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A b s t r a c t .  Recently a method has been suggested to analyze the chaotic behaviour of a 
conservative dynamical system by numerical analysis of the fundamental frequencies. Fre- 
quencies and amplitudes are determined step by step. As the frequencies are not generally 
orthogonal, a Gramm-Schmidt orthogonMization is made and for each new frequency the 
old amplitudes of previously determined frequencies are corrected. For a chaotic trajectory 
variations of the frequencies and amplitudes determined over different time periods are 
expected. The change of frequencies in such a calculation is a measure of the chaoticity of 
the trajectory. While amplitudes are corrected, the frequencies (once determined) are con- 
stant. We suggest here simple linear corrections of frequencies for the effect of other close 
frequencies. The improvement of frequency determination is demonstrated on a model 
case. This method is applied to the first fifty numbered asteroids. 

K e y  words :  Asteroids - Chaos - Fourier Transform 

1. Algorithm for Modified Fourier Transform 

The Modified Fourier Transform (MFT) was introduced by Laskar (1988) for 
analysis of the numerical solution to his secular system for planetary motion. 
The method was described in more detail in Laskar (1990) and applied 
to the standard mapping (Laskar et al., 1992) and to multi-dimensional 
systems (Laskar, 1993). For regular motion the method yields an analytical 
representation of the solutions. For chaotic system the frequency changes 
calculated for two time intervals give a measure of chaos. 

In this section we give a recursive algorithm for MFT, while in Section 2 
the modification of the algorithm to correct the frequencies and amplitudes 
wm be presented. Let us assume a complex function f ( t )  = k ( t )+  ih(t) (k(t) 
and h(t) are real) defined on the interval [0,2r]. We shall denote u0 = 7r/r. 
Usually f ( t )  is sampled at evenly spaced intervals in time. We introduce the 
scalar products of two such functions 

/? ( 7 )  ( f ,g}  = -~-~ f( t )~(t)  1 - c o s  dt (1) 

corresponding to introducing the Hanning window filter on the interval 
[0, 27-]. Such integrals can be calculated by the Simpson's rule or other more 
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sophisticated methods.  Then 

e = 

where Q(u, ~) is real valued function 

Q ( I/  , O.) ) = s in (  v - - w  ) T ~r 2 

Q(u, w) = 1 

If 

M. SIDLICHOVSKY ~z D. NESVORNY 

for y ¢ 0 2 ,  

for u = w. 

(2)  

(3)  

o o  

f ( t )  = ~ A~jexpiujt, (4) 
j=l  

with 

IA~l _> IA~l _> . . . ,  

then the M F T  tries to approximate f ( t)  with the first N terms 

N 

f ( t )  = E Ajexpiuj t ,  (5) 
j=l  

where Aj and uj are very close to the corresponding A}, u~. In the first step 
of the M F T  we determine u: as the value a, for which the absolute value of 
the function 

~21(a) = (f(t),  exp iat) (6) 

takes on a maximum value. Then 

A1 = ~l(Ul).  (7") 

For the next step we use as input function 

f l ( t )  = f ( t )  - A1 exp iult. (8) 

To give the necessary formulas for the ruth step in which the frequency um 
is determined, let us make some preparatory definitions. We will define unit 
vectors 

ej = exp iuj(t - r). (9) 

As (ej, ek) = Q(uj, uk), the vectors ej are not orthonormal.  We will form an 
orthogonal basis 

j 

bj = (10) 
k=l 
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In mth  step em is determined first and then m coefficients (~mk for k = 
1 , . . . ,  m follow from the orthonormali ty  conditions for vectors b l , . . . ,  bm. 
We will choose cql = 1. Then we can choose all cqj real. In mth  step we 
calculate coefficient Sm in the development 

m 

f :  Z Sjbj + fm" 
j : l  

11) 

Here 

Sj = (f, bj), 

so that  

a2) 

(fro, bj) = 0 for j < m. (13) 

