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1. Introduction 

A century ago, in 1892, in Russia the thesis of A. M. Lyapunov entitled "The general 

problem of the stability of motion" was published. The thesis contained many fruitful 

ideas and profound mathematical results. So it became a certain landmark for the 

stability theory as well as for the whole qualitative theory of ordinary differential 

equations. Particular attention of mathematitians was attracted to the method which 

was worked out in the thesis. Later on, it was called Lyapunov's second method or 

Lyapunov's direct method. This method turned out to be extremely effective and a 

rather universal tool for investigating differential equation solutions. There are many 

monographs in which this method is expounded and developed, both in Russia [1-6] 

and abroad [7-12]. 
Lyapunov's second method is based on the so-called Lyapunov function, which 

possess certain special properties. 

Let us consider the simplest theorem using Lyapunov function. Let there be given 

the system 
dx  -~-~= f(x), (1.1) 

where f(x) is a continuous vector function satisfying the Lipschitz condition in an 
open domain D C R n. 
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Theorem 1.1, [1]. Let the domain D contain the Origin z = 0 and f(O) = O. 
Suppose that there exists in D a continuously differentiable positive (negative) definite 
function v( x ) with a negative (positive) semi-definite derivative with respect to the 
system (1.1). Then the equilibrium state x -= 0 is Lyapunov stable. 

It will be recalled that the derivative with respect to (1.1) is defined by v(x)  -=- 

(97"ad v(x))* f ( x ) .  By the asterisk, we denote the Hermitian conjugation (here, of 
course, the asterisk means the transpose of a vector). 

The requirements on Lyapunov functions, which are contained in Theorem 1.1, are 
typical for the classical results of Lyapunov's direct method. The latter are devoted 
to various problems of qualitative theory of differential equations (different types of 
stability, convergence, dissipativity, etc.). But one should not think that the properties 
of Lyapunov functions described in Theorem 1.1 are indispensable for them. 

Consider again the system (1.1) on D = R n. We say that the system (1.1) is 
monostable if any bounded solution of (1.1) tends to the equilibrium set {x E R n I 
f ( x )  = 0} as t --4 oo. 

Theorem 1.2, [13]. Suppose a function v(x)  is continuous in R n and has the 
following properties: 

(1) for any solution x( t ) of (1.1), the function v( x( t ) ) does not increase with 
respect to t; 

(2) if for a certain bounded solution x(t) ,  the identity v (x ( t ) )  =_ const  is 
valid, then x( t ) is an equilibrium state of (1.1). 

Then system (1.1) is monostable. 

Note that in Theorem 1.2 we assume neither positive or negative definitess of v(x)  
nor its differentiability. 

In the sixties, for certain finite dimensional dynamical systems, the phenomenon 
of the soy--called strange attractors was discovered. A strange attractor is a compact 

invariant set in the phase space, all the trajectories on which are locally unstable. 
The discovery aroused interest to various dimension-like characteristics of attractors. 
This interest was stimulated not only by intense investigation of chaotic oscillations 
in finite dimensional systems [14-21] but .also by O.A. Ladyzheskaya's research into 
the attractors of Navier-Stokes equations [22-23]. 

Among various dimension-like characteristics, the Hausdorff dimension is the most 
popular. For any compact subset K of R n, this dimension can be defined as follows 

[24]. Let d > 0, ~ > 0. Let us cover /4  by spherical balls with radius ri < c and 
denote 

i 
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the infimum being taken over all finite covering of K.  

Hausdorff d-measure is defined to be 

# ( K , d )  = l i m / ~ ( K , d , e ) .  
$----*0 

Hausdorff showed that there existed a critical value dl such that # ( K ,  d) = 0 
for all d > d l  and # ( / f ,  d) = + o c  for all d < dl.  We denote dl by d i m / f  and 
call it the Hausdorff dimension of compact / f .  

