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O. Introduction 

It is widely known that the notion of a solvable Lie algebra is closely associated with 
differential equations solvable by quadratures and that this theory goes back to 
Sophus Lie. However, Lie himself never stated the general theorem underlying this 
fact. His main book on the subject [10] is a collection of geometrical algorithms for 
solving various classes of differential equations, unified by the idea of symmetry 
group. Lie managed to explain the whole variety of existing integration tricks from a 
uniform stand-point and also to create powerful new methods of quadrature and 
reduction. 

Symmetries of differential equations can be used to reduce the dimension of the 
problem under study in either of the two ways, by passing over to quotient manifolds 
(first integration strategy-reduction of order) or by restricting the problem to a 
submanifold (second integration strategy-first integrals). One of the examples 
of the second integration method is provided by Theorem 49 of [10], which says 
that a linear first-order partial differential equation in four variables (equivalent to a 
nonautonomous system of three ODEs) is reduced to quadratures, if it has a solvable 
three-dimensional symmetry group satisfying certain nondegeneracy conditions. 
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Propositions of this kind, apparently general in nature, do not appear in [10] as a 
universal theorem, As writes E. M. Polishchuk in his biographical book [14], "this 
theorem seems to be dissolved in the totality of other Lie's results about groups 
admitted by equations". 

The second integration method of Lie was further developed by Elie Cartan who 
thought about the symmetries of arbitrary Pfaff systems (= distributions) in terms of 
vector fields and differential forms. Although Cartan, no doubt, understood the 
general fact equivalent to Theorem 3 below, he never stated it in [2]. Our aim is to 
clarify the results of Lie and Cartan placing them in the general differential-geometric 
context of manifolds and distributions [6, 19]. We give a precise statement of this 
theorem in a form that equally applies to single ordinary differential equations, 
systems of ODEs and to arbitrary systems of partial differential equations of finite 
type. 

During the last 30 years, beginning with the pioneering book by L. V. Ovsiannikov 
[12] whose Russian edition was published in 1962, an extensive literature on the 
symmetry groups of differential equations has appeared (cf. [1, 4, 7, 11, 18]). We 
especially recommend the book by H. Stephani [18] which contains precise recipes of 
integration procedures, numerous suggestive examples, and informal motivations, 
and is very close to the original Lie papers both in contents and style. In particular, it 
is as informal as possible and can be read by people anxious to solve their favourite 
ordinary differential equations. 

Although many authors have nicely explained and developed Lie's approach, 
especially as regards his first integration method, there does not seem to exist any 
modern exposition of the relevant work of Cartan who put the theorem of Lie into a 
more general setting. The books listed above do not unveil the differential-geometric 
background that unifies the second integration method as applied to ordinary 
differential equations, systems of such and finite-type systems of partial differential 
equations. It goes without saying that specialists in group applications to differential 
equations know the Lie and Cartan's theorem in its full generality, yet nobody will 
give you an exact reference to a written mathematical text that contains its precise 
statement. Our primary aim is to fill this gap.* 

In Sections 2 to 6, our style follows that of [1, 18] (and also the classical literature of 
the beginning of the century) in that we do not state the exact notion of integration by 
quadratures, although it is crucial in the formulation of the main theorem. By doing so, 
we just adhere to the state of the art in this area. For the case of linear algebraic 
differential equations, the notion of quadratures is readily formalized within the 
framework of differential algebra (see [9, 15]). But, as far as the authors know, until 
now there have not been any successful formulations of nonlinear differential algebra 
that could meet our purposes. See [-3] for one of the recent attempts to clarify the 
interrelation between differential geometry and differential algebra. 

*While revising the manuscript,  the authors  came across the research report by J. Sherring and G. Prince 
[17] where Cartan's ideas are discussed in a spirit close to our own, hut  with applications only to systems of 
ordinary differential equations. 
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The paper proceeds as follows. In Section 1, we recall the basic definitions 

pertaining to distributions on manifolds and introduce the notion of symmetry. In 

Section 2, we explain how to find first integrals of distributions using their symmetries. 
This theory is specialized for the ordinary differential equations and finite-type 
differential systems in Sections 3 and 4, respectively. Section 5 contains some 
illustrative examples of integration of ordinary differential equations by means of the 

developed theory. Finally, in Section 6, we propose a trick which allows us to find 
finite-parametric families of solutions of partial differential equations with ample 
symmetry algebras by reducing the problem to that of integration of a completely 

integrable distribution. 

1. Symmetries of Distributions 

We begin by recalling some basic facts about distributions (see [-6, 19-1 for details). 
Let P be a distribution of dimension m and codimension k on a smooth manifold M. 

This means that dim M = m + k and, at every point x of M, an m-dimensional subspace 

Px of the tangent space TxM is specified in such a way that Px smoothly depends on x. 
Let 

D(P) = { V ~ Vect(M) I V x ~ Px Vx E M} 

be the set of all smooth vector fields lying in the distribution P and 

m(e)= {e)~ f~l(M) [ o)(V) = 0 VVeD(P)} 

the set of all differential 1-forms vanishing on vectors from P. 
Both D(P) and A(P) are modules over the ring of smooth functions Ca(M) and a 

distribution is fixed whenever one specifies a system of generators of either of these 
modules. Both modules are usually free (this is always the case with their localizations 
to an appropriate open everywhere dense subset of M), so all one has to specify is 

either a set 1/1 . . . . .  V,, of vector fields whose values at every point of the manifold are 
linearly independent or a set ~o I . . . . .  co~ of 1-forms subject to the same requirement. 

EXAMPLE 1. The 1-form o)= d y -  
R 3, so it defines a distribution of 
explained below, it is called Cartan's 
by vector fields V 1 = ?x + z3r and I/2 

z dx does not vanish in any point of the 3-space 
dimension 2 and codimension 1. For  reasons 
distribution. A basis of the module D(P) is formed 

EXAMPLE 2. Let M = R x R + × S 1 with coordinates x e R, y e R +, (p e S 1 = R mod 2n. 
The 1-form 

o9 = 2 sin 2 O_ dx + sin g0 dy - y dq~ 
2 

defines the so-called oricycle distribution (explanation below). In this example, both 
modules D(P) and A(P) are again flee. 
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EXAMPLE 3. We will describe this one in plain English, without formulas. Imagine a 
M6bius band and at every point of its surface the line, lying in the tangent plane and 

perpendicular to the central circle of the band. Both modules D(P) and A(P) associated 
with this distribution are not free, because the fibering of the M6bius band over its 
central circle is nontrivial. But both modules become free as soon as we cut the band 

in such a way that it becomes topologically trivial. 

A distribution is, by definition, an infinitesimal object. It is connected with the 

world of finite things via the notion of the integral manifold. A submanifold N ~ M is 
said to be integral for the distribution P if TxN c Px for all x eM. An integral 
manifold is maximal if it is not contained in an integral manifold of greater dimension. 
For example, lines on the surface of the M6bius band which are perpendicular to the 

base circle, are maximal integral manifolds for the above-mentioned distribution. 
A distribution is said to be completely integrable if the dimension of every maximal 

integral manifold is exactly m, the dimension of the distribution itself. In this case, the 
entire manifold is the disjoint union of maximal integral manifolds of the distribution, 
which are the leaves of a foliation, so that the notion of a completely integrable 

distribution is equivalent to that of a foliation. 
The striped M6bius band of Example 3 above is obviously a foliation (see Figure 1). 

