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Abstract. The aim of this paper is to give a wide introduction to approximation concepts in the 
theory of stochastic differential equations. The paper is principally concerned with Wong-Zakai 
approximations. Our aim is to fill a gap in the literature caused by the complete lack of monographs 
on such approximation methods for stochastic differential equations; this will be the objective 
of the author's forthcoming book. First, we briefly review the currently-known approximation 
results for finite- and infinite-dimensional equations. Then the author's results are preceded by 
the introduction of two new forms of correction terms in infinite dimensions appearing in the 
Wong-Zakai approximations. Finally, these results are divided into four parts: for stochastic delay 
equations, for semilinear and nonlinear stochastic equations in abstract spaces, and for the Navier- 
Stokes equations. We emphasize in this paper results rather than proofs. Some applications are 
indicated. 
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1. Introduction 

We survey a part of the approximation theory of stochastic differential equations, 
namely Wong-Zakai approximation theorems. We also wish to familiarize the 
reader with other approximation problems for stochastic differential equations. 
We try to emphasize the global treatment of these problems within the framework 
of general approximation theory (see Section 4). 

The problem of approximation of a Wiener process by its piecewise linear 
counterpart has arisen from Wong and Zakai's work [123], which proves to be of 
great significance to many subjects concerning the limit behaviour of stochastic 
differential equations. The main characteristic property of these theorems is the 
so-called correction term in the limit equation. 

The paper is organized as follows. Later in this section we give a review of 
approximations of different types other than the Wong-Zakai approximations for 
stochastic differential equations which are generalizations of the deterministic 
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and numerical approaches to approximations of differential equations. We also 
indicate the so-called UT approximations. For methodological reasons, we give a 
table of systematic treatment of the results in the Wong-Zakai approximations. 

Further, we present only the Wong-Zakai approximations. There are several 
results described in Section 2 for the finite-dimensional case. Section 3 discuss- 
es these problems for linear stochastic differential equations in infinite dimen- 
sions. 

The problem of constructing two new forms of the correction term is discussed 
in Section 4. They were introduced by the author in [112]-[116]. This was nec- 
essary to enable us to formulate and prove the Wong-Zakai type approximation 
theorems for stochastic delay equations (the first correction term) as well as for 
semilinear equations, nonlinear stochastic evolution equations and Navier-Stokes 
equations (the second correction term); in the latter three cases, the disturbances 
are Hilbert space-valued Wiener processes (Section 5). The idea that the author 
followed in these constructions is presented in detail and a discussion and com- 
parison between these correction terms and with their finite-dimensional form 
from previous sections is also included. 

We have to stress that three quite different methods are used to prove the 
Wong-Zakai type theorems of Section 5: one for stochastic delay equations, 
another for semilinear equations, and still another for both nonlinear and Navier- 
Stokes equations. 

We also discuss (Section 6) some applications of approximation theorems 
to other mathematical aspects connected with the theory of stochastic differen- 
tial equations as well as to engineering and physical sciences; the Wong-Zakai 
approximation methods are of wide practical significance (when the white noise 
is approximated by the coloured noise). 

Didactic aims were the guiding principle during writing this paper, so as to 
present the approximation theory of stochastic differential equations not only to 
researchers of a wide spectrum in the field of differential equations but also for 
postgraduate students. Therefore, we grade difficulties, emphasize the method- 
ology, and give a systematic table of results. We refer to the bibliography for 
proofs. The stages of generalization of results are strictly isolated. 

What is new in the approximation theory of deterministic differential equations 
versus approximation of stochastic differential equations as well as what is new 
in the Wong-Zakai approximations of stochastic differential equations versus 
other aspects of the theory of these equations? Why are approximation theorems 
such a difficult part of the theory of stochastic differential equations? The author 
would like to answer these and other questions in a forthcoming book. 

As already mentioned, a correction term appears in the Wong-Zakai type 
approximation theorems. However, some types of approximation theorems for 
stochastic differential equations are known that do not give any such term. These 
are, e.g., numerical schemes. 
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Consider the It6 stochastic equation of the form 

/o /o x(t) = x(O) + m ( x ( s ) , s ) d s  + a(x(s ) , s )dw(s) ,  t >t O, (1.1) 

where the initial value x(0) may be a random variable. The second integral in 
(1.1) is the It6 stochastic integral with respect to the Wiener process w(t), t >>. O. 
This equation may be written in the differential form 

dx(t) = m (x ( t ) , t ) d t  + a(x( t ) , t )dw( t ) ,  x(O) = :co. (1.2) 

Effective analytical solution of stochastic differential equations is only possible 
in some simple cases. So there exists an obvious interest to develop numerical 
methods for such equations. There are now a number of papers which deal with 
these methods to relate solutions to approximate exact solutions. 

A thorough description of numerical problems in this area can be found in 
the books of Kloeden and Platen [48] and Sobczyk [97]. 

The approximation methods have followed five directions (see Sobczyk [97] 
and Talay [102]): mean-square approximation (Clark and Cameron [21], Mil- 
shtein [75] and Platen [88]), pathwise approximation (Talay [103]), approxima- 
tion of expectations of the solutions (Milshtein [75], Talay [ 102]), numerical com- 
putation of the Lyapunov exponents (Talay [101]) and asymptotically efficient 
schemes for minimization of the normalized quadratic mean error (Clark [20] 
and Newton [79]). 

Now we survey various time discrete numerical methods which simulate the 
sample paths and functionals of the It5 processes that are solutions to (1.1). 

The first method is the one of successive approximations (see Kawabata [46] 
and Tudor [108]). It has been used before for proving the existence of the solu- 
tions and can be used for numerical calculations. The recursive formula is 

x(~)(t) = x(O) + m(x(n- l ) ( s ) , s )ds  + 

+ fot a(x(n-1)(s), s)dw(s) ,  (1.3 n) 

where n = 1 ,2 , . . .  We calculate the first (Riemann-Stieltjes) integral and the 
second (ITS) integral by known discretization algorithms. The methods of succes- 
sive approximations are, however, not popular in practice since we have to keep 
at the disposal all the values of the previous approximations for all s E [to, t]. 

Therefore one-step difference methods are of great interest. 
Let us stop for a moment and consider the types of convergence of approxi- 

mate schemes (compare Kloeden and Platen [48]). 
When we wish to approximate a solution to Equation (1.2) by a time-discretized 

recurrent formula 

x(ti+l) = f (x( t i ) ,  w(s); ti <~ s <<. ti+l), (1.4) 
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then the 'goodness' of the scheme depends on the type of the chosen approxi- 
mation and the required type of convergence. 

We consider a time discretization of the interval [0, T], 

rn = {ti: O , l , . . . , n ;  0 = to < tl  < . . .  < tn = T } ,  

A t i  = ti+l - ti = h, A w i =  w( t i+ i )  - w( t i ) ,  

X (n) (t) -~ ~ ( t ) ,  ~7(ti) = Xi (1.5) 

and the integral counterpart of Equation (1.2) on the interval [ti, ti+,]: 

fti+, f t i + ,  
x ( t i+ l )  = x(t~) + m ( x ( s ) , s ) d s  + # ( x ( s ) , s ) d w ( s ) .  (1.6) 

dti dti 

We are looking for a scheme such that for all t E [0, T], 

E [ x ( t )  - 2 > 0,  as h 

To go further we have to settle that the natural way of classifying numerical 
methods for stochastic differential equations is to compare them with strong and 
weak Taylor approximations. The stochastic Taylor formula allows a function of 
an It6 process, i.e. f ( x ( t ) ) ,  to be expanded about f ( x ( t o ) )  in terms of stochastic 
integrals weighted by coefficients evaluated at x(to).  

The simplest strong Taylor approximation is the Euler approximation 

xi+l = xi  + m ( ~ i ,  t i )h  + cr(~2i, t i ) A w i  for s E [ti, ti+l]. (1.7) 

It was shown by Maruyama [68] that the Euler scheme converges uniformly in 
the mean-square sense to the x( t )  determined by (1.2) as h --+ 0. However, the 
order of approximation of this scheme is too low. 

Therefore we include the next (second) term from the stochastic Taylor for- 
mula to the scheme (1.7). We obtain the Milshtein scheme 

Xi+l = ~2i + [m(2,i , t i )  - la (~2i , t i )a ' ( fc i , t i ) ]h+ 
l t + 2, 

~o = x(O) (1.8) 

for s E [t~, t~+l]. 
The Milshtein scheme can also be obtained as the Euler scheme for the 

Stratonovich version of Equation (1.2) (see Pardoux and Talay [84]). This is one 
of the practical applications of the correction term appearing in the Wong-Zakai 
approximation theorems when transition is made from the It6 to Stratonovich 
integral. 

The rate of convergence is optimal within a large class of approximations 
because the last term in (1.8) contains additional information about the sample 
paths of the Wiener process (see Clark and Cameron [21]). 



WONG-ZAKAI APPROXIMATIONS FOR STOCHASTIC DIFFERENTIAL EQUATIONS 321 

A practical disadvantage of the above Taylor approximations is that the deriva- 
tives of various orders of the drift and diffusion coefficients must be evaluated. 
There are time discrete approximations which avoid the use of derivatives, that 
is, analogs of Runge-Kutta schemes for ordinary differential equations. 

A stochastic counterpart of the two-stage Runge-Kutta method (called the 
Heun method (see Blum [13])) has the form 

= + + + + 

+½[a(2i, ti) + a(~i+,, ti+l)] dwi, (1.9) 

where ?c = 5:~ + m(2i, ti)h + a(2i, ti) dwi. 
McShane [70] has shown that this scheme converges in the mean-square sense 

to the solution of the Stratonovich counterpart of Equation (1.2). Other results 
of the stochastic Runge-Kutta method can be found in the paper of Klauder and 
Peterson [47]. 

All the above procedures have given approximations of the solution in the 
mean-square sense. The numerical schemes which give the pathwise convergence, 
i.e. with probability one, are discussed by Pardoux and Talay in [84]. 

In numerical practice, additional approximation is also necessary. Namely, 
we have to approximate the Wiener process by its suitable simulations, e.g., by 
polygonal approximations. For problems associated with such approximations, 
see papers dealing with the Wong-Zakai approximation theorems. 

Another type of possible approximation of the Wiener process was investigat- 
ed, e.g., in the paper of Gorostiza [30], where the Wiener process approximation 
called the transport process was considered. 

As for other approximation methods, the objective of Janssen's paper [43] 
was to extend the Cauchy-Maruyama approximation method to delay stochas- 
tic differential equations based on seminartingales with spatial parameters. This 
procedure is also applicable to nondelay equations. 

