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Abstract. This paper summarizes a numerical study of the escape properties of three two-dimensional, 
time-independent potentials possessing different symmetries. It was found, for all three cases, that 
(i) there is a rather abrupt transition in the behaviour of the late-time probability of escape, when 
the value of a coupling parameter, e, exceeds a critical value, e2. For e > e2, it was found that (ii) 
the escape probability manifests an initial convergence towards a nearly time-independent value, 
po(e), which exhibits a simple scaling that may be universal. However, (iii) at later times the escape 
probability slowly decays to zero as a power-law function of time. Finally, it was found that (iv) in a 
statistical sense, orbits that escape from the system at late times tend to have short time Lyapounov 
exponents which are lower than for orbits that escape at early times. 
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1. Introduction 

The aim of this paper is to review work that has been done in recent years on possi- 
bly universal escape properties of two-dimensional time-independent Hamiltonian 
systems ((Contopoulos, 1990), (Contopoulos and Kaufmann, 1992), (Contopoulos 
et al., 1993), (Siopis et al., 1995a), (Siopis et al., 1995b)) as well as to report on 
some of the latest results. Three different systems have been studied, characterized 
respectively by the following Hamiltonians: 

1 y2 x2 H1 - ~ (5:2 + + + if2) _ EX292 : hl, 

1 92 X2 

1( 
H3 - ~ 5 2 +  + + _ y3 

The  first two sys tems  each cor respond  to two  h a r m o n i c  osci l la tors ,  coup led  v ia  a 
quar t ic  o r  cubic  term wh ich  is mul t ip l ied  by  a coup l ing  pa ramete r  e. T h e  last  sys tem 

is charac ter ized  b y  a modi f ied  H6non-He i l e s  potent ia l  that  a l lows for  cont ro l  o f  the 

c o u p l i n g  s t rength  be tween  the two space d imens ions  v ia  the coup l ing  pa rame te r  e. 

W h e n  e = 1, H3 b e c o m e s  the s tandard H6non-Hei l e s  potential .  

The  isopotent ia l  surfaces  that  cor respond  to these Hami l ton i ans  are s h o w n  in 

F igure  1. Fo r  a fixed energy  hi, i = 1 , 2 , 3 ,  no  orbi t  can escape  if  the va lue  o f  

e is less than  a cri t ical  e~sc = e~sc(h~). For  e >_ e~c,  the isopotent ia l  surfaces  
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Fig. 1. Equipotential surfaces of the potential 
that corresponds to (a) Ht for e = 5.26 and 
different values of hi; (b) //2 for e = 3.0 
and different values of hz; (c)//3 for e = 1.0 
and different values of h3. O1, Oz, 03 and 04 
represent Lyapounov unstable periodic orbits. 

form channels of  escape, through which orbits can leak out. Any orbit that crosses, 
moving outward, one of  the so-called Lyapounov unstable periodic orbits (see 
Figure 1), will escape from the system (Churchill et al., 1979). 

It will be shown in the following section that the escape properties that were 
found proved to be the same for all three Hamiltonians, despite their different 
symmetries. This result suggests strongly that the escape properties depend on 
generic phase-space characteristics rather than the details of individual potentials, 
and has motivated the claim for universality. 

2. Short-Term Behaviour 

The objective here is to study the escape properties of ensembles of orbits moving 
under the influence of  the potentials associated with H1, H2 or H3. To that end, a 
large number of  orbits were computed numerically and followed up to a maximum 
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Fig. 2. The plane ( z  - ~) from which the initial 
conditions were sampled, for orbits character- 
ized by the Hamiltonian (a) H,  for e = 5.26; 
(b) Hz for e = 3.0; ( c ) / / 3  for • = 1.3. Darker 
shading implies longer escape times. Resolu- 
tion is 400 x 400. 

time or until they escaped, whichever happened first. In all experiments, time was 
discretised in terms of"consequents", defined as the number of  intersections of the 
orbit with the z = 0 plane with ~ < 0. The initial conditions were chosen to sample 
uniformly a square inthe (z - ~) plane with y = 0, and 9 >_ 0 uniquely determined 
from Eqs. (1). Figure 2 uses variable shading to illustrate the dependence of  escape 
time on the initial conditions for the three Hamiltonians considered here. One can 
see that, whereas escape time is a rather smooth function of  initial conditions in 
certain regions of  phase space, elsewhere there is an extremely sensitive depen- 
dence on initial conditions. In fact, the latter regions exhibit the nearly self-similar 
structure characteristic of  fractals (see (Contopoulos et  al.,  1993) for more details). 