It is somewhat more difficult to decide whether the distributions of Examples 1 and 2 
are completely integrable. The classical Frobenius theorem gives two equivalent 

criteria for checking the complete integrability of a distribution. They are: (1) D(P) 
should be a Lie algebra, and (2) the differential of any 1-form from A(P) should belong 
to the ideal generated by A(P). In the case of a distribution defined by a single 1-form 

~o, the second condition simply means that ~o A do)=  0. 
The reader can readily verify that this condition holds for Example 2 and fails for 

Example 1. Maximal integral manifolds for the Cartan distribution are one- 
dimensional; they will be described later in Section 3. Maximal integral manifolds of 
the oricycle distribution are two-dimensional; they can be easily found in a 
straightforward manner, but we will do that in a more elegant way - using symmetries 
- just to illustrate the meaning and the scope of applications of the latter. 

Fig. 1. 
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By a (finite) symmetry of the distribution P, we understand a (possibly local) 
diffeomorphism f :  M --* M which takes P into itself, i.e. such that f ,(Px) ~ Pitx) for all 
x e M. A vector field X is said to be an (infinitesimal) symmetry of the distribution if 
the flow generated by X consists of finite symmetries. The infinitesimal approach 
turns out to be much more constructive than its finite counterpart, so in what follows 
the word symmetry will always mean infinitesimal symmetry unless otherwise explicitly 
specified. 

EXAMPLE 4. In Examples 1 and 2 given above, the vector field 0x is a symmetry, 
because, in both examples, the coefficients of the basic 1-form co do not depend on x 
and, hence, the corresponding finite transformations, i.e. translations in x, preserve 
these forms. In Example 3, the infinitesimal rotation of the M6bius band along its 
center circle is also a symmetry. 

The set of all symmetries Sym(P) forms a Lie algebra with respect to vector fields 
commutator, because finite symmetries obviously make a group. The following 
theorem allows us to deduce this fact by a simple manipulation with formulas. It gives 
two constructive characterizations of the symmetry algebra, one in terms of the 
associated module of vector fields D(P), and another in terms of the dual module of 1- 

forms A(P). 

THEOREM 1. The following conditions are equivalent: 

(1) X E Sym(P), 
(2) [X, D(P)] c D(P), 

(3) Lx(A(P) ) = A(P), 

where L x is the Lie derivative operator along the vector field X. 

Proof Choose some (possibly local) bases Vx . . . . .  V,~ and c o , . . . ,  co k in the C°(M) - 

modules D(P) and A(P), respectively. Conditions (2) and (3) can be rewritten as 
follows: 

(2) there exist such functions ~ij that for all i one has 

IX, = 
j = l  

(3) there exist such functions fin that for all i one has 

k 
Lx( o,) = Z B,j o , 

j = l  

The theorem follows from the three implications (1)~(2), (2)~(3), (3)~(1), and we 
are going to prove them successively. 

(1)~(2). Let {G~} be the 1-parametric transformation group corresponding to the 
vector field X which is a symmetry of P. Then for every time moment t s R and all 
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i =  l . . . .  ,m we have 

(Gt),(V,) = ~ &j(t)V~, 
j = l  

where 2 u is a family of  smooth  functions on the manifold M smooth ly  depending on 
the pa ramete r  t. 

Differentiating this over  t at t = 0 and using the formula  

d I (Gt),(V), L x ( V )  = - d-t t=o 

one gets 

IX, v,] = ~. %vj ,  
j=l  

with 

d I &j(O. 
~0 - -  d t  t = o 

(2)~(3). Suppose that  a vector  field X satisfies (2). N o w  take a 1-form o9 which 

vanishes on all the vector fields V1, • . . ,  V,, and prove  that  Lx(o9) has the same proper ty  
(and, hence, can be represented as a linear combina t ion  of co I . . . .  , %).  Indeed, for all 

i = 1 . . . . .  m we have 

(Lx(~O))(V~) = (X _~ d¢o + d(X _A d~o))(V~) 

= dco(X, v,) + v~(co(x)) 

= x(o~(v3) - ~o(EX, v 3 )  = o. 

(3)~(1). Consider  the following differential ( k +  1)-forms, dependent  upon  the 

pa ramete r  t: 

9.~(t) = 6 " ( ~ )  ^ ~ ,  ^ -. .  ^ co~. 

Since G~(~i)=~i, we have f~i(0)=0. We are going to prove  that  ~ i ( t )  =-- 0; this will 

imply that  G*(oh) is a linear combina t ion  of co l , . . . ,  o~ k for all t and that  X is indeed a 

symmet ry  of  the distr ibution P. We have 

d k 
-d~')i(t) ~- G*(Lxo2i) A (o x A ... A (I) k = Z a*(fliJ)~J(t)' 

j = l  

which means  that  the vector  consisting of(k + 1)-forms (f~l(t) . . . . .  f~k(t)), is a solution to 
a linear homogeneous  system of ord inary  differential equat ions with zero initial 

conditions. Hence, it must  vanish identically. 

This completes the p roof  of the theorem. 

E X A M P L E  5. A simple computa t ion  using either of condit ions (2) or  (3) of  the 

theorem,  shows that  vector  field X = y  0 r + s i n  ¢ d~, is a symmet ry  of the oricycle 
distr ibution (see Example  2 above). 
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2. Symmetries and Integration 

The problem of integration of a distribution consists of describing its maximal integral 
manifolds. For a completely integrable distribution, this is equivalent to finding a 
complete set of first integrals. A function h ~ C~°(M) is called a first integral of the 
distribution P if every integral manifold of P lies entirely in some level surface 
{x ~ MIh(x)= const} of this function, or, equivalently, if V(h)=0 for any V ~ D(P). A 
complete set of first integrals of the distribution P is a set of functions whose mutual 
level surfaces 

{ x  l h l ( x )  = c l . . . . .  h k t x )  = ck} 

represent the set of all maximal integral manifolds of P. 
If X is a symmetry with the flow {Gt} and Q a maximal integral manifold of the 

distribution P, then G,(Q) is also a maximal integral manifold for any t. That is, the 1- 
parameter transformation group generated by a symmetry preserves the set of 
maximal integral manifolds (but possibly rearranges them in some other order). There 
is, however, a distinguished class of symmetries which leave invariant every particular 
maximal integral manifold. These are called characteristic symmetries. By definition, a 
symmetry of the distribution P is said to be characteristic if it lies in P (or, more 
exactly, belongs to D(P)). Transformations corresponding to a characteristic symme- 
try move every maximal integral manifold along itself. 

EXAMPLE. The symmetry mentioned above in Example 5 is characteristic while 
those given in Example 4 are not. 

The classical theorem of Cartan [19] implies that the set of all characteristic 
symmetries 

Char(P) = Sym(e) n D(P) 

is an ideal of the Lie algebra Sym(P). Elements of the quotient algebra 

Shuf(P) = Sym(P)/Char(P) 

will be referred to as shuffling symmetries of the distribution P. Flows corresponding to 
different representatives of a class 

)( = X mod Char(P) 

rearrange (shuffle) the set of maximal integral manifolds of P in the same way, 
Now suppose that k = codim P and c5 c Shuf(P) is a k-dimensional Lie subalgebra 

which is transversal to the distribution in the sense that the natural mapping 
nx: Shuf(P)~ Tx(M)/P x is bijective at every point x ~ M. Let )(1, . . - ,  )(k, where 

Xi = Xi mod Char(P), Xi E Sym(P), 

be a basis of c5 while 091 . . . . .  Ok be a basis of the C~(M)-module A(P). The 
transversality condition for the algebra c~ is equivalent to the requirement that the 
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matrix 

--= = Ilm,(Xj)ll (1) 

be nondegenerate at any point of the manifold. Hence, one may choose another basis 
m'~,..., co~, of the module A(P) in such a way that the corresponding matrix ][m;(Xj)l] 
would be the unit matrix. This can be achieved by setting 

\o;;/  , 

Note that the values mi(X~) do not depend on the choice of representatives 
X j •  X j •  Shuf(P). 