A very important contribution to approximation methods was made by Kush- 
ner: in [55] for ordinary differential equations with wide-band random right- 
hand sides; and in [56] and in [57] together with Dupuis for problems arising in 
stochastic control. In [58], Kushner and Yin consider a class of recursive stochas- 
tic algorithms in which parallel processing methods are used for the Monte-Carlo 
optimization of systems. Weak convergence methods are applied to sequences of 
iterates that converge to the solution of either ordinary or stochastic differential 
equations. 

Pettersson [86] and Stomifiski [95] considered the convergence of a recursive 
projection scheme for a stochastic differential equation reflecting on the bound- 
ary of a convex domain G. Dependening on the shape of the domain G, we 
obtain mean-square or pointwise convergence of different rates. This scheme is 
essentially the Euler method forced to remain in the constraining set G. 

The paper of M. Tudor [111] gives several approximation schemes for two- 
parameter It5 equations, mainly by separation of the diffusion and drift terms. 
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The convergence of the algorithms and the rate of the convergence are considered 
under suitable conditions. 

The papers of Jakubowski, Mrmin and Pagrs [42], Kurtz and Protter [52]- 
[54], Mrmin and Stomifiski [71] give the UT (uniform tightness) condition for a 
sequence {zn}n~N of St'a-adapted semimartingales and introduce an approxima- 
tion of the noise in the stochastic differential equation. A stability result is proved. 
The theorems are of a different kind than the Wong-Zakai theorem. Although a 
noise approximation is considered, no correction term appears in the limit equa- 
tion. This is due to the UT property. The piecewise linear approximations of 
the Wiener process do not satisfy the UT condition, so the correction term does 
appear. On the other hand, the discrete time approximation of the Wiener process 
satisfies the UT condition and the above results can be applied. The UT condition 
is sometimes difficult to verify in practice. An alternative condition was given by 
Kurtz and Protter in [53]. Applications to stochastic differential equations, that 
is, approximation theorems, are also considered in these papers. 

To be more precise (see Kurtz and Protter [52]), for n = 1 , 2 , . . . ,  let ~n  = 
(f~, 37n, (5~t)t~>0, pn) be a filtered probability space, let H n c~dl~g and adapted, 
and let X n be a chdl~g semimartingale. A fundamental question is: Under what 
conditions does the convergence in the distribution of (H n, X n) to (H, X)  imply 
that X is a semimartingale and that f~ Hs ~_ dX~ converges in distribution to 

f~ Hs- dXs? A slightly more general formulation would put conditions on the 
sequence X ~ only, such that the convergence above holds for all such sequences 
H n. A sequence with this property will be called good. Let M ~m denote the real- 
valued k x m matrices, and let D~ [0, cx~) denote the space of c~tdl~tg, E-valued 
functions with Skorokhod topology. 

DEFINITION 1.1. For n = 1 , 2 , . . . ,  let X n be an ]~k-valued (.T~t)-semi- 
martingale, and let the sequence (Xn)n>~l converge in distribution in the Sko- 
rokhod topology to a process X. The sequence (Xn)n>~l is said to be good if 
for any sequence (Hn)n~>l of Mkm-valued, c~tdlag processes, H n (.~t)-adapted, 
such that (H n, X n) converges in distribution in the Skorokhod topology on 
Dr~k~×~,~[0, oQ) to a process (H, X),  there exists a filtration (~t)  such that H 
is (St't)-adapted, X is an ()rt)-semimartingale, and 

/0 /0 Hs~ dX~ ~ H s- dXs. 

On -=n, let Nn denote the set of elementary predictable processes bounded 
by 1, that is, 

p - 1  f 
7-t ~ = ~H~: H n has the representation H~ = H~l{0}(t ) + E H?l[t , , t ,+l) ( t ) ,  

k i = l  

with H~ E .T~t ~, p E N, and 0 = to < tl < --- < tv < o~, 1H I < 1 



WONG-ZAKAI APPROXIMATIONS FOR STOCHASTIC DIFFERENTIAL EQUATIONS 323 

DEFINITION 1.2. A sequence of semimartingales (xn)n>~l, X n defined on ="~, 
satisfies the condition UT if for each t > 0 the set (f~ H n dX~,  H n E ~n ,  n E 
1~} is stochastically bounded. 

THEOREM 1.1 (Jakubowski, Mrmin and Pagrs [42]). If  (H n, X n) on ~n con- 
verges in distribution to (H, X)  in the Skorokhod topology and if (Xn)n>~l 
satisfies condition UT, then there exists a filtration (Yt) such that X is an 
(.~t)-semimartingale and f Hr~_ d X  n converges in distribution in the Skorokhod 
topology to f H s- dXs. That is, the sequence (Xn)n>~t is good. 

The above presentation does not claim to be a complete and up-to-date work 
on the subject of approximation theorems of stochastic differential equations. 
Our aim is to present, in the introductory manner only, all the main steps of 
generalization of the original Wong-Zakai theorem. We may arrange these results 
in the following table and discuss them later in the paper. We denote the types 
of disturbances here in the following way: 

TABLE I. 

Finite 1-dim. Finite Infinite Infinite 

state & noise multi-dim, state & state & 

state & noise finite noise noise 

Linear drift 

and diffusion 

Linear drift 

and nonlinear 

diffusion 

Nonlinear drift 

and diffusion 

[2], [14] W 

[33]-[35] CS 

[122], [123] W [26] CS [116] 

[28] DS 

[32] CS 

[39], [40] W 

[49] CS 

[51] DS 

[64], [70] W 

[78] CQ 
[87] CM 
[91] DS 

[99] W 

[112]-[115] W 

W - -  Wiener process, 

DS - -  discontinuous semimartingale, 

CQ - -  continuous quasimartingale. 

CS - -  continuous semimartingale, 
CM - -  continuous martingale, 
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2. Wong-Zakai Approximations in the Finite-Dimensional Case 

The theorem on the convergence of ordinary integrals to stochastic integrals was 
first proved by Wong and Zakai [123, 124] for a one-dimensional state space and 
one-dimensional Wiener process. The solution x(t),  a <<. t <~ b, to the stochastic 
differential equation 

dx(t) = rn(x( t ) , t )d t  + a (x ( t ) , t )dw( t ) ,  x(a) = Xa, (2.1) 

is considered, where Xa is a random variable independent of w(t) - w(a) and 
the functions rn, a satisfy the usual conditions guaranteeing the existence and 
uniqueness of the solution x(t)  (compare Wong and Zakai [123], Arnold [3], 
Liptser and Shiryayev [60]). Let xn (t) he the solution of the ordinary differential 
equation 

d x n ( t ) = m ( x n ( t ) , t ) d t + a ( x n ( t ) , t ) d w n ( t ) ,  x n ( a ) = x a  (2.2n) 

for some regular approximations Wn(t) of the Wiener process w(t). Under suit- 
able assumptions, it is shown that xn(t) converges, as n --+ (x), to a process that 
does not satisfy the same Equation (2.1), but it satisfies 

dy(t) = m ( y ( t ) , t ) d t  + ½(r(y(t),t) &r(y( t ) , t )  dt + 
Oy 

+a(y ( t ) , t )dw( t ) ,  y(a) = xa. (2.3) 

The second term on the right-hand side is the so called 'correction term'. The 
reason for the difference between the two processes x(t) and y(t) is motivated by 
the approximate relationship dw(t) ~ ~ (see Arnold [3], Wong [122], Wong 
and Zakai [123]). 

More precisely, we have 

THEOREM 2.1 (Wong and Zakai [123]). Suppose that (f~, jr, p )  is a probability 
space and 

(i) m(x , t ) ,  cr(x,t), Oa(x, t) /Ox,  &r(x , t ) /Ot  are continuous in - c ~  < x < c~, 
a<~t<<.b. 

(ii) m(x ,  t), a(x,  t), a(x,  t)(&r(x,  t) /Ox) satisfy the Lipschitz condition with a 
constant k > O. 

(iii) cr(x,t) >1 • > 0 (or - a ( x , t )  >>. fl > O) and IO~(x,t)/Otl <~ ka2(x,t) .  
(iv) For each n, Wn ( t, w) is of  bounded variation, continuous and has a piecewise 

continuous derivative. 
(v) For almost all w E f t  there exist no(w), k(w), both finite, such that for all 

n > no and all t in [a,b], Wn(t,w) <<. k(w). 
(vi) wn(t ,w)  converges to w( t ,w)  in [a,b] almost surely as n--~ cx~. 
(vii) xn(t) and y(t) satisfy Equations (2.2n) and (2.3), respectively. 
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Then Xn(t) convergesto x(t) in [a,b] almost surely as n ~ oo. 

There have been many generalizations of the above theorem to the case of 
several variables (see Ikeda et al. [39], Ikeda and Watanabe [40], McShane [70], 
Strook and Varadhan [99]). If we consider the functions m: [a, b] x 1¢ d --+ R d 
and a: [a, b] × R d --~ I~ d×m, then the correction term has the form 

1__ ~ d $) aJP(Y(t), t) 2 ~ OaiP(Y(t)' for i = 1, d. 
p=l j=l  OyJ "'" ' 

Recall one of the main results in this area: 

THEOREM 2.2 (Ikeda and Watanabe [40]). Let X C R d, m C cl(]~d,~d), 
a E C2b(R d, R dxm) (i.e. of class C 1 and C 2 with bounded derivatives, respective- 
ly). Suppose Bn(t,  w) is a regular approximation of the m-dimensional Wiener 
process w(t) on a V~ener space (W~, P)  and the following equations are satis- 
fied: 

/o xin(t,w) = Xi (w)  + mi (xn ( s ,w) )ds  + 

mfo' + Z ds, 
p = l  

/: yi(t,w) = Xi(w) + mi(y(s,w))ds + aiP(y(s,w))dw(s) + 
p = l  

m d t 

p=l j=l OyJ ~ ~ / / 

for i = 1 , . . . ,  d. Then for every T > O, 

lim E[  sup Ixn( t ,w)  - y( t ,  w)l 2] = 0. 
n -~ oc L O <~ t <~ T I 

Further generalizations deal with problems with more general noises than the 
Wiener process. The result due to Protter [91] for continuous semimartingale 
differentials can be stated in simplified form as 

THEOREM 2.3. Consider the equations 

dxn(t) = f ( t ,  Xn(t), Zn(t)) dZn(t), 

dz(t) = f ( t ,  x( t ) ,  Z ( t ) )  o dZ(t), (2.4) 

dy(t) = : ( t , y ( t ) , Z ( t ) ) d Z ( t )  + 

+½{f(oy /Oy)  + (O:/OZ)}(t ,  y(t), Z(t)) d[Z c, ZC](t), (2.5) 
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where Zn are piecewise C 1 approximations of a continuous semimartingale Z, 
the circle 'o' denotes the Stratonovich integral and Z c is the continuous part of 
Z. Under suitable assumptions, if Zn tends to Z, then xn tends to x satisfying 
(2.4) (and hence satisfying (2.5) by the well-known relation between the It6 and 
Stratonovich integrals). 