It is rather difficult, it turned out, to determine experimentally the Hausdorff di- 
mension of attractors. That is why other dimensions [25-27] were introduced which 

could, with comparative ease, be calculated with the help of a computer. On the 
other hand the problem of analytical estimates of the Hausdorff dimension became 

rather urgent. 
Essential progress in the establishment of upper bounds for the Hausdorff dimen- 

sion is connected with the theorem of A. Douady and J. Oesterl6. The latter can be 

formulated as follows. 
Let/x" be a compact invariant set of the system (1.1). Let us assume that the 

right part of (1.1) is a continuously differentiable vector function. Let us denote 

by /~l(X) ~ "'" ]> An(X ) the eigenvalues of the symmetrized Jacobian matrix 

l((~f*/c~X -[- Of/(gx).  7~ 

Theorem 1.3, [28, 29]. Suppose that there exist an integer do C [0, n] and a number 
s C [0, 1] such that the inequality 

 l(x) + . . .  + + < o (1.2) 

holds for all x G I(.  Then dim K < do + s. 

In [30], a simple estimate for the dimension of the attractors of the famous Lorenz 
system [14] has been obtained. Its proof is directly based on (1.2). A number 

of results [29, 31-33] have been obtained by joint use of the Douady-Oesterl6 and 
Yakubovich-Kalman frequency theorem. The latter is widely used for stability inves- 
tigations of automatic control systems [13]. We must also notice the paper [34-36], 

where the upper bounds of the dimension of the attractors of the Lorenz system are 
given. Their demonstration is also closely connected with the ideas and results of 
paper [28]. 

A new view on Hausdorff dimension is proposed in [37, 38], where the Hausdorff 
measure is considered as an analogue of a Lyapunov function. Such a conception 
gives the opportunity to introduce the Lyapunov function into the estimates of Haus- 
dorff dimension [37-39] and to prove a number of theorems involving the known 
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results. Of these theorems we formulate here the one which generalizes Theorem 

1.3. 

Theorem 1.4, [37]. Suppose that there exist a continuously differentiable function 
v(x), an integer do C [0, n], and a number s E [0, 1] such that the inequality 

/~I(X) -4--..-~- /~do(X) q- 8/~do-bl(X ) "4- ~3(X) < 0 

holds for all x E K.  Then d im  K < do + s. 

Note that Theorem 1.4 does not assume positive or negative definiteness either for 

v(x)  or for v(x).  
Thus, one can affirm that the set of analytical methods presently developed for 

establishing the upper bounds of the Hausdorff dimension is one of the branches of 
modern stability theory. 

On the other hand, the idea of considering the Hausdorff measure of compact sets, 
mapped by a shift operator along trajectories, as an analogue of Lyapunov function 

gave the opportunity to obtain certain new results [37-39] in classical stability theory, 
close form to the upper bounds of the Hausdorff dimension. Let us illustrate this fact 
by the following assertion. 

Theorem 1.5, [38]. Let the system (1.1) possess only isolated equilibrium states. Let 
D be a bounded simply-connected open domain in R n. Suppose that its boundary 

is crossed strictly inwards by every solution of (1.1) which meet it. Suppose also 
that there exists a continuously differentiable function v( x ) such that the inequality 

 l(X) +  2(x) + < o 

is valid for all x E D. Then each solution of(1.1) in D converges to an equilibrium 
state. 

When D is also a globally absorbing set for the system (1.1), Theorem 1.5 ensures 
its complete stability. 

It will be recalled that complete stability is an analogue of global asymptotic 
stability for systems with multiple equilibria. The system (1.1) is called completely 
stable if any of its solution x(t)  tends to one of equilibrium states, as t goes to 
infinity [13, 40]. We must note here that the notion of complete stability that belongs 
to stability theory proves to be useful when investigating problems connected with 
chaos. Further, we shall demonstrate this assertion with the help of a certain physical 
system. 
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The first impulse to such a conception of the Hausdorff dimension was given by 

the notion of weakly contracting systems [41-43] introduced by Yu.S. II'yashenko. It 

is clear today that a theory of weakly contracting operators is possible which would 

involve upper bounds of dimension as well as orbital stability and global stability 

