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ABSTRACT 

Kendall's (1956) approach to the 'general' epidemic is generalized by dropping the assumptions 
of constant infectivity and random recovery or death of ill individuals. A great deal of attention 
is paid to the biological background and the heuristics of the model formulation. Some new 
results are: (1) the derivation of Kermaek's and McKendrick's integral equation from what 
seems to be the most general set of assumptions in section 2.2, (2) the use of Kermack's and 
McKendrick's final value equation to arrive at a finite time version of the threshold theorem 
for the general case, comparable to that for the case of only one Markovian state of illness in 
section 2.5, (3) the analysis of the behaviour of the solutions of the integral equation when the 
starting infection approaches zero in section 2.7, (4) the derivation of the probability structure 
of a general branching process, after conditioning on extinction in section 3.6, (5) the statement 
of the generalized versions of Kendall's ideas in the form of precise limit conjectures in section 4, 
(6) the derivation of a closed expression for the limit epidemic resulting from (3) in appendix 4. 

O. I N T R O D U C T I O N  

0.1. Scope of the paper 
Epidemiology is concerned with the changes in space and t ime of the numbers 
of  individuals suffering f rom certain diseases, a special but  important  field 
being those diseases which are caused by infectious agents. The first models 
intended to describe the spreading of  infectious diseases were introduced by 
H a m e r  (1906), McKendr ick  (1914, 1926) and especially Kermack  and Mc- 
Kendrick (1927). The last few years have seen an upsurge of the interest, 
especially by mathematicians,  in the propert ies  of  these models  as may be seen 
f rom the appearance  of  one general treatise (Bailey, 1975), one smaller 
research monograph  (Waltmann,  1974), and two booklets  (Ludwig, 1974, 
Hoppens teadt ,  1975) with a chapter  devoted to such models. 
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In population models the basic unit is the individual. It is the task of the 
modelbuilder to translate his knowledge of processes on the individual level 
into models for the changes in numbers of individuals. In epidemiological 
models usually only the simplest assumptions are made concerning the 
demographic contribution to those changes. It is assumed that either there 
is a constant influx of new susceptible individuals, or that the only changes are 
those due to the disease: the assumption of a (demographically)closed popula- 
tion. Another common aspect of epidemiological models is that the trans- 
mission of the infection is always assumed to be a chance process in which 
the individuals are to a large extent independent. This is even implicitly the 
case in the deterministic models, in that they are based on the law of mass 
action. These deterministic models therefore should be considered as 
approximations of stochastic models dealing with large numbers of individuals. 
Within this general framework a wealth of details can be introduced con- 
cerning the types of individuals present, the production of infective particles 
by different types of ill individuals, the ways these particles are transmitted 
and the contact rates between individuals. 

The present paper is an offshoot of a paper by Reddingius (1971). It deals 
with the simple but basic model introduced by Kermack and McKendrick 
(1927). These authors assumed that the population under consideration is 
demographically closed, that it mixes homogeneously with constant con- 
tact rates and that there is only one type of susceptibles. With respect to 
the disease it is only necessary to assume that an individual's illness, once 
started, is in no way subject to influences external to the individual, and 
that individuals, once infected, never return to the susceptible population. 

For the deterministic model based on those postulates Kermack and 
McKendrick showed that there exists a threshold value for the initial sus- 
ceptible density, such that a full fledged epidemic outbreak will develop 
from a very small initial infection if and only if the initial susceptible density 
is larger than this threshold value. However, their argument was based only 
on the fraction of susceptibles ever to become infected in the course of the 
outbreak. Reddingius argues that this result may not be as easily interpretable 
in empirical terms as it may seem at first sight. Firstly in empirical science 
observation periods tend to be finite, so the question arises what happens in 
between the moments when the epidemic is started and t = oo when the 
fraction of susceptibles that becomes infected reaches its final value. Secondly, 
at least for larger outbreaks, the maximum density of individuals that are ill at 
the same til'ne is probably a more natural measure of the severity of an out- 
break than the total number of individuals that becomes infected during the 
whole course of the outbreak. 

A third difficulty, already mentioned by Kermack and McKendrick, is re- 
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lated to the use of a deterministic model. The threshold theorems under con- 
sideration refer to the stability of the uninfected state of the population 
under small perturbations. A small perturbation in this case corresponds to a 
small number of ill individuals introduced at t = 0. However, the determin- 
istic model has to be interpreted as a convenient approximation to a stochastic 
model, if all numbers under consideration are large. So the question arises 
how the deterministic result should be interpreted in the context of the 
stochastic model. 

The present paper tries to find an answer to the three questions mentioned 
above. For the special case in which there is only one Markovian state of 
illness (te. ill individuals have a constant infectivity and recover wholly by 
chance) this answer has already been given by Kendall (1956). It is the purpose 
of the present paper to generalize Kendall's approach. 

This paper is written by a theoretical biologist addressing himself to an 
audience of theoretical biologists. The presentation is in the first place con- 
ceptual and heuristic. Some essential results are given in the form of con- 
jectures. It is hoped that the formulation of these conjectures will attract 
mathematicians willing to prove them. 

0.2 Some bibliographical remarks 
A nearly complete survey of the literature up to 1974 can be found in 
Bailey (1975). In the literature most attention has been paid to the model in 
which the disease is assumed to have only one Markovian state of illness. Since 
the publication of Bailey's book this model has been discussed in papers by 
Barbour (1974), who considered the position of the deterministic approxima- 
tion of the stochastic model, Kryscio (1975), who further simplified the expres- 
sions for the transition probabilities and various adjuncts thereof, Barbour 
(1975a), who contributed to the derivation by Daniels (1974) of an approxi- 
mate formula for the distribution of the maximum number of individuals 
being ill at the same time, and Barbour (1975b), who has found an approxima- 
tion for the distribution of the total duration of the epidemic. 

Much less attention has been paid to Kermack's and McKendrick's 
(1927) general model..Lately Reddingius (1971) discussed the biological 
interpretation of the deterministic threshold theorem, (Ludwig 1975a,b; 
see also Ludwig, 1974) found a direct way to calculate the final size dis- 
tribution and moreover derived a quick approximate way to calculate that 
distribution for large population sizes, and Wang (1975) considered the 
relation of the deterministic approximation to the stochastic model. 

A generalization of Kermack's and McKendrick's model which has recently 
received undue attention in the mathematical literature will be discussed 
in section 1.4 of this paper. 
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1. DESCRIPTION OF THE MODEL 

1.1. General considerations 
Consider a closed area (of surface area ~z) in which at time t = 0 are presentX 0 
individuals susceptible to a certain disease, and letX(t) denote the number of 
susceptibles at time t. The assumptions concerning the processes governing the 
changes in _X can be stated, somewhat loosely, as follows: 

1. X changes only as a result of susceptibles becoming infected. That is the 
whole epidemic takes place in so short a time that changes in the susceptible 
population due to births and deaths can be neglected. Moreover, once in- 
dividuals have been infected they will never become susceptible again; they 
either remain ill foreover, become permanently immune or die. So the model 
does not allow for the possibility of a gradual buildup of immunity due to 
many minor infections. 

2. All susceptibles are equally vulnerable to infection. That is the probability 
that an individual becomes infected at a particular moment does not depend on 
the position of the individual in the area, its age, how well-fed it is, etc. 

3. The susceptibles present at t, if becoming infected between t and t + dt, 
do so independently of each other. If follows that with probability one no two 
or more individuals will become infected at exactly the same time. The rate at 
which individual susceptibles become infected, y, will be called the total infec- 
tivity per unit of area. 

4. The total infectivity _Y aef ~Y is the sum of the infectivities due to indivi- 
duals that at t = 0 still belonged t~ the population of susceptibles, _Y~, plus the 
starting infectivity _Z. Z itself is the sum of the infectivities due to individuals 
that were already diseased at t = 0, -]I2, plus possibly some infectivity Y~ due 
to extraneous sources e.g. an epidemic in an other population. That is, the 
infectives do not interact with respect to their infecting, and they are not 
influenced by nor do they influence any extraneous source of infection which 
may be present. So the model does not apply if e.g. new infectives become 
isolated earlier when more infectives are discovered by the medical authorities. 

5. Given the time elapsed since its infection the infectivity of an individual 
is independent of t. That is, the future course of an individual's infectivity does 
not depend on e.g. the time of the year, but only on the present state of its ill- 
ness. 

6. The infectivities of different ill individuals, given the moments of their 
infection and their 'types' before becoming infected, are independent 
stochastic processes. So it is allowed that the progress of the illness depends on 
e.g. the demographic age of the individual under consideration, which results in 
a stochastic dependence due to the effect of sampling without replacement. 
However, once started an individual's illness should proceed on itsef. 
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N.B. By assumption (2) those differences in type are not reflected in 
different liabilities to infection. So allowing for an inhomogeneity of the 
susceptible population at this stage results only in a slight generalization of the 
postulate that all individuals are equal. However, the introduction of the con- 
cept of 'type of individual' considerably simplifies the reasoning in sections 2 
and 3. 

For many epidemics these assumptions will be approximately fulfilled, 
assumption (2) probably being the most restrictive one from an applied point 
of view. 

1.2. Special cases 
Special cases are obtained if one specifics the proportions in which the 
different types of individuals are present initially and the infectivity processes 
for the different types. Some special cases are described below. In each case it 
is assumed that there is only one type of individual. 

1. An individual remains ill for some stochastic time r with distribution 
function F(T) and survivor function3-(r) defl - -  F('t" ). The infectiveness of an ill 
individual is a deterministic function a(T) of the time since its infection T. 

la. If the distribution of T is absolutely continuous with probability den- 
sityf(T) one may specify Fby means of the hazard rate 

¢(x) d~rf('r)/ 7(~), f (r )  d° f4F( ' r  ) (1.1) 
a T  

or conversely 

s(r) = exp [-,(r)], *('0 0.2) 

More intuitively, ~(r)d, is the probability that an ill individual dies or recovers 
between r and r + dr. This specification via the hazard rate is prominent in the 
work of Kcrmack and McKendrick 0927) and Reddingius (1971). 

lb. Another even more special case results if it is assumed that a newly in- 
fected individual remains ill for some fixed period b and has a constant infecti- 
vity a as long as it is ill. 

2. It is possiblc to distinguish a finite number of Markovian states of illness 
in which an individual may be, any of which can bc reached by a newly infected 
individual. From those states of illness an absorbing noninfective state is even- 
tually reached such as immunity or death. The probability distribution which 
governs the entrance of a newly infected individual into the different states of 
illness will be denoted as c = (G ..... c,)', ci =< 0, Zci = I.' Thevector ofinfec- 
tivities corresponding to the different states of illness will be denoted as a = 

t ,  denotes transposition. N.B. Probability distributions will be denoted by column vectors. 
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(a, . . . .  , am)', a~ > 0, Zat > 0. The differential generator of the transition pro- 
babilities between the states of illness will be denoted as B. Bis a square matrix 
with b,.j > 0 for i # j, Z; b~j _-< 0 and Zljb 0. < 0. Ifp (t) denotes the (defective) pro- 
bability distribution of the state of an individual which has become ill before t, 
then 

and 

--fp(t) = Bp(t) (1.3) 

p(t + T) = en'p(t) (1.4) 

2a. There is only one single state of illness. This case is also a special case of 
(1), # (T) = b and a(T) = a being constant. This is the celebrated so-called gene- 
ral epidemic about which a wealth of results has been accumulated and which is 
an important starting point from which to look for generalizations. Kermack 
and McKendrick (1927) describe this as their simplest special model from 
which already a lot of insight can be obtained. 

2b. There are two states of illness, only state 2 being infective, with infec- 
tivity a. A newly infected individual necessarily begins in state 1, which is 
not infective, then proceeds to the infective state 2 at a rate bt, to recover 
or to die on leaving this state, which happens at a rate b:. This is the simplest 
model with a latent period. 

Cases (lb) and (2b) are described here separately, since they provide 
some good examples for illustration purposes. 