The Wong-Zakai theorem has extensions in two directions: more general 
driven processes are considered or coefficients are allowed to depend on the 
trajectories of the solutions. In the first case, semimartingales with jumps have 
been considered by Marcus [67] and Kushner [55]. Results of this type were 
also examined by Bally [5], Ferreyra [28], Gy6ngy [32], Mackevi~ius [63] and 
Picard [87]. In the second direction, pioneering work was done in [124] by Wong 
and Zakai, and more recently by Doss [26], Koneczny [49] and also by Nakao 
and Yamato [78]. 

In the paper [51] of Kurtz, Pardoux and Protter, stochastic differential equa- 
tions driven by semimartingales with jumps are examined. The existence and 
uniqueness of solutions is established and the result on the Wong-Zakai type 
weak convergence is proved when the approximating differentials are smooth, in 
particular continuous, even though the limits are discontinuous. 

Mackevi~ius and Zibaitis in [65] considered both polygonal and mollifier 
approximations of the Wiener process. They give the limit theorems for such 
cases. More exactly, given a Brownian motion B, Gaussian approximations B d, 

> 0, of the form 

/0 L B* t = K*(u,s) dBsdu, t/>O, 

including polygonal and mollifier approximations, are considered. A limit theo- 
rem is proved for the integrals fT  Xt dB~ as ~ ~ 0. In particular, in the case of 

symmetric kernels K 6, the limit is the Fisk-Stratonovich integral fo r Xt odBt. 

3. Wong-Zakai  Approximations in Infinite Dimensions 
for the Linear Case 

In the infinite-dimensional case, some generalizations are known where the 
Wiener process is one-dimensional and the state space is infinite-dimensional 
(Aquistapace and Terreni [2], Brze~.niak, Capifiski and Flandoli [14], Da Pra- 
to [23], Doss [26], Gy/Sngy [33-35]). 

In [2], the following result is stated: 

THEOREM 3.1 (Aquistapace and Terreni [2]). Let (f~, :T, P) be a probability 
space. Consider the stochastic problem 

du(t) = (A(t)u(t) + ½B2u(t)) dt + Bu(t) dw(t) + f( t)  dr, 
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u(O) =uo, (3.1) 

in a real separable Hilbert space H, where w(t) is a one-dimensional Brownian 
motion. For each t E [0, T], we assume that A( t ) generates an analytic semigroup 
and B generates a strongly continuous group. Let f ,  fn: [0, T] × Yt --+ H, 
u0: ft ~ H be given data. Then, under standard assumptions, u(t) is the 
unique generalized solution of (3.1) and it is the limit of the solutions of the 
approximating deterministic problems 

dun(t) = A(t)un(t)dt + Bun(t)~bn(t)dt + fn(t)dt,  

U n(O) -~ UO, (3.2n) 

obtained by approaching the white noise dw(t) with a sequence of regular 
coloured noises Wn (t). 

We observe that the correction term is here of the form ½B2u(t) and we see 
that it is the same form of correction term as in the linear case in infinite dimen- 
sions. Some slight modifications of the above theorem are given by Brze~niak, 
Capifiski and Flandoli in [14] and by Da Prato in [23]. 

In the papers of Gy6ngy [33-35], the noise process is multi-(finite-) 
dimensional and the operators acting on the infinite-dimensional state space are 
unbounded but again linear. The correction term introduced there behaves like 
the Lie bracket of some linear operators. 

The assumptions imposed on the operators A and B are such that the equations 
considered admit many meaningful physical applications. 

Gy6ngy in his papers [33-35] generalizes approximation results to the fol- 
lowing stochastic evolution equation 

f0 t u(t) = uo + (A(s)u(s) + F(s))dH(s)  + 

/: + (Bi(s)u(s) + a(s)dMi(s) ,  (3.3) 

where A, Bi are unbounded linear operators (second and first-order differential 
operators), M = ( M 1 , . . . ,  M a) is a continuous semimartingale. His assumptions 
make it possible to cover many stochastic partial differential equations appearing 
in applications. 

4. Correction Terms in the Wong-Zakai Approximations 

4.1. CONSTRUCTION OF CORRECTION TERMS IN INFINITE DIMENSIONS 

We begin with an example and some results from the author's papers [115] and 
[116]. 
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EXAMPLE 4.1.1. Using the step-by-step method of solving delay equations, we 
consider the following stochastic delay differential equation: 

dX(t )  : X ( t -  1)dw(t) for t/> O, 
X(t)  = 1  for t E [-1,0] ,  

where w(t) is the one-dimensional Wiener process. Further, 

dXn(t )  =Xn(t -1)go~( t )d t  for t ~> O, 
X~(t) = 1  for t E [-1,  O]. 

We obtain in the first step, for t C [0, 1], 

dX(t)  = dw(t), X(O) = 1 

and 

d X n ( t )  = 

Integrating, we get 

and 

x n ( o ) = l .  

fO 
t 

X(t) = X(0) + dw(s) = 1 + w(t) 

~0 t Xn(t) = Xn(O) + ~bn(s)ds = 1 + wn(t). 

In the second step we consider, for t E [1,2], 

d X ( t ) = ( l + w ( t - 1 ) ) d w ( t ) ,  X ( l ) = l + w ( 1 )  

and 

dXn(t) = (1 +Wn(t-  1))dwn(t), xn(1)  = 1 + w~(1). 

We obtain 

fOt X(1) = 1 + w ( 1 ) +  w ( s -  1)dw(s) 

and 

It is easy to observe that Xn(t) ~ X(t) = Y(t) as n -+ e~ in the mean-square 
sense. 
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We now consider (see also Section 5.1 below) the following more gener- 
al stochastic differential equation with delayed argument on the space C_ = 
C(J, Rd), J =  [ - r ,0] ,  +oc  >/r  > 0: 

£ X (t,w) = x o(w) + bi(Xs(.,w))ds + 

+ aiP(Xs(.,w))dwP(s) (4.1.1) 

for i ---- 1 , . . .  ,d, where Xt(') is a segment of the trajectory of X on [ - r ,  0]. 
By replacing the Wiener process by its piecewise linear approximations B '~, 

we obtain the following approximations of (4.1.1): 

/: xn'i(t,w) = X~'i(w) + bi(Xsn(.,w))ds + 

+ aiP(Xs( ., w))Bn'P(s, w) ds. (4.1.2 n) 
p = l  

We also introduce another stochastic differential equation: /: m/: 
Yi(t,w) = Yd(w) + bi(Ys(.,w))ds + ~ aW(Ys(',w))dwP(s) + 

p---1 

1 m d ~otN 
+2 ~-" ~-~ DJaW(Ys("w))aJP(Ys("w))ds (4.1.3) 

p = 1 3 = l  

for every i = 1 , . . . ,  d. Further, DaW is the Fr6chet derivative from C_ to 
L(C_, R) (the necessary assumptions are given in Section 5.1) while 

= I~s,w,y({O}) (4.1.4) 

is the j th  coordinate of a measure # = #~w,g on C_ such that 

j = t  - 

We have 

#(A)=#(AN(-r ,O))+#(AN{O}) =p(A)+#({O})6o(A), (4.1.5) 

where 5o is the Dirac measure, A E B((-r, 0)). It is obvious that 

d 0 

DaW(g)(~) = y~ f CJ(v)u~P, Jw,g (dv) (4.1.6) 
j = l  r 
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is a directional derivative. 
Let us return to our first example. How do we relate the form of the correction 

term in (4.1.3) to the fact that we have no correction term in Example 4.1.1 for 
the delay constant in time? 

We can conclude in the following way. If we compute the integrals 
f~cr(Xs(.,w))dw(s) in Example 4.1.1 then there is no correction term if 
cr(Xt(O)) = cr(Xt( -r , -e) ) ,  that is, if cr(Xt( -r , -e) )  does not depend on the 
value of a at zero while the Wiener process depends on this value in zero. So if 
we take ~r(Xt(O)) = X( t  - 1), then tr depends on t E ( - r , - e )  but we integrate 
on the interval [0, e]. So a and w are independent and there is no correction 
term. This suggests that we introduce formula (4.1.5) for the measure # and to 
conclude that the correction term for stochastic delay equations will only depend 
on #({0}) and will have the form 

1 m d - t  -2 ~= j~l= JO ~)JtriP(Ys(" w))°'JP(Ys(" w))ds" (4.1.7) 

The correctness of our definition of the correction term can be seen from the 
following examples. Consider once more the equation 

dX(t)  = ~r(Xt)dw(t), Xo(O,w) = rl(w) 

for 0 E J ,  where c~: C_ -4 R, tr(qo) = ~ ( - 1 ) ,  that is, ~ ( - 1 )  = X t ( - 1 )  = 
X (t - 1). Then 

dX( t )  = X ( t -  1)dw(t) ,  Xo = 7/, 

and Equation (4.1.3) is of the form 

dY(t)  = Y ( t -  1)dw(t) ,  Y0=~/,  

because the measure # is concentrated on the set { - 1  } only and, hence, #({0))  = 
0. The latter can be seen after computing the directional derivative (4.1.6), that 
is, D~r(u) = ~o(-1). Therefore, there is no difference between the initial and 
limit equations. 

Consider the second new correction term for the case of stochastic evolution 
equations with nonlinear diffusion term with the state in a Hilbert space and with 
a Hilbert space-valued Wiener process. Again, we start with an example. 

EXAMPLE 4.1.2. First we introduce the space M 2. For fixed r E ~+ we put 
I = [--r, 0], 0 < r < ~ ,  and M 2 = R n × L2(I, Rn). The elements of M 2 are 

defined by 
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In m 2 the natural inner product is introduced 

qOl ~92 M 2 

Consider the following stochastic delay equation of semilinear type: 

dx(t) = ~ Aix( t  - ri) + A(O)x(t + 0)d0 dt + ~(x t )dw( t ) ,  
i=0 r 

zo(0) = ¢(0),  (4.1.8) 

where t E [0, T] and r~ E R+ are fixed, 0 = r0 < ""  < rm = r, (z(t))tE[O,T] is 
an Rr~-valued stochastic process and (w(t))t>~o is an H-valued Wiener process, 
xt(O) = x( t  + O) for 0 E I,  t E [0, T] and Ai, A(O) are n x n matrices, the 
elements of A(O) being square-integrable on I, and 5;: L2(I, R n) -4 L(H, R n) 
is an operator. 