For mth  step we need to know the function fm-l(t), coefficients c~k (for 
n < m and k < n), and the coefficients ock (for k < m). This input is 
certainly known for m = 2, since we know f l ,  c~ll = 1, and 3"1 = A1. The 
algorithm for the ruth step consists of following substeps: 

1. Calculation of u,~ as the value a for which the function 
~m = ( f m - l , e x p  iat) (14) 

takes on a maximum value. This is achieved by applying the F F T  to 
fro-1 for rough est imate (accuracy ~ u0) followed by Brent 's  method for 
a much more accurate determination of u,~. As our program is writ ten 
in C + + ,  we used a slightly modified routine 'brent '  from Numerical 
Recipes in C (Press et al., 1992). As a result we have not only Um but  
also value of c 2 at its maximum 

¢p,~(u,~) = Fm exp i~m (15) 
e.g. its ampli tude F,~ and phase 6~. 

2. Calculation of bin, or equivalently the coefficients u,~k for k <_ m. The 
vectors bj for j < m are known from the previous steps. Writing 

bm=ctmm(m~lBJm)bj+em) (16) 

obtain the coefficients B~ ~) from the orthogonali ty of bm to all bj for w e  
o 

j , (  rr~. 

J 
. ! m )  : _ Z ~ , ~ Q ( . m , . . )  for 5 = 1 , . . . , . ~ -  1 (17) 

s = l  

and coefficient c~,~,~ from condition (b,~, bin) = 1 which yields 
1 

~ . ~ :  1 -  IB~m)L ~ 
j=l 

(18) 
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and finally 
m--1 

amj =atom ~ B!m)c~sj f o r j < m .  
s=j 

3. Calculation of fro. From Eq. (11) 

fm = fm-1 - -  (fro-l, bin)bin. 
Employing Eqs. (16) and (13) we have 

fm = fm-1 - amm(f.~-l,e.~> ~z~amjej 
j = l  

(19) 

(20) 

m 

: fro--1--O!mrnFrn ~-~(~mjexpi[pjt +(urn - vj)~- +Sm]. (21) 
j = l  

For the real and imaginary part of f.~ we have the following recurrence 
relations 

m 

k m =  kin-1 --ammFm E amjCOSi[vjt + (Urn -- Uj)r + 5m], 
j= l  

hrn : hm-1--O~mm-[Jrn ~-~mjsini[uj t  +(urn - u j ) r  + (~ml" (22) 
j = l  

4. Calculation of Sm from Eq. (12). 

'-'era = ( f ,  bm) = ( f m - l , b m )  -- 

= ~ ~mj(fm-1, ej). (23) 
j = l  

But fro-1 is orthogonal to bl, . . . ,  bm-1 and, therefore, to O,-  •., em-1. 
S~ = ~ m r ~  exp i(u.~r + 6.~) (24) 

After N steps we have 

N N N 

f = ~ sjbj + fN = ~ e~ ~ Sj~j~ + fN. (25) 
j = l  s = l  j=s 

Neglecting fN and comparing Eq. (25) with (5) we find 

N 

As = ~-~jj(~jsFjexpi[(uj - us)r + 5j]. (26) 
j---s 

The program for calculation of vj and Aj can be written in the form of a 
loop with N steps. The function fj is always calculated and written to a file 
with the same sampling period as f .  Our program ort.cc is still more general 
in incorporating the frequency corrections described in following section. 
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2. T h e  F r e q u e n c y  M o d i f i e d  Four ier  T r a n s f o r m  ( F M F T )  

If we increase the number  N of calculated frequencies and ampli tudes  to 
N + 1 it follows from Eq. (26) tha t  ampli tudes  previously de termined  are 
corrected with each addit ional  step. On the other  hand  frequencies, once 
determined,  are not changed. It is, however, clear tha t  the m a x i m u m  ampli- 
tude  of Tk(a)  is shifted from uk most ly because of the existence of nearby 
frequencies (several u0 apart  from pk). We shall assume tha t  no two fre- 
quencies with significant ampli tudes are closer than  u0. This could lead to 
calculation of a false frequency somewhere in between. Our assumpt ion  is 
tha t  the error of the M F T  calculation of most  impor tan t  frequencies is small, 
and tha t  a linear correction of the calculated frequencies can be given. 