For each Hamiltonian, ten 0.05 x 0.05 square cells were chosen to sample some 
of  the "interesting" regions of  phase space, i.e., those exhibiting strong fractal 
structure. Scaling properties of  the flow were also examined by studying smaller 
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Fig. 3. The escape probability as a function of time for H3, for e = 1.3 > c2 (the error bars 
are too small compared to the dot size). Results of experiments from ten different cells of 
initial conditions with size 0.05 × 0.05 have been superimposed to produce the graph. 

phase space regions, in some cases allowing for square cells with sides smaller by 
a factor of  500. For H1, the initial (z, ~) pairs were sampled using a grid with an 
approximate resolution of  200 × 200 and a time-series orbit integrator. Using a 
Lie integration scheme (Hanslmeier and Dvorak, 1984) and an improved code to 
integrate the orbits, resolutions of  400 × 400, 800 × 800 and 1600 × 1600 as well 
as longer integration times were feasible for H2 and//3.  The above procedure was 
repeated for several values of  the coupling parameter ~. 

The basic quantity of interest in this work is the probability P(G t) that an orbit 
will escape at time t from a Hamiltonian system with a coupling parameter e, 
defined naturally via the relation 

t) + Ap(, ,  t) = N,o, (2) 

Here Ncsc is the number of  trajectories from a given cell that escape between t - 1 
and t, Ntot is the total number of  trajectories still present at t - 1, and Ap(G t) 
represents an estimate of  the uncertainty in the computed escape probability. 

For ~ < Ecs~ no orbit can escape and thus P(G t) = 0 for all times. When 
E _> ee~, it is energetically possible for the orbits to escape. However, until a given 
orbit is actually calculated, it is not known if or when that orbit will escape. The 
numerical experiments show that, for a fixed energy, some orbits escape relatively 
fast whereas some others remain in the system for considerably longer times. In fact, 
slow escapers can remain bound for intervals more than two orders of magnitude 
longer than fast escapers. The escape probability behaves rather irregularly during 
the first several crossing times, in a fashion that reflects the specific choice of  initial 
conditions (Figure 3). However, after these initial transients, p(E, t) tends towards 
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a constant value po(E), the value of which depends on E but not on the choice of the 
sampling square. More specifically, it appears that there is a critical value ~2 > E,~c 
such that for E,sc < E < E2, p0(E) = 0, whereas for c > ~2, p(E, t) evolves towards 
a constant, nonzero value, po(~). This transition occurs quite abrupdy, within a 
narrow interval bracketing ~2, and is strongly reminiscent of a phase transition. 

It should be noted at this point that, as will be shown in the next section, the 
probability of escape po(E) in t h e ,  > E2 regime does not actually remain constant. 
Rather, it decays slowly with time. The rate of decay depends on the particular 
choice of Hamiltonian, but for the three systems considered here it is slow enough 
to justify the approximation that Po(~) ~ const, at intermediate (not too long) time 
scales. 

The remainder of this section, as well as the following section will investigate 
properties of  escape in the regime w h e r e ,  > ~2. 

For all three Hamiltonians, a simple scaling behaviour was found, involving 
three distinct quantities ((Contopoulos et al., 1993), (Siopis et al., 1995a),(Siopis 
et al., 1995b)): 

i. the escape probability, p0(c); 
ii. the time, T(E), that is required for p(e, t) to converge towards p0(E), for a 
fixed subset S of phase space volume, from which the initial con "itions were 
sampled; and 
iii. the time, T ( r ) ,  that is required for p(E, t) to converge towards p0(E), as a 
function of the characteristic size r of S, for a fixed value of E. 

