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Abstract 

The development of cancer is a multistage process. The activation of proto-oncogenes and the inactivation of 
tumor suppressor genes play a critical role in the induction of tumors. Using human cell model systems of 
carcinogenesis, we have studied how oncogenes, tumor suppressor genes, and recessive cancer susceptibility 
genes participate in this multistep process. Normal human cells are resistant to the transforming potential of 
oncogenes, such as ras oncogenes, which are activated by specific point mutations. Since as many as 40% of 
some tumor types contain activated ras oncogenes, a preneoplastic transition in multistage carcinogenesis 
must involve changing from an oncogene-resistant stage to an oncogene-susceptible stage. The analysis of 
such critical steps in carcinogenesis using rodent systems has usually not represented the human disease with 
fidelity. In order to study this carcinogenic process, we have developed human cell, in vitro systems that 
represent some of the genetic changes that occur in cellular genes during human carcinogenesis. Using these 
systems, we have learned some of the functions of dominant activated-transforming oncogenes, tumor 
suppressor genes, and cellular immortalization genes and how they influence the carcinogenic process in 
human cells. Using our understanding of these processes, we are attempting to clone critical genes involved 
in the etiology of familial cancers. These investigations may help us to develop procedures that allow us to 
predict, in these cancer families, which individuals are at high risk for developing cancer. 

Genetic events in multistage carcinogenesis 

It is well established that the development of can- 
cer (carcinogenesis) requires multiple steps [1, 2]. 
Epidemiological studies, age-dependent tumor in- 
cidence, histopathology studies, and experimental 
models have indicated the multistep nature of tu- 
mor induction and progression [3-5]. The concept 
of a genetic basis for cancer dates back to the turn 
of the century, when Boveri contended that chro- 
mosomal changes play a major role in the cancer 
process. Support for this notion was enhanced by 
the discovery of cellular oncogenes, and these 
genes have formed the basis for our understanding 

of the genetic events in cancer [6--9]. When normal 
proto-oncogenes become activated to potential tu- 
morigenic oncogenes by structural and regulatory 
alterations, they can play a direct role in tumorige- 
nesis. It is evident that cells of all vertebrates and 
invertebrates as diverse as man, fish, frog, and 
Drosophila, as well as lower single-cell eukaryotes 
such as yeast, contain proto-oncogenes. These 
genes possess a high degree of interspecies homol- 
ogy even in totally unrelated species [10]. Certain 
proto-oncogenes are transcribed in particular cell 
types at specific times during normal embryogene- 
sis, and transiently when cells are stimulated by 
mitogens to proliferate [11, 12]. Alterations affect- 
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Table 1. Proto-oncogenes 

Proto-oncogenes Possible function Location on human chromosome 

Growth factor 
EGF Ligand 
TGF alpha Ligand 
TGF beta Ligand 

PDGF Ligand 
FGF Ligand 
CSF-1 Ligand 

Trans membrane tyrosine kinase 
c-erb B-1 
c-erb B-2 
corms 
met 
ros-1 
kit 
trk 
tyk-1 
tyk-2 

Cytoplasmic 
c-abl Protein 
c-src Protein 
c-fes/fps Protein 
c-fgr Protein 
c-yes Protein 
c-fyn Protein 
c-lyc Protein 
c-lck Protein 
c-tkl Protein 
hck 
c - m o s  

raf l,2 
rsk 
crk 

G-protein like 
H-ras 
K-ras 
N-ras 

Nuclear 
c-myc 
N-myc 
c - los  

c-jun 
c-myb 
c-tel 
ski 
s n o  

ets 1,2 
erg 
erb A 1,2 

Receptor for EGF & TGFalpha 
Receptor for ? 
Receptor for CSF-1 
Receptor for ? 
Receptor for ? 
Receptor for ? 
Receptor for ? 
Receptor for ? 
Receptor for ? 

tyrosine kinase 
tyrosine kinase 
tyrosine kinase 
tyrosine kinase 
tyrosine kinase 
tyrosine kinase 
tyrosine kinase 
tyrosine kinase 
tyrosine kinase 

Protein tyrosine kinase 
Serine/threonine kinase 
Serine/threonine kinase 
Serine/threonine kinase 
PI specific phospholipase C 

GTP binding, GTPase 
GTP binding, GTPase 
GTP binding, GTPase 

DNA binding 
DNA binding 
Transcription factor 
Transcription factor 
Transcription factor 
Transactivation 
Transcription factor 
Related to ski 
Transcription factor 
Related to ets 
Hormone receptor transcriptional control 

4q25 
2p 
19q 
22q 
? 

5q 

7p11.2 
17q11.2 
5q33 
7q 
6q 
4q13 
lq32.1 

? 

9q34.1 
20q13.3 
15.26.1 
lp36.1 
18q 
? 
? 

lp 
? 

20q 
8q 
3p25,4 
? 
? 

11p15 
12pl2-pter 
1p13.1-p21 

8q24 
2p24.2 
14q 
lp 
6q 
3 
lq 
? 
llq, 21q 
? 
17q, 3p 



ing the expression or function of proto-oncogenes 
are widely considered to be contributing causes for 
cancer development [13]. It is thought that groups 
of functionally diverse proto-oncogenes play a crit- 
ical role, perhaps cooperatively, in governing nor- 
mal cellular proliferation and/or differentiation by 
functioning at distinct steps in intracellular signal 
transduction of the growth factor cascades. 