1.3. What questions should be asked about the model? 
The reason for listing some set of assumptions is that one seeks to answer ques- 
tions about the real world phenomena which one tries to model. However, 
those questions are usually inherently vague, and have to be made more precise 
within the framework of the model. Actually, the most important reason for 
building a model at all is that it leads to new conceptualizations and so to asking 
novel questions. Moreover, an almost universal property of any biological 
study area is its lack of sufficiently precise data. So the best questions are those 
that allow for sharp answers from incomplete specifications. It is precisely in 
this respect that the work of Kermack and McKendrick and many of their fol- 
lowers provides a neat example of the power of mathematical reasoning. 

The biological question one starts with is something like 'how does an epi- 
demic develop'. A possible translation of this question is 'describe the stochas- 
tic process X(t)'. One answer to this question is to give a formula for the simul- 
taneous distribution of (_X.(t,),..., X(tk)) for each set {t, . . . . .  t,}. This can be 
achieved only in the simplest cases but, even if it could be done more generally, 
most biologists would be slightly unhappy with an answer of such complexity. 
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So it is the wrong question to ask about the model. Only when the initial 
number of susceptibles is very small this really may be what was asked for. One 
had better ask for some simpler characterization of the_X(t) process, such as 
,8 X(t) as a function of t, or some marginal-distributions, such as the distribu- 
tion of the number of individuals even to be infected, or - for specifications in 
which each individual's illness lasts only for some finite time - the  distribution 
of the time until the last ill individual dies or recovers. Even these answers will 
not appeal to most biologists when they are given in the form of general for- 
mulae. A biologist's first interests usually are approximate but simple formulae 
and qualitative descriptions. 

In the following sections the extra assumptions will be made that X 0 is large, 
and that the starting infectivity per unit of area z ~ Z/~z is small. These two 
assumptions will be approximately fulfilled in many practical situations. How- 
ever, the most important reason for making those assumptions is that they allow 
for comparatively simple answers. 

1.4. Some remarks about generalizations 
The only generalization of the assumptions listed in section 1.1, which leaves 
the developments in the next sections basically unchanged, seems to be to re- 
place the assumption that the extraneous infection Y3 is known, by the assump- 
tion that it is a random function _-Y3. All other generalizations will lead to 
approximating processes differing from those introduced in sections 2 and 3. 
Some generalizations will not lead to too drastic changes so that arguments 
analogous to those in the next sections can still be used. Generally, however, 
different types of equations will appear. For example, if one makes the rather 
artificial assumption that the crude infectivity y has to be multiplied first by 
some function of_x(t) dcf X(O/a  ' to get the net inf-ectivity, e.g. since the mobility 
of the susceptibles is density dependent, the argument remains practically the 
same. The introduction of spatial factors, however, leads to more complicated 
equations and correspondingly new phenomena (for a review see Mollison, 
1977). 

I shall not attempt here to comment on all generalizations which have 
appeared in the literature but for one exception. In that generalization it is 
assumed that the course of an individual's illness depends partly on the total 
infectivity present. More precisely, it is assumed that susceptibles upon infec- 
tion first enter a latent state, which they leave as soon as the accumulated infec- 
tivity to which they have been exposed in that state, exceeds a certain thres- 
hold; only after this latency period the illness proceeds on itself (Cooke, 1967; 
Hoppenstaedt and Waltmann, 1970, 1971 ; Hethcote, 1970;Wilson, 1972; Walt- 
mann, 1974 ;Hoppenstaedt, 1975). The idea behind this model is that it would 
account for the effect that an individual does not fall ill by contacting a single 
infective particle, but rather by its defense system being swamped with suffi- 
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ciently many infective particles. However, it is not clear whether the mathe- 
matical assumptions made do mimick this effect. This is demonstrated most 
clearly by pointing at the peculiar difference between the assumptions of a 
qualitative action of an individual's first infective contact, which brings it into 
the latent state, and the cumulative infinitesimal effects of all following infec- 
tive contacts. If one insists on accounting for the cumulative effect of the 
infective contacts one should do this by attributing to each susceptible indi- 
vidual a state of nearness to falling ill, which changes in some approximately 
continuous stochastic fashion, dependent on its own value and on the infecti- 
vity per unit of area. However, in my opinion, this generalization is not worth- 
while pursuing, since one expects an individual to become infected as the result 
of repeated infective contact bouts, one of which happens to be of sufficient 
intensity and duration for the individual's defence system to be overridden, 
the intervals between contact bouts being usually so long, that the probability 
of a carry over in the individual of infective particles from one contact bout to 
the next one is negligible. 

2. THE DETERMINISTIC APPROXIMATION 

2.1. Introduction 
If the initial number of susceptibles is large and the starting infectivity as well, 
one expects that the time course of the epidemic can be described approxi- 
mately by a deterministic model. To arrive at a somewhat more precise state- 
ment define 

x_ ~o~__f x_/~, xo ~Of Xo/,~ y, ~°f Z , / , z  (2.1) 
Ya '~°r __Y2/a~ y, dCr y3/a r z a C f y  2 q- Y3 = __Z/a' 

That is, x0 and x(t) denote respectively the susceptible densities at times zero 
and t, Yl (t), _Y2 (t), Y3 (t) denote the infectivities per unit of area at time t due to 
individuals infected after t = 0, before t = 0, and extraneous sources respec- 
tively, __z(t) denotes the starting infectivity per unit of area at time t, and~stands 
for the surface area of the area under consideration. Now, if ads very large and 
neither x o nor z are very small, one expects that the random functions x as well 
as Yt and Y2 can be approximated by deterministic functions x, Yt and Y2. This 
statement should be justified by a proof that a sequence of such stochastic 
processes for successively larger values of ~z converges to some welldefined 
deterministic process. 2 For special case (2) this proof can be found in Barbour 

2 With convergence of a sequence of  stochastic processes is mean t  convergence of  the corres- 
ponding probability measures ,  defined on a space which is large enough to encompass  the 
sample functions of  all processes under  consideration. This is comparable to convergence of  
distribution functions for random variables. 
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(1974), w h o  bases  h imse l f  on a genera l  l imit  t h e o r e m  by  Kur tz  (1970). In  this 
case a ra te  of  conve rgence  resul t  is also known,  in the  f o r m  of  a diffusion 
process  a p p r o x i m a t i o n  for  the  e r ror  t e r m  (Barbour ,  1974; Kur tz ,  1971). W a n g  
(1975) covers  the  s a m e  g round  for  special  case (1). In  the  genera l  case  no  p r o o f  
is avai lable  as yet.  H o w e v e r ,  I shall a s sume  tha t  a determinis t ic  l imit  process  
exists, and der ive  an equa t ion  for  the  suscept ible  densi ty x in an infinitely 
large a rea  as a func t ion  of  t. 

2.2. Derivation of an integral equation for the density x( t ) of susceptibles 
Let  S deno te  the  set  o f  possible  courses  of  individual  illnesses. F r o m  assump-  
t ions (5) and  (6) one  m a y  act  as if the  fate  of  a subcept ib le ' s  fu ture  course  
of  illness if he  b e c o m e s  infected,  s E S, is a l ready fixed be fo re  t = 0, the dif- 
fe rence  be tween  sampl ing  with and  wi thou t  r e p l a c e m e n t  becoming  un impor -  
t an t  for  an infinitely la rge  suscept ible  popula t ion .  N o w  let  x(Q; t) deno t e  the 
densi ty  of  suscept ibles  a t  t ime t whose  fu ture  course  of  illness, if  ever  they 
b e c o m e  infected will be  s E Q c S. F u r t h e r m o r e ,  let  a(s ;~r)be the  infectivity 
of  an individual  o f  type  s at  t ime T since its infect ion,  let z(t) = y2(t) + y3(t) 
deno te  the  infectivi ty pe r  unit  o f  a rea  due  to  o ther  sources  than  susceptibles 
tha t  have  b e c o m e  infec ted  af ter  t = 0, and  define 

5¢(Q; t) dof d ~ - ~ x ( Q ;  t), x(t) d°f x(S;  t), ~u(Q) dcf x ( Q ;  0 ) /x (0 )  (2.2) 

F r o m  assumpt ion  (4) the  total  infectivi ty pe r  uni t  of  area,  y(t), has  to  be  calcu- 
la ted  as y~(t) + z(t), y~(t) being the  ' s u m '  of  the  infectivit ies pe r  uni t  o f  a rea  
resul t ing f r o m  all poss ib le  types,  s, o f  infectives,  d i f fe rent ia ted  with  r e spec t  to 
the  ages,  T, of  thei r  individual  illnesses. So, since ± (Q;  t - T)dr co r re sponds  to 
the  n u m b e r  of  infect ives pe r  uni t  o f  a rea  of  type  s E Q, which  b e c a m e  ill bet-  
w e e n t - T a n d t - T + d r  ~ 

t 

y(t) : - fo fs a(s; nr) 5¢({ds}; t -  l r )dr  + z( t )  (2.3) 

3The notation x({ds}; t) and #({ds}) is borrowed from abstract measure theory, see e.g. 
Feller (1971) Ch. V, 3. The meaning of these expressions is most easily illustrated by calculat- 
ing g(T) defined in (2.7) for special case (1). Here S corresponds with the set of functions s 
from R + to {0,1} with _s(t) = 0 for 0 _<- t < T and s(t) = 1 fo r t  < t, where T_ is the duration 
of an illness, and aQ.; t) = a(t)s(t). In this case integration over S can be replaced by inte- 
gration overR +. So writing s_(t) = s(y_; t) one gets 

fs a(s;t)t~(Ids})= fR+ a(t)s(T; t)dF(T)= a(t) ft°°dF(T)= a(t) / (t) 

In special case (2) S corresponds to the set of piecewise continuous functions s from R + to 
{1 . . . . .  m} and a~; t) = as(0. In this case it is less easy to see what the probability measure # 
looks like, so it is easier'to go through some formal manipulations before calculating the 
quantities of interest. From the theory of Markov-chains it can be found that ~as(t) = deBte. 
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Assumptions (1), (2) and (3) give 

±(Q; t ) /x(Q;  t) = -y ( t ) ,  ±(t) /x( t)  = - y ( t )  

which upon integration yields 

t 

x(Q; t) = x(Q;  0) e x p [ -  1" y(T)dv] = 
-'o 

t 

= i~(Q)x(O) e x p [ - f o  y(x)d'r] 

Inserting this into (2.3) leads to 

where 

= ~(Q)x ( t )  

! 

y(t)  = - foo Jc(t - T)fs gt({ds}) a(s; T) dT + z(t)  = 
t 

= -foo 5c(t - ~r)gOr)dlr + z(t) 

(2.4) 

(2.5) 

(2.6) 

g(T) d~___f f a(s; x) ~t({ds}) (2.7) 
" S  

is the mean infectivity of an individual at time T after its infection. This mean 
infectivity function g has to be calculated from assumptions about the disease 
(see also footnote 3). 

Combining (2.4) and (2.6) leads to the equation 

Jc(t)/x(t) = - y ( t )  = --f' Jc(t - ~r) g(~r)arr - z(t) = --jr Jc(T) g(t  - T)dr - z(t)  
~t  

x(0) = Xo (2.8) 

which is the basis for the rest of section 2. 
Using ±(t) as a starting point many different quantities of  interest can be 

calculated. As an example let ~(t) denote the density of ill individuals at t. 
-~ can be calculated from 

t 

~(t) = ~,(t) + ~2(t) = -~" ±(t - -r) J-(~r)d-r + "~2(t) (2.9) 
Jo 

where -~, (t) stands for the density of those ill individuals that were already ill 
at t = 0, and Jr(~r) denotes the probability that an individual is still ill if it 
has been infected ~- time units ago. An other possibility is to replace J-(~r) by the 
probability that an individual is still ill and recognizable as such T time units 
after its infection. 

