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Abstract 

In order to understand the evolution, histogenesis, and biological behaviour of exocrine pancreatic carcino- 
ma, some reproducible experimental models have been developed in certain rodent species. To date, more 
than 16 chemicals, many of them structurally unrelated, have been shown to induce pancreatic tumors. 
Although some of these chemicals appear species specific in their effect on the pancreas, others have been 
shown to be capable of inducing pancreatic tumors in more than one species. In hamsters, the administration 
of diisopropylnitrosamine or its oxidized metabolites leads to the development of ductal adenocarcinomas 
that histologically resemble human pancreatic carcinomas. The histogenesis of the ductal type of adenocarci- 
noma in hamsters is complex, and appears to involve both the duct cells and dedifferentiated acinar cells. All 
pancreatic tumors in rats develop from acinar cells showing variable degrees of differentiation, regardless of 
the type of carcinogen used. The type of pancreatic lesions that develop in mice are also of acinar cell origin. 
In guinea pigs the tumors are adenocarcinomas of the ductal type and are shown to be derived from 
dedifferentiated acinar cells that have undergone duct-like transformation. Irrespective of the type of tumor 
that develops in these experimental animals, all of these models can be successfully used to evaluate the 
various modifying (risk) factors and biological behaviour of these neoplasms. 

Introduction 

In the United States, carcinoma of the exocrine 
pancreas ranks fifth among all cancers and is the 
fourth leading cause of cancer deaths [1]. Human 
pancreatic carcinoma, which causes approximately 
25,000 deaths a year, is considered a dismal disease 
because of poor prognosis [1, 2]. The increased 
mortality of this disease is due to late diagnosis, 
local and distant metastasis at the time of initial 
clinical manifestation, and poor understanding of 
the biological behaviour of this tumor. Although 
the etiology of pancreatic carcinoma is not known, 
epidemiological studies have indicated several risk 
factors such as alcohol, cigarette smoking, and cer- 
tain nutritional factors [3-5]. However, these epi- 
demiological studies do not provide any under- 

standing of the evolution and histogenesis of pan- 
creatic cancer. Experimental models of this disease 
have been developed during the past 12 years in a 
varety of rodent species, in order to evaluate the 
role of various risk factors and better understand 
the histogenesis and biological behaviour, and to 
be used as an effective system for various experi- 
mental manipulations aimed at preventing and al- 
tering the natural progresssion of pancreatic carci- 
noma. The major objective of this paper is to re- 
view different models of pancreatic carcinogenesis 
in rodents and to briefly discuss the histogenesis of 
these tumors. 
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Animals models of pancreatic neoplasms 

Rats, 4-hydroxyaminoquinoline-l-oxide 
(4-HAQO) 

4-HAQO, the presumed proximate carcinogen of 
4-nitroquinoline-l-oxide, is both a mutagen and a 
carcinogen. A single intravenous injection of 
4-HAQO at a dose of 6 to 10 mg/kg body weight 
produces atypical acinar cell loci (AACF) and aci- 
nar cell nodules [6-8]. AACF are subclassified, 
based on staining properties and cytoplasmic mor- 
phology, into basophilic foci (BF), acidophilic foci 
(AF), and acidophilic nodules (AN) [8-10]. The 
cells in the basophilic foci are large, with irregular 
nuclei. They contain deeply basophilic cytoplasm 
with a sparse number of zymogen granules, and are 
arranged as acini (Fig. 1). Ultrastructurally, the 
cells in BF have an abundant amount of rough 
endoplasmic reticulum (RER), with a decreased 
number of secretory granules (Fig. 2). The morph- 
ological features of cells in AF and AN are similar. 
The cells are arranged as acini and contain a basally 
located nucleus with a prominent nucleolus (Fig. 
3). The cytoplasm is eosinophilic and coarsely 

granular. Ultrastructurally, these cells have a high- 
ly polarized pattern, with basally located nucleus 
and RER, and the zymogen granule-rich cytoplasm 
oriented in the opposite direction (Fig. 4). Both BF 
and AF showed decreased ~-glutamyltranspepti- 
dase (GGT) activity in comparison to normal pan- 
creas; however, the GGT activity is much less in BF 
than in AF. 