THEOREM 2. Let P be a completely integrable distribution defined by the set of 1- 

forms ml . . . . .  co k. Let X I  . . . . .  Xk be the basis of an algebra of shuffiin9 symmetries 
= Shuf(P). Suppose that o)i(X ) = 3q and 

k 
[x,,xj]=Z s - c i j X s ,  

s = l  

where ciS i • R. Then 

= _ l  ^ 

2 ~,j 

Proof By Frobenius' theorem, dms = Y.j 7sj/x m j, where 71~ are appropriate 1-forms• 
Under the conditions specified, these 1-forms actually belong to A(P), i.e. vanish on 
the vectors from the distribution. To see this, one should make use of the formula 

Lx,(m~) = d ( X  i ] ms) + X i  ~] dms. 

According to Theorem 1, Lx,(m0 • A(P). Besides, by the premises of the present 
theorem, d(Xi _l cos) = 0 for all i, s. Hence, 

Xi _.1 dins = ~ 7si(Xi)o2j- 7i~ • A(P), 

which implies that 7~2 • A(P) and, therefore, 

i<j  

for some appropriate functions ~o• C~°(M). It follows that 

d m s ( X i ,  X j) = O~j, 

for i < j. On the other hand, 

dm,(X,, X~) = X,(m,(X)) - X,~ms(X3) - ms([X;, X j]) 

= --  ms \ r  = 1 c iSxr  = - -  cisj" 
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Therefore, ai~ -- -ci~ and 

d ~  = - Z c i~ ,  ^ co~ = - 1_ E c,~co, ^ coj, 
~<j 2 i.~ 

COROLLARY.  I f  the algebra f~ is commutative, then in the conditions of  the theorem, a 

complete set of  first integrals of  the distribution can be found by quadratures. 

Indeed, in this case all the forms coi are closed and, thus, locally exact: coi= dh~ for 

some smooth functions h 1 . . . . .  hk. These functions can be recovered by computing the 

integrals 

h~(a) = 09 i, 
0 

where ao is a fixed point of the manifold M. 

Remark. As we mentioned in the Introduction, we use the words 'integration by 

quadratures '  in a somewhat vague sense. When we say that something can be found 

by quadratures, we mean that this something belongs to a suitable Liouville-type 
extension of the basic field and there is an algorithmic procedure to recover it using 

known data. However, a notion of Liouville type differential extensions which is wide 

enough to incorporate finding implicit functions in the nonlinear case, is still awaiting 

its precise definition. 

EXAMPLE 6. Let us find a first integral of the oricycle distribution of Example 2 
using its symmetry written clown in Example 4 and in the last end explain the origin of 
this title to an inquisitive reader. 

We have 

~p 
co --- 2 sin 2 ~- dx + sin ~p dy - y dip and X = ~x. 

The pairing co(X)-- 2 sin 2 tp/2 is nonzero, so we can take another basic 1-form 

co, _ 1 ~0 1 dqg, 
2 sin 2 q~/2 co = dx + cot ~-dy 2 sin 2 9/2 

which must be exact, according to the theorem. And it really is. In fact, 

We see that the meaning of symmetries in this context is that they allow one to find 
the integrating factor for a Pfaffian equation. 

Now about  the sense of the term 'oricycle'. Consider the upper half-plane 

n = (x, y l y  > 0} 

as a model of the Lobachevsky geometry. The role of straight lines in this model is 
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played by semi-circles perpendicular to the x-axis (the 'absolute'). Let M be the 
unitary tangent manifold of H, i.e. the set of all unit tangent vectors. As the third 

coordinate ¢p on the three-dimensional manifold M, we will take the angle between the 
upward vertical direction and the given vector (see Figure 2). A simple calculation 
shows that a Lobachevsky line issuing from the point (x, y) at angle tp, arrives at the 
point of the "absolute' with coordinate x + y cot 09/2. This expression is the above 

found first integral of the distribution under study. It remains to note that the set of all 
vectors tending to the same point of the 'absolute', is called 'oricycle' in hyperbolic 

geometry. 
Now suppose that we know a transversal algebra ff of shuffling symmetries of a 

distribution P, which is not commutative. We will show that if this algebra is solvable, 
then it is possible to decompose the problem of finding a complete set of first integrals 

for P into a finite number of steps, every one of which matches the assumptions of the 

Corollary above. 
Denote the commutator subalgebra of ff by ff~l) and suppose that ff~l)~ff. Then 

one can choose a basis -Y1 . . . . .  X" k of ff in such a way that )~1 . . . . .  )(rCfq "~ while 
)(r + 1 . . . . .  )fk ~ ff~l). In this case ci~ = 0 for all i, j, if s ~< r. Choose the basis 091 . . . . .  o k of 
A(P) in such a way that ~oi(Xj)=flj. Theorem 2 implies that 1-forms ~o~ . . . . .  ~o, are 
closed and, hence, in some open domain o91=dh~ . . . . .  o9,=dh,. For  an arbitrary 
choice of constants c=(cl,..., or) the level surface 

H c = {h 1 = c l , . . . , h~  -- c~} 

is invariant under the commutator subalgebra f~tl~, since Xj(hi)=ogi(Xj)=O if 

j>~r+l,i<~r. 
Let Pc be the restriction of distribution P to the surface He. Distribution Pc is 

completely integrable - the foliation of M whose leaves are maximal integral 
manifolds of P cuts a foliation on the surface He. The dimension of PC is equal to the 
dimension of P while its codimension is k -  r - -d im ~ .  

,5° 

.3, 

Fig. 2. 
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Observe that the restriction ~ l n , .  constitutes a transversal algebra of shuffling 
symmetries of the distribution Pc. Indeed, a shift along the trajectories of any field X 
such that X ~ (~11) shuffles the leaves of distribution P and preserves the manifold He; 
hence it must also shuffle the leaves of distribution Pc. Transversality of f#tl) follows 
from the fact that IIoJi(Xj)14, r < i, j ~< k, is the unit matrix, due to the above 
assumptions. 

We can subject the pair (Pc, (~cl)[nc) to the same procedure which was formerly 
applied to the pair (P, (~). More precisely, let (~t2~= [(~11), f#tx)] be the commutant of 
(#(~). If f#~2) :# (#t~), then some of the 1-forms co~+~,..., to k are closed and give rise to 
local first integrals of the distribution Pc. Distribution Pc can be restricted to the 
mutual level surface of these integrals, etc. 

Now suppose that the algebra (9 is solvable, i.e. the sequence (# ~ f#(l) ~ f#(2) = "" ,  
where f#(~+ ~)= If#"), (#t~], becomes zero after a finite number of steps. Then the above- 
described procedure sooner or later will pose one into the conditions of the corollary 
of Theorem 2. Whence: 

THEOREM 3. Let P be a distribution of  codimension k. Suppose that a solvable k- 
dimensional algebra of  shuffling symmetries of  P, transversal to P, is known explicitly. 

Then P is integrable by quadratures, i.e. one can find a complete set offirst integrals for P 
by integrating closed 1-forms and solving functional equations. 

By solution of functional equations (called so to distinguish them from differential 
equations), we mean finding functions defined by implicit formulas 

F(zl,  z2 . . . . .  z,) = 0 ~ z 1 = f ( z  2 . . . . .  z,). 

We will show how this theorem works on examples from the area of differential 
equations. But first we will explain the connection between equations and 
distributions. 