SPECIAL CASES: In cases (1) and (2) the usual approach is to write 
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down equations which keep track of the densities of individuals of different 
ages or in different states of illness. In case (1) let v0r; t)dr be the density 
of ill individuals at time t infected between t - T and t - ~r + dr. In case 
(la) the equations are 

tgv Ov 
8-7 = 0r  ~v, v(0; t) = xy  (2.10a) 

ov 

dx = _ xy, y( t )  = f0 v(lr; t) a(T)dr + y3(t) 
dt (2.10b) 

where ~(x) is the hazard rate defined in (1.1). In case ( lb)  v0r; t) = 0 for T > b 
and equation (2.10) remains valid if one puts ~ = 0 in (2.10a) and restricts 

to (0, b). By solving (2.10a) as i f x y  = -5c were known and substituting the 
result into (2.10b) one arrives at 

y( t )  = y~(t) + y2(t) + y3(t) = - -  ~oo t X(t -- ~)exp [-- O(lr)] a(x)dx  + 

0v(~r; 0)exp [ ¢ ( t  + "Q- ~(~r)] a(t  + T)d'r + Y3(t) (2.11) 

In special case (2) let v+ denote the density of individuals in the i 'th state of 
illness, and let v = (vl, . . . ,  vm)', then 

d (2.12a) - - v =  By + cxy 
dt 

dx 
-~- = - x y ,  y = a'v + Y3 

Solving (2.12a) as if xy  = - x  were known and substituting into (2.12b) 

t 

y ( t )  = y~(t) + y2(t)  + Y3(t) = - fo 5c(t - T)deB" cdr + deBtv(O) + Y3(t) 

(2.13) 

2.3. Some general remarks about the equation for  x 
A proof  of the existence and uniqueness of solutions to equation (2.8) under 
the assumption that z and g are nonnegative, bounded and intcgrablc on finite 
intervals and x0 > 0, can be found in Reddingius (1971). Those solutions are 
moreover  nonnegative and nonincreasing. By slightly extending Reddingius' 
proof  one can also show that x ( t )  is continuous and increasing in x0 (the 
results of the next section even make it possible to assert that this continuity 
is uniform in t) and that for two starting infections zl and z2 and corresponding 
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solutions x~ and x24 

fo" lz , ( t )  - z2(t)ldt-~ 0 =~ ,~(o,,,)sup Ix,( t )  - x2(t)l --,0 (2.15) 

SPECIAL CASES: It follows immediately from the interpretation that the 
total non-immune population can only decrease. For case (1) 

dtd (x(t) + fo v('r; t)dT) =< 0 ¢:, x( t)  + v(lr; t)dtr =< n 

rid fo °° _~-xo + v(T,~)d, (2.16) 

and for case (2) 

-~ (x  d + Zvl) < 0 o x(t) + Zvi(t) < n dc__f Xo + Zv~(O) (2.17) 

Moreover, if x0 is nonnegative and y~ and v(T; 0) or v(0) as well, then x(t)and 
v(~r; t) or v(t) are nonnegative too. 

2.4. Kermack's and McKendrick's threshold theorem for the final size 
From the monotonicity and nonnegativity of x it follows that 

def x® ---- Hm x(t) < xo (2.18) 
t~oO 

exists. An equation for x~ can be derived, following Kermaek and McKen- 
drick, by first integrating (2.8), which after some simplifications (see e.g. 
Reddingius, 1971) leads to 

t 

ln[x(t)/Xo] = J i ' x ( t -  lr)g(lr)dr- x0 fo 'g(T)dt -  £ z(lr)dr (2.19) 

Now define 

def fO°° g(t)dt, ~ de, fQo z(t)d~ (2.20) Y 

So y is the expected total infectivity of a freshly infected individual and ~ is 
the total infectivity due to initial conditions and external sources. If 7: --- oo or 
--- oo it can easily be deduced from (2.19) that x® = O. Otherwise let t ~ oo 

4The notation 'A' means 'for all'. 
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in (2.19) to arrive at 

ln[x®/Xo] = V(x® - Xo) - ~ (2.21) 

This equation can be simplified somewhat by introducing the new scaled 
variable 

P~ def ( X o -  5c~)/Xo (2.22) 

that is p ~ is the fraction of susceptibles ever to become infected. In this way 
(2.21) can be transformed into 

In[1 - po~] + FXo p~ = - ~  (2.23) 

From (2.23) one finds 
def p ® = z r ~ l -  e -~ if F = 0  (2.24) 

For other values of F, Po~ can not  be expressed  in a s imple explicit  fo rmula .  
H o w e v e r ,  a g raph  can easily be d rawn  by plot t ing Fx0 against  p® for 
d i f fe ren t  values of  ~ (see fig 1). Append ix  3 gives some  app rox ima te  
fo rmu lae  for p~ as a func t ion  o f  ~x0 and  ~. 

Usual ly  an ep idemic  will develop  f rom a relat ively small  s tar t ing 
infect ion.  So it is of  some  interest  to look  at the  behav iour  of  P~o as 

~ 0. It can easily be deduced from graphical considerations (see e.g. Reddin- 
gius, 1971) that 

/~o~ de_~___f lim p~ (2.25) 
g+0 

solves (2.23) with g = 0, that is 

ln[1 - / 3 ~ ]  + Vx0/~® = 0 (2.26) 

and that 

/L~ > 0 1 < Fx0 (2.27) 
= 0 0 ___ pXo <= 1 

(see also fig. 1). This qualitatively different behaviour of/~oo for Fxo <> 1 is 
known as the threshold theorem of Kermack and McKendrick. 

can only be zero if z(t)  = 0 for all t. However, since obviously x( t )  = Xo 
if z = 0, (2.14) and (2.15) imply that letting z -~ 0 leads to x( t )  ~ xo for all t. 
So i fFx o > 1 

Xo(1 - /~o~)  = lira lim x ( t )  < l im x ( t )  = x o 
g.tO t ~  ~0 

This difference between the two limits shows that for FXo > 1 the uninfected 
state (z = 0) is unstable, whereas the equality of the two limits for Vxo < 1 
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combined with the monotonicity of x(t) implies neutral stability (Diekmann, 
1976). 

To see how p~ still depends on ~ for small ~ ohe may write 

p~ =/3~ + a~ + o(~) (2.28) 

By differentiating for ~ in (2.23) and setting ~ = 0 one finds 

= (1 - / ~ ) / [ 1  - ~;Xo(1 -/3~o)] (2.29) 

When yXo < 1 (2.28) and (2.29) become 

poo = ~/(1 - Vx0) + o(~) (2.30) 

Approximation (2.28) breaks down for ~;Xo = 1. A discussion of  this case can 
be found in appendix 3. 

REMARK: In most papers dealing with deterministic epidemics in closed 
popu!ations the assumption is made that the starting infectivity is caused by 
the introduction of some freshly infected individuals at t = 0. In that case 

= (n - xo)~;, where n denotes the total population density at t = 0 (assuming 
that the number of  individuals that are already immune can be neglected). So 
(2.21) becomes 

lnEx~/xo] = F(xo~ - n) (2.31) 

For this equation it is easier to introduce the scaled variables 

Poo def n -  xoo def n -  xo ~ ,  P0 (2.32) 
n n 

or, in words, the fraction of the total population ever to become infected and 
the fraction already infected at t = 0. In these new variables one obtains 

ln[1 - p~] + F npo~ = ln[1 - t30] (2.33) 

which looks exactly like (2.23),/30 corresponding with n. The discussion about  
the dependence of p~ on ~ applies without change to the behaviour of/3= as 
a function of/30. 

2.5 The final size equation considered as a first integral 
Equation (2.21) can also be used to arrive at a finite time version of the 
threshold theorem. To this end consider an outbreak but using t as a new 
origin of the time axis. Equation (2.8) can be rewritten as 

tl 

±(t + t , ) / x ( t  + t , ) =  fo ±(t + t, - T)g(~r)ctt-- 

ESo ,1 - 2( t  - ,)g(.r + t,)d~ + y2(t + t,)  + ya(t + t, (2.34) 
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Repeating the calculations which led to equation (2.21) lead to 

where 

l n [ x J x ( t ) ]  = y(xo~ - x ( t ) ) -  u(t) 

d©f 
tt ~ U  1 -}- U z a c U 3, 

u,(t) d¢~ _ fot ±(t - ¢)~l(T)dr, ~?(t) g('r)dr, 

u2(t ) da f ~  y2(T)dr ' u3 (t) d~: f ~  Y3 (~r)dr 

(2.35) 

(2.36) 

so that u(Oy = ~ and ~/(0) = y. u(t) can be interpreted as the total infectivity 
still to be produced in the future, causing but not caused by the further pro- 
gress of  the epidemic, and ut(t), u2(t) and u3(t) as its components due to the 
individuals infected between 0 and t, individuals infected before 0 and extra- 
neous sources. ~/(~r) can be interpreted as the expected total infectivity still to 
be produced by an individual which has been ill for T time units. 

Equation (2.35) can be considered as a relation between the variables u and 
x. This aspect is brought out more clearly by writing it in the form 

~.(x, u) d,f U -- ln[x] + Fx = --ln[x~] + yx~ = ~ -- ln[xo] + VXo (2.37) 

fig. 2 shows lines of  constant ¢ in the (x, u)-plane, together with the direction in 
which a pair (x, u) moves. 

As will be seen in the description of  the special cases, if the epidemic is auto- 
nomous (Le. Y3 = O) u is a positive linear functional on the space representing 
the population of ill individuals (i.e. a 'weighted sum' of the densities of infec- 
tives in different stages of  the illness). So fig, 2 suggests a finite time version 
of  the threshold theorem: the functional u will increase as long as x > 7: -~ and 
will decrease if x < F -1. 

SPECIAL CASES: (2.37) can also be derived direct from (2.10) or (2.12). 
This leads to a new derivation of  the final value equation (2.2 I). Only the auto- 
nomous case will be considered here. 

In special case (la) define 

f f 0  °° fT°° def u(t) d~f v(T; t)h(T)d~r, h(T) d:_~_r a(t) ,-(t)dt/ 7(-r), F ~-h(0)  (2.38) 

h(~r) can be interpreted as the expected total infectivity produced by an ill 



THE EPIDEMIC IN A CLOSED POPULATION 91 

+ 
u 

~-1 x ~  

Fig. 2. Contourlines of the function ¢(x, u), together with the direction of the movement of 
(x(t), u(t)) along those lines. 

individual infected T time units ago. Now 

du fo v(-r; t)hOr)dr - V(T; t)h(T)& ~(T)V(~; Oh(x)& 
dt 

(2.39) 

Partial integration of the first of the two integrals at the right hand side, and 
substitution of the relations v(0; t)h(O) = •xy, v(t; oo)h(oo) = 0 and dh/dr = 
- a  + ~h leads to 

du (2.40) - ~ =  y x y - y  

So 

du x- '  (2.41) 
~xx-- - } '  
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which upon insertion of x(O) = Xo, u(O) = ~ or x ( ~ )  = x~, u (~)  = 0 yields 
(2.37). Special case (lb) goes exactly the same. 

In special case (2) define 

u do_~_~ h'v, h' ae_~f _a ,B_l ,  V da h'c (2.42) 

The components of the matrix - B  -t can be interpreted as the mean time an 
individual that is presently in state of illness i will still spend in state of illness 
j, and those of h as the mean total infectivity an individual in state of illness i 
will still produce during its illness. Now 

du d (2.43) - ~  = h' v = - a ' B - ~ ( B v  + cxy) = - y  + yxy  

In the special case (2a) (2.42) reduces to y = a/b  and u = evt so fig. 2 can 
be considered as depicting the orbits for this special case. In special case (2b) 
(2.42) becomes y = a/b~ and u = y(v~ + v~). Fig. 3 depicts the surface (2.37) 
and some orbits. These two special cases also examplify the general theorem 

Fig.  3. T h e  sur face  ~(x ,  h'v)  = ~ - In xQ + exo toge the r  wi th  s o m e  orb i t s  for  d x / d t  = - a x v  2, 
d v f f  d t  = axv2  - b~ v~ , dv2 /  d t  = b ,  v~ - b~ v2. 
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that in the autonomous case u is y times the population density of all ill indivi- 
duals together, if and only if the rate at which ill individuals die or recover is 
r' times their infectivity per unit of area. 