Administration of a single injection of 4-HAQO 
at a dose of 6 mg/kg leads to the development of 
both BF and AF at as early as 6 wk, and these 
lesions progressively increase in number with time. 
The number of BF per pancreas increases from 
10 + 4 at 6 wk to 78 + 8 at 24 wk. However, their 
volume increases only minimally from 6 wk 
(107 + 16/x) to 24 wk (198 + 6/x). This lack of 
growth is consistent with their decreased prolifer- 
ative capacity [8]. AF not only increase in number 
(0.7 + 0.3 at 6 wk and 35 + 10 at 24 wk), but also 
markedly increase in volume (105 _+ 55/~m at 6 wk 
and 495 + 46/~m at 24 wk) and become grossly 
visible. From their initial appearance, both BF and 
AF are morphologically distinct, and no transition 
from one type to the other is seen. With the single 
injection protocol, 100% of the animals develop 

Fig. 1. Light micrograph of basophilic focus from a rat injected with a single dose of 4-HAQO, and sacrificed 25 weeks later. H & E stain, 
x 270. 
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Fig. 2. Electron mirograph of a cell from basophilic focus showing irregular nucleus and abundant RER x 11,000. 

Fig. 3. Light micrograph of acidophilic focus (arrows) showing large acini with prominent nuclei, H & E stain, x270. 
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Fig. 4. Electron micrograph of cells from acidophilic focus showing basally located nuclei and large number of mature zymogen granules 
x 9600. 

BF, AF, and AN, and only an occasional rat shows 
acinar cell carcinoma at the end of one year (Fig. 
5). However, the carcinogenic potency of 4-HA- 
QO can be markedly enhanced by administering it 
during maximal DNA synthesis in the pancreas. 
Konishi et al. [11] have induced acinar cell carcino- 
ma of the pancreas in 60% of the rats following a 
single dose of 4-HAQO administered during peak 
DNA synthesis after partial pancreatectomy. 

Azaserine 

Azaserine (o-diazoacetyl-L-serine), an antimetab- 
olite isolated from cultures of streptomyces, is a 
mutagen in Ames Salmonella typhimurium assay. 
It induces pancreatic DNA damage and inhibits 
DNA synthesis in the rat pancreas [12-14]. Single 
or multiple i.p. injections of azaserine at doses of 10 
to 60 mg/kg produce atypical acinar cell nodules 
(AACN), adenomas, and adenocarcinomas [12, 
15]. AACN appear as early as 1 month and carcino- 
mas by 9 months after initial azaserine treatment 

[16, 17]. Longnecker and assocates have thorough- 
ly described the morphological features of these 
various azaserine-induced acinar cell lesions [16, 
17]. Azaserine-induced lesions are also of two dis- 
tinct histological types and are classifiable as AF 
and BF [18]. Phenotypical alterations in the AACN 
and adenomas include decreased y-glutamyltrans- 
peptidase and reduced uptake of iron in animals 
overloaded with iron [19]. More than 70% of the 
adenocarcinomas induced by azaserine are well to 
poorly differentiated acinar cell carcinomas, and 
the remaining are of mixed pattern, showing acinar 
ceils and other cell types [16, 20]. Many of these 
tumors metastasize to liver, lymph nodes, and 
lungs [12, 16]. Azaserine also induces tumors at 
several other sites, including kidney, breast, and 
skin [12]. 

7,12-Dimethylbenz(a)anthracene (DMBA) 

Dissin et al. [21] have induced pancreatic carcino- 
ma after implanting 2 to 3 mg of crystalline DMBA, 
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Fig. 5. Acinar cell carcinoma of pancreas induced by a single dose of 4-HAQO. H & E stain, × 200. 

a polycyclic hydrocarbon, in the head of the pan- 
creas. About 72% of the rats develop tumors be- 
tween 119 and 363 days after implantation. Hist- 
ologically, these tumors show features of poorly 
differentiated adenocarcinomas, but acinar cell 
features have been identified on electron micro- 
scopy [22]. Most of the induced tumors in this 
model are malignant, and have metastasized into 
the peritoneal cavity. In addition to the malignant 
tumors, development of tubular complexes and 
adenomas has also been reported. 