3. Equations as Distributions 

In this section, we will show how the above-described algorithm can be applied to 
ordinary differential equations, giving the 'second integration procedure' of Lie (see 
[18] for a more traditional exposition). 

The study of an ordinary differential equation 

F(x, y, y', . . . .  ytk~) = 0 (2) 

can be reduced to the study of a distribution in the following way. 
Let JkR be the manifold of k-jets of smooth functions on the line R. By definition, 

this is a space whose points correspond to all conceivable sets of values taken by the 
independent variable x (coordinate in R), dependent variable y and the derivatives of 
the latter with respect to the former up to order k. Hence, JkR is a (k + 2)-dimensional 
s p a c e  R k+2 whose coordinates can be designated by x, y, Pl . . . .  , Pk" 
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Let c£ be the distribution in JkR defined by the set of 1-forms 

o3 o = d y  - Pl  d x ,  o91 = d P l  - -  P2 d x ,  

: (3)  

t ° k -  2 = d p k -  2 - -  Pk - l d x ,  Ogk - 1 = dpk  - 1 - -  Pk d x .  

Following E7], we will call ~ C a r r a n ' s  d i s t r i b u t i o n .  A particular case of this object 
appeared earlier as Example 1. 

The characteristic property of Cartan's distribution, which shows its importance in 
the theory of differential equations, consists in the following. A curve in JkR that 
projects on the x-axis without degeneration, is integral for c~ if and only if it has the 
form 

y = y(x) ,  P l = y ' (x )  . . . . .  Pk = Ytk~(x), (4) 

where y (x )  is a smooth function of x. Apart from these, there are maximal integral 
manifolds of the second kind, namely straight lines parallel to the Pk axis. A general 
maximal integral manifold may include portions of both types, fitted together to make 
a smooth curve (see [7] for the proof). 

Equation (2) corresponds to a hypersurface ~ c J k R ,  defined by 

F ( x ,  y ,  p~ . . . .  , Pk) = O, 

The two-dimensional Cartan's distribution c£, when restricted to ~, produces a one- 
dimensional distribution ~e, which will be referred to as C a r t a n ' s  d i s t r i b u t i o n  o f  t he  

e q u a t i o n  ~ .  Maximal integral manifolds of this distribution can contain segments 
parallel to the Pk axis as well as portions of curves (4), where y (x )  must be a solution to 
Equation (2) in order that the curve should lie on o ~. These pieces are put together in 
the points where the projection to the x-axis degenerates, and such points may 
constitute only a discrete set on the curve. 

EXAMPLE 7. Consider the equation 

y y ' + x = O .  

We can take the variables y and p = y' for coordinates on the corresponding surface 
c j1R. In this coordinate system the distribution cd~ is given by 

(1 +p2)dy+  y p  dp = 0. Its integral curves y =  C(1 +p2)-1/2 are depicted in Figure 3a. 
Every pair of symmetrical curves produces one of the circles in the (x, y)-plane which 
correspond to two-valued solutions of the equation and are shown in Figure 3b. 
Besides, there is a singular integral curve y = 0 on ~ which corresponds to the origin 
point in the (x,  y)-plane and gives rise to no solution. 

A vigilant reader might have noticed a flaw in our previous argument: there can 
exist such points x c g where the plane of Cartan's distribution is contained in T~8 
and, thus, dim ~ = 2 at x. In this case, ~g~ is no distribution at all. The study of such 
singular points requires special analysis. We will avoid it by confining ourselves from 
now on to equations resolved with respect to the highest derivative 

ytk) = f ( x ,  y,  y ' , . . . ,  y tk-1)) .  (5) 
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Fig. 3(b). 
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Fig. 3(a). 

It should be noted, however, that a major part of our considerations can be, mutatis 
mutandis, transferred to the general case. 

For an equation of type (5), the integral manifolds of Cartan's distribution can only 
consist of portions of type (4), so that the problem of finding the (multivalued) 
solutions of such an equation is equivalent to that of finding integral manifolds of the 
distribution rgg. This distribution is one-dimensional and, hence, completely in- 
tegrable. Its codimension is equal to the order k of the equation under study. Theorem 
3 applied in this environment gives rise to the following 

T H E O R E M  4. I f  one knows explicitly a solvable k-dimensional transversal Lie algebra 
of symmetries of an ordinary differential equation of order k, then one can find the general 
solution of this equation by quadratures. 

By symmetries of the differential equation we understand shuffling symmetries of its 
Cartan's distribution, i.e. elements of the quotient space 

Sym(8) = Shuf(Cg~) = Sym(Cg~)/Char(C~g). 
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Elements of this space have a convenient description in terms of the so-called 

9eneratinyfunctions [4, 7]. After introducing these, we will explain what the notion of 

transversality means in terms of generating functions. 
Let us view x, Y=Po, P l , . . . , P k - 1  as coordinates on the hypersurface ~. In this 

coordinate system, any vector field is written as 

X = ~ ~xx + fl0 + "" + ilk- 1 ~Pk- 1 

Note that the C~'(M)-module of characteristic symmetries of ~fe is generated by the 

field 

. . . .  + f C~pk- 1 (6) D ~xx + pl 3po + + p k - l O p k _  2 

the total derivative operator with respect to x on the equation N. Hence, in the quotient 
algebra Sym(g), the following relation holds 

g ~? g g 
- -  - f mod Char(~f~), = - P l  . . . . . .  Pk-1 

Ox OPo OPk 2 OPk- 1 

and it is sufficient to search for symmetries only among vector fields of the form 

x = f l 0 ~ p  ° + . . .  + i lk -1  
1" 

Suppose that such a field X is a symmetry of Cartan's  distribution. By virtue of 

Theorem 1, this means that the 1-forms Lx(cOi), 0 <~ i < k, belong to A((6e), i.e. they are 
linear combinations of 1-forms ~o o, o21 . . . . .  e2k_ ~ with functional coefficients. Comput-  

ing these Lie derivatives for i < k - 1, we obtain 

Lx(o)i) = (D(fli) - fli+ l) dx  mod A(cKe). 

The latter 1-form is in A(q~e) if and only if fli+i = D(fli). Denoting flo by qg, we arrive at 

the following expression for X: 

~-' )_~, x=x~=Y~o~(~o  . (7) 
i=0 

In particular, we see that the field X is entirely defined by one function ~p, which is 
equal to the value of X on y. This function q~ will be referred to as the generatin9 

function of the vector field X~. 
The space of Lie vector fields is thus isomorphic to the space of smooth functions in 

x, Po . . . . .  Pk-1 and we only have to transfer the commutator  operation from the Lie 
algebra of vector fields to the space of functions. The resulting operation is given by 

the Poisson-type formula 

=k~_.l O~ k-i &p 
~'} i L=o D'~o) ~p, - Z O'(q , ) - -  

i = o c3Pi 

and will be exploited later in Section 5. 
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The generating function of a symmetry of a given differential equation cannot be 
arbitrary. The condition Lx(cO k 1) ~ A(~e), which can be rewritten as 

Dk((O) --  i~-O Di((O) dx - 0 mod A(C~e), 

implies that ~p must satisfy differential equation A(~p) = 0, where the operator A ranging 
in the space of smooth functions in x, Po . . . . .  Pk- 1 is defined by 

k-1 ~ f  D i 
A = D k - -  E ~-~p i 

i=0 

(in the terminology of [7], operator A is the universal linearization of the function 
F=p~ - f restricted to the equation o~). 

The discussion we have just finished can be summarized as follows. 

THEOREM 5. Sym(o ~) - Ker A; this isomorphism is effectuated by the correspondence 
X~, ,--* (O, where Xv  is defined by (7). 