Proto-oncogenes can be classified into groups by 
the location and biological activity of their prod- 
ucts: secreted growth factors, cell surface receptors 
with the associated protein kinases activity, cy- 
toplasmic protein kinase, and nuclear proteins with 
transcription factor activity. For example, the c-sis 

gene product has been identified as the beta-sub- 
unit of platelet-derived growth factor (PDGF) [14]; 
the products of c-erb B and c-fms genes have been 
identified as the cell surface receptors of epidermal 
growth factor (EGF) and monocyte colony stim- 
ulating factor 1, respectively [15, 16]; and the erb A 

protein has been identified as a T3 thyroid hor- 
mone nuclear receptor [17]. It has been demon- 
strated that growth factors, like PDGF, are able to 
induce expression of nuclear proto-oncogenes c- 
myc, c-fos, and c-jun [18-20]; c-mos is able to in- 
duce mitotic maturation [21]. From these results 
and others, proto-oncogene protein products seem 
to be involved in many steps of the growth factor 
receptor mediated intracellular signaling pathway. 

However, there is no evidence that the activation 
of a single cellular oncogene, such as ras oncogene, 
can change a normal diploid cell into a tumor cell. 
Numerous experiments indicate that the tumori- 
genic process requires the activation of certain on- 
cogene(s) as well as the loss of a second class of 
genes called tumor suppressor genes or recessive 
cancer susceptibility genes. 

This need for multiple genetic alterations for 
tumorigenic conversion of normal cells has also 
been shown by transfection experiments into di- 
ploid embryonic fibroblasts [22]. In contrast to the 
already immortalized and aneuploid NIH/3T3 
cells, cultures of this embryonic fibroblast cell can 
be transformed only if the activated ras gene is 
co-transfected with constitutively expressed c-myc 
or, alternatively, with one of the DNA viral T 
antigens such as SV40-LT or adenoviral Ela  genes 
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[22, 23]. Transgenic mice carrying myc gene con- 
structs linked to an Ig enhancer develop pre B or B 
cell lymphomas that are mono- or bicolonal and 
appear only after a considerable latency period, 
indicating that one or several additional events 
must contribute to tumor development [24]. The 
activation of a second oncogene or inactivation of a 
tumor suppressor gene might be suggested as a 
further alteration. The progression of Burkitt's 
lymphoma requires at least three identifiable steps: 
infection with Epstein-Barr virus enhances the 
growth of a subset of B cells; this is followed by a 
translocation of c-myc locus on chromosome 8 and 
then the possible activation of a ras oncogene [13]. 

Several lines of evidence point to the existence of 
a class of genetic elements termed tumor suppres- 
sor genes or recessive cancer susceptibility genes. 
When they become homozygously inactivated by 
deletion or point mutation a tumor can arise. This 
class of gene was predicted by Knudson and Strong 
in the 'Two-Hit' hypothesis, in which they stated 
that cancer will occur only after the loss of two 
alleles at a particular genetic locus [25]. According 
to their theory, both genetic events take place in 
somatic cells in sporadic cancer, whereas in inher- 
ited cancers one of the genetic hits takes place in 
the germ line and the second occurs in somatic 
cells. 

Harris and coworkers [26] found that somatic 
cell hybridization of normal and malignant rodent 
cells results in the suppression of the tumorigenic 
phenotype. The reappearance of tumorigenicity is 
accompanied by chromosome loss. The loss of 
chromosomes i and 4 from nontumorigenic somat- 
ic cell hybrids of human fibroblasts and HT1080 
fibrosarcoma cells has been shown to correlate with 
the re-emergence of tumorigenicity [27]. The in- 
volvement of a normal chromosome in the suppres- 
sion of tumorigenicity was further demonstrated by 
transferring a normal chromosome into the tumor 
cells. For example, the introduction of normal hu- 
man chromosome 11 into a Wilms' tumor cell line 
suppressed the ability of the cell to induce tumors 
in nude mice [28]. This provided direct evidence for 
the involvement of chromosome 11 in the suppres- 
sion of tumorigenesis. This has also been demon- 
strated by transferring a single chromosome 11 into 
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Hela cells ]29], although different regions of chro- 
mosome 11 are believed to be involved. 

Another line of evidence for the existence of 
tumor suppressor genes has been the finding that 
certain chromosomal loci undergo a nonrandom 
loss of heterozygosity in particular human tumors 
[30] (see Table 2 and references therein). By com- 
paring the restriction fragment length polymor- 
phism (RFLP) in normal and tumor tissue, many 
laboratories have documented the tumor specific 
loss of one parental allele of a polymorphic DNA 
marker [30]. These results were consistent with the 
loss of tumor suppressor loci, and, with the cloning 
of the retinoblastoma susceptibility locus, this sup- 
position was confirmed [31]. 

Morphological and nontumorigenic revertants 
can be isolated from r a s  transformed rodent cells. 
Krev-1, a r a s  related gene that has the ability to 

suppress ras transformation, was isolated from re- 
vertants of Kirsten sarcoma virus-transformed 
NIH/3T3 cells by transfecting with DNA from a 
cDNA expression library made from the RNA of a 
normal human fibroblast [32, 33]. Schaefer e t  al.  

[34] were also able to transfect tumor suppressor 
activity from human placental DNA into similar 
cells, obtaining suppressed cell lines from which 
they cloned a DNA segment with tumor-suppress- 
ing activity. There is reason to believe that such 
genes may mediate growth- inhibiting processes 
such as differentiation. 