We denote by A the infinitesimal generator of a contraction semigroup 
(T(t))t>.o on L2(I, R'~). Let 

D(A)  = {qo E W|'2(I ,  IRn): qo(0) = 0}, Aqo -= dqo 
dO 

and 

{~o(t + 0) for t ~< 0, 
[T(t)~(')l(0) = 0 otherwise, 

where t > 0, 0 E I. 
In case Z = 0, we define a family (S(t))t>~0 of operators acting on M 2 by 

The family (S(t))t>~0 is a Co-semigroup of bounded linear operators. Following 
the idea used in [6, p. 500], we can introduce an equivalent norm in M 2 such 
that (S(t))w>0 becomes a semigroup of contraction type. 

Now we rewrite (4.1.8) in the following form for z(t) = t~(t)~. tz~(.)J 

i: ) dz ( t ) - -  A i x ( t - r , ) +  r A ( 0 ) x ( t + a ) d 0  d t+  

dw(t) ,  

z(0)  = zo, 

where, for arbitrary ~ E L2(I,R~),  we define ~(~): g --+ M 2 by 

~(~)h = (~(0~)h)  for every h E H. 
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We now define the operators ,4 and B in the following manner. Let 

\ 

A(w(°))\ = ( 
and 

-- ¢(" 

therefore, for h E H, 

Here .A: M 2 D D(.A) ~ M 2, /3: M 2 ~ L(H, M2). We take H1 = M 2 and 
now (4.1.8) has the form 

dz(t) = Az(t)dt + B(z(t))dw(t), z(O) = zo (4.1.9) 

and assumptions (A1)-(A5) from Section 5.2 are imposed. 
Now we present the construction of the correction term for such an evolution 

equation. It was H. Doss [26] who gave only the first ideas of how to constract 
this correction term but he did not prove the Wong-Zakai-type approximation 
theorem with this term. The latter was done in the author's papers [112-115]. 

We observe that the Fr6chet derivative Dl3(hl) E L(HI, L(H, Hi)) for hi E 
H1 and we consider the composition DB(hl)13(hl) E L(H, L(H, H1)). We view 
the Fr6chet derivative of B(hl) as Dl3(hl, hE), since hE --4 D~(hl, hE), h2 E HI 
is linear and belongs to L(H1, L(H, Hi)). Let • E L(H, L(H, Hi)) and define 
(see [26]) 

Eh,(h,h' ) := (~(h)(h'),hl)H~ E]~ for h ,h '  E H. 

From the Riesz theorem for the form • on H we conclude that for every hi E Hi 
there exists an operator ~ ( h l )  E L(H) such that for every h, h' E H, 

Bhl(h , h') = (~(h~)(h), h')H = (ff~(h)(h'), hi)Hi. 
Now, the covariance operator Q has finite trace and therefore the mapping 

(: HI 9 hi > t r (Q~(h l ) )  E R 

is a linear bounded functional on H1. Therefore, using the Riesz theorem, we 

find a unique h~ E H~ such that ~(h~) = (h~, h~)n~. Define 

~ ( Q ~ )  = hi. (4.1.10) 
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Returning to the last example, we see that (hl,hl)HL is the trace of the 

operator Q~(h l )  E L(H) but ~ ( Q ~ )  is merely a symbol for hi. 
We observe that the term which is needed for the construction of the correction 

term (4.1.10) in Example 4.1.2 is 

D~(h l )B(h l )  = (D~(~o0((-))(~b('))) for ~o(.) = hi E (4.1.11) 

Now we would like to compare these two types of correction terms derived 
for stochastic delay equations in (4.1.7) and (4.1.10) for the different spaces 
occurring in these two models. In Example 4.1.2, we use the convention 

B(h,)  = ( E ( ~ ( ' ) ) )  = (~b(0))  for h i =  ( ~ ( 0 ) )  ¢(.) ~(.) , (4.1.12) 

and, hence, for the one-dimensional Wiener process we have 

( ; ) = c~b(O) + r ~b(s)u(s)as , (4.1.13) 

0 

and the correction term will only be c~O(0), since the second coordinate 
fo r O(s)u(s)ds in (4.1.13) is zero because the second coordinate of the vec- 
tor in (4.1.11) is zero. We observe that c~ = #({0}) and u(8) is the density of 
the measure ~ (# and ~ are defined above). So the term o~(0) is the main part 
of the correction term in (4.1.7). 

4.2. FINITE-DIMENSIONAL CASE 

Finally, it is also proved in papers [114], [115] that this infinite-dimensional form 
of the correction term gives the already known finite multi-dimensional form of 
the correction term. 

We consider the case where H = R d, HI = R n. Let x, z E R n. Then B: ~n 
L(~,d,~,n), DB(z)  E L(~,n,L(Rd, Rn)) and DB(z)(x)  E L(~,d,R n) are given 
by a matrix 

~(~)(~) = [ 

We put 

R d ~ x =  

D/~ll(Z)(Z) . . .  DBla(z)(x) 

D'B I : " ] " 

, R e l a Y =  • . 

~lct 



334 

Let DB(z)B(z)X = ~ (X) .  Then 
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~(x)Y = ~ azz 8zk(z)~k ~j 
j = l  = 

and, for p E R n, we write the inner product 

( ~ ( x ) y , p ) ~  = Oz~ ~k(z)~kVjP~. 
i=l j=l t=l k=l 

We omit X and Y in the last sum and obtain the matrix 

, z ,  ' ~k~ ) P ~ /  = ( ' I ' j k ) j ,k= l , . . . , d  = ' } ( p ) .  
i=1 l = l  UZl ] jk 

Consider the trace with (Qm)jk, j ,  k = 1 , . . . , m ,  being the restriction of the 
covariance operator Q to R m 

d n n O ' ' z )  
tr(Qm~(p)) = ~ ~ ~ ,~j Btj 

j = l  i=1 l=l 

We rewrite it in the form of the inner product of two vectors in Rn: 

i=1 j = l  /=1 OZl 

The first vector, 

j = l  /=1 i ~ 

is exactly the correction term h i  obtained in (4.1.10). 
It would also be interesting to compare other types of correction terms in 

finite dimensions for more general disturbances than the Wiener process, e,g., 
for semimatingales. 

4.3. RELATION TO GENERAL APPROXIMATION THEORY 

One of the most useful ways of approximation of functions in deterministic 
analysis is the polynomial approximation based on the Weierstrass theorem (see 
Akhiezer [1]) and Fourier series. This type of theorem can also be formulated for 
random functions and stochastic processes (see Onicescu [81]). We would expect 
that the sum of the Fourier series of a function f at x is (f(x +) - f (x-) ) /2  when 
we write the solution to a stochastic differential equation in terms of the initial 
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value and a noise process. How do we generalize the Wong-Zakai approximations 
for stochastic differential equations (to motivate the occurrence of the correction 
term) by approximate counterparts using general approximation theory? This will 
be our interest when we try to unify the Wong-Zakai approximations theory. 

5. Wong-Zakai Approximations in Infinite Dimensions for the Nonlinear 
Case 

5.1. STOCHASTIC DELAY EQUATIONS 

In this section we give the generalization of the Wong-Zakai theorem to non- 
linear stochastic functional differential equations with values in the space R a 
(d /> 1) (see the author's papers [113, 114]). By piecewise linear approxima- 
tion of the m-dimensional Wiener process, we obtain an explicit formula for the 
limit of a sequence of solutions to certain ordinary differential equations with 
delayed argument, that is, we obtain the so-called It6 correction term of the form 
(4.1.7). 

Let t E [0, T] and let (f~, f ' ,  ~t, P) be a complete probability space with 
Ut = (Ut)t~[O,T] an increasing family of sub-a-algebras of the a-algebra .T'. We 

put J = ( -c~ ,  0] and we introduce the metric spaces C_ = G(J, Ra), C1 = 
C( ( -c~ ,T] ,  R d) and C O = C ( ( - c ~ , T ] , R  m) = ~ of continuous functions. The 
space C_ is endowed with the metric 

oo 
( f , g ) c _  = 2 - n  I l l  - g l ln  

n = l  1 + I l l  - gl ln 

for f , g  C C_, with Ilhll,  = max-n<,t,<0 Ih ( t ) l .  Similarly, we define the metrics 
for Cl and C O with Ilhll,~ = max_,~,<~,<T Ih(t)l. Here d is the dimension of the 
state space and m is the dimension of the Wiener process; in the space C °, all 
functions are equal to zero at zero. Below, we denote by X one of the above 
spaces. 

Let/3(X) denote the topological e-algebra of the space X. It is obviously 
identical with the c~-algebra generated by the family of all Borel cylinder sets in 
2'. So we construct the Wiener space (C °, B(CO), pw), where pw is the Wiener 
measure ([40, Chapter I]). The coordinate process B(t,  w) = w(t), w E C °, is 
the m-dimensional Wiener process. 

The smallest Borel algebra that contains B1, B2,. . .  is denoted by BI U/32 tO 
. . .  ; B~,,,,(X) denotes the smallest Borel ~r-algebra for which a given stochastic 
process X( t )  is measurable for every t E [u, v] and Bu,v(dB) denotes the smallest 
Borel algebra for which B(s)  - B(t)  is measurable for every (t, s) with u ~< t ~< 
, 5 ~ V .  
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Let Bn(t,w) = Wn be the following piecewise linear approximation of 
B(t ,w) = w(t): 

B n , P ( t , w ) = w p ( k )  + 2 n ( t _ k ) ( w p ( ~ ) _ )  _ w p ( k ) )  (5.1.1) 

for each p = 1 , . . . ,  m and kT/2 n <<. t < (k+ 1)T/2 n for k = 0, 1 , . . . ,  2 n -  1. 
For further considerations, we need the notion of a segment of a trajectory. 

Let f be a function of t E ( - c o ,  T]. For a fixed t 6 [0, T], the function ft on 
( - c o ,  0] defined by 

f t (0)  = f ( t  + O) 

is called the segment of the trajectory of f on ( - c o ,  t]. 
For the stochastic process X(t,  w) we define 

X t ( O , w ) = X ( t + O , w ) ,  O6J;  

therefore Xt (., w) denotes the segment of the trajectory of X (., w) on ( -  co, t]. 
Now we consider ~ = C °. Let X be a continuous stochastic process 

X(t,  w): (-co, 7"] × fi --+ R a, that is, X: ~t --+ A' = C1. 
We take some fixed initial constant stochastic processes 

Xi(O + O,w) = X~(w) = X~'i(w) = Y~)(w) for 0 6 J, i = 1 , . . .  ,d. 