2.6. The behaviour o f  x in the initial and f inal phases o f  an outbreak 
If the epidemic starts from a small infection it will take some time before the 
susceptible population has diminished appreciably. To study the initial phase 
set 

w ~ Xo - x (2.44) 

That is w denotes the number of individuals per unit of area that have become 
infected since t = 0. If iv again denotes dw/dt  

'] iv(t) = x( t )y( t )  = Xo iv(t - ,)g(T)dT + z(t  -- 

t 

w(t) fo iv(t - T)g(~r)dr + z(t) (2.45) 

w(O) = 0 

As long as wis small the second term will be small as well and the linear term will 
dominate the behaviour of w. Neglecting the nonlinear term for the time being 
leads to 

l 

iv(t) = fo iv(t - -c) xog(-c)atr + xoz(t) (2.46) 

w(O) = o 

This equation is well known from population dynamics and demography where 
it is used to model the growth of a population with constant age dependent 
birth and death rates (see e.g. Lotka, 1956, or Keyfitz, 1968). Integrating (2.46) 
once leads to 

t l 

w(t)  = fo w(t  - ~) xog(lr)dr + xo fo z(lr)dr (2.47) 

Equations such as (2.46) and (2.47) are called renewal equations. An exten- 
sive discussion of their properties can be found in Feller (1971) or Jagers (1975). 
A brief summary will be given here of the main results, applied to equations 
(2.46) and (2.47). 

Under the assumptions made earlier about g and z (2.46) and (2.47)are 
uniquely solvable. The solutions are positive and bounded on finite intervals, 
and the solution of (2.47) is nondecreasing. 

To consider the behaviour of the solutions of (2.46) and (2.47) for large t one 
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has to distinguish between the three cases Fxo < 1, Fx0 = 1 and Fx0 > 1. In the 
first case (2.47) leads to 

wco d°flim w(t) = Xo!:/(1 - •Xo) (2.48) 
t~CO 

This corresponds exactly to (2.30). (2.48)also shows that approximations (2.46) 
and (2.47) will no longer apply for large t if ~ is too large. 

If ?Xo = 1 (and if some very slight additional condition on z is fulfilled) 
(2.46) implies that 

co 

Woo dcf linl w(t) = ~/0, 0 def f tg(t)dt (2.49) 
t ~  I"0 

where the quotient has to be interpreted as zero if ~ < oo and 0 = oo. So (2.46) 
and (2.47) no longer apply for large t since otherwise w would continue to 
increase at a constant rate. 

The case px0 > 1 can be reduced to the previous case. To this end define 

d co 
Z(s) def fo e-s'g(t)dt (2.50) 

If  ~ < oo this integral converges certainly for s > 0 and L(0) = 7. More- 
over, L(s) is a decreasing function of s, so one may define o by 

L(~) = x?  (2.51) 

If  ~ = oo (2.51) may or may not have a solution. From now on the assump- 
tion will be made that it has one. So one can define 

w(t) d~ e~' ~v(t) (2.52) 

Substitution in (2.47) leads to 

t t 

,~t) = [ ~ t  - ~)~0e-~ ~ + Xoe-~' [ z(~)a~ (2.53) 
*'o " 0  

and proceeding as if (2.47) remains valid for large t, 

I~oo ddlim l¢(t) = ~[0 (2.54) 
t~co 

where 

fo °°' fo' do, ~vO 
In other words if'0, ~ < oo then the solution of (2.47) will grow approximately 
exponentially for large t. This implies also that (2.47) will no longer apply for 
such t. However, if z is sufficiently small it will take a long time before the non- 
linearity becomes appreciable, so one expects an intermediate region on the 



THE EPIDEMIC IN A CLOSED POPULATION 95 

t-axis where w is approximated rather well by ~® e ~'. If 0 = oo, wwiU still grow 
to infinity, but it is not possible in general to tell how. 

When w grows exponentially the same applies to w = -± .  So if a period of 
approximate exponential growth lasts sufficiently long, not only wlooks like an 
exponential, but also all other quantities that can be calculated from x by means 
of a convolution with a function of t that is bounded and equal to zero for t < 0. 
An example is the total density of ill individuals ~, introduced in section 2.2. 

The behaviour of x near x~ can be treated in an analogous way. Since ~,xoo 
is necessarily smaller than 1 (see fig. 2) only the first case remains. The results 
derived for that case are of no great use however. One can try the same device 
that worked so well in the third case, but a solution p of the equation 

L(p)  = xg ~ (2.56) 

no longer needs to exist. If it does it has to be negative, and x(t)  will go to x® at 
an exponential rate. This is always so in special case (2) and also if there exists a 
t such that g(x) = 0 for x > t, for which special case (lb) stands as an example. 

SPECIAL CASES: Applying the previous results to case (1) leads to the 
conclusion that if yxo > 1 and z so small that it takes w a long time to reach 
the nonlinear region, the 'age of illness' distribution, v, will approximate a 
stable form for intermediate t. More precisely, for the linearized approximation 

lira e-"' vOr; t) da ~(x) = o(~/0) e -"" .'-!0r) (2.57) 
t ~ c o  

In special case (2) it is more instructive to derive the results immediately from 
equations (2.12). For simplicity's sake the additional assumption will be made 
that y~ = 0. To cope immediately with the initial and final fases of an outbreak 
set x = x, in (2.12a), where x. is the nearest intersection of the surface (2.37) 
with the x-axis. In this way one obtains 

d d a b  ca' (2.58) - - v  = Dr, D + x ,  
dt 

The qualitative properties of (2.57) are determined by the eigenvalues of D and 
their eigenvectors. Now consider the matrix E daD + 81, 8 c l e f  __ min~{d~;}. The 
eigenvectors of D and E are the same, the correspondence of the eigenvalues 
being a; = A; - 8, where o~ and A~ denote eigenvalues of D and E respectively. 
From the application of the Perron-Frobenius theorem (see e.g. the appendix 
of Karlin and Taylor, 1975), one can conclude that E has one positive eigen- 
value Al, and corresponding eigenvector with all components nonnegative, 
such that A, > Ix, I, so that o, > Reo,, for all i #  1 (in fact a~ is the onlyreal 
positive eigenvalue of E). This eigenvector can be written as o~(¢r~ I - B)-~c, 
a E R +. This means that for t --, oo the "states of illness" distribution as de- 
termined by (2.58) will tend to that first eigenveetor of D. Furthermore one may 



96 J.A.J. ~m-'rz 

use corollary 2.2 of the appendix of Karlin & Taylor (1975) to prove that 

y x , >  1 ~ 21 > ~  ¢:" ~1 > 0  (2.59) 

So it can be seen from ~x, whether the solution to (2.57) for large t will grow 
exponentially, approach a constant vector, or decline exponentially. 

To get the complete picture of what happens locally in the state space 
near (x, v) = (x., 0) it is easiest to use (2.37). In this way one may conclude that 
w = x. - x will decline or grow approximately exponentially when v does so, 
whereas the linearized analysis of the complete set of equations (2.12)would 
fail to give such information, owing to the presence of an eigenvector ofeigen- 
value zero along the x-axis. 

2.7. The time course of the epidemic for small starting infections. 
In this section it will be assumed throughout that yx0 > 1 and ~ is small. The 
observation that there will be an intermediate region of the time axis where the 
density of individuals infected since the start of the epidemic, w(t), is approxi- 
mated rather well by ~ e  °', leads one to consider a sequence of epidemics in 
which ~ becomes smaller and smaller. Then it becomes later and later before w 
enters the region where the nonlinearity due to the decrease of the susceptible 
density can no longer be neglected and w grows more and more like a simple 
exponential; or, referring to the special cases, the age or state of illness distribu- 
tion more and more resembles the stable one, independent of the exact form of 
z, before the nonlinear region is entered. This leads to the conjecture that for 
sufficiently small ~ the form of the epidemic will become practically independ- 
ent of z. There is one snag, however. Since x(t) ~ Xo for any fixed value of t if 

~ 0, one has to look further and further into the future to see any real epi- 
demic at all. Mathematically, this means that one has to choose a new origin, 
i, of the time axis. However, before embarking on the details from now on 
for simplicity's sake the discussion will be confined to sequences such that 

z( t )  = r(t)  (2.60) 

One possible choice for t stems from the observation that one usually only 
becomes aware of the fact that there is going to be an epidemic when the 
number of infected individuals has risen to a sufficient level. This leads to 
defining i as the first time x reaches a prescribed value ~, x~ < J < x0, 

i(~) ~ max{tlx(t) > ~} (2.61) 

The conjecture set forth previously now can be formulated as follows 

CONJECTURE (a): The limit 

lira x(t + i(~)) aa ~(t) (2.62) 
~o 
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does exist and is independent of h. The limits :~ for different values of ~ = ~(0) 
are translates of each other. 

A proof  of  the truth of  conjecture (a) can be found in Diekmann (1976), the 
convergence turning out to be uniform in t. 

As a corollary one finds that also quantities as ~(t'+ i) converge uniformly 
in t and that 

~(t) d°f lim v(t  + i) = - ~.oo ~c(t - "r) Y(~r)d. (2.63) 
~o Jo 

Since moreover necessarily 

Vmax def max {v(t)lt E R +} < x 0 - xoo (2.64) 

it follows that ~m~ also converges to a well-defined limit and that 

~-max da l im ~m~ > 0 1 < ~Xo 
C~0 (2.65) 

= 0  0 < ~:X0 -< _ 1 

So, as a corollary to conjecture (a) one arrives at a threshold theorem for the 
severity of the epidemic as measured by the maximum density of individuals 
that are ill at the same time. 

An obvious next step is to try to determine the limit epidemic ~ and to see 
what it looks like. Applying the same limiting procedure to equation (2.8) leads 
to (Grasman, 1976; Lauwerier, 1976) 

oo 

~¢(t) = 3¢(t)f0 ~ ( t -  ~r)g(~r)~ (2.66) 

Diekman (1976) proves that the limit epidemic indeed has to satisfy (2.66). On 
the extra assumptions that ~ is nonincreasing and that ~ ( -oo )  = x0, heproves 
moreover, that the solution to (2.66) is unique up to translation. In appendix 
4 (2.66) is used to arrive at an expression for ~ in the form of a series converging 
for t on a left halfline. More important than a formula for ~, however, is 
qualitative information about its global form. I have not been able to arrive 
at any results in this direction but I strongly suspect the truth of the following. 

C O N J E C T U R E  (b): The limit epidemic is sigmoid, that is ~ has only one 
point of inflection. Moreover (d/dt)iSc has j  + I points of inflection. 

The reasoning leading to conjecture (a) also gives an estimate for f. Proceed- 
ing heuristically one may write the relations obtained thus far in the form 

x o - fc(t)  ~ w ( t  + i )  ~ ( ~ / O ) e x p E u ( t  + i)~ = 

= exp[-tr(t + i + tr -~ ln[~ 3 - ~-~ ln~0]) 3 (2.67) 
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which should hold for - i ~ t ~ 0. Since in the limit i --) oo one expects that 
i ( t )  looks exponential for t ~ 0, or, more formally, that 

lira e - ° ' ( x  - ~ ( t ) )  a~-~-f k (~)  (2.68) 
f~--cO 

exists. The explicit formula for ~ (t) from appendix 4 has the form of a power 
series in e ~t, showing that (2.68) holds good. If one defines ~ to be the unique 
solution of (2.66) such that 

lim e-~*(xo- .~(t))= 1 (2.69) 
f~--oO 

then 

 (o-1 ln[k] = g (2.70) 

showing that k is a decreasing function of g. In appendix 4 the first few terms of 
a power series for k(~) are derived. Writing 

xo - ;c(t) ~ exp[o(t + ~-1 ln[k])] (2.71) 

and comparing the exponents in the fight-hand sides of (2.67) and (2.71) leads to 

CONJECTURE (c): 

ao t 

lim t + or-' ln[-~] + ~r-lln[ [ " e -~ ' (  rOr)drdt] = cr -1 ln[0] + ~r-' ln[k] 
~*0 ,Io a0 

(2.72) 

where k can be determined from (2.70). 