The following relations characterize the scaling: 

po(,) ( , -  
T(~) 0< ( , -  ~2) -~,  

r -*.  

(3) 

The numerical values of ~2, the exponents a ,  t5 and ~ as well as other relevant 
information for the three Hamiltonians can be found in Table I. It is significant that, 
within statistical uncertainties, the respective exponents of all three Hamiltonians 
could be identical. Also, again within statistical errors, a - / 3  - ~ = 0. This is more 
convincing for H1 and/ /3  than it is for / /2 ,  which may be due to the superposition 
of  short- and long-term behaviour. 

3. Long-Term Behaviour 

The results presented in the previous section, and in particular the evolution of 
p(E, t) towards a constant po(E), were obtained by integrating the orbits for roughly 
20 crossing times. Thus, a natural question to ask is whether p(e, t) remains constant 
at much later times. In order to address this question, a set of longer simulations 
were run for the sys tem/ /3 .  The results (Siopis et al., 1995b) show that p(e, t) is 
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TABLE I 
System parameters of  relevance to escape properties. 

HI H2 /-/3 
h 0.12 0.125 1/6 ~ 0.167 
eesc 1/(4h) ~ 2.08 1 / v / ' ~  : 1.00 1.00 
c2 4.90 + 0.01 1 1~+0.02 . . . . .  0.05 1.10 ± 0.05 
cr 0.49 ± 0.05 0.46 ± 0.05 0.45 ± 0.05 
fl +0.14 ¢~ ~+0.15 f~ ,1,7+0.10 
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Fig. 4. The long-term decay for the Hamiltonian H3 and c = 1.6. 

not  in fact constant. It decays, albeit slowly, with t ime (Figure 4), The  total escape 
probabil i ty at late times was found to be well fit by the empirical relation 

p (t) ,,~ t -~' . (4) 

Experiments  with several values o f  E indicate that # = 0.31 + 0.05, independent 

o f  E. 

4. Physical Interpretation 

The numerical  results obtained in the previous sections can be used to test some 
simple models  o f  phase-space transport mechanisms. Perhaps the simplest model  
would be to assume that there is an absolute distinction between two populations 
o f  orbits, namely those that can escape and those that cannot. It can then be 
shown (Contopoulos et al., 1993) that, at late times, p ( t )  oc e x p ( - A t ) ,  where 
A = - I n ( 1  - poo). However,  as stated above, the late-time decay scales as a 
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power-law, not exponential, function of time. Therefore, the assumption that there 
can only be two orbit populations, with no transitions possible between them, does 
not seem to be a valid one. 

An alternative, more plausible, interpretation, can be achieved by invoking the 
presence of cantori around the islands of regularity. It can be shown that modeling 
of the structure of cantori as self-similar fractals can reproduce the observed late- 
time power-law decay ((Chirikov and Shepelyansky, 1984), (Hanson et al., 1985), 
(Bleher et al., 1990)). More specifically, according to the KAM theorem, regular 
orbits are surrounded in phase space by a hierarchy of invariant topological toil. 
These KAM toil act as impenetrable barriers that cannot be crossed by orbits, thus 
segregating phase space into disconnected regions that cannot communicate with 
each other. However, if somehow the system starts to deviate from integrability, 
the KAM tori become increasingly convoluted until they eventually lose their 
integrity and fragment into a Cantor set of holes. Orbits can now leak through 
these remnants of KAM toil, called cantori ((Contopoulos, 1971), (Aubry and 
Andre, 1978), (Mather, 1982), (Shirts and Reinhart, 1982)), and diffuse into the 
surrounding stochastic sea. The diffusion time scale depends on the size of the 
holes: if the system is sufficiently close to being integrable, the holes are small 
and diffusion proceeds slowly. However, as deviation from integrability becomes 
stronger, the holes very rapidly increase in size to the point where they practically 
no longer impede phase-space transport. 