We also consider operators b: C_ ~ R a, a: C_ --+ L(R m, R d) (where (L(IR m, I¢ d) 
is the Banach space of linear functions from R m to IR d with the uniform operator 
norm l.  IL)- 

We introduce the condition 

(.~1) for every t E ( - c o ,  T] the algebra 13_~,t(X) t_J B-oo,t(dB) is independent 
of Bt,T(dB) 

to give a meaning to the stochastic integral in (4.1.1). 
We assume that 

(A2) b and a are continuous operators. 

Now we introduce the operators b: C_ --+ C_ and ~: C_ ~ C(J, L(~ m, led)), 
where 

-b: C_ ~ g ~ (J ~ z --+ b(g(. + ~-)) • Rd), 
~: c _  ~ g ~ (a  ~ ~- + ~(a(.  + 7)) • z(r~ m, ~d)).  

Remark 5.1.1. This construction explains why we take ( - c o ,  0] for the domain 
of the initial function. If we took the interval I - r ,  0], 0 < r < co, instead, it 
would be impossible to define b and ~ correctly (that is, for Xt = Yt it could 
happen that ~(Xt) # ~(Yt)). 

Let us introduce the following conditions: 
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(,~3) The initial stochastic process X0 is ~'0-measurable and P(lXo(w)l < 
~ )  = 1, w h e r e  IX0(w)l = E~_-I IX~(w)l, and t~-~o,0(X0) is independent 
of Bo,T(B). 

(,~4) For every (fl, ~b E C_ the following Lipschitz condition is satisfied: 

Ib(w) - b(~P)l 2 + I~r(~) - cr(~,)l 2 

~ L l I ~ o ( o ) -  ¢(o)12 OKO+ L21~(o) - ~(o)IL 

where K(O) is a certain bounded measure on J ,  and L l, L 2 are some con- 
stants. 

(,~5) For every ~ C C_ the following growth condition is satisfied: 

f Ib(~)l 2 + I~(~)1~ ~< L1 oo( 1 +~2(0)) d g O +  L2( 1 "+" ~2(0)), 

where ~2(0) d = E~=, ~ ( o ) .  
(A6) We have 

(/0 ) (/0 ) P Ib(X~)lds < oo = 1, P I~(X~)l~as < cx~ = 1. 

(~,7) We have bi,cr ip e CI(C_) for every i = 1 , . . .  ,d, p = 1 , . . .  ,m,  where C~ 
denotes the space of bounded mappings with continuous first derivative. 

Notice that our conditions ensure the existence and uniqueness of the strong 
solutions to Equations (4.1.1)-(4.1.3). 

We have proved the following 

THEOREM 5.1.1 (Twardowska [113, 114]). Let conditions (,~2)-(,~5) and (,~7) 
be satisfied. Let Br~(t,w) be an approximation of type (5.1.1) of the Wiener 
process. We assume that X n and Y are solutions to (4.1.2 n) and (4.1.3), respec- 
tively, with a constant initial stochastic process. Then conditions (,~1) and (,~6) 
are satisfied and for every T > O, 

lim sup E[IX"( t  ,w) - Y( t ,w) l  2] = 0. (5.1.2) 
n-~oo  O<~ t <. T 

Remark 5.1.2. Instead of the interval d = ( - c~ ,  0], we can consider I = 
[ - r ,  0], 0 < r < ~ .  Then, instead of considering Xi(t'~ + s) - Xi(tp_l + s) on 
the whole interval of definition, we observe that 

x~(t? + s ) -  x~(t?_l + s) 
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X o(t  + s) x i ' t "  o - 0 t i - l + s )  for t  i + s ~ 0 ,  
ftn.. +s 

X o(O) xi t n " - ov i-1 + + L b (Xu(.))du+ 

= + ai~(Xu(.))  dwP(u) fortLl+s~O~t~+s, 
p=l dO 

. .  

bi(Xu(')) du + Z.., aZ3(u, Xu('))dwP(u) 
Jtn-l-l-S p-~l Jtn-I -t-s 

for t~_ 1 + s > 0, 

and we estimate each part separately by expressions converging to zero. 

5.2. SEMILINEAR EVOLUTION EQUATIONS 

In this section, we examine an approximation theorem of the Wong-Zakai-type 
for stochastic evolution equations in a Hilbert space such that the noise is the 
generalized derivative of the Wiener process with values in another Hilbert space. 
As a consequence of the approximation of the Wiener process, we get in the 
limit equation the correction term (4.1.10) for the infinite-dimensional case (see 
Section 4.1). The uniqueness and existence of solutions are guaranteed by known 
theorems for mild solutions. 

Let H and HI be real separable Hilbert spaces with norms [[-IIH, I1" ItS& and 
scalar products (., ")n, (', ")HI and with orthonormal bases {en}n°°=l , {ln}n°°=l, 
respectively. Let (f/, .T, (3¢t)te[O,T], P) be a filtered probability space on which 
an increasing and right-continuous family (.Tt)t~[0,Tq of complete sub<r-algebras 
of .T is defined. L(H, H1) denotes the space of bounded linear operators from H 
to H1. Let £2 (H, H1) be the space of Hilbert-Schmidt operators with the norm 

I1" Ilus. 
We take an H-valued Wiener process w(t), t E [0, T], with nuclear covariance 

operator Q E L(H) = L(H, H). 
It is known (see Curtain and Pritchard [22], Da Prato and Zabczyk [24]) that 

J oo there are real-valued independent Wiener processes {w(t)}j= l on [0,T] such 
that 

o o  

w(t) = ~ Jw(t)ej (5.2.1) 
j = l  

almost everywhere in (t, w) C [0, T] x 12, where {ej}~= l is an orthonormal basis 
• O O  of eigenvectors of Q corresponding to eigenvalues {,k3}d= t, ~ = 1  £j < c¢, 

with 

E[A iw A Jw] = (t - s)Ai6 0 forA~w= 3 W ( t ) - ~ ( s ) a n d s < t  

(60 is the Kronecker delta). 



WONG-ZAKAI APPROXIMATIONS FOR STOCHASTIC DIFFERENTIAL EQUATIONS 339 

We consider the stochastic differential equation 

d z ( t )  = Az(t)dt + C(z(t))dt + 13(z(t))dw(t), 
z (O)  = zo, (5.2.2) 

where 

(A1) (z(t))t~[O,T ] is an Hi-valued stochastic process, (w(t))t>.o is an H-valued 
Wiener process with the covariance operator Q, A: HI D D(A)  --+ HI 
is the infinitesimal generator of a strongly continuous semigroup (S(t))t>.o, 
C: HI --+ HI and 13: HI --+ L(H, Hi) are bounded nonlinear operators. 
Moreover, we assume that (S(t))t>~o is of contraction type, i.e., there exists 
a constant/3 6 R+ such that Ils(t)llH, <~ exp(flt) for all t E [0,T], 

(A2) z0 E D (A) is an Hi-valued square integrable ~'0-measurable initial random 
variable. 

Apart from (5.2.2) we consider the equation 

dF(t) = AF(t) dt + C(~(t)) dt + B(F(t)) dw( t )+  

+½tr(QD13(F(t) )13(F(t) ) ) dt, 

~(0) = z0, (5.2.3) 

where tr(QDB(F(t))B('2(t))) is defined in Section 4.1. 
Moreover, we assume that 

(A3) there is a constant K > 0 and a positive definite symmetric nuclear operator 
R which commutes with S such that P(R-lzo  E HI) = 1 and 

IIn- 'C(hl)l l2,  + IIR -IB(hl)Q'/zlI2Hs+ 

+llR-Itr(O, O13(hl)B(hl))l12H, <~ K(1 + Ilhlll~,), ( i )  

lie(hi) - c(hl)ll2,  + tr((13(hi) - 13(hl))Q(13(hl) - 13(h,))*) 

<. KIIh~ - as 1t 2, (ii) 

for hi ,  hi E HI,  where "*" denotes the adjoint operator, 

(A4) the operator C is of class G 1 and the operator B E Gd, i.e. is of class 
C 1 with bounded derivative; this derivative is assumed to be globally Lip- 
schitzian, 

(A5) the operator D13(hl).A: HI D D(.A) --~ L(H, HI) can be uniquely extend- 
ed to a bounded operator from HI to L(H, HI), so there exists a positive 
constant k such that for hi E Hi ,  

IIDl3(hl)Ahl HL(H,H~) <~ k. (5.2.4) 
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We now define the nth approximation of the Wiener process (w(t))t>.o as 
follows: 

O 0  

~O(n)(t) = ~ wj,~(t)cj, (5.2.5) 
j = l  

w h e r e 0 = t ~ < . . . < t  n , = T a n d , f o r t n _ l < t ~ < t  n l '  

t - t n l  3 w ( t n ) +  t n - t  ~ ( i _ l ) .  (5.2.6) 
_ _  1~ n wj,~(t) ~ - -  ~ ,~ 

ti - t i_ l ti - tn- 1 

Consider now the sequence of integral equations 

/o U(n)(t ) = S( t )zo + S ( t  -- s)C(U(n)(s))ds + 

+ £s( t -  s)B(~(~)(s)) d~(s), 

U(n)(0) = zo, n = 1,2, . . . .  (5.2.7n) 

We consider solutions in the mild sense (see [22, 24]). The uniqueness of solu- 
tions is understood in the sense of trajectories. Our assumptions ensure the exis- 
tence and uniqueness of solutions. 

We have proved the following 

THEOREM 5.2.1 (Twardowska [114, 115]). Let (w(n)(t))t>~o be the nth approx- 
imation o f  the Wiener process (w(t))t>~o as given in (5.2.5). Let (u(n)(t))te[O,Tl 
be the solution to Equation (5.2.7n) and "$(t) to Equation (5.2.3). Assume that 
hypotheses (A1)-(A5) are satisfied and E[llR-'zoll~,] < ~ .  Then, for  each T, 
O < T < oo, and given e > O 

/ \ 
lim P ~  sup Ilu(~)(t, co) - ~(t, co)llHl /> e l  = 0. (5.2.8) 

n --+ oc \ O <<. t <<. T ] 

5.3. NONLINEAR STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS 

We consider a generalization of the Wong-Zakai approximation theorem for 
stochastic nonlinear partial differential equations with unbounded monotone and 
coercive operators defined in Gelfand triples (Lions [59], Pardoux [82]). A ver- 
sion of the theorem for sums of such operators is also included. 