Note that the right-hand side of (2.72) does depend only on g but not on r. 
In the same way as this was done in section 2.4 for the difference between 

Poo and ~ ,  one can try to expand the difference between x ( t  + t)  and :~(t) 
to the first order in ~. Some results in this direction can be found in Grasman 
(1976). 

SPECIAL CASES: In case (lb) a simple explicit expression can be given 
for the limit epidemic ~. See appendix I. 

In case (2) it may be asked whether the orbit corresponding to the limit 
epidemic is something special. The picture is somewhat complicated by the 
fact that a separate limit epidemic exists for each value of x0. The correspond- 
ing orbits form a two dimensional surface, each orbit being the intersection of 
that surface with the m - 1 dimensional surface defined by ~ (xo, h'v) = yxo - 
In xo. Within such a surface of constant ~ the limit epidemic corresponds to 
the only orbit which connects (:co, 0) with (xo(1 -/~o),0). Figure 4 depicts the 
orbits within one surface of constant ~ for special case (2b) (see also appendix 2). 
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3. THE BRANCHING PROCESS APPROXIMATION 

3.1. Introduct ion 

There are some difficulties in interpreting the results of section 2 within the 
context of the original stochastic formulation. The deterministic process was 
introduced as a convenient approximation to the stochastic process if the 
susceptible population and the starting infection were both large. However, 
the results concerning the deterministic process, described in sections 2.4, 2.6 
and 2.7, were derived on the assumption that the starting infection was relative- 
ly small. So on the one hand a large starting infection was assumed and on the 
other hand a relatively small one. To see how these two assumptions can be 
reconciled, a different approximation to the full epidemic process will be 
considered first in this section. Section 4 deals with the interrelation between 
the two approximations. 
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If the starting infection is small and Xo and a~are both large one expects that 
it will take a long time before the number of individuals infected is sufficiently 
large for x(t) = X_(t)/ct to be appreciably less than x0 = Xo/a~. Since the only 
dependence between infections brought about by different infections stems 
from the diminishing of the susceptible density, one expects that the process of 
the increase of the number of infected individuals 

__W(t) d°tX 0 -- X(t) (3.1) 

during the initial phase of the epidemic can be approximated by a branching 
process. A more rigorous version of this statement is: if X0, ~z --, ~ in such a 
way that xo remains constant, then for any finite interval of time the process 
__W converges to a cumulative population process, associated with a branching 
process. A proof can be found in appendix 6. 

Branching processes have been extensively studied. A thorough discussion of 
the main results can be found in Jagers (1975). The remaining part of section 3 
summarizes those results, applied to the branching process originating from 
the epidemic model. All statements refer to this branching process only. No 
distinction will be made between symbols referring to the branching process 
and those referring to the complete formulation. To simplify the discussion it 
will be assumed that the process starts with one freshly infected individual. 
Moreover, contrary to the convention in section 2, this individual will be 
counted among the population of individuals that have been infected after 
t = 0. The extension to more general starting infections will be briefly touched 
upon in section 3.9. 

3.2. Specification of the branching process 
Branching processes are essentially defined by the property that all individuals 
multiply and die independently. What happens to an individual is prescribed 
by means of a pair ~, N), where _T is its life length and N is a point process 
concentrated on (0, ~ specifying the moments at which it gives birth to a 
new individual of age zero.5 In thegeneral description in section 1.1 no specifica- 
tion was made about _~. The marginal probability law of_N will be of a special. 
nature, however. Given an individual's course of illness _s (see section 2.2)the 
infections brought about by this individual occur accordingto a Poisson process 
with rate x0a(_s; T), where -r refers to the age of its illness. Since the course of 
illness itself is chosen according to a probability measure/~ on S, the re- 
production law is a doubly stochastic Poisson process. 

~A point process will be identified with its associated counting process. So N is a random 
function which is constant between births, makes unit jumps at the moments of the births, 
and N(0) = 0, _N(oo) = N(x). 
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SPECIAL CASES: The description of the special cases in section 1.2 
immediately applies to the corresponding branching processes. Special 
case (la) becomes the age dependent birth and death process of Kendall 
(1949) with age dependent birth rate xoa(T) and death rate #0r). Special ease 
(2) becomes a multivariate linear birth and death process in which the type 
of a newborn is independent of the type of its mother. If ~ denotes the 
number of individuals in state of illness i transitions occur according to 

type of transition interpretation rate 

I t , . ,  V~ . . . . . . .  Vm -~ V1 , . ,  V~ + 1 . . . . . . . . . . .  V,, new infection cixoY~ajVj 
V ,  , . , V ,  . , V j ,  . , Vm ~ V ,  , . , V ,  + 1 , . ,  V j  - 1 , . ,  V , ,  state of illness 

transition b# Vj 
V~,. . . . . . .  Vy,., Vm ~ I:1 . . . . . . . . . . .  Vj -  1,. ,  Vr, death or 

recovery - ~,b U Vj 

Special case (2a) becomes the well known univariate birth and death process. 

3.3. The mean number of  individuals infected up to t 
To arrive at an equation for ,~ _.W(t) write the incremental process of 14' in the 
form 

_w(t-) 

dW__(t) = dS_,(t- 
i=o (3.3) 

where the tt, 0 = to < /i < ti+1, i > O, denote the moments at whichthe 
successive infections take place and Ni denotes the reproduction process of 
the rth infected individual. Taking expectations leads to 

._wO- i) 
d,~W,(t) = 8, dW___(t) = 8 ( 0  + ,8 ~, d ,SN,(t - t,) = 

dt dt i=0 dt 

w(,-) t d ,8_W(x) 
= 8 ( 0 +  ,~ ~=o X o g ( t - t ~ ) =  8 ( t ) +  x o f  ° g ( t -  X ) - - d x  dr 

,8 _W(0-) = 0 (3.4) 

and, integrating once, 

t 

W(t)  = 1 + x o foo g( t  - x) 8 W___(x)d~r (3.5) 

This is a special case of equations (2.46) and (2.47). So all the results from 
section 2.6 apply to g ___W. Especially, if Fx0 < 1, (2.47) becomes 8___W(oo) = 
( 1  - FXo) -I and, if Fx0 > 1, for large t g W(t)~(trO) -1 e °'. 
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3.4. THE EMBEDDED GENERATION PROCESS 

An important expedient in the study of the general branching process is the 
embedded discrete time (or Galton-Watson) branching process which results 
if one forgets the time dependence and only looks at the numbers of individuals 
as a function of the generation number. This process will be called the genera- 
tion process. The distribution of the number N(oo) of first generation infections 
in the generation process is a mixture of Poisson distributions. Let g denote 
its generating function, that is 

g(~) da ~ P{_N(oo)=N} ~N (3.6) 
N = 0  

If 

then 

-, def /* oo a(s) = !  a(s; t)dt (3.7) 
J0 

gq)  = fs exp[x°a(s) (~ - 1)] p{ds} 

this can also be expressed as 

gg)  = g exp[x0a(~ - 1)] = fo ~ exp [xoa( / - 1)] dG(o 0 

(3.8) 

(3.9) 

Where G (a) denotes the distribution function of_a ~ a (s). So g(~)corresponds 
to the moment generating function of_a evaluated at xo (g - 1). It follows that 
the factorial moments of the offspring distribution correspond to the moments 
of Xoa. So 

8 N ( m )  = Xog_a = Xo c~(s; t)dt~{ds} = ~'Xo (3.10) 

and 

var N ( ~ ) =  yXo + x~ var cr (3.11) 

SPECIAL CASES: In case (1) (3.8) may be rewritten as 

fo®exp[xo/3(t)(J - 1)]dF(t), ~(t) d°ffo' a(T)ak (3.12) 

In case (lb) (3.8) reduces to 

g(~) = exp[FXo( ~ - 1)] (3.13) 
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that is the offspring is Poisson distributed and 

var _N(oo) = "8  N(oo) = yxo (3.14) 

In special case (2a) and (3.12) yields 

g(g) = b/[b  + aXo(1 - g)] = [1 + FXo(1 - g)]-t (3.15) 

that is the offspring is geometrically distributed and 

var N(oo) = FXo (FXo + 1) (3.16) 

In case (2) g can bc determined as follows. Let gj denote the probability 
generating function of the total offspring of an individual which starts in state j, 
and set g' ~ (gl . . . . .  g~). An individual starting in state j spends  an exponen- 
tially distributed length of time in this state before a state transition, recovery or 
death occurs. So the offspring it begets before such a transition takes place 
in geometrically distributed with probability generating function (-b.o)/  
[a:xo(1 - g) - b~] (compare case (2a)). Moreover the type of its first transition 
is independent of the time spent in state j before that transition. The probabili- 
ties of the different transitions are respectively bu/ ( -b j : )  for a transition to 
state i and Z~bu/bjj for recovery or death. In the last case no more offspring 
will be produced;  in the first case it may get more offspring, which it does 
independently of  its previous offspring and the probability generating function 
of  that future offspring is g~. So 

= . .  bo/b ~ + ~ ( b J ( - b ~ ) ) g  (3.17) gj 
ajxo(1 

In matrix notation this can be written as 

g ' (B  + xo (~ - 1) diag (a)) = gB (3.18) 

where diag(a) denotes a matrix with components a; along the main diagonal 
and zeros elsewhere, and e' = (1 . . . . .  1). So 

g = g'c = e 'B[B + Xo( ~ - 1)diag(a)] - 'c  (3.19) 

By first differentiating for ~ in (3.18) and setting ~ = 1 one finds 

,S N (oo ) = - Xoe' diag(a) B-~ c = ~Xo (3.20) 

var _N(oo) = yxo + x2o[2e ' (d iag(a)B-~)2c- (e  ' diag(a)B -~ c)2~ 

In case (2b) the offspring distribution is geometric just as in case (2a). 

3.5. The probability o f  a minor outbreak only 
In the branching process model W may grow to infinity. For the original for- 
mulation with Xo very large, but not infinite, this means that the number of 
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individuals infected will become of the same order of magnitude as Xo, whereas 
outbreaks in which the number of individuals by chance never grows that 
large correspond to cases of finite ___W(oo) in the branching process approxima- 
tion. The cases ___W(oo) < co and __W(oo) = co will be refered to as minor and 
major outbreaks respectively. 

If the distribution of ~ is not defective __W(oo) will be finite if and only if the 
infective population whollY dies out or recovers within some finite time. How- 
ever, the distinction between major and minor outbreaks remains meaningful 
if P{_, < oo} < 1. 

The behaviour of __W(oo) may be studied by confining the attention to the 
generation process. 141(oo) is the sum of the numbers of infections in all genera- 
tions together, starting with the 0'th generation. So ____W(oo) < oo if and only if 
there is a last generation, that is if the generation process dies out at some 
finite generation. Let q denote the probability that this is the case and let 
p ~ 1 - q, that is q and p are the probabilities of a minor and a major outbreak 
respectively. It is well known from the theory of Galton-Watson processes 
(see e.g. Feller, 1968, chapter 12; Karlin and Taylor, 1975, chapter 8; Jagers, 
1975, chapter 2) that q is the smallest nonnegative solution of the equation 

q = g(q) (3.21) 

Moreover, since the mean offspring number was equal to ~'x0 

p = l  q = 0  0 <  < 1  - -  = ~ X o  = 

(3.22) 
> 0  1 < F x o  

This forms a nice parallel to the threshold effect of the deterministic model of 
section 2. 

SPECIAL CASES: 
(3.21) can be rewritten as 

or, recalling (2.25), 

1 - p = e x p [ - r x o p  ] 

If the offspring distribution is Poisson as in case (lb) 

(3.23) 

If the offspring distribution is geometric as in cases (2a,b) one finds 

p = 1 - (Fxo)-' 1 < Fxo (3.25) 

In the general case no such simple formulae are available. Some inequalities 
for p are derived in appendix 5. 