The fragmentation of phase space by KAM toil and cantori leads naturally to 
the conjecture (cf. (Mahon et al., 1995)) that, at any given time, the orbits populat- 
ing a dynamical system divide approximately into three different classes, namely 
regular, sticky or temporarily confined chaotic, and unconfined chaotic orbits. The 
regular orbits are trapped forever inside KAM toil. The sticky, or temporarily con- 
fined, orbits can spend a substantial time trapped inside cantori near regular islands, 
but eventually diffuse through the cantori and find their way out to the stochastic 
sea. If the phase space were compact, and escape to infinity impossible, the re- 
maining unconfined chaotic orbits would simply travel unimpeded throughout the 
surrounding stochastic sea, although occasionally becoming temporarily confined 
near the regular islands. Given, however, that escape is possible, these orbits will 
eventually pass through a Lyapounov curve and escape to infinity. (Strictly speak- 
ing, in general there will also exist a finite measure of chaotic orbits inside the 
KAM toil, but these will never be able to enter the surrounding stochastic sea). 

The preceding numerical results could then be interpreted if one makes the 
Ansatz that the transition occurring around ,2 corresponds to the fracture of some 
dominant KAM toil. In this context, when c exceeds g2, the last major KAM 
torus is destroyed, leaving behind one or more cantoil which now dominate phase- 
space transport. Unlike KAM toil, cantori are leaky barriers, and a chaotic orbit 
moving around inside a cantorus will eventually find its way out in the surrounding 
stochastic sea through one of the holes of the cantorus. Nevertheless, if the size of 
the holes is small enough (which is presumably the case for values of ~ only slightly 
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greater than c2), an orbit can remain trapped inside the cantorus for extremely long 
times compared to the natural crossing time ("stickiness" effect). In any case, once 
in the stochastic sea at large, it will sooner or later escape from the system. 

Ensembles of  unconfined orbits that populate the stochastic sea inside the Lya- 
pounov curves exhibit a tendency to evolve towards a near-invariant distribution 
(although if the orbits escape or diffuse through the cantori too fast compared to 
the time scale of approach towards the near-invariant distribution, no real sense of 
near-invariance may ever be achieved). The unconfined population initially con- 
sists only of  that subset of  the ensemble of initial conditions that lies outside the 
major cantorus. However, this population is continuously augmented by the orbits 
that leak through the cantorus. At the same time, orbits are drained from the system 
as they cross the Lyapounov curves and escape to infinity. 

The situation is quite different when E < E2. Now a substantial fraction of  KAM 
tori still exist, surrounded by a hierarchy of cantori in the shallows of the stochastic 
sea. In this case, ensembles of orbits with initial conditions inside the KAM tori are 
trapped and cannot escape. However, the remaining orbits, even if located initially 
inside cantori, will eventually escape from the system in a manner similar to the 
E > E2 case described above. In other words, at late times Nest -+ 0 [see Eq. (2)] 
but Ntot ~ N°tot ~ O, since Ntot is bounded from below by the population of  
orbits inside the KAM toil that never escape. Therefore, the probability of escape 
as a function of time decays to zero faster than it does in the E > ~2 case, and does 
not exhibit the scaling behaviour observed for E > E 2 [Eqs. (3)]. 

5. Escape Time and Short Time Lyapounov Exponents 

In the previous scction, the distinction was made between three different types of 
orbits that can populatc a dynamical systcm, namcly regular, sticky or temporarily 
confined chaotic, and unconfincd chaotic. This distinction was motivated by thc 
presence of KAM toil and cantori, with the former acting as absolute and the latter 
as leaky barriers, together determining the dynamics of phase-space transport. 
Moreover, an interpretation was offered as to how such a model could explain the 
numerical results, i.e., the initial convergence of the escape probability towards 
Po(Q and the subsequent power-law decay to zero. 

An independent tool for gaining insight into phase-space transport and differ- 
entiated orbit populations is the (maximal) short time Lyapounov exponent x(At), 
defned as 

x ( A t ) =  lim l l n ( l l • z ( A t )  H) 
At I1  z(0)II ' 

where ~z(0) is the initial phase-space perturbation and IIII represents a suitable 
(e.g., Euclidean) norm (cf e.g. (Grassberger et al., 1988), (Kandrup and Mahon, 
1994), (Voglis and Contopoulos, 1994)). This is the finite-time analogue of the 
well-known asymptotic maximal Lyapounov exponent X ~ lim x(At), which is 

At---+~ 
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Fig. 5. The average short time Lyapounov exponent (x(tE)) for ensembles of orbits that 
escape at time tE versus tE. 

a measure, in an asymptotic sense, of  the average rate of exponential instability of 
an orbit. 