Let us first assume we have only two frequencies 

f = C1 exp i(alt  + ~1) + C2 exp i(a2t + ~2), (27) 

with real positive C1 > C2; then 

2 
~(a )  = <f, exp iat> = Z CjQ(~j,  a) exp i [(~j - a)T + 13j]. (28) 

j = l  

Calculating Ul as a for which the ampl i tude  of '~2(a) takes on a m a x i m u m  
would give ul = ~1 only if Q(w2, or) is negligible for a -,~ ul. We determine 
Ul from the condit ion 

d 
~ a l ~ ( a ) l o = ,  1 = 0, (29) 

Insert ing Eq. (28) in (29) we obtain an equation satisfied by ul: 

C~ Q(031, Ul)Q'(031, Ul) + C~Q(w2, Ul)Q'(w2, Ul) + 

C, C2 [Q(~l,U,)Q'(~2,ul) + Q(w2,Ul)Q'(~l ,Ul)]  

COS [(031 -- ~d2)t -4- /~1 -- 132] ----- 0,  ( 3 0 )  

where Q'(w, u) is the  derivative of Q(w, u) with respect to the second argu- 
ment .  In t roducing the error ¢ in approximat ing  ~1 by/21 

ul = "q + e, (31) 

we can make a linearization of Eq. (30) in e and obtain 

e = C2Q'(032,031) COS [(031 -- a32)T "t- /~1 i f12] ( 3 2 )  

C I Q " ( ~ I ,  ~ 1 )  

where Q"(a~l,wl) is the second derivative of Q(a)l ,wl)  again with respect to 
the second argument .  We introduce 

sin y x 2 
Q(Y) - ~ -  7r2 _ y--2" (33) 
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Then  

1 ~2 [ sin y 3y 2 - ~r 2 ] 
O'(y) - [cos v + 7 = ] (34) 

and 

The  final a lgori thm for the calculation of the corrections ej to vj (for N 
frequencies) to produce new frequencies uj - ey is to use 

N C ' sQ (ysj) 
ej = ~ .  CjQ"(O)r cos(ysj + / l s  - /~ j ) ,  (36) 

s>3 

where 

y~y = (u, - . j ) r .  (37) 

Real values Cs,/3~ are determined from relation 

As = Cs exp i/ls (38) 

and Q'(y),  Q"(O) are given by Eqs. (34), (35) and (37). 
The  F M F T  me thod  consists of the M F T  as described in Section 1 followed 

by a correction of frequencies via Eq. (36) a and new determinat ion  of the 
ampl i tudes  by again employing the algori thm of Section 1, with only the 
frequencies given a priori. 

An al ternat ive way to correct the frequencies determined by the M F T  
is provided by the following simple method .  One first applies the M F T  to 
the original function f ( t )  = ~ C j  exp i(ujt + flj) and gets its development  
f ' ( t )  = Z Cj exp i(ujt  +/3~). The error in the frequency de terminat ion  is the 
small quant i ty  

ek = ek (u j ,C j , f l j )=  uk - u'~. (39) 

Similarly, the errors in the ampli tudes and phases are also small quantit ies.  A 
second M F T  applied to i f ( t )  leads again to a slightly different development  
f " ( t )  = 2.,'--" ""o d exp i(uj't + fl}') with small errors in the frequencies 

4 = = 4 -  4' .  (40) 

Subst i tu t ing ~ = ~j - e i into Eq. (40), and developing function ek() into a 
Taylor series (on the assumpt ion  tha t  its first derivatives are small quanti- 
ties), one can neglect the linear and higher order terms and write ek = e~. 