Miscellaneous models 

Hypolipidemic compounds 

Prolonged administration of peroxisome prolifer- 
ators to rats and mice results in the development of 
hepatocellular carcinomas [23, 24]. Some of these 
agents also induce pancreatic tumors. Reddy and 
Rao [25] reported a 20% incidence of pancreatic 
tumors in F-344 rats fed nafenopin (0.1% w/w) in 
diet. These tumors included two adenomas and one 
metastasizing acinar cell carcinoma. The acinar cell 

carcinoma is being maintained as a transplantable 
tumor in syngeneic rats [9, 26]. With two other 
hypolipidemic peroxisome proliferators, the devel- 
opment of AF, adenomas, and acinar cell carcino- 
mas has also been reported [27, 28]. 

N- (N-methyl-N-nitrosocarbamoyl)-L-ornithine 
(MNCO) 

MNCO is a nitrosourea amino acid, a direct acting 
carcinogen that has specific affinity for kidney and 
pancreas [17, 29]. Low doses of MNCO lead to the 
development only of AACN, whereas higher doses 
result in the development of AACN, adenomas, 
and acinar cell carcinomas [30]. Histological fea- 
tures of the MNCO-induced pancreatic lesions are 
similar to those induced by azaserine [16]. In addi- 
tion to the pancreas, MNCO also induces tumors in 
kidney, breast, ear duct, and skin. 

Corn oil 

In a recent study Eustis and Boorman [31] reported 
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a high incidence of focal acinar hyperplasia and 
acinar adenomas in rats given corn oil by gavage for 
2 yr as compared to the control rats. However, it is 
not clear whether this increased incidence is due to 
the promoting effect of corn oil on spontaneously 
induced acinar cells, or to the carcinogenic effect of 
corn oil itself. 

Nitrosamines 

Di-n-propylnitrosamine and its [3-oxidized deriv- 
atives N-nitrosobis(2-oxopropyl)amine (BOP) and 
N-nitroso-(2-hydroxypropyl) (2-oxopropyl)amine 
(HPOP) are potent pancreatic carcinogens in ham- 
sters [32-34]. In rats a single injection of BOP 
(100 mg/kg) or HPOP (20 mg/kg) induces AACN in 
4 months [35]. Injection of a higher dose of HPOP 
(160 mg/kg) results in the development of A A C N ,  
adenomas, and acinar cell carcinomas [36]. Unlike 
hamsters, no ductal tumors are induced in rats. 

Guinea Pig 

In 1968 Driickery et al. [37] showed that the pro- 
longed administration of methylnitrosourethan or 
methylnitrosourea (MNU) in drinking water to 
random bred guinea pigs produced adenocarcino- 
mas of the pancreas in 25% of the animals in be- 
tween 740 to 800 days. This model was improved by 
Reddy and associates [38, 39], who gave freshly 
dissolved MNU once a week to inbred NIH strain 
13 guinea pigs. With this approach, tumors devel- 
oped in 29% of the animals in between 28 to 44 
weeks. Histologically, these tumors showed var- 
ying degrees of adenocarcinomatous differentia- 
tion (Fig. 6). Non-tumorous portions of the pan- 
creas showed ductular or pseudoductular transfor- 
mation of the acini (Fig. 7). 

Hamster 

After the initial description of the induction of 
pancreatic tumors with diisopropylnitrosamine in 
hamsters by Krtiger et al. [40] and Pour et al. [41], 

several of its oxidized derivatives, such as BOP, 
HPOP, N-nitrosobis(2-acetoxypropyl)amine, N- 
nitrosomethyl(2-oxopropyl)amine (MOP), and N- 
nitroso-2,6-dimethylmorpholine, have been identi- 
fied as potent pancreatic carcinogens [42-47]. In- 
terestingly, all of these chemicals induce ductal 
adenocarcinomas that closely resemble the most 
common malignant pancreatic neoplasms in hu- 
mans. However, the carcinogenic potency of these 
compounds varies considerably, with BOP and 
MOP being the most potent [42, 45]. The other 
organs or tissues in which these compounds induce 
tumors include lungs, trachea, larynx, nasal cav- 
ities, liver, gall bladder, kidneys, salivary glands, 
and blood vessels. Furthermore, the organotro- 
pism of these compounds also varies with the route 
of administration. Local implantation or oral ad- 
ministration are less effective in inducing pancreat- 
ic tumors than subcutaneous injection [48, 49]. 