Differentiation of human teratocarcinoma cells 
[35] and murine myocytes [36] can be blocked by 
the expression of an activated ras  oncogene. Dif- 
ferentiation can also be blocked by the expression 
of a temperature-sensitive oncogene. For example, 
it has been shown that myoblasts transformed by a 

Table 2. Loss of alleles associated with human malignancies 

Tumor Chromosome location Reference 

Neuroblastoma lp 122, 123 
Ductal breast carcinoma lp, 13q 124 
Uveal melanoma 2 125 
Small-cell lung carcinoma 3p, 13q 126 
Squamous cell and large-cell carcinoma 3, 11, 13, 17 127 
Adenocarcinoma of the lung 3p 126 
Renal cell carcinoma 3p 128 
Von Hippel-Lindau disease 3p 129 
Colorectal carcinoma 5p, 17p, 18q 130 
Familial polyposis coli 5q 131 
Salivary gland tymor 6 132 
Acute lymphoblastic leukemia 9p21-22 133 
Non-Hodgkin's lymphoma 9p21-22 133 
Multiple endocrine neoplasia type 2A 10 134 
Glioblastoma 10 135 
Multiple endocrine neoplasia type 1 1 lq 136 
Wilms' tumor l lp 137 
Hepatoblastoma 1 lp 138 
Rhabdomyasarcoma 1 lp 138 
Bladder carcinoma l lp 139 
Cervical tumor 11 140 
Breast carcinoma llp, 13q 141,142 
Retinoblastoma 13q 143 
Osteosarcoma 13q 144 
Soft tissue sarcomas 13q 145 
Acoustic neuroma 22 146 
Meningioma 22 147 
Bilateral acoustic neurofibromatosis 22 148 



temperature-sensitive Rous sarcoma virus mutant 
failed to differentiate at permissive temperature 
but could form differentiated myotubes at non- 
permissive temperatures, and subsequent reex- 
pression of transforming protein could no longer 
prevent the maturation process [37]. The expres- 
sion of chondrocyte and melanoblast differentia- 
tion markers was also prevented by a temperature- 
sensitive Rous sarcoma virus at permissive temper- 
ature. These differentiation markers reappeared 
after a short incubation at nonpermissive temper- 
ature. If these cells were kept at the nonpermissive 
temperature for a sufficiently long time, they lost 
the ability to become transformed [38, 39]. Murine 
teratomas can differentiate normally in the appro- 
priate early embryonic environment and can gener- 
ate a full range of normal mouse tissues [40]. These 
data suggest that activated oncogenes can only 
transform cells at certain stages at which they can 
prevent further differentiation. 

Deletion or mutational inactivation of tumor 
suppressor genes has been shown to play an impor- 
tant role in the development of retinoblastoma, 
oesteosarcoma, mammary carcinoma, and some 
other tumor types [30]. These tumor cells often 
lack a functional Rb-1 protein. When the wild-type 
Rb-1 gene was introduced into retinoblastoma 
cells, the ability of these cells to form tumors was 
suppressed, probably due to severe growth inhib- 
ition [41]. Recent data suggest that the Rb-1 gene 
protein product plays a critical role in controlling 

67 

the cell cycle [42, 43]. The binding of the Rb pro- 
tein to SV40 T-antigen appears to be essential to 
the mechanism by which that virus transforms cells 
[44, 45]. Other DNA viruses with the ability to 
immortalize cells interact with the Rb-1 protein 
[46]. Interestingly, p53, a putative tumor suppres- 
sor gene, was first identified by its binding to the 
SV40 T-antigen protein [47-49], and it is believed 
that immortalization of cells in culture requires an 
inactivated p53 gene. The Rb-1 protein is phospho- 
rylated in a cell-cycle dependent manner by 
CDC-2, a protein kinase that is active at certain 
times in the cell cycle [50]. The nature of the onco- 
genes active in tumors that lack a functional Rb-1 
gene is unclear, although N-myc amplification, ad- 
ditional copies of chromosome 1, and isochromo- 
some 6p are often observed in retinoblastoma tu- 
mors [51, 51]. 

The involvement of oncogenes in human neoplasia 

A variety of proto-oncogenes have been found to 
be frequently altered in human tumors, and clinical 
correlations of the involvement of certain onco- 
genes exist for several tumor types. Table 3 lists 
some well-documented examples; some of them 
are discussed below. 

In several human tumor types, the r a s  family of 
genes is frequently found to be activated by a single 
point mutation. This family consists of three genes: 

Table 3. Proto-oncogene alteration in human malignancy 

Proto-oncogene Activation Tumor 

c-myc Amp. 
c-myc Chrm. translocation 
c-abl Chrm. translocation 
N-myc Amplification 
c-erb B Amplification 
c-neu Amplification and overexpression 
N-ras Point mutation 
K-ras Amplification and point mutation 
H-ras Point mutation 
bcl-1 Chrm. translocation 
bcl-2 Chrm. translocation 

SCLC, breast and colon carcinoma 
B and T cell lymphoma 
CML 
Neuroblastoma, retinoblastoma 
Squamous carcinoma 
Adenocarcinoma of breast 
AML, ALL, MDS, melamonas, some carcinomas and sarcoma 
Colon, lung and bladder carcinoma, pancreatic carcinoma 
Carcinoma and melanomas 
B cell lymphoma 
Follicular lymphoma 
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K-ras ,  H-ras,  and N-ras  [53]. The protein products 
of these ras genes are very similar, with a molecular 
weight of 21,000 daltons. R a s  proteins become acti- 
vated by binding GTP upon stimulation, and trans- 
duce signals to some still undefined effector pro- 
teins. Mutationally activated ras gene proteins 
have a point mutation at codons 12, 13, or 61, which 
inactivates its GTPase activity, leaving the protein 
in a constitutively activated state. The functional 
and structural similarities between the p21 ras pro- 
teins and G proteins controlling adenylate cyclase 
suggest that normal p21 ras protein is involved in 
the transduction of external stimuli induced by 
growth factors. A protein has been found to be 
involved in the hydrolysis of the GTP bound to ras 