[37, 44]. 
The structure of this paper is as follows. 
In Sections 2 and 3, we present two three-dimensional systems and use them to 

illustrate all the main theorems proved in the paper. In Section 2, we introduce a 
system which is a generalization of the Lorenz system. We consider its simplest 

properties: by means of Lyapunov functions, the theorem about global stability is 

proved, the dissipativity of the system is established, and certain estimates of the 
dissipativity region are obtained. In Section 3, we give one of the well-known 

Rtssler systems. 
In Section 4, we expound a method of approach to estimating the Hausdorff dimen- 

sion which gives the opportunity of introducing Lyapunov functions into them. Then 
several theorems about convergence and point-wise monostability are proved. These 

are obtained as consequences of the estimates established. The theorems involve 

well-known results. We illustrate the theorems by Rtssler's system and a certain 
concrete specimen of generalized Lorenz equations. At the end of the section, we 
formulate two corollaries about estimating the Hausdorff dimension and convergence 
condition. Their statements are suitable for frequency methods. 

In Section 5, we prove several frequency theorems about the Hausdorff dimension 
and convergence. On the basis of the latter, corresponding theorems for generalized 
Lorenz equations are proved. These theorems give the opportunity for obtaining 
certain results about the Lorenz system which we compare with the results of other 
authors. Apparently, analytical estimates of the dimension of attractors of the Lorenz 

system and the conditions of complete stability of the latter, are the best among other 
estimates and conditions currently known. 

Finally, in Section 6, an application of the main theorems proved for generalized 

Lorenz equations are illustrated by the following concrete examples of physical sys- 
tems: rigid-body rotation in a resisting medium, convection of the fluid contained 
within an ellipsoidal rotating cavity, interaction between waves in plasma. 
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2. Generalized Lorenz Equation 

Consider the following three-dimensional system of ordinary differential equations 

dx 
-- dx  + dy  - a y z ,  

d t  

dy  
dt  - r x  - y - x z '  

d z  
- -  = - b z  + x y ,  
dt  

(2.1) 

where d, b, r are positive numbers and a is an arbitrary real number. For a = 0, 
this system coincides with the widely known Lorenz system for which the chaotic 
oscillations were discovered and investigated for the first time by numerical integra- 
tion [14, 45]. Numerical experiments showed that, for a ~ 0, in system (2.1) there 

also exist strange attractors [21, 46]. 
The Lorenz system is interesting not only because of its strange attractors. It is 

also important that the Lorenz system which has appeared as a model of atmosphere 

convection may serve as a model for other physical processes. Recently, the Lorenz 
model was intensively investigated both by numerical and analytical methods. So 
since many systems describing various natural phenomena may be reduced to the 
Lorenz system, it is possible to apply numerous results of its mathematical investi- 
gation to these original systems. At the end of the section, we shall illustrate this 
idea by a simple system arising from the dynamics of nemafic liquid crystals. 

It should be noticed that the generalized Lorenz equations (2.1) essentially embrace 

a wider set of physical systems. We shall consider some of them in the last section. 

Let us now proceed to investigate the simplest properties of (2.1). 
We shall determine the equilibrium states of the system and their number depending 

on the values of the parameters; show that in the case of the unique equilibrium state, 
system (2.1) is globally asymptotically stable; prove the dissipafivity of the system 

and establish some estimates of its dissipafivity region. 

Suppose a = 0. Then if r < 1 ,  system (2.1) has the unique equilibrium (0, 0, 0) 
and if r > 1 it has three equilibriums: (0~ O~ O) and 

( + ~ ¢ / b ( r -  1) , - t -~¢/b(r -  1 ) , r -  1) 

[14, 45]. 
In the case where a ¢ O, it is easy to verify that the following assertion is true. 