REMARK: In the theory of linear birth and death processes another de- 
rivation of the probability of extinction is customary. Let kj be the generating 

p =/~® (3.24) 
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function of the distribution of the numbers __V,. of different individuals at time 
t for a population starting with one individual of type j at t = 0. That is 

kj(~ . . . . .  ~.,; t) da~P{_V~ (t) = Vt . . . . .  V__m(t ) = V,. I__Va (O) = O, i #  j, 

= 1} / ,  "~m E(o  ) v, vm 

Now let k' = (k, . . . . .  kin), then (see e.g. Karlin & Taylor, 1975) 

d k = h (k) (3.27) 
dt 

where h' = (h, . . . . .  hm) and 

hj(~, . . . . .  ~,,) de~ xoaj~ci~i~j + ~ b u ~ i -  ~,bij + (ba. - xoaj)~j (3.28) 
i i # j  i 

or setting 5 '=  (~  . . . . .  ~m), 

h'(g) = J ' [B + xo(~'c - 1) diag (a)] - e'B (3.29) 

By setting ~ = 0 one arrives at an equation for the probabilities that such pop- 
ulations have become extinct by t. Since these probabilities will increase 
in t, their limits for t -* oo, qj, will exist and will satisfy, setting q' = 
(q, . . . . .  qm), 

h(q) = 0 (3.30) 

So 

q' = e 'B[B + xo(q'c - 1) diag(a)] -1 (3.31) 

Substitution of q'c = q reduces this to expression (3.21) with (3.19) for g. 

3.6. The behaviour o f  the epidemic in case o f  a minor outbreak 
In general minor outbreaks will be looked at in a different way compared with 
major outbreaks. So it is a sensible question to ask what those minor outbreaks 
look like. In case yx0 _<- 1 all outbreaks are minor so one should only study the 
original branching process. If  Fx o > 1, however, the question refers to the 
process conditioned on ___W(oo) < oo. It turns out that such a process is again 
a branching process of the same type as the original one but with different 
parameter values. Only a brief sketch of the proof will be given here. 

Since in a branching process individuals are independent, the clans they 
initiate are also independent. Now consider two events A 1 and A2 pertaining 
to two different sets of clans. Let E,,  E 2 and E 3 be respectively the events of 
eventual extinction of the first group of clans, the second group of clans and 
all other clans, and let E be the event of extinction of all clans, that is E = 
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E 1 N E 2 n E 3 . With this notation 

P(At G A 2 I E )  = P(A, N A2 n E ) / P ( E )  = P ( A ,  n Et)P(A2 n E2)P(E3)/  

[P(E,) P(E2)P(E3) ] = P(A, ]E,)P(A 2 [E2) = P(A, [E)P(A 2 [ E) (3.32) 

So clans remain independent after conditioning on extinction. Moreover, con- 
ditional probabilities of events pertaining to a certain clan can be calculated 
by conditioning on extinction of that clan only. 

To see what happens to events pertaining to groups of individuals that stand 
in an ancestral relation to each other let A, be an event pertaining to some 
group of clans, A2 an event pertaining to a different group of clans but also to 
some of the common ancestors of both groups (in the definition of A~ allowance 
should be  made for the births of the initiators of the first group of clans), and 
E,, E2, E3 again the events of extinction of the different groups of clans. Since 
individuals are independent of what befell their ancestors (except for the event 
of their births) (3.32) applies without change. 

To see what the conditional branching process looks like one can restrict 
the attention to one individual at a time, and condition the different events 
which may occur to this individual on the eventual extinction of its clan. For 
the general formulation of section 3.2 one finds in this way that immediately 
after a birth the probability of extinction of that clan has become q times that 
probability immediately before that birth, so the infectivity function after con- 
ditioning on extinction, ~, becomes 

= qa (3.33) 

If the newly born individual is of type s E S the probability that the clan 
started by this new infective dies out is exp[xoo t ( s ) (q  - 1)] whereas it was 
q before s was determined, so, if ~ denotes the probability measure on S of 
the conditional process, 

~{ds} = q-'  #{ds} exp[xoO~(S)( q - 1)] (3.34) 

For the generating function g of the offspring distribution of the generation 
process after conditioning one finds from (3.34) or by conditioning direct in 
the generation process 

~(~) = q-' g(qg) (3.35) 

SPECIAL CASES: In case (la) conditioning on extinction leads to a pro- 
tess with age dependent infection and recovery or death rates xo/~ and 
given by 

gl = qa ,  ~0r) = q-10r)#(T) (3.36) 

where q(~-) is the probability that a process starting with one individual of age 
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T will become extinct, q(z) can be calculated from 

q(~) = g(T; q) (3.37) 

g('r; ~) d~f exp[--Xo/~('r)(g -- 1) + O(~r)] × 

o ~ ~(T + t) exp[xo/3('r + t)(~ - 1) - O(-r + t)]dt 

g(T; 5) is the generating function of the number of future offspring of an in- 
dividual of age T. In case (lb) conditioning on extinction only changes the rate 
at which infections occur to/~ = q a. For the generation process onefinds 

[g(~) = exp [yx0q(~ - 1)] (3.38) 

so that 

,SN(oo)l E = varN(oo)l E = vxoq (3.39) 

In case (2), after conditioning on extinction, the rates at which infections, 
state transitions, and deaths or recoveries occur become respectively 

qic,~ajVj,  q, boV j q ~ ,  - ~ b i j V j q j t  (3.40) 
j i 

and, in obvious notation, 

4 = qic, q -x ~j = qaj, (3.41) 

bij = qiboq71 i S  j, 

b~= b~.+Z(1 - q,)boqj -~ 
I' 

also be derived using the general representation for conditional (This can 
Markov processes given by Waugh (1958).) Specializing to case (2a) leads to 
the well known result (Waugh, 1958) that the birth and death rates become 
interchanged, and that 

[g(~) = [1 + (¥x0)-' (1 - ~)]-' (3.42) 

so that 

8_N(oo)IE = (l:Xo)-', var N(oo)lE = (yx0)- ' [ (ex0)- '  + 1] (3.43) 

3.7. Thermal size of  a minor outbreak 
From the theory of Galton-Watson processes it follows (see e.g. Feller, 1968, 
or Jagers, 1975) that the generating function k of  the distribution of___W(oo) 
satisfies 

k(~) = ~ g(k(~)) (3.44) 

The probabilities can be obtained from this expression by Lagrange-expansion. 
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This leads to 

P{W0o) = W} = d W - '  (g(0))w/(W!) (3.45) 
a~ 

(Otter, 1949; a different derivation is given by Jagers, 1975). 
If }'xo > 1, k(1) = q < 1, so that the distribution of  _W(ov) is defective, the 

defect corresponding to the probability of  a major outbreak. Ifyx0 < 1 Taylor- 
expanding both sides of (3.44) around g = 1 leads to 

8 _W(oo) = (1 - yXo)-' (3.46) 

a formula already encountered in section 3.3, and 

var W(oo) = var N(oo)/(1 -}'Xo)3 (3.47) 

If ~'x0 > 1 restraining the attention to minor outbreaks only leads to 1~(~) = 
q-lk(~) = g~(f:(g)). However,  in general the moments of  the offspring distribu- 
tion of the conditional and the unconditional process bear no simple relation 
to each other. So results comparable to (3.46) and (3.47) are not available in 
general. 

SPECIAL CASES: If the offspring distribution is Poisson as in case (lb) 
___W(oo) follows the so-called Borel-Tanner distribution 

P{_W(~) = W} = e x p [ - ~ x o W ]  (]2xoW)W-'/(W!) (3.48) 

If the offspring distribution is geometric as in cases (2a, b) one finds 

P{_W(oo) = W} = [ ( 2 W -  2)!(Vxo)W-']/[W!(W- 1)!(1 + rXo) 2w-'] 

(3.49) 

For some properties of these distributions see Haight & Breuer (1960), Haight 
(1961) and also Daniels (1961). 

3.8. The behaviour of the branching process in case of a major outbreak 
If yx0 > 1 with probability p a major outbreak occurs. In that case in the 
branching process models with probability one not only__Wbut also the numbers 
of fresh infections per unit of time will grow beyond all bounds. If the process 
had started with such large numbers __W could have been approximated by a 
deterministic function W, satisfying (2.46). Since solutions to (2.46)asymptoti- 
cally grow exponentially one expects that _Wfor large t also looks like a simple 
exponential function. More formally, one expects that 

l ime -~' __W(t) de~ __~ (3.50) 
l ~ o o  

exists for almost all major outbreaks, and that 

P { ~  > 0} = 1 (3.51) 
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A proof of (3.50) and (3.51) under some slight additional assumptions on the 
reproduction law can be found in Jagers (1975). Generalizing fromthe historical 
developments for special classes of branching processes, one can expect that 
(3.50) will eventually be proved to hold for almost all outbreaks, without re- 
course to additional conditions. 

Doney (1972b), who considers convergence in distribution for the number of 
individuals alive in a branching process after the same norming, gives a suffi- 
cient condition for (3.51) which is also necessary (Kaplan, 1975). He also gives 
a somewhat simpler equivalent condition applying to age dependent birth 
and death processes. His reasoning immediately generalizes to all cases where 
the reproduction law is a doubly stochastic Poisson process. The resulting 
condition reads 

8 _& In [.~ < oo, _& dcf=,0f~° e -°` a(t, _s)dt (3.52) 

If (3.52) does not hold then 

P{___~ = 0} = 1 (3.53) 

(Kaplan, 1975). More simple sufficient conditions can be derived from (3.52) 
by the following chain of implications 

v a r y <  0 0 0  v ~ r ~ <  oo ;. eT," ~ln [~] < oo (3.54) 

These conditions are equivalent to the conditions Jagers (1975)uses in proving 
(3.50) and (3.51). 

SPECIAL CASES: In the special cases one can also meaningfully consider 
the total number of ill individuals and the age or state of illness distribution. 
In case (1) let __V0r; t) denote the number of ill individuals with age of illness 
< T, then, for almost all outbreaks, 

lim e-#t__V(T; t) = __.WP'(~r), ("(T) da (0/O)f" p(t)at (3.55) 
t~QO • i 0 

where 0 and P were introduced in section 2.6. Jagers (1975) proves (3.55) 
under the same conditions as (3.50). It is to be expected that eventually (3.52) 
will turn out to be necessary and sufficient for (3.55). 

In case (2) always var _~ < oo. Let __V~(t) denote the number of individuals in 
state of illness i and let V = _V;,..., _Vm)', From the theory of multitype con- 
tinuous time Markovian branching processes if follows that for almost all 
outbreaks 

lim,.® e -°' V ( t )  = ~ o ( o l  - B)  -1 c (3.56) 

(Compare section 2.6 for the source of the vector (ol  - B)-' c.) 
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3.9. More general starting infections 
In the general case the starting infectivity will be given in the form of a stochas- 
tic process Z. Given a specific realisation Z of Z,  first generation infections 
occur according to a Poisson process with intensity xoZ. Each of these new 
infections starts an independent branching process of the kind considered in 
the previous sections. Using this representation the results of those sections 
are easily generalized. Only some of the results will be given here. 

Since 

t t 

,8__W(t) = Xo[fo ,~ Z(lr)dr + fo 8 W__(t- "r)g (~')dr] (3.57) 

the results of section 2.6 immediately apply to 8__W. 
Let 

~_ d°f fo~z__(t)dt (3.58) 

and let K be the (possibly defective) distribution function of ~. The generating 
function of __W(oo) is given by 

,8 exp[x0~(k(~) - 1)] = f0 = exp[x0~(k(J) - 1)] dK(~) (3.59) 

The probability of a minor outbreak can be calculated by setting ~ --- 1, that is, 
replacing k(~) by q. 

Conditioning on extinction is somewhat more complicated, since also the 
probability law of the Z-process changes. One can find the new infectivity 
process by writing Z(t) as Z(_(; t) and repeating the reasoning leading to/t 
and ~ in section 3.6. 