' ' whose r ight-hand side can Thus,  in the above approximat ion,  vk = v k + %, 
be simply evaluated since v~ and e~ are known. A similar approach provides 
the ampl i tudes  Cj = Cj + (Cj - Cj') and phases/33 = fl~ + (3j - 8j!) • 

In order to distinguish between the two F M F T  methods  described in this 
section, we call the first FMFT1 and the second FMFT2.  
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The 
TABLE I 

reconstruction of frequencies ("/year) by MFT and FMFT 

j Original MFT FMFT1 FMFT2 
1 4.2488163 4.2488183 4.2488163 4.2488163 
2 28.2206942 28.2206916 28.2206942 28.2206942 
3 3.0895148 3.0895150 3.0895149 3.0895148 
4 52.1925732 52.1925732 52.1925732 52.1925732 
5 27.0613982 27.0611601 27.0613983 27.0613957 
6 29.3799573 29.3802248 29.3799577 29.3799611 
7 28.8679427 28.8679114 28.8679409 28.8679426 
8 27.5734578 27.5734593 27.5734593 27.5734579 
9 5.4070444 5.4070414 5.4070413 5.4070444 

10 0.6671228 0.6671228 0.6671228 0.6671228 

3. S imple  Test  o f  the  M e t h o d  

Both FMFT1 and FMFT2 were programmed and first tested on the function 

10 

f ( t )  = k(t) + ih(t) = ~ Cj exp i(vjt +/~j), (41) 
j = l  

where the coefficients vj, Cj, flj were taken from a development of f = 
e exp i~ for Jupiter (& is its longitude of perihelion and e its eccentricity) as 
given by Laskar (1990). 

The sampling period was 120 000 days and the number of sampling points 
was 32 768 so that the time interval 2T for reconstruction of the frequencies 
was about 10.8 Myr. It is possible to distinguish frequencies v0 = ~r/r = 
0.25"/year apart, which is well sufficient as the closest frequencies, vs and 
v5, are separated by 0.51"/year. 

Table 1 shows the original and reconstructed frequencies using MFT, 
FMFT1 and FMFT2. It is clear that both FMFT1 and FMFT2 improve the 
result. The first frequency is determined exactly up to seven decimal digits 
and close frequencies 5 - 8 are computed by several orders more precisely 
than by MFT. This improvement is significant in amplitudes and phases as 
well, and leads to better decomposition of f( t) .  FMFT1 and FMFT2 are 
roughly comparable in the quality of reconstruction. Frequencies 5 and 6 
are better determined by FMFT1, while frequencies 7, 8 and 9 are better 
from FMFT~. There are slight differences in the computed amplitudes and 
phases as well, but both methods can be considered to work with similar 
precision. 
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The g and s for 
TABLE II 

first 50 asteroids, for which a good decomposition was obtained 

No. g "/year s"/year No. g "/year s "/year 
1 54.07464 -59.10736 24 131.99292 -103.31862 
3 43.63334 -61.22194 26 55.26366 -55.66960 
4 36.48091 -39.20237 27 38.09601 -43.25415 
7 37.94909 -46.06354 28 57.32945 -66.64166 
9 38.36402 -41.63721 29 49.43937 -46.98591 

11 40.41837 -42.82523 30 38.18240 -40.13398 
12 33.71960 -40,34126 34 55.14321 -58.69910 
13 35.72530 -45.27553 37 54.53217 -57.80620 
14 48.58297 -56.04458 39 53.70462 -56.40034 
15 42.49709 -51.80465 40 34.27385 -34.75085 
16 76.75683 -73.06070 42 39.67433 -46.66578 
17 43.41116 -45.97697 44 40.89591 -45.98494 
19 41.50964 -44.81832 45 56.46531 -58.19380 
20 40.47798 -44.74191 46 58.62063 -48.61045 
21 41.12942 -44.24252 47 70.20357 -69.61741 
23 48.42881 -64.34235 48 105.30808 -81.97421 