BOP is not only the most potent carcinogen of 
this group of nitrosamines, but is also the most 
pancreas-specific. A single or multiple injection of 
BOP induces a high incidence of pancreatic adeno- 
mas, in situ carcinomas, and invasive carcinomas of 
ductal origin in 80% to 100% of the animals in 
between 13 to 50 wk [42, 50, 51]. Histologically, the 
majority of tumors are well differentiated tubular 
adenocarcinomas (Fig. 8). A small percentage of 
the tumors are poorly differentiated and show ex- 
cessive production of mucin, papillary pattern, or 
adenosquamous features. The adenocarcinomas 
invade locally into the peritoneal cavity and metas- 
tasize to the regional lymph nodes and lungs. Some 
of the BOP-induced pancreatic adenocarcinomas 
are easily transplantable into nude mice and syn- 
geneic hamsters [52, 53]. One transplantable tumor 
maintained by ScarpeUi and Rao [52] has been 
converted into an ascitic form and has also been 
maintained in tissue culture as a cell line, and is 
being used to study the effect of chemotherapeutic 
agents [54, 55]. 

Mouse 

The mouse has very rarely been used in experi- 
mental pancreatic carcinogenesis. Roebuck and 
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Fig. 6. Infiltrating adenocarcinoma of pancreas in a guinea pig treated with MNU. Marked desmoplastic reaction is seen. H & E stain, 

×330. 

Fig. 7. Pseudoductular change in the pancreas of a guinea pig treated with MNU. H & E stain, x 180. 
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Fig. 8. Well-differentiated ductal adenocarcinoma of the pancreas from a hamster treated with multiple doses of BOP. H & E stain, 
x220. 

Longnecker [56] reported the development of 
AACN in mice given azaserine. A single i.p. in- 
jection of MNU in month old mice induced acinar 
cell carcinomas in 18% of the animals [57]. We 
have recently shown that a single i.v. injection of 
4-HAQO at a dose of 24 mg/kg body weight in 5-6 
wk old Swiss Webster mice induces AACF in 100% 
of the animals [58]. Interestingly, unlike rats, mice 
develop only acidophilic loci with increased mitotic 
activity and labeling indices. The AF showed de- 
creased GGT activity. No basophilic foci are ob- 
served. 

Histogenesis of pancreatic tumors 

Acinar cells are the major cell type in the exocrine 
pancreas and constitute about 82% of the total 
volume, whereas duct cells comprise only 3.9% 
[59]. Surprisingly in humans, however, the major- 
ity of the exocrine pancreatic carcinomas are classi- 
fied as ductal adenocarcinomas. This histogenetic 
classification is based mainly on the similarities of 
carcinoma cells to ductal cells by light microscopy, 
by their ability to produce mucins and the associ- 

ated ductal changes such as hyperplasia, dysplasia, 
and carcinoma in situ [60--62]. Acinar cell carcino- 
mas are considered to be relatively rare and may 
account for 10% of the total carcinomas [63]. This 
low percentage may not be a reflection of the true 
incidence of acinar cell carcinomas, since most of 
the tumors are classified solely by histology, rather 
than by ultrastructural features and functional 
markers. In this context it is interesting to point out 
that most of the solid and papillary epithelial neo- 
plasms of the pancreas show acinar cell features on 
ultrastructural and immunocytochemical examin- 
ation [64]. At present, although the majority of 
human pancreatic carcinomas are believed to arise 
from duct cells, the exact histogenesis remains un- 
clear and controversial. 

The histogenesis of these tumors in animal mod- 
els of pancreatic carcinogenesis is equally ambig- 
uous. The basic arguments in this regard include 
the question of whether the tumors arise purely 
from duct cells, from dedifferentiated acinar cells, 
or from both cell types. The concept of acinar cell 
dedifferentiation has not been well accepted be- 
cause it contradicts the dogma concerning the em- 
bryologic development of pancreas, in which islet 



and acinar cells develop from the duct system. Re- 
cently, however, it has been clearly shown that 
under various experimental manipulations, such as 
simple trauma to pancreas or injection of pancreat- 
icotoxic chemicals, the acinar cells can be trans- 
formed into pseudoductules or even well-differ- 
entiated hepatocytes [65-68]. It is pertinent to note 
that when dissociated acinar cells of moderately 
differentiated acinar cell carcinoma are maintained 
in vitro on basement membrane, they show ductu- 
lar arrangeent [69]. 