Similar equations have already been studied in the linear case, e.g., by Ben- 
soussan [10], Gy6ngy [35], Rozovskii [93] and in the nonlinear case by Bensous- 
san and Temam [11], Krylov and Rozovskii [50], as well as by Pardoux ([82, 
83]) from whom we take the model of this paper. In the above papers, mainly 
the existence and uniqueness theorems were given. 
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Let (ft, .T', (~t)te[O,T], P), H and H1 be the spaces defined in Section 5.2. We 
also consider a real separable reflexive Banach space V which is continuously 
and densely embedded in the Hilbert space Hi. Then, identifying Hi with its 
dual space H~' (by the scalar product in Hi), we have, denoting by V* the dual 
space to V, 

V c H I = H ~ c V * .  

The embeddings are continuous with dense range. The above spaces are endowed 
with the norms I1" IIv, I1" Ilnl, and I1" IIv', respectively. The pairing between V 
and V* is denoted by (., .). 

Let L(X, Y) denote the vector space of continuous linear operators from X 
to Y, with the operator norm II. IIL(x,Y), where X and Y are arbitrary Banach 
spaces (we put L(X) = L(X, X)); LP(f~; X), oo /> p /> 1, denotes the usual 
Banach space of equivalence classes of random variables with values in X which 
are p-integrable (essentially bounded for p = c~) with respect to the measure 
P,  with norm II IILp(~;x)-Moreover, £1(X,Y) is the Banach space of nuclear 

operators from X to Y with the trace norm IIllc,(x,Y), and f_,2(X,Y) is the 
Hilbert space of Hilbert-Schmidt operators with the norm II " Ilus, where X and 
Y are arbitrary separable Hilbert spaces. They are subspaces of L(X, Y). 

We put for the Wiener process w(t) (defined in Section 5.2) 

m m 

 m(t) =  (t)cj = (5.3.1) 
j = l  j = l  

Now we define the nth polygonal approximations of the process (w(t))t~[o,T ] 
by w(n)(t) in (5.2.5) and of (wm(t))tE[O,T] by 

m 

w(m)(t) = ~ wj,n(t)ej, (5.3.2) 
j = l  

where Wj,n(t) is given by (5.2.6). 
We consider the stochastic nonlinear differential equation 

du(t) + A(t,u(t))dt + B(t,u(t))dw(t) = f(t)dt, 
u(O) = uo, (5.3.3) 

where (u(t))tc[O,T ] is an Hi-valued stochastic process, and 
Z 

(A1) u0 is an Hi-valued square integrable S'0-measurable random variable, that 
is, uo C L2(ft, Yo, P;H1). 

For every n E 1~ we consider the approximation equation 

du(n)(t) + A(t,U(n)(t))dt + B(t,u(n)(t))dw(n)(t) = f(t) dt, 
u(n) (O)  = uo,  (5.3.4n) 
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where W(n ) (t) are given by (5.2.5). 
Moreover, we consider the equation 

d0(t) + A(t,~(t))dt + B(t,~(t))dw(t)+ 

+½~(QDB(t, ~(t) )B(t, ~(t) ) ) dt = f (t) dt, (5.3.5) 

~(o)  = uo, 

where tr(QDB(t, ~(t))B(t, ~(t))) is as described in Section 4.1. 
We assume (compare Pardoux [82]) that the family of operators A(t, .): V 

V* defined for almost every (a.e.) t E (0, T) and for some p > 1 has the 
following properties: 

(A2) growth restriction: there exists a constant fl such that 

IIA(t,u)llv. </~llull~, -1 for every u E  V andfor  a.e. t, 
Z 

(A3) hemicontinuity: the mapping 

9 0 ~ (A(t, u + Ov), w) E R 

is continuous for all u, v, w E V and for a.e. t, 
.U. 

(A4) measurability: the mapping 

(O,T) ~ t > A(t,u) E V* 

is Lebesgue measurable for every u E V. 

We further assume that the family of operators B(t, .): V --+ E2(H, Hi)  defined 
for a.e. t E (0, T) satisfies the following assumptions: 

(A5) boundedness: there exists a constant L such that 

liB(t, u) 2 IIL(H,H,) <- L 
for all u E V, 

(A6) the operator B(t, .) E C l, i.e., is of class C 1 with bounded derivative and 
this derivative is assumed to be globally Lipschitzian, 

Z 

(A7) measurability: for every u E V the mapping 

(O,T) ~ t ~ B(t,u) E fJ(H, H1) 

is Lebesgue measurable. 

Moreover, we assume 
,T. 

(A8) coercivity: there exist constants oz > 0, A and v such that 

2(A(t, u), u) + ~llull)~l + v/> ~llull~ + liB(t, u)ll~s 
for every u E V and a.e. t, 
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(A9) monotonicity: 

2(A( t ,u ) -  A ( t , v ) , u - v }  +  112, > IIB(t,u)- B(t,v)il~s 

for all u, v E V and a.e. t, 
z 

(AIO) boundedness of DB(t, .) on V in the sense of the norm in HI: there exists 

a constant L such that 

IIDB(t, u)kllHs LIIklIH, 
for a l l u C V ,  k c H 1 .  

Finally, we assume 

1 t = 1, and f is nonanticipating. ( A l l )  f E LP'((O,T) x f~;V*), where ~ + 

DEFINITION 5.3.1. Suppose we are given an Hi-valued initial random variable 
u0, and an H-valued Wiener process (w(t))te[O,r ]. 

Suppose further that an Hi-valued stochastic process (u(t))te[O,T] has the 
following properties: 

(i) (u(t))te[O,T] is well measurable (see [82]), 

(ii) u(t) C LP((O,T) x f~; V) ML2(ft;C(O,T;HI)), 
(iii) there exists a set f~' C f~ such that P(f~') = 1 and for all (t, w) E [0, T] × ft' 

and y E Y C H (Y is an everywhere dense, in the strong topology, subset 
of H)  Equation (5.3.3) is satisfied in the following sense: 

/: (y,u(t,w))H = (y, uo(w))H-- (A(s ,u(s ,w)) ,y)ds-  

- ( Y ,  fotB(s,u(s,w))dw(S)) H+ (f(t,w),Y) • 

Equivalently, this equality may be understood in V* (see Krylov and Rozovs- 
kii [50]). 
Then (u(t) )tc[o,T] is called a solution to (5.3.3) with initial condition uo. 
The uniqueness of solution is understood in the sense of trajectories. 

By our assumptions, the existence and uniqueness of solutions is guaran- 
teed. 

Denote by V,~ = Hl,ra = V* the vector space spanned by the vectors 
l l , . . . ,  l,~ and let Pm E L(HI, Hi,m) be the orthogonal projection. We intro- 
duce in Hl,m the norm 

I1<1 -- 2 

" 3 = 1  

for u = ( u l , . . . ,  urn), and the usual scalar product (.,-). 
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We extend Pm to an operator V* --4 Vr~ by 

m 

Pmu = ~ ( u ,  lj}lj for u E V*. 
j=l  

We denote by Hm the vector space spanned by the vectors e l , .  • •, era. Let I-Ira E 
L(H, Hm) be the orthogonal projection. 

Now, we define the families of operators Am(t, .): Vm --~ V~ by 

Am(t,u) := P,r~A(t,u) for u E Vm, (5.3.6) 

and Bin(t, .): Hl,m ~ IZ2(Hm, HI,m) by 

]3m(t,U) := PmB(t,u) for u E Hl,m. (5.3.7) 

Let win(t) be the Wiener process with values in Hm defined by 

wm(t)=Hmw(t).  

Clearly, it can be represented by formula (5.3.1). Moreover, we put 

fm = Pmf E LP'(f~ x (0, T); Vr~), 

which can be represented by formula (2.2), and 

ur~ = Pmuo E L2(f~; HI,m). 

Now, we consider the following stochastic differential equation of It5 type in 
the space R m for the ith coordinate of a process vm(t) = (v~(t) , . . . ,  vm(t)) E 
HI,m: 

dvm(t) + Ar~(t, vm(t))dt + Bm(t, vm(t))dwm(t)+ 
1 ~ m OB~j(t'vm(t)) m 

+~ , - ,  ~ ~J Ovp Bzj (t, ~m(t)) dt = f~(t) dr, (5.3.8 m) 
j=l/=1 

~m(0) = ~ ,  
where (B~(t, vm(t)))i,j=l ..... m is the matrix representation of elements of 
B~(t ,~(~)) .  

For every n E N, we also consider the approximation equation 

dv(m)(t) + Am(t,v~)(t))dt + Bm(t,v(m)(t))dw(~)(t) 
= fro(t) dr, 

v(~ (o) = u~, 

(5.3.9~) 

where w(~)( ) are given by (5.3.2). We observe that dw~n)(t ) w(n)dt on every 
n n interval (t i_ 1, ti ], so Equations (5.3.9n m) are of a deterministic nature for almost 

every w E ~2. 
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We start with 

LEMMA 5.3.1 [112]. The correction term 

(2  ~-~ m~ ;~J OB~(t'vm(t)) 

j = l  /=1 / i = l , . . . , m  

in Equation (5.3.8 m) is the result of applying the projection operators Pm and 
IIm to the operator B(t, .) and to the Wiener process (w(t))tc[O,Tl in the con- 
struction of the term ½{r(QDB(t, ~(t))B(t, ~(t))), that is, 

m OB. (t, vm( t ) )  m 
~'~Aj Ovp Blj(t'vm(t)) 

j = l  /=1 

> {r(QDB(t,~(t))B(t,~(t))) weakly in H1. (5.3.10) 

Further, we quote 

LEMMA 5.3.2 (Pardoux [82, Theorem 2.1, p. 93]). Under assumptions (A1)- 

(An), (A6)-(All)  Equation (5.3.8) has exactly one solution vm(t) E Hl,m and 

v m E LP((O, T) x a; Vm) M L2(f~; C(0, T; HI,m)). ( 5 . 3 . 1 1 )  

LEMMA 5.3.3 [1121. Let vm(t), ~(t) be the solutions to Equations (5.3.8) and 

(5.3.5), respectively, under assumptions (A1)-(A4), (A6)-(A11). Then for each 
t E [0, T], 0 < T < oo, we have 

l i r n  E[l lvm( t )  - = 0. (5.3.12) 

Finally, we have proved a most important lemma which shows the difference 
between the method of proving Theorems 5.3.1 and 5.3.2 from the up-till-now 
proofs of Wong-Zakai theorems in finite and inifinite dimensions. Before, the dif- 
ferences between the approximate and limit equations were examined and by arti- 
ficially added and subtracted terms, the forms of correction terms were obtained. 
Now, given the Galerkin approximation and then the Wong-Zakai approximation 
of the solution to (5.3.3), we have to prove the convergence of this approximate 
sequence to the limit equation as m ~ ee independently of r~ --+ oo. We have 

LEMMA 5.3.4 [1121. Let Am(t, .) and Bin(t, .) be given by (5.3.6) and (5.3.7), 
Z C 

respectively, under assumptions (A1)-(All). Let w~)(t) be given by (5.3.2). 
Assume that v(m) ( t ) and U(n ) ( t ) are solutions to Equations (5.3.9 m) and (5.3.4n), 
respectively. Then, for every t E [0, T], 0 < T < oo, we have 

rn 2 l i r n  E[llv (m))(t ) - ---- 0,  (5.3.13) 
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where {n(m)} is an arbitrary increasing sequence depending on m. 