4. A n  A p p l i c a t i o n  to A s t e r o i d s  

The time evolution of e exp 2J and sin 1/2 exp f~ ( I  is the inclination and ~2 
is the longitude of node) for tile first 50 asteroids under the force of four 
outer  planets was obtained by numerical integration using the MSI integra- 
tor (Sidfichovsk)) and Nesvorn2~, 1994). Initial conditions were taken from 
Milani's o sce lnum.  92 at g a u s s ,  d m . u n i p i ,  i t  and corrected to the barycen- 
ter of the inner solar system. The integration step was 10 days, the ou tpu t  
was filtered by sequential application of two low-pass filters (Nesvorn:~ and 
Ferraz-Mello, 1996) and sampled at 120000 days. The number of points 
(32 768) implies a time interval over which the decompositions were com- 
puted of about  10.8 Myr. During the integration, the distance to Jupiter  
was checked every 10 days. All the studied asteroids stayed farther than 1 
AU from Jupiter ,  ensuring the accuracy of the integrator.  The coefficients 
of decomposit ion were determined by FMFT2 and in several cases checked 
by FMFT1.  

In Tab. 2, we give the main secular fi'equencies g in e exp& and s in 
sin [/2 exp ~ for those asteroids among the first 50 for which a good decom- 
position was obtained. The others, for which the frequencies were not shown, 
are likely to be in some secular resonance or at least in its close vicinity, and 
their decomposit ion can not be obtained in 10.8 Myr due to presence of very 
low frequencies. Similarly, chaoticity on a shorter time scale than 10.8 Myr 
would also not allow for a good orbital decomposition. 
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J 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

TABLE III 
The coefficients for Ceres 

eexp & 
uj "/year Cj & deg 
54.07464 0.115573 152.273 

4.24465 0.030770 29.497 
28.23886 0.019704 300.863 
52.23318 0.008700 32.124 

-172.28929 0.003359 226.036 
53.39115 0.001435 302.504 

-174.13056 0.001307 105.332 
3.08658 0.001257 119.333 

55.91697 0.001077 272.615 
-170.44725 0.001017 165.590 

sin(I/2) exp ft 
"/year Cj ~j deg 

-59.10736 0.080378 99.223 
-60.94878 0.014701 338.786 
-57.26561 0.014650 39.140 

-0.00001 0.013683 107.648 
-58.42389 0.008938 129.248 
-59.79006 0.008786 248.077 
-26.33878 0.005271 313.763 
-57.95748 0.001899 201.575 
-61.62944 0.001780 124.544 
-56.57933 0.001459 64.909 

Nobili et al. (1989) discusses the effect of the inner planets on the funda- 
mental  frequencies of the outer solar system. If the quadrupole force term of 
the inner planets is not included in the model, the fundamental  frequency 
g5 of Jupiter differs by about 0.012 " / y r  fi'om the real value. Asteroid g will 
differ even more and the values in Tab. 2 must be regarded, although very 
precise in the frame of studied model, as preliminary and underest imating 
the real frequencies. Indeed, our recent integration of the first 20 asteroids 
together  with seven planets (Venus to Neptune with the mass of Mercury 
added to Sun) led to g = 54.25081 " / y r  and s = -59.23250 " / y r  for Ceres, 
which in comparison with Tab. 2 indicates 0.18 " / y r  and 0.13 " / y r  differ- 
ences. Similarly, the frequencies of other asteroids differ at order 0.1 " /y r .  
Including of the inner planets is thus necessary for good estimation of the 
real frequencies and thus computat ions which include the full effect of Venus, 
Ear th ,  and Mars are in progress. 