protein. The protein, GTPase-activating protein 
(GAP), binds to the effector domain of the ras 
protein, and might play a role in signal transduction 
[54-56]. Ras genes were first identified as the trans- 
forming genes in the Harvey and Kirsten sarcoma 
viruses. Mutated ras genes were first isolated from 
human tumors because of their ability to transform 
NIH/3T3 cells by transfection of DNA extracted 
from human tumor cells [57, 58]. Subsequent anal- 
ysis revealed that ras gene mutations can be found 
in a variety of tumor types [59]. In colon carcinoma 
tissues and in the large villous types of adenomas of 
the colon, the K-ras  gene is the predominantly 
mutated form of the ras gene, and has been detect- 
ed in approximately one-half of the cases analyzed 
by Bos et al. [60]. The loss of genetic information 
has also been observed in colon cancer develop- 
ment. Vogelstein and coworkers have demonstrat- 
ed the temporal involvement of at least four genetic 
events in colon cancer development [61]: the loss of 
heterozygosity of alleles on chromosome 5p, the 
activation by point mutation of the K-ras oncogene 
on chromosome 12, the inactivation of the p53 
locus on chromosome 17, and the inactivation of a 
gene on chromosome 18. In non-small cell lung 
carcinomas, including adenoma, squamous, or epi- 
dermoid cell carcinoma, and in large cell carcino- 
ma, ras mutations are only found in adenocarcino- 
ma. The incidence is about 30%, and nearly all are 
point mutations at K-ras  gene codon 12 [62, 63]. 
Transgenic mice, carrying a plasmid that contains a 
mutated H-ras  oncogene driven by an SV40 pro- 

moter or immunoglobulin enhancer, express the 
ras gene predominantly in lung and developed mul- 
ticentric adenomatous tumors comparable to the 
well-differentiated adenocarcinoma of the lung in 
humans [64]. This experiment indicates that the 
activated ras gene plays a critical role in the forma- 
tion of this tumor and the power of transgenic 
mouse experiments. 

The incidence of ras mutations is about 20% in 
human melanoma [59]. Most of the mutations are 
found in the N-ras  genes occurring at various stages 
of tumor development. Altough the metastatic 
properties of melanoma do not seem to be influen- 
ced by the presence or absence of an activated 
N-ras  gene, there is a strong correlation between 
the presence of an activated ras gene and primary 
tumor location at a sun-exposed site [65, 66]. A 
mutated K-ras oncogene can be found in 90% of 
human exocrine pancreas tumor, and all of the 
mutations were located in codon 12 of the K-ras 
oncogene [67]. In thyroid carcinomas, activation of 
all three ras genes has been found in the benign 
follicular adenomas and in 50% of the cases of the 
follicular undifferentiated carcinoma [68]. Muta- 
tions in the N-ras  gene, K-ras  gene, and, less fre- 
quently, in the H-ras  gene were detected mostly in 
myelodysplastic syndromes (MDS) and acute mye- 
loid leukemia (AML) in about one-third of the 
cases studied [69, 70]. The presence of ras mutation 
in MDS and AML might have some direct clinical 
relevance. MDS patients with ras gene mutations 
may have a higher chance of progressing into 
AML, and so may have a poorer prognosis [70]. 
Several studies suggest that the prognostic value of 
the ras mutation may be limited [71]: the poorer 
prognosis may be due to the effects of the ras 

oncogene on the tumor cells. It has been reported 
that cells containing an activated ras gene coming 
from a multipotent stem cell appear to be more 
resistant to chemotherapy than ras mutation- con- 
taining cells occurring later in the course of MDS 
and AML [72]. Therefore, the ras mutation might 
be a suitable marker for monitoring the effect of 
chemotherapy and detecting minimal residual dis- 
ease. 

Most Burkitt's lymphoma cells have a c-rnyc/Ig 

juxtaposition by a chromosomal translocation in- 
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volving chromosome 8 at band q24, the site of the 
c-myc proto-oncogene. The reciprocal site is chro- 
mosome 14q32, the immunoglobulin heavy chain 
(IgH) locus [73, 74]. The 8 : 14 marker is the most 
commonly found in Burkitt's lymphoma (about 
90% of cases); the remaining 10% contain c-myc 

translocations to chromosome 2 at band p12 or 
chromosome 22 at band ql l ,  the sites of the kappa 
and lambda light chain genes, respectively. Similar 
chromosomal translocations have been seen in 
most cases of B cell acute lymphoblastic leukemia 
(B-ALL) and in some pre-B-ALL cases, both of 
which are non-Burkitt's B cell lymphomas [75]. 
Some oncogenes are altered in a wide variety of 
tumor types, whereas others are activated only in 
specific types of tumors. For example, c-myc is 
amplified in diverse carcinomas and sarcomas and 
in highly malignant plasma cell leukemias. The 
approximate frequency of amplification of c-myc in 
these tumors is 10%. N-myc amplification and 
overexpression is restricted to neuroendocrine tu- 
mors and appears in stage III and IV neuroblasto- 
mas [76]. It is thought that the amplification of 
N-myc in neuroblastoma may be related to tumor 
progression. The involvement of the c-myc onco- 
gene expression has been analyzed in head and 
neck tumors, and elevated c-myc gene expression 
was correlated with poorer prognosis in head and 
neck squamous cell carcinomas [77]. 

Chronic myelocytic leukemia (CML) is a disease 
of pluripotent hematopoietic stern cells with bi- 
phasic and triphasic clinical courses [78]. More 
than 90% of such patients have the Philadelphia 
chromosome, a reciprocal translocation involving 
the long arms of chromosomes 9 and 22 [79]. This 
structural alteration produces a fusion protein en- 
coded by the 3' end of the chromosome 22 associ- 
ated sequences bcr and transposed oncogene c-abl, 
leading to the expression of an abnormal protein 
that coexists with its normal c-abl protein [80]. The 
bcr-abl protein differs from c-abl not only in size 
but also in the fact that it has an abnormal tyrosine 
kinase activity, similar to that of the protein prod- 
uct of transforming v-abl gene [81]. In cases of 
CML in which the Ph' chromosome is lacking, 
there is a molecular rearrangement of the c-abl 
gene. Molecular probes often detect the rearrange- 

ment in these cases, whereas karyotype analyses 
for Ph' chromosome are negative, indicating an 
unusual translocation of bcr and abl [78]. The Ph' 
chromosome also occurs in 25% to 30% of adult 
cases and in 2% to 10% of childhood cases of ALL. 
Their leukemia cells express a novel c-abl tyrosine 
kinase (185-190 kd) as a result of the fusion of the 
putative first exon of the bcr gene with abl. These 
molecular events may be used as markers in con- 
firming the diagnosis of CML and related diseases 
[78]. 