In the rat model the pancreatic lesions induced 
by several carcinogens and corn oil retain fully 
differentiated acinar cell features, except with 
DMBA. No pseudoductular or dedifferentiated 
features are present. However, the development of 
carcinomas induced by local implantation of 
DMBA in the pancreas is preceded by the forma- 
tion of tubular complexes that are considered pre- 
cursor lesions [21, 22]. Wax reconstruction studies 
and ultrastructural analysis reveal acinar cell fea- 
tures in the cells lining tubular complexes and carci- 
nomas [22, 70]. Similary, MNU-induced pseudo- 
ductular lesions in the pancreas of guinea pigs also 
show features of acinar cell dedifferentiation [71]. 

Histological examination of fully developed car- 
cinomas of the pancreas induced by various ~-ox- 
idized derivatives of dipropylnitrosamine reveals 
ductal/ductular features. Based on this informa- 
tion, Pour [72] proposes that all pancreatic carcino- 
mas are derived from ductal or ductular cells. In- 
terestingly, sequential analysis of pancreases of 
BOP- and BHP-treated hamsters show the earliest 
changes in acinar cells, characterized by the forma- 
tion of pseudoductules and cystic complexes [51, 
73, 74]. Based on these findings, Scarpelli et al. 

have postulated that pancreatic tumors in hamsters 
develop from both the ductal cells and dedifferen- 
tiated acinar cells [51]. 

Conclusions 

The pathogenesis of pancreatic tumors is complex, 
and depends upon the species rather than on the 
type of carcinogen administered. In rats, various 
types of structurally unrelated carcinogens admin- 
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istered under different experimental conditions in- 
duce only acinar cell lesions, whereas in hamsters 
the majority of tumors appear to arise from duct/ 
ductular cells, and the remaining from dedifferen- 
tiated acinar cells. It is not clear why acinar cells in 
the rat are so susceptible to the carcinogenic effect 
and duct cells are so sensitive in the hamster. This 
difference may be related to the quantitative and 
qualitative differences in the drug metabolizing en- 
zymes present in the acinar and duct cells, which 
activate procarcinogens to ultimate carcinogens. 
Biochemical, autoradiographic, and immunohisto- 
chemical stains have been used to show that acinar 
cells of both rats and hamsters contain drug metab- 
olizing enzymes [75-78]. However, significant dif- 
ferences are noted in the content of these enzymes 
in the duct cells of rat and hamster pancreas. Baron 
and Kawabata [79] have shown that the levels of 
some of the isozymes of cytochrome P-450 in pan- 
creatic duct epithelial cells of rat are very low, 
whereas in hamster the levels are comparable to 
acinar cells. 

The other highly interesting fact in the histogen- 
esis of pancreatic adenocarcinoma is the role of 
acinar cells. The conversion of acinar cells to ductu- 
lar complexes and the transdifferentiation to hepa- 
tocytes attests to their plasticity. The carcinogen- 
induced tubular complexes may serve as a pre- 
cursor lesion for the development of carcinoma. 
The role of dedifferentiation of acinar cells in the 
development of carcinoma is supported by the ob- 
servation of the expression of fetal acinar cell anti- 
gens in carcinomas [80]. The significance of the 
histogenesis of pancreatic tumors becomes rele- 
vant and important if there is a difference in the 
progression and biological behaviour of the tumors 
that arise from ducts or dedifferentiated acinar 
cells. In this connection it is pertinent to point out 
that foci, atypical acinar cell nodules, and ductular 
complexes have also been observed in human pan- 
creases [81]. However, it is not yet clear whether 
these represent preneoplastic lesions. 

Key unanswered questions 

- Are there any stem cells in the pancreas from 
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which some tumors arise? 
Is there a direct approach to proving that acinar 
cells can indeed undergo retrodifferentiation? 
Are there any differences in the biologic beha- 
viour of the tumors that arise from duct cells and 
dedifferentiated acinar cells? 
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