Since, evidently, oh(X~0 ) = Di((O) for the basic 1-forms (3) of Cartan's distribution, the 
pairing matrix (1) becomes E = Di((Oj), so that the algebra generated by (01 . . . . .  (o k is 
transversal if and only if this matrix is nondegenerate. 

Our approach to symmetries of differential equations is related to the classical Lie 
approach in the following way. Consider a vector field Y which is a symmetry of 
Cartan's distribution c~ in JkR. If Y is tangent to the equation 8EJ~R, then its 
restriction to ~ defines a symmetry of the distribution ~e. In this case, Y is said to be 
an outer symmetry of the equation ~. Symmetries of the equation ~ in the sense 
adopted above, i.e. symmetries of the distribution cK~, can be, correspondingly, called 
inner symmetries. Restrictions of outer symmetries to ~ are distinguished from the set 
of all inner symmetries by the property that their generating function depends only on 
x, y, Pl. This follows from the theorem of Lie and B/icklund: every symmetry of the 
distribution c~ coincides with the natural lift to f i R  of some contact vector field in J1R. 
The lifting procedure is described in/-4, 7, 11]; we shall not need its full description - 
for our aims it suffices to note that the contact field with generating function ~0 is 

K~ = - ( o p ~ x  + ((o - p % )  + ((ox + p(o,) , 

where p = pl, and its lift to f i r  differs from the right-hand part of this expression only 
in terms containing O/Op2 . . . . .  O/dpk. Vector field K~ coincides with the restriction of 
the operator X~o-(opD to the space of functions in x, y, p. Therefore, if X~0 is a 
symmetry of o ~, then both X ,  and the lift of K ,  specify the same element of the 
quotient space Sym(#). 

A particular class of contact field is composed of lifts of the so-called infinitesimal 
point transformations, i.e. infinitesimal changes of independent and dependent 
variables or, in other words, vector fields in the space J°R with coordinates x, y. Point 
transformations may be characterized by linear dependence of their generating 
functions on p. Indeed, according to (7), the generating function of a symmetry X is 
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recovered by means of the formula ~o = ~o(X) and 

~Oo ~x + ~y+  . . . .  f l -~p .  

EXAMPLES. Here are point transformations which are most frequently encountered 
in applications. 

(1) Translation in x is the lift of the field O/Ox with generating function - p .  
(2) Translation in y is the lift of the field O/~y with generating function 1. 
(3) Scale transformation is the lift of a x  O / t 3 x + b y  ~/t3y, a , b ~ R .  Its generating 

function is b y - a p x .  

R e m a r k .  By commuting translations and scale transformations, one always obtains 

translations, so that any Lie algebra consisting of vector fields of these two kinds, is 

solvable. 
As the reader may see, the 'inner' approach to symmetries is wider than the 'outer' 

approach which is confined only to contact transformations. From the 'outer' 
viewpoint, symmetries of Cartan's distribution of an equation 8 should be considered 
as 'higher symmetries', since they are restrictions to g of symmetries of Cartan's 
distribution on the space of jets of infinite order [7]. H. Stephani [18] calls them 

'dynamic symmetries'. 
However, all these 'higher' symmetries of ordinary differential equations can be 

reduced to mere point symmetries if one studies, instead of a single equation, the 
corresponding first-order system. We will explain the relevant theory in the general 

context of finite-type systems. 

4. Finite-Type Systems 

Let us be given a system of differential equations 

F1 x, u, = 0, 

: (8) 

r X, U, = 0, 

where u and x stand for the sets of dependent and independent variables u 1 . . . . .  u 'n 
and x ~ . . . .  , x n, respectively, while Ou/~x designates the set of all derivatives of the 
former over the latter up to a fixed order k. 

The study of such a system is geometrized like before, by considering the 
submanifold o ~ in the jet space Jk(n, m) equipped with Cartan's distribution. A natural 
system of coordinates in Jk(n, m) is composed of all x i for i=  1 , . . . ,n ,  all u s for 
j = 1 . . . . .  m and variables u~ where 1 ~<j ~< m, while a = ili2 ...  i n is a multiindex with 
lal = il + i2 + "'" + in <. k. The Cartan's distribution is defined by the set of 1-forms 

~0~ du~ ~ j i =- -- u,~+¢i) d x  for all j = 1 , . . . , m  
i = l  
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and [al ~< k - 1, where a + (i) is obtained from a by augmenting its ith component by 

1. Solutions of equation* (8) correspond to n-dimensional integral manifolds of the 

restricted distribution oK8 whose projection to the (x 1 . . . . .  x~)-plane is nondegenerate. 

The above-described general notation for jet coordinates is rather cumbersome, so 
in the situation when we have one unknown function u of two independent variables 
x, y, we will make use of Monge's notation x, y, u, p, q, r, s, t instead of x 1, x 2, u 1, u~o, 
U~l, U~to, u~ 1, U~a, respectively. 

EXAMPLE 8. Consider the system 

Qu 1 - c o s  u ~u sin u 

~x y ~y y 

in one unknown function u of two independent variables x, y. The relevant jet space 
J1(2, 1) is five-dimensional with coordinates x, y, u, p, q. The equation under study 
specifies a three-dimensional submanifold 

P - -  y ' q =  

in this space, and the form of Cartan 

du - p dx - q dy, 

when restricted to this submanifold, becomes 

1 -  cos u sin u 
du - -  dx - dy, 

Y Y 

which coincides, up to notations and a nonzero factor, with the 1-form 09 of Example 
2, provided that u is considered as a function defined in the upper half of the (x, y)- 
plane and taking values modulo 2n. It follows that our system has a 1-parametric 
family of solutions given by maximal integral manifolds of the oricycle distribution. 

A system of differential equations is said to have f inite type if its solution space is 
finite-dimensional. Any system of ordinary differential equations is obviously of finite 
type. In order that a system of partial differential equations might have finite type, it 
normally needs to be overdetermined in the sense that the number of equations in the 
system should exceed the number of unknown functions. (This is always true, e.g., 
when the system is involutive (see [16, 20]).) 

If the Cartan's distribution of an equation is n-dimensional and completely 
integrable, as in Example 8, this equation is sure to have finite type. However, this is 
not the only class of finite type systems. 

EXAMPLE 9. The system 

Uxx = O, uyy = O 

is evidently of finite type, since its solutions are exhausted by the 4-parametric family 

*Here and below, the word equation (singular) will be used as synonym to system of equations. 
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u = a x y  + bx  + cy + d, a, b, c, d ~ R. However, the corresponding geometric image is a 
six-dimensional plane { r = O , t = O }  in the eight-dimensional manifold j2(2, t) whose 
Cartan distribution given by 

d u - p d x - q d y = O ,  d p - s d y = O ,  d q - s d x = O ,  

is three-dimensional and not completely integrable. 
If we consider the first prolongation of this system 

Uxx x = O, Uxxy = 0, uxyr = 0, uyyy = O, 

obtained by taking total derivatives of all the equations of the initial system, we will 
arrive at an eight-dimensional submanifold (a plane, to be exact) in the jet space 
j3(2, 1 )~  R 12 equipped with a two-dimensional completely integrable distribution. 

Thus, this example can also be studied in terms of completely integrable distributions, 
but to effect this reduction, one first has to prolongate the equation. 

The above definition of finite-type systems is not constructive in the sense that one 
should know the size of the space of solutions in order to decide whether the system is 
of finite type. There is a class of systems which are easily proved to be of finite type. 