Finally if P{~ < oo} = 1 there will be a last first generation infection. If 
(3.50) holds fo~-all clans starting from first generation infections, it will also 
hold for the sum of a finite number of translates of such processes, and 

pt'_w = o) = PLW(oo) < oo/ (3.60) 

A proof of this result under more general conditions on _Z can be found in 
Jagers (1975). 

4. PIECING THE APPROXIMATIONS TOGETHER 

In section 3 a branching process was introduced as an approximation to the 
epidemic process when X0 is large but Z is relatively small. It was found that 
this branching process has two options, called minor and major outbreaks res- 
pectively. This suggested that in the original process either the number of 
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individuals which become infected remains relatively small (a minor outbreak) 
or that it becomes of the same order of magnitude as X0 (a major outbreak). 
If only a minor outbreak occurs x = X/~z never becomes appreciably smaller 
then xo = Xo/a, so one expects the branching process approximation to work 
well for all t. A more formal version of this statement is 

CONJECTURE (d): Let __W(t) denote the number of infections that have 
occurred up to t in the epidemic model described in section 1.1, started by one 
freshly infected individual at t = 0. Le ta ,  )to = Xo ~z-, ~ .  If one confines the 
attention to outbreaks such that __W(oo) < d(a0, where d(a) -, oo but d(~z)/~z--, O, 
the process ___W(t), t 6 [0, oo] converges to the process described in section 
3.6. The probability of the conditioning event {___W(oo) < d(a)} converges to q 
defined in section 3.5. 

There is an immediate generalization for more general starting infections. A 
proof that conjecture (d) indeed holds true can be found in appendix 6. 

If a major outbreak occurs the branching process approximation breaks 
down for large t. However, if Xo is very large, the region of the time axis where 
it performs well will be large too, and _.W(t) may already be quite well approxi- 
mated by ~ e ~' before the branching process approximation really breaks down. 
By the time that the effect of depletion of the susceptible population becomes 
discernable, the number of infectives will have become sufficiently large for the 
deterministic approximation to take over. Since the arguments of section 2.7 
apply, with ff~ replaced by 17V/a, the course of x = X/a will look like a (random) 
translate of ~. Repeating the reasoning leading to conjecture (c) one arrives at 

CONJECTURE (e): Consider the epidemic model described in section 1.1, 
started by one freshly infected individual at t = 0. Let againtz, Xo = Xoa--, oo. 
If one confines the attention to outbreaks in which ___W(~) = Xo - X(oo) > d(~z), 
where d(a) -, oo but d(tz)/a ~ O, then _x(t + ln[a]) =tz-'_X(t + ln[tz])con- 
verges to_~(t + In [_~]) where~Whas the same distribution as fVin section 3.8, 
and ~ has been defined in section 2.7. The probability of the conditioning event 
[_W(oo) > d(~z)~ converges to p defined in section 3.5. 

As usual there is a generalization to other starting infections. 
These conjectures form a biologist's (i.e. the writer's) answers to the ques- 

tions raised in section 0.1. These answers have the form of a request to the 
mathematical community, however. 

5. DISCUSSION 

Recapitulating the main ideas of the previous section, one can say that, if an 
epidemic in a large population starts with only a few infectives or a small extra- 
neous infection, there are essentially two kinds of outbreaks: small outbreaks, 
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occurring with probability q, in which the number of infectives behaves like a 
branching process, and large outbreaks occurring with probability p = 1 - q, 
which all have essentially the same form, differring only by a random transla- 
tion. The properties of the disease during those two kinds of outbreaks seem 
different. If the density of susceptibles is such that major outbreaks can occur, 
it is only during these that the disease shows its real potential. During a minor 
outbreak it poses for its little brother. 

The properties of the process X, which led to the above-mentioned results 
are: The random variable ___W(t) = X0 - X(t) represents a number of particles; 
at low densities those particles reproduce and die independently; at high densi- 
ties they become gradually more dependent. This situation is by no means 
unique for epidemic models. It can be found La. in models for chemical chain 
reactions, population dynamics and population genetics. So, in all those cases 
one may expect analogous results. However, in the epidemic model described 
here the dependence takes a particularly simple form:depletion of susceptibles. 
This makes this model a nice touchstone as well as a whetstone for the sharpen- 
ing of mathematical tools. 

I do not claim that the ideas presented here are new. They are more or less 
implicitly present in many papers about such processes. I do hope, however, 
that I have given a stimulus towards a firmer foundation and a wider application 
of those ideas. 
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APPENDICES 

A.L More about special case ( lb) 
In this special case equation (2.8) can be solved explicitly, if the extra as- 
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sumption is made that 

z(t)  = 0 t > b (a.1) 

which is automatically fulfilled in the autonomous case, Y3 = 0. The solution 
is constructed using a device introduced by Wilson (1972) for a slightly different 
kind of epidemic (see also Lauwerier, 1973). 

If t > b the integrated form of (2.8), equation (2.19), becomes 

[.st 1 x( t )  = Xo exp x(-c)dr - abxo - ~ t > b (a.2) 
- b  

This equation is considerably simplified by the introduction of 
f'- -.i 

T(t)  d~ fexPk-a fo tX(w)d-rJ ,  x( t )=-7" ( t ) / ( aT( t ) )  (a.3) 

which transforms (a.2) into 

l"(t) = - c  T ( t -  b) t > b (a.4) 

clef 
c = aXo exp [ -  (abxo + ~)] 

To calculate T for 0 < t < b it is easier to proceed immediately from (2.8), 
which for t < b can be written as 

5c = x [ a ( x -  x o ) -  z] t < b (a.5) 

Substitution of 

± = - 7"/(aT) + T2/(aTO, ax  2 - (aXo + z ) x  = P / ( a T  2) + (aXo + z) 7"/(aT) 
(a.6) 

leads to 

7" = - (aXo + z ) T  0 < t < b (a.7) 

which is easily solved. Starting from the known-values of T on [0, b] it is 
possible to calculate Tstep by step on [ib,(i  + 1)b], i =  2, . . . .  

If one is especially interested in asymptotics Laplace transform methods are 
preferable to the method of steps. So define 

oo 

~'(s) = f0 e-s tT( t )d t  (a.8) 

Laplace transforming both sides of (a.4) leads to 

s[7"(s) - To(s)] - e -~ T(b) = - c e -bs i"(s) (a.9) 

To(S ) clef f b  e -st T( t )dt  
~ 0  
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so that 

fr(s) = se~,~'o(S) + r ( b )  (a.10) 
seas+ c 

By the inversion theorem T(t )  is equal to the sum of the residues of ~'(s)e': at 
the poles of  ~r(s). The numerator of (a.10) has no poles, so the poles of  ~r(s) 
coincide with the roots of 

s e b" + c = 0 (a . l l )  

This equation has.two roots which are real and negative, - A s < - A,. All other 
roots are complex with real parts smaller than -As  (Wilson, 1972 ;Lauwerier, 
1973). Moreover, all roots are simple. So (Bellman & Cooke, 1963) 

T( t )  = o~ exp[ -A~t ]  + ~2 expl '-A2t] + ~ o ~ i e x p [ - A i t ]  t > b 
i--3 

~, ~°f ~,ET(b)- C~o(-~,)]/[c(1 - b;t,)] (a.12) 

and 

x ( t )  = 

A, + (a2/a,)A 2 expl--(A 2 - A,)t] + ~ (a~Jt~,)A, exp [ - (A , -  A,)t-I 
i=3 

so that 

aEl + (a~:/at) exp[ - (ct  2 - A,)t] + ~ (~,/c~,) expE-O,- ~t,)t] 
i=3 

t > 2b (a.13) 

xo~ = A, l a  (a.14) 
Inserting (a.14) in (a . l l )  leads to (2.21) again. Moreover, it can be seen from 
(a.13) that for large t 

x ( t )  - x ~  (aq/oq)(.~ 2 - A1) e x p [ - ( A  2 - 2~)t] (a.15) 

When ~ ~ 0, ff axo > 1, all Al go to well-defined, different limits. In particular 

A 1 -~ ayes, 22 - ,  a x  o (a.17) 

To see what happens to the ~i first consider the special initial condition 

z ( t )  = e 0 < t < b (a.18) 

Then 

a~; = e/E(l - b ~ ) ( a x o  + e - A~)] (a.19) 
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so that if e $ 0 

a,- ~ 0 i 4 :2  (a.20) 

Inserting this in (a.12), and observing that, for allO < t < b, x ( t )~  xo, sothat  
T(t)  ~ exp [ -  aXo t] 

c~ 2 ~ 1 (a.21) 

So, for small e and large t, one arrives at the approximate expressions 

x= + ( a 2 / a , ) ( A 2 1 a ) e x p [ - ( A 2 -  Al)t] 
x( t )  ~ (a.22) 

1 + ( c ~ / c ~ , ) e x p [ - ( a ~ -  a , ) t ]  

and 

(a.23) 
- (A2 la)]  / 

Finally, combining (a.17), (a.21) and (a.22)one gets 

x ( t  + t') ~ ~(t) = Yco~(~ - Xo) + Xo(YC~ - 5 ) e x p [ - a ( X o  - ~o)t] (a.24) 
(~[ - x0) + ( :~ - ~ ) e x p [ - a ( x o -  :~) t ]  

(a.24) is in fact a solution of (2.66) as can be seen by substitution. For general 
initial conditions the argument is essentially the same, the only real difficulty 
being the proof that c~i/c h,  i ~ 2, remains bounded. 

An interesting aspect of (a.24) is brought out by writing it in the form 

~,(t) = X o -  ~ ( t ) =  ~offo~ exp[a ff~ot] 
w~ + ~:o exp[a ff~t] (a.25) 

~o do~ ~:(0) = Xo -- 5, ~ dof Xo -- ~ 

This is the logistic curve, which is known to result in the case of the so-called 
simple epidemic, which corresponds to the present model with b = oo. The only 
difference between the simple epidemic and (a.25)is that in the simple epidemic 
~® = x0, whereas, if b < oo, ~ < x0. So a finite b seemingly reduces the 
susceptible population. It can be proved that the correspondence between limit 
epidemics :~ and mean infectivity functions g is one to one. So the epidemics 
of special case (lb) are the only ones leading to the logistic curve. 

A.2. More about special case ( 2b) 
In special case (2b) the differential equations (2.12) become, assuming that 
Y3 = O, 

dx  
= - axv2 (a.26a) 
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dvl dr2 
= axv  2 - btvt ,  - -~  = b l v ~ -  b2v 2 (a.26b) 

Equation (a.26) has some special properties which make it possible for this case 
to prove conjecture (a) in an elementary way. The trick is to prove convergence 
of the orbits to a limiting orbit, which connects xo with ~ .  The proof  is facili- 
tated by the introduction of a new coordinate system, with v~ replaced by 
V = v~ + v2. In this new coordinate system (a.26b) becomes 

d~ _ b2 v2 "-}- axv2 ,  dv 2 = ~ = b~-O- (b~ + b2)v2 (a.26c) 

To calculate the orbits divide the left and right hand sides of (a.26c) by the 
left and right hand side of  (a.26a) respectively, to arrive at 

a~ av~ 
- ~  = b2 / (ax )  - 1 d x  = - b , V / ( a x v ~ )  + (b~ + b2) / (ax)  (a.27) 

The first of these two equations can be solved explicitly, leading to 

= (b2 /a ) ln~x /Xo]  - x + n (a.28) 

n ~ x(O) + v(O) 

which is nothing more than a reiteration of (2.34) 
As a next step some properties of the solutions of (a.27)~ which have also 

some interest of their own, will be stated in the form of two lemma's. 

LEMMA (1): Consider two orbits with~'(xo) = P"(xo) then 

Iv '~(Xo)-  v;'(Xo)l < E =~ ~ < ~ ] v ; ( x ) -  ¢2'(x)[ < e (a.29) 

Proof: First observe that P' = ~'.  Let z~ ~ ¢~ - 1/2' then 

d~ d(¢~ - ¢,') b,~ {1 _ 7.'~ - b,~ 
dlnEx] = aln[x]  = - -~ - -~  " /  = v ; - - - - ~ a  (a.30) 

So [a [ decreases in the direction of - x .  