The neu oncogene appears to encode a p185 
growth factor receptor that shares structural simi- 
larities with the EGF receptor, and its associated 
tyrosine kinase appears to be essential for the 
transforming activity of the neu oncogene [82]. 
This putative receptor can be activated to become a 
transforming oncogene by a single point mutation 
in its transmembrane domain or by overexpression 
[83]. Amplification or overexpression of the neu 

gene has been reported in 30% of human breast 
cancer cells [84, 85]. A significant correlation has 
also been reported between neu gene amplification 
and patients with lymph node involvement in this 
disease [85, 86]. In addition, the amplification or 
overexpression of the neu oncogene is a significant 
predictor of both overall survival and time to re- 
lapse in patients with breast cancer, and it has 
greater prognostic value in lymph-node negative 
disease than most currently used prognostic fac- 
tors, such as estrogen receptor level. 

In vitro cell models for analyzing progression 
toward tumorigenicity 

It has been difficult to prove a causal role for most 
of the genetic elements described here in human 
neoplasia. In order to prove a statistically signif- 
icant correlation for the role of an oncogene or 
suppressor gene at some stage of human cancer, 
large numbers of samples must be analyzed. This 
type of large-scale retrospective study can involve 
more than one thousand tumor samples [85], and 
often the conclusions remain controversial. There- 
fore, we have taken the approach of establishing 
cell culture systems to study the mechanisms of 
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oncogene-induced transformation of human cells. 
Human cells in culture are inherently more stable 
than rodent cells, and represent a controllable 
means of studying the interaction of oncogenes and 
tumor suppressor genes. They also provide a 
means of detecting new genetic elements that are 
involved in human cancer. 

In vitro experimental systems that address mul- 
tiple stages of the carcinogenic process have been 
difficult to develop because of the complexity of 
the genetic changes that occur during oncogenesis. 
The long-term objectives of establishing such sys- 
tems have been to develop cell lines dependent en 
multiple genetic events for the induction of tumori- 
genesis, to characterize those genes and their ef- 
fects on the biology of human cells, and to use the 
cell lines developed to isolate new oncogenes from 
human tumors or human suppressor genes that 
effect a transition in the multistep carcinogenic 
process. 

Until recently, studies of the biological effects of 
human oncogenes were limited to experiments 
with rodent cell lines such as NIH-3T3. These cells 
are nontumorigenic, but are far removed from nor- 
mal. They can be considered to be on the verge of 
tumorigenicity, requiring only a single additional 
genetic event to gain the capacity to form tumors. 
In those systems the genes from human tumors that 
had biological activity were very often found to be 
members of the ras family of oncogenes [8%94]. 
However, the vast majority of DNA samples from 
human tumors do not have transforming activity in 
the NIH-3T3 cell assay. 

A more relevant system for studying multiple 
genetic changes during oncogenesis has been that 
of primary rat embryo fibroblasts. It has been sug- 
gested that tumorigenic transformation of rat em- 
bryo cells requires the cooperation of genes that 
can be grouped into two classes [22, 23]. The first 
group of oncogenes is required to rescue cells from 
senescence, while the second group actually trig- 
gers the tumorigenic phenotype. The first group's 
gene products (c-myc, L-myc, N-myc, p53, myb, 
Adeno Ela, polyoma LT, SV40LT, papillomavirus 
E7) reside in the nucleus and render the cells com- 
petent for transformation by the second group of 

genes, whose products (H-ras, K-ras, N-ras, src, 
polyoma MT, erb B, fps, rail, ros yes, sea) are 
cytoplasmic [95]. Spandidos and Wilkie [96] were 
able to transform these cells in a single step with the 
prototype gene of the second cytoplasmic group, 
the activated human H-ras oncogene, whereas 
other workers found that this oncogene made the 
same type of cells metastatic as well [97]. These 
tumorigenic and metastatic ras-transformed rat 
embryo cells contain numerous chromosomal aber- 
rations. The experience gained with rat embryo 
cells has served to highlight the potential complex- 
ity of this type of system. 

An interesting system has been employed by 
Taparowsky and coworkers [98] using C3H10T1/2 
cells, which require multiple oncogenes for the in- 
duction of tumorigenesis. Using the same cell line, 
Herschman and coworkers [99] have found that 
ultraviolet light can partially transform the 
C3H10T1/2 cells to form foci that remain sensitive 
to growth-inhibitory signals from neighboring nor- 
mal cells. 

A valuable system using Syrian hamster embryo 
(SHE) fibroblasts has been developed by Barrett 
and coworkers [100]. They found that SHE cells 
could be transformed to form tumors after the 
transfection of both v-ras and v-myc oncogenes. 
Chromosomal analysis of the resulting ras/myc-in- 
duced SHE tumors revealed the nonrandom loss of 
chromosome 15. In this system, therefore, three 
genetic events are required for transformation: ras 
transfection, myc transfection, and the loss of chro- 
mosome 15. Normal SHE cells cannot be trans- 
formed by the ras oncogene, but some cell lines 
immortalized by treatment with diethylstilbesterol 
(DES) or asbestos are susceptible to ras transfor- 
mation. Somatic cell hybrids of these ras-suscep- 
tible cells and tumorigenic cell lines remain tumori- 
genic, but hybrids formed between the parent, ras- 
resistant SHE cells and tumorigenic cell lines give 
rise to nontumorigenic hybrids. Therefore, the 
DES- or asbestos-treated cell lines have lost some 
suppressive function that may be related to the 
effects of the myc oncogene or to the loss of ham- 
ster chromosome 15. Newbold and Overall [101] 
have developed a similar system, also using the 



hamster cells. Unfortunately, a complete map of 
the chromosomal locations of hamster oncogenes is 
not available. 

