spherical 
metric which has the expresion dss2ph = dO2+sin z 0 dcb 2 in geographical coordinates 
is made through the coordinate change e = sin 0. Points onto the equatorial circle 
correspond to collision orbits; the model automaticaly regularizes collision orbits, 
as it was the case for the model based on the group Cc and its subgroups. 

The other subgroups S 0 ( 2 ,  1), and E(2) act by conformal transformations of 
the metric ds z. Eventually, we can remark that the usual dynamical group for the 
negative energy orbits of the two-dimensional Kepler problem is S O  (2, 1). 

ii) Case f~k: 
The discussion is quite similar to the above case and here the subgroup S O  (2, 1) 

generated by J, ½(Ci + Pi), i = 1,2, acts by isometries of the metric conformal to 
(6.10), 

1 de 2 e2d~2 1 < e. (6.12) ds 2 - e2---- ~ - 

The metric (6.12) coincides with the cohyperbolic metric (3.7), and therefore 
the action of this subgroup SO(2, 1) is the same as the action in the MOBM 
construction. Other subgroups S O ( I ,  2) and E(2) actby conformal transformations 
of the metric. 

7. Summary and Outlook 

The dynamical symmetry of the Kepler problem has been known since a long time. 
The groups SO(2, 1), E(2) and SO(3) are the conventional dynamical symmetry 
groups for the plane case. In this paper, however, we adopt a different point of 
view, and completely disregard the problem of time evolution along the orbit. By 
considering only the description of the space of orbits, we get some sort of new 
"symmetry groups" for this classical problem. 

In particular, a group-theoretical interpretation of the structure of the space f~ 
of all orbits is carried out. We introduce a Lorentzian metric do 2 in f~, and then we 
consider its conformal group Co. A seven-dimensional subgroup of Cc is induced by 
a group of local point transformations in the configuration space 2". In particular, 
a SO(2, 1) subgroup acts transitively on 2"; the traces of its one-dimensional 
subgroups are the Kepler orbits and the classical anomalies appear as the canonical 
parameters of the group action for regular orbits. 

All these results closely paralell the Moser-Osipov-Belbruno-Milnor construc- 
tion in velocity space "fiE. For a fixed value E > 0 (resp. E = 0, E < 0), "fie 
is also a homogeneous space of the group SO(2, 1) (resp. E(2), SO(3)). Starting 
with the group of conformal transformations Cv of the metric ds 2 in f~, we recover 
completely the MOBM construction. 

For constant energy the invariant metric in `fiE induces a metric in f~E. The 
distance between near orbits is equal to the angle between hodographs. In our 



342 JOSE CARIlqENA ET AL. 

construction the metric do 2 has not a direct meaning, but its use gives a clear 
image of global structure of the set of all orbits and of many other aspects of the 
problem. Any motion in a Kepler potential follows a curve in f~ which is always 
space-like or isotropic for the metric do 2. The minimal energy orbital transfer 
between two circular orbits (Hohmann transfer) corresponds to the extreme case of 
a isotropic curve in f~ connecting the two orbits. However, there is no any simple 
general relation of the metric do 2 with the minimal energy expense for an orbital 
maneouver. 

Consider a space-craft in orbit; in order to modify its trajectory it shoots a jet 
of gas out. Let assume that the velocity of emission of the gas from the space-craft 
relative to this one has a constant value c. In the reference frame of the space-craft 
the total linear momentum after the gas ejection is py ~ m A  v + c  Am,  where A 
v is the variation of the space-craft velocity. 

Taking into account that the initial momentum is zero, we see that r A m  ,.~ m I A 
vl.Then, the energy lost in the process is E ~ ½ A m e  z ~ ½mc l A y  ] and therefore 
proportional to I A v I. Therefore, a reasonable "metric" for orbits can be defined 
as the modulus of the difference of velocities at the intersection point. When 
integrated along a path, this should give a measure of the energy employed in the 
orbital change. It is not difficult to obtain the expression for this "metric" in terms 
of the parameters (E, e, ~b) 

1 
dS2E = dv 2 + v2 dfl 2 = -~  dE  2 + v2 dfl 2 = 

1 I _ 
= --~ [(1 + ~ \ - ~ -  

~;i 

v z e 

where vi is the velocity on the orbit (E, e, qS) at the point of intersection with the 
orbit (F_, + dE,, e + de, (9 + dfb) and 3 is the angle of intersection. However, this 
"metric" in the orbit space is not Riemannian, but of Finsler type, and therefore 
does not coincide with do z . 

The interpretation of the metric do z is also related with the study of the action 
of the (2 + 1) "Poincarr" group on the configuration space. In terms of  the space 
of orbits, this group acts as isometries of do 2. Another point worth mentioning 
is the concrete model of a compactification of the Minkowski space obtained for 
the set of all Kepler orbits. The natural parameters for the Kepler evolution are 
the anomalies, which regularize the collision orbits. As the anomalies appear here 
with a group theoretical meaning, the description in this paper includes also very 
smoothly the non-regular orbits. 

A last point worthing notice is that the structure of homogeneous space of 
the configuration space X provides a physical realization of a SO(2,  1) geometry 
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which is not of Cayley-Klein type. The same SO (2, 1) geometry (the Lorentz group 
action on the light cone) describes light propagation in a plane (i.e., transformation 
properties of both frecuency and direction), and is a kind of contraction of the 
Lobachevski geometry "around the infinity" (See also [23]). We intend to study 
this geometry and its different physical realizations in a subsequent paper. 
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