LEMMA (2): For all orbits 

i/(Xo) = ~(xo)  > V'(Xo)= v;'(Xo) =~ ~ ' ~  ¢2(x) > ~'(x) (a.31) 

Proof: From (a.28) it can be seen that 

v'(Xo) >-v"(Xo) ~ ~ V'(x) > v (x)=:, 

~ [ ( b , v ' ) / ( a v ~ ) -  (b, + b2)/a] ~ . ~ ( b , V ' ) / ( a v 2 ) -  (b, + b,.)/a] (a.32) 
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Since it is also assumed that ¢2(xo) > ¢~(x0), (a.32)reduces to the application 
of a well known differential inequality to -dv2/dln Ix]. 

Proof of conjecture (a): It is easy to see from fig. 2 that, if g = u(xo) = 
y~x0) ~. 0, v-(x) = ~,-~ u (x) approaches a well defined limit which is not equal to 
zero. By lemma (2), v2(xo) = V(xo) ~ 0 implies that v2(x ) approaches a limit too 
for all x < xo. Finally, lemma (1) shows that i f0  <__ v2(x0) <_- v-(xo) ~ 0 the same 
limit is reached by v 2 (x). To see that the limits for different values of x lie on 
one orbit, consider v da (v, v2) for a special value of x, say x~. (x, v(x)) lies 
on an orbit passing through (xt, v(x~)). When v(x~ ) approaches a limiting value, 
the continuous dependence of the solutions of the differential equation (a.27) 
on this 'initial' value implies that (x, v(x)) approaches a limit on the same 
orbit as the limit of (x~, v(x~)). 

A.3. Approximations for P~o and ~o 
By wr i t ing /~  as a power series in 

def 
= ~x0 - 1 (a.33) 

inserting this power series into 

(1 + , ) /~  = - ln [1  - / ~  =/~® + / ~ / 2  + ff~/3 . . .  (a.34) 

and comparing powers of E, one obtains 

/ ~  = 0 or/~o = 2~ - (8/3)E 2 + (28/9)E 3 - (464/135)e 4 + o(E') . . .  
(a.35) 

where the first solution has to be chosen if e < 0 and the second one if e > 0. 
Approximation (a.35) can be combined with (2.28) into an approximation 

for P~o. (a.35) can also be used to elucidate the manner in which p® converges 
t o / ~  for ~ ~ 0, near Fx0 = 1. Inser t ing/~ ~ 2E into (2.29) for Fx0 > I and using 
(2.30) for 1,Xo < 1 shows that 

+ g/l l g, << x (a.36) 

If yxo = 1 one can try to expand Poo in some broken power of ~. In this way 
one arrives at 

p= = ~ -  (2/3)~ + o(~) (a.37) 

Landau & Rapoport (1953) give a formula for p= and/$~, which is parti- 
cularly useful for large exo (see also Landau, 1952). It reads 

p~ = 1 - exp[-(/;x0 + g)] ~ (iVXo exp[-(Vx0 + £)3)'-'/i! (a.38) 
i=1 

The series converges for all g, yXo > 0. For very large or very small values of 
l'Xo it can be truncated after the first few terms. Truncating after the first term 
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gives 

p ~ =  l - e x p [ - ( V x  0 + ~ ) ]  Vxo<< 1 or Vxo> 1 (a.39) 

A.4. An explicit expression for the limit epidemic 
To arrive at an expression for ~, assume that it can be written in the form 

fc(t) = f(e~O = ~ a, e '~' (a.40) 
i=0 

with oro = Xo. Insertion of this expression into (2.66) leads to 

a £ ior/e'*' = £ orie'*'a £ i  Aior;e" (a.41) 
i=0 i=0 i=0 

= £eiu t£ jd~jor jor i_ j  
i=0 j=0  

Ai d:_~_~ L (ia) 

L being defined by (2.50) and cr by (2.51). So for i > 1 the or's have to satisfy 

i - I  
or, = [i(1 - A,-xo)]-' ~ j Aj aj or,_j (a.42) 

j = l  

For i = 1 one only finds or! = A~ Xo oq = ~ ,  so or~ can be chosen arbitrarily, the 
additional assumption that ~ is decreasing for t near -oo  indicating that it 
should be negative. Direct substitution in (a.42) shows that 

or, = ori/3 i (a.43) 

where/3, satisfies 

i - I  
/3, = [i(1 - A,x0)]-' ~jXj#X#,_ j (a.44) 

/ = l  

So chosing a different or~ corresponds to translating the solution. 
From 0.44) the #'s can be determined recursively. Moreover for i > 1 

0 < /3, < /~'-' (a.45) 

for some constant/~. The left inequality can be seen immediately from (a.44). 
For the right inequality one needs the fact that for i > 1 

0 < A, = L(ia) < A 2 < xo' (a.46) 

and that, 

0 < A; < w i -l (a.47) 
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for some constant co. This last inequality follows from the fact that gis bounded 
near t = 0. (It can be found from any standard text about Laplace transforms.) 
Using these inequalities one can write 

i-1 i-1 
]3i < [(i - 1)(1 - A2Xo)]-' ~ , j A j ~ : ~ , _ :  < # ( i  - 1) -1 ~/lfl3,_: (a.48) 

j=l  j=l  

def 
# = co/(1 - X2Xo) 

By induction one now proves that/3i < 0;, where 0i is the solution of 

i - I  
0~ = # ( i -  1) -1 ~ 0j0~_j 01 = 1 (a.49) 

j=l  

But from this recurrence relation it follows that 0~ = #~-i. 
Inequality (a.45) can be used to estimate the remainder term if one truncates 

(a.40) after a finite number of terms. Moreover it proves that the series in (a.40) 
converges for e ~' small enough. 

Using (a.40) and (a.43) in (2.70) gives 

X o + f~ ( - ) i ~ i k i =  ~ ( a . 5 0 )  
i=l 

so that 

k = (Xo - ~) + /32(x0 - ~)2 + (2/3] - /33)(x o - ~)3 + 0((xo - ~)') (a.51) 

The application of (a.40) to special cases usually leads to cumbersome 
expressions for the/3's for larger values of i. However, (a.40) may be used to 
reduce the problem of numerically calculating ~ to a problem on a finite time 
interval. In special case (lb) the expressions become exceedingly simple. For 
this case 

L ( s )  = a(1 - e -bs) (a.52) 

comparison with (2.22) leads to the observation that 

cr = a Xo/~ (a.53) 

Furthermore 

l - P '~  
A, = L ( i a )  = - -  

iXo ~oo (a.54) 

Inserting these formulae in (a.44) gives 

~, = (Xo~o)  ' - ~ - -  (Xo - Yc~o)'-' (a.55) 

as can be verified by substitution. To simplify the formulae choose al = ~o~ - x0. 
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Then (a.40) becomes 

X 0 -b .~Qoe ~t 
~(t) = (a.56) 

1 + e °t 

By substituting (a.56) into (2.66) one can see that it also applies outside the 
domain of convergence of  (a.40). This observation leads to 

CONJECTURE (f): The limit epidemic can be written as ~(t) =f (e° ' )wi th  
fanaly t ic  on R+. 

A.5. Inequalities for the probability of a minor outbreak 
In general it will not be possible to find an explicit expression for the probability 
p of  a major outbreak. However,  some inequalities can easily be derived. Since 
exp Ex0 or(g - 1)] is a convex function of or, the application of Jensen's inequality 
(see e.g. Feller, 1971) to (3.9) leads to 

g(~) > expE~xo(~ - 1)] (a.57) 

and this in turn implies that 

p =< (a.58) 

Other inequalities can be derived if one has a better knowledge of G. To 
this end define 

GI <. G2 ,~a;. a_iG~-a)(G~(a)) increasing in or (a.59) 

This property of or-IG~-~)G~(or) is called star-shaped Or supralinear. 
< is a partial order of  equivalence classes of  distributions differing only by 
a scale factor (see e.g. Barlow and Proschran, 1975). Using lemma 4.6.4 o f  
Barlow and Proschran (1975) one finds (in obvious notation) 

[¥1 = F 2 / ~ G t  ,< Gz] =:" gl < g2 =:~ Pt > P2 (a.60) 

In particular if G has a nondecreasing hazard rate, G > 1 - e x p [ - . ] ,  so 
tha tp  > 1 - (Fxo) -~. * 

def 
An expansion of g around ~ = 1 for • Fx0 - 1 small leads to 

p = 2e/(1 + F -2 var_a) + o(e) (a.61) 

A.6. Proof of the truth of conjecture ( d) 
In this appendix the additional assumption is made that there is only one type 
of susceptible (compare section 1.1 assumption (6)). One can construct the 
probability space for such an epidemic, by starting from that for the branching 
process described in section 3.2. To this end consider any sample function of 
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this branching process. When the first birth occurs one decides randomly with 
probabilities 1 " 1/Xo and 1/Xo whether this individual will be retained or will 
be turned into a 'ghost' together with all its descendants. For the next non- 
ghost birth one makes the same random decision but now with probabilities 
1 - 2/Xo and 2/)(o resp. etc. If one restricts the attention to the non-ghosts 
one has a sample function of the epidemic. 

If Who(t) denotes the total number of births up to t in the branching process 
and We(t) the numbers infected up to t in the epidemic, then __We(0 --< __W~o(t). 
So 

P{We(t) < W} > P{Wbo(O < W} (a.62) 

By turning still more individuals and their decendants into ghosts, in such a way 
that eventually each new non-ghost birth is turned into a ghost with pro- 
bability n/X o and from the n-th non-ghost birth onwards every new birth is 
turned into a ghost, one can also construct a set of random functions _W.(t) 
such that W,(t) < W,(t). As long as ___W,(t) < n the resulting process behaves 
exactly as a branching process analogous to that in section 3.2 but with 
a, = (1 - n/Xo)a. If we denote the number of births of such a branching 
process as Wb,(t) then 

P{We(t) < W} < P{Wb,(t ) < W} for all W <_- n (a.63) 

Now consider the set of sample functions of the original branching process 
such that _W~o(t) < m. Then for all t < 

P({%~=~Wbo0r) = We(T)= Wb,0r)}i{_W,o(t)< m})> ( 1 -  ~-o)" (a.64) 

Since Wbo(t ) < ~ for all t < oo (Jagers, 1975; theorem 6.2.2.) the epidemic 
converges to the branching process on every finite time interval for )to = 
xo ~--, oo. If we confine the attention to the subset of sample functions such 
that ___Woo(oo) < ~ ,  we even have convergence on the whole time axis. 

The conditioning event in conjecture (d) was {We(~) < xod(a)}. So we 
still have to prove that for a~ -. oo 

P{_W,(oo) < xod(ct) and Wbo(OO) = oo} -. 0 (a.65) 

To show this set 

P{___We(oo) < xod(a) and _Wbo(~)= ~} = 

P{W~(oo) < xod(a~)} - P{W,(oo) < xod(a) and __Wbo(OO) < oo} < 

P{___W,(oo) < xod(a~)} - P{W,(oo) < xod(a) and Wbo(oo)< xod(a0} = 

P{__W,(oo) < xod(a)} - PlWbo(oo) < xod(a)} < 
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P{__Wb,(oo) < xod(~)} - P{__Wbo(oo) < xod(~)} < 
P{__Wbn(oo) < oo} - P{_Wbo(Oo) < xod(~)) (a.66) 

clef 
where we set n = xod(~ ). But if we set q~ P {_Wbn(oo ) < oo}, we have (com- 
pare (3.21) and (3.9)) 

q~ = g~(q~) (a.67) 

g~(.O = 8exp Ix0 (1 - ~--0) _~ (~ - 1)1 (a.67) 

From the implicit function theorem it follows that q~ ~ q = P{_Wbo (oo) < oo} 
for ~ ~ oo. But the same applies to P{___W~(oo) < xod(a)l. So (a.65) holds true. 
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