Human cell systems for studying oncogenes in 
multistage carcinogenesis have been difficult to es- 
tablish, because human ceils are inherently more 
resistant to tumorigenic transformation. Sager and 
coworkers [102] were able to induce a morpholog- 
ical alteration and focus formation by transfecting 
SV40 viral DNA into human foreskin fibroblasts, 
but these transfected cells were nontumorigenic in 
nude mice. However, when the cloned EJ bladder 
carcinoma H-ras oncogene was transfected into the 
foreskin fibroblasts, morphological transformation 
or tumorigenicity was not detected. Hurlin and 
coworkers [103] were able to induce morphological 
transformation, focus formation, and anchorage 
independence by transfecting, into diploid human 
fibroblasts, a plasmid that produces high level ex- 
pression of an activated human H-ras oncogene. 
However, these cells did not form tumors in nude 
mice. In sharp contrast, Spandidos and Wilkie [96] 
were able to induce tumorigenesis in rat embryo 
fibroblasts with the same plasmid. We have been 
able to transform a nontumorigenic human osteo- 
sarcoma cell line, TE-85, to tumorigenicity by 
transfection with an activated ras oncogene [104]. 

Human cells apparently possess some imped- 
ance factors that render them refractory to trans- 
formation; thus, human cell systems are more 
difficult to employ in studying carcinogenesis. Fu- 
senig and coworkers [105] and R.E. Scott and co- 
workers [106] have developed interesting systems 
using human keratinocytes, and have studied the 
interaction of tumorigenesis and differentiation. 

One of the human cell culture systems we devel- 
oped has allowed us to study the way that an onco- 
gene's action on cells is no longer regulated as cells 
progress along the transitions in multistage carci- 
nogenesis. The cell line we employ, PA-1 human 
teratocarcinoma cells, exhibits progression as it is 
passaged in culture. Initially the cells are weakly 
tumorigenic, but then they revert in culture, be- 
coming nontumorigenic when injected into nude 
mice [104]. These cells in culture from passage 30 to 
90 are nontumorigenic revertants. As PA-1 cells 
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are further passaged (passage 90 or greater), they 
grow progressively faster in culture and readily 
form tumors in nude mice, with a latent growth 
period of from 7 to 10 weeks [107]. PA-1 cells are 
highly stable karyotypically, yet they undergo pro- 
gression in culture after the establishment of the 
cell line at passage 30. This gives rise, after further 
growth, to spontaneously transformed tumorigenic 
cell lines [108,109]. 

PA-1 cells at passage 100 and beyond contain an 
N-ras oncogene with an activating point mutation 
at amino acid position 12 changing from glycine to 
aspartate [108]. The N-ras genes in early passage 
preneoplastic PA-1 cells do not contain the activa- 
ting mutation in the first exon of the gene [110]. We 
used gene transfer studies to determine whether 
this activated N-ras oncogene had a causal role in 
the tumorigenesis of these cells. We wished to de- 
termine whether a nontumorigenic PA-1 cell line 
could form tumors in athymic nude mice after the 
activated oncogene was added. For these experi- 
ments we used a nontumorigenic clone of PA-1 
cells (clone 1) isolated at passage 63. The cloned 
cells were carried an additional 50 passages (pas- 
sage 63 + 50) before these experiments, during 
which time the cells remained nontumorigenic. 
The activated N-ras gene was cloned onto the drug- 
selectable plasmid pSV2-neo [111] and introduced 
into clone 1 PA-1 cells. The resulting cells were 
able to form tumors when injected into nude mice 
[110]. The introduction of the pSV2-neo vector 
alone or a pSV2-neo construct containing the nor- 
mal human N-ras proto-oncogene into clone 1 cells 
did not result in tumor formation in nude mice 
[112]. Single copy levels of the N-ras gene were 
found in the transfected cells and tumors resulting 
from their injection into athymic nude mice, in- 
dicating that gene amplification of the N-ras onco- 
gene sequences is not required for tumor formation 
by PA-I clone 1 cells. Tumorigenic transformation 
of these preneoplastic PA-1 cells could also be 
achieved by using a pSV2-neo- activated H-ras con- 
struct. Northern blot analysis of the N-ras locus 
[109] and p21 ras oncogene expression by Western 
blot analysis indicated that clone 1 PA-1 can be 
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transformed by normal levels of expression of the 
oncogene. 

Clonal preneoplastic cell lines were established 
at passage 40 and carried an additional 10 passages; 
they were than transfected with pSV2-neo onco- 
gene plasmid constructions. When experiments 
similar to those described above for clone 1 cells 
were performed on these clone 6 cells (used at 
passage 40 + 10) using a pSV2-neo N-ras or H-ras 

construct, we found that they were not transformed 
to tumorigenicity in nude mice [109]. We wanted to 
know whether cells could progress from a prene- 
oplastic stage in which they could suppress the 
transforming potential of an activated ras onco- 
gene to a stage in which they could be transformed 
by an activated ras oncogene: i.e., from Stage 1 to 
Stage 2. PA-1 clone 1 cells were analyzed at passage 
63 + 15 for transformation by the activated N-ras 

oncogene. These cells could not form tumors in 
nude mice after transfection of the activated N-ras 

oncogene. Since they could be transformed at pas- 
sage 63 + 15 by the activated N-ras oncogene, we 
concluded that PA-1 cells can progress during 35 
passages in culture from a stage in which they sup- 
press ras to one in which they can be transformed 
by ras. Another ras-resistant stage 1 cell, clone 6, 
also progressed to a cell that displayed the ras 

transformable phenotype within 25 passages in cul- 
ture. Introduction of either the PA-1 N-ras or T24 
H-ras into Stage 1 cells at passage 40 + 15 did not 
induce neoplastic transformation. However, when 
the T24 H-ras was introduced into passage 40 + 40 
clone 6 cells or 63 + 50 clone 1 cells they formed 
colonies in soft agar and tumors in nude mice. We 
thus have two examples of clonal cell lines that can 
progress from ras resistant to ras transformable by 
passage in culture. 