We have proved the following 

THEOREM 5.3.1 (Twardowska [112]). Let ~(t) and U(n)(t) be solutions to Equa- 
z z 

tions (5.3.5) and (5.3.an), respectively. Assume that ( A 1 )-( A 11) are satisfied. 
Take approximations W(n)(t ) of the Wiener process w(t) given by (5.2.5). Then, 
for each t C [0, T], 0 < T < c~, we have 

E[llu(~)(t)L., - -  - ~ ( t ) l 1 2  J] = 0. (5.3.14) lim 
n---)-oo 1 

Now we consider equations involving sums of operators. Let Ai(t, .): Vi --+ 
Vi* and Bi(t,.): Vi --+ £2(H, HI), i = 1, . . .  ,q, be q families of operators. 
We have proved ([112]) the approximation theorem of Wong-Zakai-type for the 
following equation: 

q q 

du(t) + ~ Ai( t ,u( t ) )dt  + ~ Bi ( t ,u ( t ) )dw( t )= f ( t )dt ,  
i=1 i=1 

u(0) = u0. (5.3.15) 

Several papers (Aquistapace and Terreni [2], Brzelniak, Capifiski and Flan- 
doli [14], Curtain and Pritchard [22], Twardowska [115]) deal with stochastic 
evolution equations where the unbounded operator is the infinitesimal generator 
of a semigroup, as in Section 5.2. In other papers (Bensoussan [10], Bensoussan 
and Temam [11], Gy6ngy [35], Krylov and Rozovskii [50], Pardoux [82, 83], 
Rozovskii [93]) this assumption is replaced by the coercivity of this operator. 
From Tanabe's book [105] we know that in some cases, evolution equations 
of the second form can be transformed to the first form. Sometimes, the two 
assumptions hold simultaneously. For example, the Laplacian is both coercive 
and is the infinitesimal generator of a semigroup. 

On the other hand, these results here are in a sense more general than those 
in the author's papers [114] and [115], because the operator A(t, .) is allowed 
to be nonlinear. A nonlinear operator A cannot be used in the semilinear model. 
Moreover, the model presented here admits consideration of operators depending 
explicitly on a random event w E f~, that is, the model considered by Krylov and 
Rozovskii in [51]. 

We omit here the strong assumptions (A5), (A3)(i) and (A3)(ii) from Sec- 
tion 5.2 used in [114, 115] to ensure a boundedness property of the composition 
of the operators, and to ensure certain Lipschitz and growth conditions. Those 
assumptions were introduced in the papers for technical reasons in the proof of 
a approximation procedure of the Wong-Zakai-type. However, in [114, 115] we 
do not assume the monotonicity of operators. 

Therefore, the present version of the Wong-Zakai approximation theorem in 
infinite dimensions is in the above sense more general than in [114, 115]. 
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5.4. STOCHASTIC NAVIER-STOKES EQUATIONS 

We consider in this section an approximation theorem (see [113]) for stochastic 
Navier-Stokes differential equations. 

Similar equations were already studied, e.g., by Bensoussan [9], Bensoussan 
and Temam [12], Capifiski [16], Capiriski and Cutland [17]. In the above papers, 
mainly existence and uniqueness theorems were given. 

We keep all the notation from Section 5.3. We also consider real separable 
Hilbert spaces V and W which are continuously and densely embedded in the 
Hilbert space HI. Moreover, the inclusion V ~ Hi is compact. Then, identifying 
Hi with its dual space H~" (by the scalar product in H1) we have, denoting by 
V* and W* the dual spaces to V and W, respectively, 

W C  V C  HI = H I  C V* C W*. 

The embeddings are continuous with dense ranges. The above spaces are 
endowed with the norms I1" IIw, I1" IIv, I1" Ilnl and I1" IIv,, I1" tlw,, respectively. 
The pairing between V and V* (as well as between W and W*) is denoted by 
(.,.). 

DEFINITION 5.4.1. Denote by :P the a-algebra of sets on [0, T] x ~2 generated 
by all 9rt-adapted and left continuous X-valued stochastic processes. 

An X-valued stochastic process (Xt)t~[O,T] is called predictable if the map- 
ping (t,w) -4 Xt(w) is P-measurable. 

We consider the stochastic nonlinear differential equation 

du(t) + A(t)u(t)dt + a(u( t ) )  dt + B(t, u(t)) dw(t) = f ( t )a t ,  

u(0) = u0, (5.4.1) 

where (u(t))te[O,Tl is an Hi-valued stochastic process and 

(B 1) uo is an Hi-valued square integrable Fo-measurable random variable, that 
is, uO E L2(~,Fo, P;H1). 

For every n E N we consider the approximation equation 

du(n)(t ) q- A(t)U(n)(t)dt q- G(u(n)(t))dtq- 
+B(t, u(n)(t)) dw(,~)(t) = f(t) dr, u(n)(0) = u0, (5.4.2,0 

where W(n ) (t) is given by (5.2.5). 
Moreover, we consider the equation 

d~(t) + A(t)~(t)dt + G(~(t))dt + B(t~(t))dw(t)+ 
+ ½~r(QDB(t, ~(t))B(t, ~(t))) dt = f(t)dt, 5(0) = uo, (5.4.3) 

with tr(QDB(t, ~(t))B(t, ~(t))) as described before. 
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Remark 5.4.1. Assumption (B7) ensures the correctness of the definition of 
DB(t, hl) o B(t, hl) E L(H,L(H, HI)) for hi E Hi because DB(t, hl): Hi D 
V --+ L(H, Hi ) is bounded on V in the norm of Hi.  

We assume that the family of operators A(t) E L(V, V*) defined for (a.e.) 
t E (0, T) has the following properties: 

(B2) growth restriction: there exists a constant fl such that 

IlA(t)ullv* < ~llullv for every u E V and for a.e. t, 

(B3) coercivity: there exist constants a > 0 and A, ~ such that 

2(A(t)u,u) + ),llull~, + ~ ~> ~llull 2 + IIB(t,u)ll~s 
for every u E V and a.e. t, 

(B4) measurability: the mapping 

(0 ,T)  ~ t ~ (A(t)u,v) E R 

is Lebesgue measurable for every u, v E V. 

The family of operators B(t, .): V --+ £:2(H, H1) defined for a.e. t E (0,T)  
satisfies the following assumptions: 

(B5) boundedness: there exists a constant ]_, such that 

liB(t, u)ll~s ~< g 
for all u E V, 

(B6) B(t, .) E Cd, i.e., is of class C l with bounded derivative and this derivative 
is assumed to be globally Lipschitzian, 

(B7) boundedness of DB(t, .) on V in the sense of the norm in Hi" there exists 

a constant L such that 
% 

HDB(t, u)kllHs .< LIIklln, 
for all u E V, k E H1, 

(B8) measurability: for every u E V the mapping 

(0, T)  ~ t --~ B ( t , u )  E / :2 (H,  H1) 

is Lebesgue measurable. 

The bilinear continuous mapping G: V x V ~ W* satisfies the following 
assumptions: 

(B9) (G(u, v), v) = 0 for every u E Y and v E W, 

(B 10) boundedness: there exists a constant t~ such that 
1/2 1/2 1/2 1/2 

IIG(u,v)llw. <<. Cllulln, IlvllH, II~IIv Ilvllv 
for all u, v E V. 
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Finally, we assume 

(B l l )  f E L2((0 ,T)  × f~;V*) and f is nonanticipating. 

Put G(u) = G(u, u) for every u E V. 
The solutions to Equations (5.4.1)-(5.4.3) are understood to be like in Sec- 

tion 5.3. 
Denote by 69 an open bounded subset of R 2 with a regular boundary 0(_9. 

Let HS(O) be the Sobolev space of functions y which are in L2(O) together 
with all their derivatives of order <~ s; s > 2 (2 = 2In + 1, where n is the 
dimension of R 2, i.e. 2). Further, H~(O) C Hi(O) is the Hilbert subspace 
of functions vanishing on 0 0 .  We also introduce the product Hilbert spaces 
(L2(O)) 2, (H~ ((,9)) 2, ( n s ( o ) )  2, with the appropriate scalar products. 

We consider the set "k'(O) of functions from C ~ with a compact support in 
O. 

and 

Put 

20y i  } 
= (Yl,Y2): Yi E V(O), div y = ~ Oxi = 0 

i = l  

H1 = the closure of g in (L2(O)) 2, 

V = the closure of g in (H~(O)) 2, 

W = the closure of g in (HS(O)) 2. 

These spaces have the structure of the Hilbert spaces induced by (L2(O)) 2, 
(Hd (O)) 2, (Hs(O)) 2, that is, 

2 
= 

i = l  

2 

( (y ,z ) )v  =  (yi, 
/=1 

2 

( (y ,z ) )w = Z ( y i ,  zi)m(o).  
i = l  

It is obvious that W, V and HI have all the properties as in the abstract model 
(5.4.1). 