We are speaking about systems whose infinite prolongation (see [7, 20]) is finite- 

dimensional. This implies that after a number of prolongations, the system can be 
resolved with respect to all derivatives of a fixed highest-order k. In this case, all 

with [al ~> k can be expressed through x j, u s and u~ with Ivl < k, so that the variables u~ 
space . ~ = C ~ ( J  k 1) of smooth functions on the manifold of (k-1)-jets serves as a 
closed universe for all calculations related to the given system - much in the same way 
as the space of functions in x,  y, Y l , . . . ,  Yk -  ~ did in the case of ordinary differential 

equations. 
In this space ~ ,  the restrictions of total derivative operators 

D; = + o.E + ,;, 

are defined. A generating function of a symmetry is represented by a row 
(q~ . . . . .  q;") E .~m, where m is the number of dependent variables u ~ . . . . .  um. The vector 
field in j k - 1  corresponding to this function is given by the formula 

Xl,~, ..,~,o I = y~ O~(~d) ~ 
o,j Ou~ ' 

Di~ o i, where O i , , . . . , i ,  = 1 . . . .  D , .  The generating function of a symmetry for a system like 
(8) should satisfy r equations 

0F~ 
~. ~'~u~ D"(~PJ) 0, i 1 . . . . .  r. 
o',d 

This constitutes a counterpart of Theorem 5 in the case of finite-type systems. All these 
formulas are valid for general systems of PDEs, but they have to be considered in 
infinite-dimensional spaces (see [-7, 20] for proofs and details). 
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EXAMPLE. The finite type system 

u x = yv, u r = xv, v x : yu, v r = xu  

is described by a four-dimensional surface with coordinates x = x  ~, y = x  2, u = u  1, 

v = u 2 in eight-dimensional jet space J~(2, 2). Below, we give the step-by-step records of 
the integration procedure of Section 2 applied in this case (however, not explaining 

how the symmetries S 1 and $2 were found). 

Basic fo rms  o f  Cartan's  distribution 

a h = d u - y v  d x - x v  dy,  

Symmetr ies:  

S2 : eX'\  

Their  generating funct ions:  

e l  = , ~°2 \ e X y j  • 

Pairing matr ix  Si(tpj): 

eXY// 

N e w  basic 1-forms: 

o9 2 = d v - y u  d x - x u  dy. 

d ( u -  v_~)+ d(xy) 
' dy'~ u - v ( c ° x ~ = E - , ( d u - y v d x - x v  = 

\co'2/ \ d r -  yu dx  - xu  dy  } - v du + u dv e -  Xy(u + v) d(xy) 
eXy(u-  v) 

Firs t  integrals: 

w'I = d[log(u - v) + xy]  ~ dh 1, h t = C Y ( u - v ) ,  

co~1,1: . . . .  , = d[e-Xr(u+v)], h: =e-Xr(u+v).  

General  solution: 

U : C 1 e xy + C 2 e -xr, v = C l e  x y -  C 2e xr. 

5. More Examples for ODEs 

Here we give several examples of how Theorem 4 can yield explicit solutions for 
ODEs. Further examples can be found in an extensive literature that comprises, e.g., 
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the books [1, 11, 12, 18]. Note that the fundamental problem related to our method is 
to find enough symmetries of a given differential equation in order that the integration 
procedure could work. In Example 12, we show how one does this by equating 

coefficients in the case of point symmetries. This technique is already quite traditional 
and is described here for the sake of the readers who are not familiar with the 

literature. One should note, however, that in recent years many computer programs 

have appeared that enable one to search the symmetries interactively. Among these, 
we would like to mention the well-known REDUCE package by F. Schwarz and the 
DELIA program referred to below in the Acknowledgements. 

EXAMPLE 10. Let g be the linear equation 

• (k~ y ,  
O~ky + . . . + C q  + O ~ o y = g ,  

where ~k . . . .  ,"~, %, 9 are given functions of x. An arbitrary solution of the 
corresponding homogeneous equation 

O~kY ~k) + " "  + ~lY '  + ~oY = 0 

is a symmetry (generating function of a symmetry, to be precise) of the initial equation. 
The space of all solutions makes a k-dimensional commutative algebra, and if one 

knows its basis, i.e. a fundamental system of solutions of the homogeneous equation, 
then the inhomogeneous equation can be integrated by means of quadratures. 

The computations needed to actually carry out the integration in this case, are 
precisely the same which one comes across when applying the usual trick of 'variation 
of constants'. In particular, the matrix ~ here consists of functions of x and, hence, is 
nothing but the usual Wronski matrix of the fundamental system involved. 

EXAMPLE 11. In the well-known reference book on ordinary differential equations 

[5] one can find the following equations: 

4 2 ,,, 18 ' "  .- Y Y - yy  y +15y '3=0,  9 y 2 y " - 4 5 y y ' y "  + 4 0 y ' 3 = O ,  

which are treated as separate examples (Nos. 7.8 and 7.9). For  each of them, a separate 
solution procedure is recommended. However, it is readily seen that both equations as 
well as the arbitrary equation of the form 

ay2y '' + byy'y" + cy  '3 = 0, a, b, c e R, (9) 

possess a three-dimensional solvable Lie algebra of symmetries consisting of the 
translation in x and two independent scale transformations. It is convenient to take 

the functions (p 1 = Y, 02 =-P, q)3 = Y + xp  for a basis of the symmetry algebra and follow 
the above-described scheme to accomplish the integration. 

Remark .  This equation can be integrated in three steps by successively lowering its 
order, using first the translation invariance and then invariance with respect to the 
two-scale transformations. Thus, the procedure of Lie and Cartan is a generalization 
of standard methods of order reduction. Note that the sequence in which the 
symmetries are used in this procedure should conform to the Lie algebra structure of 
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the given set of symmetries. For example, if one tries to use the scale invariance of 

Equation (9) first, then the translation symmetry will be lost. In general, on the first 
step the symmetries belonging to the last (smallest) commutator subalgebra should be 

used. 

EXAMPLE 12. This one is the longest example in the paper - it even incorporates a 
theorem. In compensation, an industrious reader will have an opportunity to see in 
full detail how all the machinery works and what kind of results one is supposed to 
obtain. We will find all equations of the form 

y" -- y' + f(y),  (10) 

which possess a two-dimensional Lie algebra of point symmetries and then find the 
explicit expression for solutions of these equations in terms of quadratures. 

The independent variable x does not enter explicitly into the equation, hence the x- 

translation is a symmetry. The problem is to determine when this equation has a 
second symmetry with generating function of the form 

go = ~p + fl, (11) 

where P=Pl and a and fl are functions of x and y such that {p, go} is a linear 
combination of p and go. In what follows, we exclude the trivial particular case when 
the function f(y) is linear. 

We will use variables x, y and p as a system of coordinates on the surface 
c j2(1, 1) corresponding to the given equation. In these coordinates, the total 

derivative operator has the form 

D = ~-x + p ~yy + (p + f )  ~pp" (12) 

The generating function of a symmetry go(x, y, p) has to satisfy the equation 

D2(go) -- O(go) -- f'go = 0. 

Taking into account relations (11) and (12), we can rewrite the last one as 

ayyp2 + (2ax~ + 2ay + flyy)p2 + (3ayf + ax + axx + 2flxy)P 

+ (2axf + flyf  + fix,, - fix - f ' f l)  = O, 

which is equivalent to the system of equations 

O~yy = O, 2axy + 2% + fly~ = O, 
(13) 

3~yf +ax+~xx+ 2flxy=O, 2ctxf +f ly f  + f l x x - f l x -  f '  fl = O. 

The first equation yields ~ = 7 y + 6 ,  where 7 and 6 are some functions of x. 
Substituting this into the second equation, we obtain fl= -(y +y,)y2 +ey+ ~, where 
and ( are again functions of x. Then the third equation is reduced to 

3ff  = 3(~ + ~')y - 8' - 8" - 2g. 
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Since the function f ( y )  was supposed to be nonlinear, it follows that y = 0  and 

E = ( d -  3 - 3')/2, where d = const. 