We can now identify multiple stages of cell pro- 
gression toward tumorigenesis: stage 1 (ras-resist- 

ant), stage 2 (ras-transformable),  stage 3 (ras- 

transformed PA-1 cells: GT, induced by gene 
transfer on an activated N-ras oncogene, or SP, 
containing a spontaneously activated N-ras onco- 
gene), and stage 4 (transformed cells that have 
been selected through intrasplenic growth in nude 
mice to form liver metastases) [104]. Stage 1 PA-1 

cells cannot be transformed to anchorage-inde- 
pendent growth or to form tumors in nude mice by 
a ras oncogene alone. However, they can be trans- 
formed by a plasmid containing an activated H-ras 
oncogene [108] and v-myc  [113] oncogene cloned 
together into pSV2-neo [109]. In addition, because 
the level of endogenous N-ras expression does not 
vary among the four stages of PA-1 cell progression 
[114], we believe that the control of oncogene- 
inducible transformation is not regulated at the 
level of oncogene RNA expression (Table 4). 

A central question is the nature of the mecha- 
nism by which one cell can progress from ras-resist- 
ant (stage 1 cells) to ras-susceptible (stage 2 cells). 
Because v-myc  could cooperate with ras to trans- 
form stage 1 cells, as was observed by Weinberg 
and coworkers [22] for rat embryo fibroblasts, we 
investigated whether it was due to the overexpres- 
sion of a nuclear oncogene. We found no differ- 
ences in nuclear oncogene expression (Table 4) 

We could not account for the transformability of 
stage 2 cells by the expression of a cooperating 
oncogene whose expression was absent from stage 
1 cells. An alternative hypothesis was that stage 1 
cells contained a suppressor function that was lost 
in stage 2 cells. To test this hypothesis, we formed 
somatic cell hybrids between stage 1 and stage 2 
cells in the presence of an activated N-ras oncogene 
(ras-transformed stage 3 cells), and we found that 
these hybrids were nontumorigenic. The loss of 
specific chromosomes after passaging in culture 
allowed those hybrids to become tumorigenic 
[115]. We have found that in somatic cell hybrid- 
ization experiments, cells possessing tumor-sup- 
pressing activity cannot be transformed by ras. 

These cells also cannot be stimulated by multiple 
growth factors. Only preneoplastic PA-1 cells that 
are transformable by activated ras oncogenes 
(stage 2) can be stimulated by epidermal growth 
factor (EGF), basic fibroblast growth factor (b- 
FGF), and transforming growth factor alpha 
(TGF-alpha) to exhibit anchorage-independent 
growth; ras-resistant cells (stage 1) do not grow in 
agar with these growth factors. We are now in- 
vestigating the ability of EGF, b-FGF, or TGF- 
alpha to affect growth factor-responsive gene ex- 



pression in Stage 1 versus Stage 2 PA-1 cells in 
order to understand how these mechanisms inter- 
act. 

In summary, certain preneoplastic cells in this 
PA-1 series are susceptible to transformation by ras 

oncogenes, while others have not progressed as far 
and require a m y c  oncogene in addition to the ras 

oncogene to induce tumorigenesis. The molecular 
genetic basis of the susceptibility to single onco- 
gene-induced transformation appears to be due to 
the loss of a tumor suppressor gene. The m y c  onco- 
gene must therefore bypass the regulatory effects 
of the suppressor gene. We have found that the 
mechanism by which cells acquire the susceptibility 
to tumorigenic transformation by an activated ras 

oncogene is related to responsiveness to growth 
factors found in many normal tissues (EGF, TGF- 
alpha, and b-FGF), possibly by affecting an au- 
tocrine mechanism. If the cells become responsive 
to these growth factors and the oncogene induces 
secretion of the growth factor, then the cell can 
stimulate its own growth. This loss of regulation of 
growth factor-mediated stimulation of growth rep- 
resents a new regulatory role for tumor suppressor 
genes during preneoplastic stages progressing to- 
ward tumorigenicity. 

Table 4. Summary of Northern blot analysis of PA-1 cells 

73 

Properties of fibroblasts from patients with 
inherited cancers 

In order to study the causative role genes play in 
the induction of tumors, we sought an experimen- 
tal system in which cells occur naturally in an ab- 
normal but preneoplastic stage. Normal cells from 
individuals with an inherited predisposition to can- 
cer might possess some of the genetic changes that 
make ceils susceptible to oncogene-induced trans- 
formation. For these studies we used dermal fibro- 
blasts from patients in families with soft tissue sar- 
comas, a syndrome originally described by Li and 
Fraumeni [116, 117]. Families with the Li-Fraume- 
ni syndrome show an inherited pattern of sarcomas 
and various other types of cancers that follow a 
dominant mode of transmission, have an early age 
at onset, and exhibit multiple primary tumors. Ap- 
proximately 7% of families with childhood soft 
tissue sarcomas fit a model for the autosomal dom- 
inant mode of transmission of cancer in their fam- 
ilies. As fibrosarcomas are frequently observed in 
this syndrome [118,119], the fibroblasts offered an 
'at risk' target tissue for observing phenotypic char- 
acteristics of this unusual syndrome. 