Let u > 0 be fixed. We define the family of operators A(t) E L(V, V*) by 

(A(t)y,z) = u((y,z))y 
for all y, z EV. Therefore, assumptions (B2), (B3), and (B4) (for c~ = u, A = 0, 

= 0) are satisfied. Further, we consider a trilinear form 

2 

i,j=l 
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defined and continuous on V x V x W. We recall (Lions [59, p. 67 and p. 71]) 
that for a positive constant C1 we have 

2 Ib(y,y, w)l ~< CIIlYlI(L'(O))211wlI(H'(O))2 (5.4.4) 

for all y, w • V. Next, we define a bilinear continuous operator G: V × V --+ W* 
by 

( c ( y , z ) , w )  = b ( y , z , w )  

for all y, z • V and w •W. 
It is easy to check that assumptions (B9) and (B10) are satisfied. 
We consider the following stochastic Navier-Stokes equation 

d u -  v A u d t +  (u. ~7)udt + Vpdt  + B(u)dw(t)  : f ( t )dt ,  

u = 0  o n E = [ 0 ,  T ] × 0 0 ,  

u ( 0 ) = u o  in 69, 

div u = 0 in [0, T] × O, (5.4.5) 

where u = u(t, x) is the velocity field of a fluid and p = p(t, z) is the pressure. 
The reduction to the abstract form (5.4.1) is completely classical and we omit 

it. Further, we shall understand Equation (5.4.1) as the above Navier-Stokes 
equation for O C R 2. 

The uniqueness of solution is understood in the sense of trajectories. 
The existence and uniqueness of our solutions under assumptions (B 1)-(B4), 

(B8)-(B 12) follows from the following modification of Theorem 6.3 in the paper 
of Capifiski and Cutland [17]. Namely, we omit the assumption on the periodic 
boundary condition that we only need to prove the uniqueness of the solution. 
The uniqueness is obtained from the paper of Capifiski [16]. 

We proved in [113] the following theorem similarly to Theorem 5.3.1 using 
analogs of Lemmas 5.3.1-5.3.4. Some difficulties arose in the analog of Lem- 
ma 5.3.3. 

THEOREM 5.4.1 (Twardowska [113]). Let ~(t) and u(n)(t) be solutions to Equa- 
tions (5.4.3) and (5.4.2n), respectively. Assume that assumptions (B1)-(B10) 
are satisfied. Take approximations w(n)(t) of the Wiener process w(t) given by 
(5.2.5). Then, for each t • [0, T],0 < T < c~ 

n l i m  - = 0. (5.4.6) 

6. Applications 

6.1. APPLICATION DERIVING THE RELATION BETWEEN THE ITC) AND 
STRATONOVICH INTEGRALS 

Firstly, we consider the Stratonovich integral with integrands of delayed argu- 
ment on a finite time interval. The relation between this integral and the It6 
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stochastic integral with the same integrand is given in the paper of Dawidowicz 
and Twardowska [25]. 

An additional term occurring when the It6 integral is changed to the 
Stratonovich integral is the same as the correction term in an approximation 
theorem of the Wong-Zakai-type in [115, 116]. 

We consider the following stochastic integral equation with delayed argu- 
ment: 

/0' x~(t,w) = x~(w) + bi(s, Xs(.,w))ds + 

fot + ~ ~iP(8,xs(.,~))d~(s) (6.1.1) 
p = l  

for i = 1 , . . . ,  d. The second integral in (6.1.1) is the It6 integral. Besides (6.1.1), 
we consider the equation 

/: Xi(t,w) = X~(w) + b~(s, Xs(.,w))ds + 

+ aiV(s, Xs(.,w))dwP(s) + (6.1.2) 

, 

+-2 fo DJaiP(s'Xs(" w))aJP(s'Xs(" w))ds 
p = l  j = l  

for/---- 1 , . . . , d .  
We assume (.~1)-(/~5) for finite r E R+ from Section 5.1 and also 

(A*6) there exists a constant M > 0 such that for every s, t E I and ¢p E C_ we 
have 

[ o ' ( s , ~ ) -  o ( t ,~ ) lL  ~< MIs- t l ,  
(A*7) the process Xo satisfies E[ISo(O)l 4] < ~ for every 0 E I - r ,0] ,  where 

d 

IX0(0, ~)1 = ~ IX~(O, ~)1. 
i=1 

We have 

DEFINITION 6.1.1. Given a function f :  [0, T] × C_ --+ ~, consider the following 
limit: 

lim 5'~ 
n - - + o o  

n 

= l i rn  ~-'~ [ w ( t ~ ) -  w(t'~_t)]f(½(t' ~ + tn_l), ½(Xt'~ + Xt,~_~)), 
i=1 

(6.1.3) 
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where w(t) is the one-dimensional Wiener process. The limit is taken in the mean- 
square sense and 0 = t~ < t~ < . . .  < t~ = T is a partition of the interval [0, t]. 
We assume that the sequence of partitions is normal, that is, max(t~_ l - t ~ )  --+ 0 
as n --+ cx~. If this limit exists and does not depend on the choice of partition, it 
is called the Stratonovich integral and is denoted by (S) f [  f(t,  Xt) dw(t). 

We recall the definition of the It8 integral: 

f0 T (I) f(t ,  Xt) dw(t) = lim In 
n - - I - c x )  

n 

= (6.1.4) 
i=1 

with the same assumptions as in Definition 6.1.1. 
We proved in [25] the following 

THEOREM 6.1.1 (Dawidowicz and Twardowska [25]). Let f: [0, T] ×d_ --+ R be 
continuous in the first variable and differentiable in both variables with bounded 
derivath~e of~at, t E [0, T], and with a continuous Frdchet derivative in the 
second variable. Moreover, let 

T T d 2 
fo E[[f(s'Xs)l]2 ds < °°' E l f  ° -~s f(s, Xs) ds] < o o ,  (6.1.5) 

where X is the strong solution to stochastic differential Equation (6.1.1) and 
w(t) is the m-dimensional Wiener process. Moreover, assume that conditions 
(A1)-(A5) and (A*6), (A*7) are satisfied. Then there exists the Stratonovich 
integral (6.1.3) and 

(S) f(t ,  Xt) du°( t )  
p=l 

= (I) ~ fTf(t, Xt)dwP(t)+ 
p=l J0 

1 m d T 
+2 ~ ~ fO Djf(s,  Xs)grJP(s,Xs)ds. (6.1.6) 

Remark 6.1.1. In particular, if f(t, Xt) = a(Xt) ,  then the correction term in 
(6.1.6) has the form 
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It is the same correction term as in an approximation theorem of the Wong- 
Zakai-type in Section 5.1. 

Now we mention that a similar result for the model described in Section 5.2, 
where semilinear stochastic differential equations in Hilbert spaces are consid- 
ered, was proved by the author in [117]. The correction term introduced in 
(4.1.10) occurring in an approximation theorem of the Wong-Zakai-type is the 
same as in the course of the transition from the It6 to Stratonovich integral in 
[117], which should have been expected, like in the one-dimensional case. 

6.2. APPLICATION TO SUPPORT THEOREMS 

The second important application of Wong-Zakai theorems is that they constitute 
an important part of the proofs of the theorems on the support of measures 
connected with the solutions of the appropriate stochastic differential equations. 
They are also an indication for computations of It6 formulas for the stochastic 
delay differential equations, as well as in the more general case of stochastic 
semilinear evolution equations in Hilbert spaces. 

Suppose now that our aim is to describe the topological support S1 = ~r(P~) 
of the measure P~ (that is, of the probability law of the solution ~(t) to (5.2.3)) 
in the space G of Hi-valued continuous functions (of the trajectories of these 
solutions). We know that this support is the intersection of all closed sets A C_ G 
such that P ( ~  E A) = 1. Let 

S = {v E CI([O,T],HL): v(0) = 0} (6.2.1) 

denote the set of smooth disturbances of the Wiener process w(t). We intro- 
duce the following deterministic equation for v E S (see the notation of Sec- 
tion 5.2): 

u*(t) = s(t)zo + s ( t -  + 

/o' + S ( t -  s)13(u*(s))v(s) ds, u*(0) = z0. (6.2.2) 

Define 

5'2 = 5'u* = cl{u*' u* is the solution to (6.2.2) for some v E S}. (6.2.3) 

The support theorem ([118]) reads as follows: 

THEOREM 6.2.1. Consider Equations (5.2.3), (5.2.7,,). Suppose that assump- 
tions (A1)- (A5)f rom Section 5.2 are satisfied. Then S1 = ~2. 

Similarly, we obtain the support theorem for the model (5.3.5). Let S1 denote 
the topological support of the measure Pa in the space G = C(O,T;HI)N 
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D°(0, T; V). The set S is given by (6.2.1) and $2 is defined in a way similar to 
(6.2.3). Then Sl = $2. 

6.3. APPLICATIONS TO ENGINEERING AND PHYSICAL SCIENCES 

Important questions arise in engineering and physical sciences when stochastic 
differential equations are used in applications and the appropriate version (It6 or 
Stratonovich) of an equation should be chosen. The interpretation of stochastic 
integrals and stochastic differential equations results from the property of the 
sample paths of a Wiener process that they are not differentiable or even of 
bounded variation. This is not a problem if we remember that such equations 
arise from adding to ordinary differential equations random fluctuations described 
by a Gaussian white noise that generalizes the derivative of a Wiener process. We 
know that the white noise processes are meant in engineering to be idealizations 
of real coloured noise processes with arbitrarily small autocorrelations at different 
time instants. Our answer as to which kind of equation should be chosen depends 
on the intention of exactly how the white noise processes are to approximate and 
how a stochastic differential equation approximates the real events. 

Physically realizable processes are often smooth with a small degree of auto- 
correlation. Consider a random differential equation that is an ordinary differential 
equation in each of its sample paths: 

dX(n)(t) = m(X(n)(t) , t)dt  + a(x(n)(t),t)dR(n)(t),  (6.3.1 n) 

where R(n)(t) is a close process to the Wiener process. This equation in its 
integral form involves Riemann-Stieltjes integrals which can be computed by 
the methods of classical calculus. Since these methods are also valid for the 
Stratonovich calculus, a Stratonovich interpretation of equations is more appro- 
priate for the limit equation obtained by replacing the Wiener process w(t) by 
the real process R(n)(t). We have seen, e.g., in (1.8) the importance of knowing 
the Wong-Zakai correction terms in numerical schemes. 

Theorems of the Wong-Zakai-type establish the same result under some 
restrictive assumptions on the coeffitients m, cr and smooth approximation noise 
process R (n) (t), therefore we see that the Stratonovich interpretation is more 
appropriate when the white noise is used to idealize a real noise process. The It6 
interpretation is more useful in other cases where, for example, we need to have 
the martingale properties of solutions and the appearance of the correction term 
in the limit equation is not of great discomfort. 

There are many problems in engineering and physics that can be modelled 
by an ordinary differential equation with random fluctuations which have been 
deduced from phenomological or physical laws, e.g. biological systems in genet- 
ics and population growth, environmental sciences, and so on. 
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