4.1. ASTEROIDS WITH GOOD DECOMPOSITION 

The coefficients for Ceres' e exp i& and s in ( I /2 )exp i f~  are shown in Tab. 
3. We checked the quality of both decompositions by comparison with the 
filtered output  of the integration over 10.8 Myr. In the case of f ( t )  = k(t) + 
ih(t) = e exp i&, the maximum error in k was 0.009 and in h 0.008. We show 
the first 1 Myr in Fig. 1. We decided to consider the Ceres as a marginal 
ease of an asteroid with good decomposition and listed in Tab. 2 only those 
asteroids, which have the maximum errors over 10.8 Myr in both k and h 
less than 0.01. 

Additional prolonged integration showed that  the maximum error of 
Ceres' decomposition over 43.2 Myr is about 0.03 in both h and k, which is 
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Fig. 1. Comparison between original and reconstructed k and h evolution for Ceres. 
Here the filtered output of the integrated k and h is plotted with its difference in 
the time evolution obtained from Tab. 3. The difference is the rough line at almost 
zero. The maximum errors on this interval in k and h are both about 0.006. 
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Fig. 2. Time dependence of g for Ceres (left) and No. 4 Vesta (right) 

a ra ther  large disagreement. Moreover, the decomposition obtained from the 
whole 43.2 Myr, which would bet ter  distinguish the low frequencies, does not 
represent the real filtered evolution any better.  We infer that  the motion of 
Ceres can't  be properly represented by a decomposition with fixed frequen- 
cies and claim that  the frequencies are changing due to orbital chaoticity. 
The t ra jec tory  of No. 4 Vesta (listed in Tab. 2) is much bet ter  represented 
by the decomposition obtained from the 10.8 Myr interval. Indeed, the error 
over 43.2 Myr is only 0.004. 

In Fig. 2 we show the time dependence of g for Ceres and Vesta. We 
computed several FMFT2 while shifting the interval for the frequency com- 
putat ion by 10 000 points (roughly by 3.28 Myr). Notice that  g for Ceres 
changes by one order of magnitude more than Vesta's g. This is the reason 
why the decomposition for Vesta with fixed g = 36.48091 " /yea r  represents 
its t ra jec tory  more precisely than fixed g = 54.07464 " /yea r  of Ceres. 
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Fig. 3. Eccentricity and resonant angle G = ~ + &j - 2~s for No. 5 Astraea 

4.2. A S T E R O I D S  W I T H  B A D  D E C O M P O S I T I O N  

Asteroid No. 5 Astraea is, at least in our model neglecting the quadrupole 
moment  of the orbits of the inner planets, is in the secular resonance g + 
g5 - 2g6 ~ 0, where g, gs and g6 are the main secular frequencies of the 
asteroid's,  Jupi ter ' s  and Saturn 's  e exp i&. Fig. 3 (right) shows the resonant 
angle & + &3 - 2&s versus time. The period of libration is about  3.5 Myr. 
It is impossible to obtain, in this case, a good decomposit ion fi'om only 
10.6 Myr, since the low frequency forms important  harmonics close to g, as 
discussed in Nesvorn~ and Ferraz-Mello (1996). Moreover, at about  30 Myr, 
the resonant angle begins to circulate indicating a strong orbital chaoticity. 

The asteroids not shown in Tab. 2. likely have characteristic similar to 
Astraea; they are in or very near the secular resonances and low frequencies 
do not allow us to obtain a good decomposition of their t rajectories.This 
was tested and verified for several of them. For instance, asteroids No. 6 
Hebe and No. 8 Flora fulfil g - g6 - g7 "~ 0, where g7 is the secular frequency 
of longitude of perihelion of Uranus. 

5. S u m m a r y  

Our preliminary calculations show what  behaviour one may expect when 
investigating asteroids with the MFT.  If the inner planets are taken into 
account the fundamental  frequencies of the system change slightly and con- 
clusions about  secular resonances from a model with outer  planets only 
might not be correct. The more exact calculations taking into account the 
inner planets are in progress. Such calculations are time consuming as the 
step of numerical integration must be much shorter. 
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