The usefulness of short time Lyapounov exponents for the problem at hand 
stems from the following two observations: 

• First, one would expect that, for a given time interval At0, the average of the 
short time Lyapounov exponents (x(At0)) of  a randomly chosen ensemble 
of sticky orbits restricted inside a major cantorus will be smaller than the 
corresponding (x(At0)) of  a randomly chosen ensemble of orbits moving 
around in (but without escaping from) the stochastic sea (cf. (Mahon et al., 
1995)). 

• Second, in the spirit of  the discussion of the previous section, the majority of 
the orbits that escape from the system at early times (say, before t = 15 or so) 
belong to that subset of  the initial ensemble of orbits whose initial conditions 
placed them in the stochastic sea. By contrast, most of  the orbits that escape 
at later times started as sticky orbits inside one of the major cantori wherein 
they spent most of  their time until they crossed the cantorus through one of 
its holes and entered the stochastic sea, thus becoming unconfined. Escape 
followed relatively soon thereafter. 

With these two observations in mind, one would expect that the average short 
time Lyapounov exponent for an ensemble of orbits that escape at early times will 
be greater than for an ensemble of orbits that escape at later times. This is so 
because the later an orbit escapes from the system the more time it will have spent 
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Fig. 6. The distribution N[x(t)]) at t = 10 of the short time Lyapounov exponents of the 
orbits that escape (i) at 10 _< tE < 15 (solid line) and (ii) at tE _> 40 (dot-dashed line). 

inside the lower-x environment of  a major cantoms relative to the time it spent in 
the higher-x environment of the stochastic sea before it escaped. In other words, 
the lower Lyapounov exponents associated with the region inside the cantorus will 
weigh more towards the final average short time Lyapounov exponent. 

In order to check the validity of  this qualitative description, the following 
numerical experiment was performed. For the Hamiltonian//3 with E = 1.30, a 
0.05 x 0.05 square of  initial conditions was sampled with a resolution of  1000 x 1000 
and the orbits were evolved as in the previous sections until they escaped. In 
order to compute the short time Lyapounov exponent, a perturbation of magnitude 
II & II = 10-x2 was introduced in the z coordinate of each orbit at t = 0. The 
perturbation was renormalised each time [[ 6z II exceeded 10 -s.  At very early 
times, the computed exponent will depend sensitively on the initial 6z, but for 
t > 5 or so it will provide a reasonable approximation to the exponent in the most 
unstable direction. 

Some of  the results are shown in Figures 5 and 6 (a more complete discussion 
will be presented in a future paper). Figure 5 plots the average short time Lyapounov 
exponent, (x(At)) = (X(tE -- 0)> = (X(tE)>, of  an ensemble of  orbits that escape 
at a given time tE as a function of rE. It is important to emphasize that, for any given 
escape time along the abscissa, only the Lyapounov exponents of  those orbits that 
escape at that particular time are considered in the average. All the other orbits that 
are present, but escape at later times, are excluded. It is evident that orbits escaping 
at later times tend to have short time Lyapounov exponents that are smaller than 
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orbits escaping at early times, in agreement with the interpretation given above. 
In order to further test the validity of this simple model, a more detailed dissec- 

tion of the system was made at a fixed early time. Figure 6 shows the distribution 
N[x(t)]) at t - 10 of the short time Lyapounov exponents of the orbits that escape 
(i) at 10 <_ tE < 15 (solid line) and (ii) at tE >_ 40 (dot-dashed line). It is obvious 
that, despite the presence of some structure, there is an overall correlation between 
the computed X and the time of escape. Orbits that escape from the system at early 
times tend systematically to have higher short time Lyapounov exponents than 
orbits that escape at later times. 
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