One hypothesis we wanted to test was whether 
the normal cells from Li-Fraumeni patients existed 
in a more progressed stage of the carcinogenic pro- 
gress than the same types of cells from normal 

Cell stage 

Stage genes 1 2 3GT 3SP 4 

c-myc . . . . .  

N-myc . . . . .  

c-fos . . . . .  

c-myb + + +  + + +  + + +  + + +  + + +  

p53 + + +  + + +  + + +  + + +  + + +  

c-jun B + + + + + 

c-N-ras + + +  + + +  + + +  + + +  + + +  

c-H-ras + + + + + 

c-K-ras + +  + +  + +  + +  + +  

+ = 14-day exposure of autoradiograph to produce a dark band. 

+ + = 7-day exposure of autoradiograph to produce a dark band. 

+ + + = 2-day exposure of autoradiograph to produce a dark band. 
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donors. We investigated the in vitro growth charac- 
teristics of fibroblasts derived from skin biopsies of 
patients with Li-Fraumeni syndrome and unaffect- 
ed controls. Fibroblasts from control donors main- 
tain a normal morphology and had a short and 
finite lifespan in culture. Fibroblasts from seven 
out of eight affected individuals from Li-Fraumeni 
families develop changes in morphology and chro- 
mosomal abnormalities, and enter a growth crisis 
during which they begin to senesce (in a fashion 
similar to fibroblasts from normal donors), but 
then they recover. The cells then grow rapidly and 
maintain the morphology of a transformed cell. 
The chromosomal abnormalities are significant in 
that even prior to their emergence from senes- 
cence, essentially all the metaphases examined 
contained abnormal numbers, numerous damaged 
chromosomes, and evidence for gene amplification 
in the form of double minute chromosomes and 
homogeneously staining regions. The spontaneous 
in vitro transformation of normal human fibro- 
blasts is a rare event [120]. Hayflick had shown that 
normal human diploid fibroblasts have a limited 
lifespan when grown in vitro; they cease to divide 
when subcultured at confluency after approximate- 
ly 30-50 population doublings (pd) [121]. Thus, the 
spontaneous acquisition of an infinite lifespan in 
culture of the skin fibroblasts with the associated 
aneuploidy and anchorage independent growth, 
extremely rare events in cells derived from normal 

Table 5. Tumorigenicity of transfected PA-1 cells 

donors, occurs frequently in cells derived from Li- 
Fraumeni patients and may have predictive value 
in screening for gene carriers at high risk of cancer. 

Although the Li-Fraumeni fibroblasts have a 
prolonged lifespan in culture (in one case more 
than 300 population doublings in culture) and ex- 
hibit anchorage-independent growth, they are non- 
tumorigenic in athymic nude mice. We decided to 
test whether these immortalized fibroblasts had 
progressed in culture to be susceptible to ras onco- 
gene-inducible transformation. We were able to 
induce tumorigenic transformation of these fibro- 
blasts by transfection of an activated H-ras onco- 
gene. The ras oncogene-bearing fibroblasts formed 
tumors in nude mice with a 3-week latent period, 
which is remarkably rapid for human cells. Rein- 
jection of cells derived from these tumors also 
formed tumors in nude mice with 3-week latent 
period, indicating that no further genetic changes 
were necessary for the initial transformation to 
occur. An activated v-myc oncogene was unable to 
transform these cells to form tumors. These im- 
mortalized fibroblasts undergo many steps associ- 
ated with carcinogenesis and provide a useful mod- 
el for studying the role of oncogenes, tumor sup- 
pressor genes, and cancer susceptibility genes in 
human tumorigenesis. 

Cell Plasmid Tumors incidence Latency (wks) Stage 

Clone 6 cells 

P40 + 15 neo 0/3 > 36 1 

neo + N-ras 0/3 > 36 

p40 + 15 neo 0/3 > 36 1 

neo + T24/H-ras 0/3 > 36 

P40 + 40 neo 0/3 > 36 2 

neo + T24/H-ras 3/3 9 

Clone 1 cells 

P63 + 15 neo 0/3 > 36 1 

neo + N-ras 0/3 > 36 

P63 - 50 neo 0/3 > 36 2 

neo + N-ras 2/3 8,13 

P63 + 50 neo 0/3 > 36 2 

neo + T24/H-ras 2/3 



Conclusions 

Human cell systems provide advantages over ro- 
dent models in that (1) they are not inbred and 
genetically homozygous at all genetic loci; (2) we 
have isolated clonal pseudodiploid cells that repre- 
sent presumptive stages between normal cells and 
malignant tumors; (3) we can study differentiation 
and carcinogenesis in a single model system; and 
(4) many of the genetic elements, i.e., oncogenes 
and tumor suppressor genes deemed important in 
other systems, have been involved in the progres- 
sion of PA-1 cells toward tumorigenicity. We have 
developed a model for spontaneous immortaliza- 
tion of human fibroblasts, and we have shown that 
immortalization is required for ras transformabil- 
ity. 

Key unanswered questions 

While human cell culture systems have allowed us 
to begin to answer questions on how oncogenes and 
suppressor genes interact, we have only begun to 
address these processes mechanistically. We have 
to be able to identify how m y c  can abrogate the 
effects of the tumor suppressor. We also want to 
identify how the suppressor controls both signal 
transduction and ras  transformability. Using fibro- 
blasts from patients with inherited cancers we ex- 
pect to use the properties we have identified and 
new genetic markers we are cloning that are specif- 
ic for immortalized cells to develop a short-term 
assay to detect genetic predisposition to cancer. 
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