Now the last equation of the system (13) takes the form 

(ey + ~) f '  - q f  = Oy + 2 (14) 

with q = 26 '+  e, 0 = d ' - e ' ,  which is an ordinary differential equation with respect to 

the function f (y) ,  where the variable x enters as parameter. Its general solution, under 

the assumptions e # 0, ~/¢ 0, e ~ ~/, is given by the formula 

f = #  Y +  + e - ~ l  y +  -~ eq 

where # is an arbitrary function of x. 
From all functions (15), we have to choose those which depend only on y and are 

nonlinear in y. The former requirement holds if and only if all of the functions #, ~/~, 

~//e, 0 / (~-  ~/), (0(-eX)/(e~/) are constants. Denoting the constants #, (/e, q/e by a, b and 

c, respectively, and taking into account all the relations among functions under 

consideration, we arrive at the following expressions: 

k + l  
e - - -  a e kx, ~ = be, 

2 

q = ca, 0 = (k 2 - k)c, 2 = (k 2 - k)be, 

where k = ( 1 - c ) / ( c + 3 )  (note that c ¢ - 3  if e ¢ 0). Hence, 

2 c + 2  
f ( y ) = a ( y + b )  c (c+3)  2 y' 

Now consider the possibilities previously excluded. Either of assumptions ~/= 0 and 

q = e results in linearity of the function f (y) .  In the case e = 0, we obtain a new series of 

solutions to Equation (14), 

2 
f ( y )  = a e by - - a, b ~ R. 

b '  

The computations accomplished can be summarized as follows. 

T H E O R E M  6. Among all nonlinear equations of  the form y " =  y' + f ( y )  only equations 

of  the two following series: 

2 c + 2  
(A) y " = y ' + a ( y + b )  c (c+3)  2 y' a , b , c ~ R , e # - 3 ,  

2 (B) y " = y ' + a e b Y - - - ~ ,  a , b ~ R , b # O  

possess a two-dimensional algebra of  point symmetries. In case (A) a basis o f  this algebra 

may be chosen to consist o f  functions 
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D~ol D(o2 e3~(q + p-6y),} ' 

where q - p  +y-2-1-2y. Its determinant is equal to e3XT,, where 

T = p2 _ 6yp + 2yq = pZ _ 4yp + 2y- 1 + 4y2. 

The new basic 1-forms are computed as follows: 

( o ) ~ = ~  a(e)o)  e 3X(e3X(q+p--6y) e3X(2y-p)'~(dy-pdx'~ 

09'lJ - e) 1 = T - - \  - q  p / I kdp-q  dx ]' 

whence 

1 y-2 co~ = ~ [(2p + - 4y)dy + (2y - p)dp] - dx, 

1 3x y 2 e 3Xp co' l = ~ [ - e -  ( p +  +2y )  d y +  dp]. 

The form co; is closed; its integral is -½ log IT l - x .  Instead of this function it is 
more convenient to take 

hi = e x p ( - 2  f oJo) =e2X(p2 - 4 y p  + 2y -a + 4 y  2) 

which is also a first integral of the equation. 
Now we are to integrate the 1-form e~] on the surface Hc~, defined by 

hi = ca =const.  On this surface 

p = 2y +__ x/Ca e-zx -- 2y -x 
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k + l  "~ 
( o , = p ,  ( p 2 = e  kx p - T y  ~ 

with k = ( 1 -  c)/(c + 3), in case (B) the two functions 

can be taken as a basis. 

To complete the example, we will carry out the integration procedure for the 
equation of series (A) with a = 1, b = 0, c = - 2, 

y,, = y, + y-2 + 2y. (16) 

The corresponding algebra of point symmetries is generated by q~t=p and 
q~2=e3X(p-2y). We have [tpl, tP2}=-302 .  The commutator subalgebra real is 
generated by q~2, hence the basis ~,oa, ~02 is written exactly in the order prescribed by the 
algorithm. The pairing matrix of symmetries and basic Cartan's 1-forms is 
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and, hence, 

~'1 = ( - e - 3 x  -T- 
\ 
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2y e -  3x 

x/cl ~ y _  l-)dx -t- 
e-3X 

x/c i e -2x -- 2y-  
dy. 

Computation of the integral of this 1-form depends on the sign of the constant c 1. For 
Cl > 0, we have 

y e  2x cl-3/210g x / / q _ 2 y - l e 2 X + x / ~ l  
c, x/c* - 2 Y - '  e2X -+ N/¢1 - 2 y -  1 e2X ~ ~ l C l  

h 2 = l e - 3 X - t  - -  

and  for c I < 0 

h 2 = ½ e  -3x _ + Y e-2x ~/77 c~-[--x/cl-2y-le2~ -T ( -C l ) -  3/2 arctan y-1 e2X_ 1. 

The general solution to Equation (16) is thus given by implicit formula 
h2 =c2 =const. Graphs of these solutions for all values of c~ and c2 fill the region on 
the surface 8 where the algebra ff is transversal to Cartan's distribution. The 
complement of this region is defined by det~,=0,  i.e. c1=0 or, explicitly, 

p = 2y + x / ~ - 1 .  The latter relation can be interpreted as an ordinary differential 
equation of first order whose solutions 

y = -~(Ce 3x ~- 1) 2/3, C = const ,  

are singular solutions of equation (16). 

Remark 1. The famous MACSYMA system (Symbolics Maclvory, 1989 edition) 
cannot solve Equation (16). 

Remark 2. One could from the very beginning reduce Equation (16) to a first-order 
equation via the standard substitution y'=z(y) (using translation invariance). 
However, this would lead to Abel's equation 

dz 
- -  = z + y-2 + 2y, (17) z dy 

which is rather difficult to integrate. The reason is that (17) does not inherit the other 
symmetry of (16), since the translation does not belong to the commutant subalgebra. 
It seems that the simplest way to solve Equation (17) consists of passing over to 
second-order equation (16) (which ipsofacto has the translational symmetry), finding 
another invisible symmetry of the latter and then integrating it with the help of the 
two symmetries - taken in inverse order, according to the structure of the Lie algebra. 
After doing this, one has to filter the obtained two-parametric family of solutions of 
(16), thus choosing solutions of (17). 

Of course, similar computations can be carried out for arbitrary values of 
parameters a, b, and c (see Theorem 6). Integration of equations of type (A) finally 
reduces to integration of a differential binomial, and Chebyshev's theorem implies that 
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solutions are elementary functions whenever c = - ( 2 / n ) - 1 ,  where n is integer - 

otherwise, they are expressed through elliptic integrals. For two specific values of 

parameter c, c = 2 and c = 3, this equation was solved by Painlev6 1-13], who, however, 

gave no hint as to how he did that. Equations of type (B) have elementary solutions for 

all a and b. 

6. Integration via Overdetermination 

It is well known that (systems of) partial differential equations (PDE) are very 

reluctant towards explicit integration. Even finding one separate analytic solution 
should be considered as a big success. Following the line of our previous argument, 
here we propose a method of searching for particular solutions which is, in a sense, 

'perpendicular' to the standard procedure of computing invariant, or automodel, 

solutions. However, the method is also based on symmetries, and the equation under 
study should possess enough symmetries in order that the method be applicable. 

The idea is the following. Given a PDE or a system which is not of finite type but 

has an ample symmetry algebra, one should find complementary equations in such a 
way that the resulting system would have finite type and inherit as many symmetries 

of the initial system as are necessary for the integration procedure described in Section 
2, i.e. in quantity equal to the codimension of Cartan's distribution of the overdeter- 
mined system. 

Since our aim is only to sketch a certain method, in the subsequent considerations 
we will always mean generic situations, assertions which hold on some open sets, or 

for almost all values of parameters, etc., without explicitly mentioning that. We hope 
that the reader will excuse this liberty. 

Let us discuss in more detail a possible way of hunting for particular solutions of 

one second order equation imposed on the function u(x, y). In Monge's notation, such 
an equation is written as 

f(x, y, u, p, q, r, s, t) = 0. (18) 

Suppose that we know a four-dimensional solvable Lie algebra (~ of symmetries of this 
equation. We may try to find another equation of the same kind 

g(x, y, u, p, q, r, s, t) = 0 (19) 

which is compatible with the first one and admits the same algebra ft. Geometrically, 
the system (18)-(19) represents a six-dimensional submanifold of the Monge's jet 
space J2(2, 1). The relevant Cartan distribution is given by the set of 1-forms 

du - p dx - q dy, dp - r dx - s dy, dq - s dx - t dy, (20) 

so that its restriction to the system is three-dimensional, which does not meet our 
needs, because the solutions we are looking for should be represented by two- 
dimensional surfaces. 

However, after one prolongation, the system will consist of six equations so that the 
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dimension of the corresponding submanifold of J3(2, 1) will be 6. If we choose the 

system of coordinates on this submanifold to be x, y, u, p, q, s, then to obtain a basis of 
Cartan's distribution, we can add the 1-form d s - u x x  r d x - u x r r d y  to the previously 
written set, which means that the Cartan's distribution of the prolongated equation is 
exactly two-dimensional. 

Let us try to run the entire procedure, explicitly finding a 4-parametric family of 
solutions for the Monge-Amp6re equation 

2 
UxxUyy - -  ~lxy ~ U 2  

or in Monge's notation, 

rt - s z = u 2. (21) 

This equation possesses a huge amount of symmetries. Already its algebra of point 
symmetries has dimension 6. Let us take four point symmetries which are most 

'visible', two translations with generating functions ¢Pl =P and ~02 =q,  and two scale 

transformations with generating functions ~03 = x p - y q  and q~4 = u. The lifts of the 
corresponding contact vector fields to the space of 2-jets are 

X1 = ~x '  

X 2 - ay '  

~ 0 ~ ~ _ 2t ~ ,  X 3 = - x ~ x + y ~ + p ~ p - q ~ q + 2 r ~ r  

0 0 0 0 0 ~? 
X4 = U~u + P~p + q ~q + r ~  + S~s + t ~  , 

and they form a solvable Lie algebra •. 
The general second-order equation invariant under this algebra is 

F(u 2pq, up-  2r, u is, uq-  2t) = 0, (22) 

F being an arbitrary function of specified arguments. One may try to determine all 
equations (22) compatible with Equation (21) in the sense that they have a 4- 
parametric family of common solutions. This notion of complete compatibility is 
equivalent to complete integrability of Cartan's distribution after the first prolonga- 
tion and can be handled in the following way. 

In the generic situation the system (21)-(22) can be rewritten as 

u(u 2 + s 2) 

r = q2f(u_2pq, u - i s ,  u2p - 2q-2(u2+ s2)) ' 

t = u - tq2f(u-  2pq, u -  Is, u2p- 2q- 2(u2 + s2)), 
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where f is an arbitrary function of its arguments. These equations should be once 

differentiated giving some expressions for the third derivatives 

K = Uxxx, L = Uxxy, M = Uxy r, N = uryy 

in terms of x, y, u, p, q, s. All geometrical objects here and below are assumed to be 
defined on the resulting six-dimensional submanifold in j3(2, 1). We will use variables 
x, y, u, p, q and s as coordinates on this manifold, understanding all the other involved 

letters as their functions. 
The basic vector fields that span Cartan's distribution of the prolongated system are 

@ @ @ 0 0 
X = -ff~x + P ~u + r ~p + S ~q + L ~s ,  

@ @ @ 0 0 
Y = fffy + q c~u + S ~pp + t ~q + M ~s ' 

and the integrability condition [X, Y] = 2 X  +/~Y is equivalent to 

X ( M )  = r(L) .  (23) 

This is a first-order nonlinear partial differential equation imposed on the function f 
Of course, it is rather complicated (we do not even write it explicitly in terms of f !) 

and the problem of finding its general solution is difficult. But every particular 
solution of this equation gives rise to a specific auxiliary equation (22) and thus to a 4- 
parametric family of solutions to the initial equation (21). One may try various 
ansatzes for the function f in order to find a solution of(24). We have tried f = 1 and 
found out that it just complies with the integrability condition (24). 

Let us execute the integration procedure for the system 

r = us2q 2 _[_ u3q-2, t -- u lq2, (24) 

corresponding to f = 1. We will use the algebra X1 . . . . .  X4 and the following set of 
basic 1-forms for Cartan's distribution: 

co I = du - p d x  - q d y ,  co2 = dp - r d x  - s d y ,  

o 9 3 = d q - s d x - t d y ,  ~o 4 = d s - L d x - M d y ,  

where 

L = 3 q  l s 2 - 2 u - l p s + q - l u 2 ,  M = 2 u - l q s - u - 2 p q  2. 

Since the commutator subalgebra of f~ is spanned by X 1 and X2, by Theorem 2 we 

know that in the new basis of 1-forms co'~ . . . . .  co~, such that co'~(Xj) = 6~, two forms, co~ 
and co~,, will be closed. A simple calculation yields 

1 
o9'3 - 2 u q s -  2pq 2 [ qs du - q2 dp + ( p q -  2us) dp + uq ds] 
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f -- log(us- pq) + log q. 
! 

093 

The function h = (us-pq)/q2 is thus a first integral of the system (23). According to 
the general scheme, we now have to integrate co~, and then, restricting everything to 
the mutual level surfaces of the two first integrals, compute the integrals of the two 
remaining basic 1-forms. But profiting by the apparent simplicity of function h, we 
might as well interrupt the smooth flow of the algorithm here and start it anew in a 
simpler environment. Here is what we mean by that. 

Existence of the first integral h implies that the system (23) is equivalent to a 1- 
parametric family of equations 

r=us2q-2 +uaq -2, s=Cu-lq2 +u-lpq, t=u-lq 2 (25) 

for arbitrary C~R. For any specific value of C, Equation (25) represents a three- 
dimensional submanifold in j2(2, 1) and the corresponding Cartan distribution is two- 
dimensional, so that there is no need for prolongation and everything can be done 
within a five-dimensional manifold with coordinates x, y, u, p, q, using the set of 1- 
forms (20) and only three symmetries, say X1, X 2 and X 4. This algebra is 
commutative, so that all the three 1-forms of the new recalculated basic set are closed. 
Their integration gives the following first integrals: 

au 
- -  + x = const, 
q 

a2u__~ 5 aup u 
5q 5 + ~ -  + -q - y = const, 

a2u 4 + ap _ log q = const, 
4q 4 q 

where a = C 1 (which almost always makes sense!), and after eliminating p and q, we 
arrive at the explicit formula for a 4-parametric family of solutions to the initial 
equation (21): 

x + C l  V(x+C1) 4 a(y+C2) 7 
u = exp -~ - -  + C3 

a L 2-~a ~ x + G  J" 

Remark. One could try to handle the system (23) by first solving its second 
equation. This way leads, however, to a rather intricate nonlinear second-order ODE 
which the authors were not smart enough to cope with. This is yet another 
confirmation of Lie's motto 

Use symmetries to solve differential equations! 
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