If 

d + a > O ,  r < l  or d + a < O ,  r < - + 2  - 
a 



LYAPUNOV'S DIRECT METHOD IN THE ESTIMATION OF DIMENSION 7 

then (2.1) has the unique equilibrium (0, 0, 0); if r > 1, then (2.1) has three 
equilibriums: (0, 0, 0) and (q-x1, q-Y1, zl);  if 

d + a < 0 ,  - d + 2  t - d  a a < r < l '  

then (2.1) has five equlibriums: (0, 0, 0), ( + x l ,  :l:yl, z l ) ,  (:t:x2, "4-y2, z2). Here 

dbv / -~  dffk (k = 1, 2) 
Xk --  db  + a~k ' Yk = W/~k, Zk -- db  + a~k 

and the real numbers ~1, (2 are defined as 

db [a(r - 2) - d -t- v / ( a r  - d) 2 + 4ad] 6 , 2  = 

For a = 0, r < 1, the equilibrium (0, 0, 0) is Lyapunov asymptotically stable 
[14, 45]. Since the linearized system corresponding to (2.1) in the origin does not 
depend on a, then for a ¢ 0, r < 1 the origin is also Lyapunov asymptotically 
stable. The following theorem about the global asymptotic stability generalizes for 
the case of an arbitrary a, the result of which is well known for a = 0 [14, 45]. 

Theorem 2.1, [32]. The system (2.1) is globally asymptotically stable i f  one of  the 
following two hypotheses holds 

(1) d + a  > O, r < 1; 

d + a < O , r < - ~ + 2  - . 

Proof.  Assume that the hypothesis (1) is valid. Let 

Then 

V l ( X , y , z )  ~-- 1[X2 -~- dy  2 -[- (d-[ -a)z2] .  

vl  = - b (  d + a)z  2 - dx  2 + d(r  + l ) x y  - dy 2 ( 0  

for any (x, y, z) ~ 0 because the quadratic form x 2 -- (r  + 1 )xy  + y2 is positive 
definite for r < 1. 
Assume that the hypothesis (2) is valid. In this case, the inequality 

d 2 
r 2 - 2 d r - l -  + 4  d < 0  a - ~  a 
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is true. Hence, there exists a small positive number e such that the inequality 

d d2 =d 
r 2 -4- 2 ~ r  + -- 4 < 0 a ~-2 a (2.2) 

holds. Here a = - a  + ¢. Let 

1 2 ~' v ~ ( x , ~ , z )  = ~ ( x  + a~ ~ + ~z2). 

Then 

v2 = - ¢ b z  2 - dx 2 + (d + a r ) x y  - ~y2 < 0  

for any (x ,  y, z)  • 0 becausethe quadratic form dx 2 - (d q- a r ) x y  q- a y  2 is 

positive definite due to the inequality (2.2). [] 

We infer from the theorem proved that the chaotization of the trajectories of (2.1), 
as well as that of the Lorenz system, is possible only when there are several equilib- 
rium states. 

We shall now show that (2.1) is dissipative and get some estimates for its dissi- 

pativity region which are necessary for the establishment of the complete stability 

conditions and also for the localization of its attractors in the phase space. 

Let 

v(x,~,z)= ~ x ~+@2+(a+~) z a - ~  ; J '  

where ~ is an arbitrary positive number such that a -4- 5 > O. We have, for an 

arbitrary solution ( x ( t ) , y ( t ) , z ( t ) )  of the system (2.1) 

= - d x  ~ - @~ - b(a + ~)z 2 + b(d + zr )z  

( d + ~ r )  ~ 
< _ d x  2 _ ~y2 _ b(a + ,~) z 
- a + 5  

lb(d_+.C~) 2 
+ 2  a + 5  " 

Denoting c = min (d ,  1, ½b), we get 

v <_ - 2 c v  + F, 

where 

r = ! b ( d  + ,~r)2 
2 a + 5  
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Hence 
" t  

l im v ( x ( t ) , y ( t ) , z ( t ) )  < l__p 
t - - , ~  - 2c 

and all trajectories of the system (2.1) ultimately enter the ellipsoid 

x~+@~+(a+~)(z  d + ~ ]  ~ b(d+~) 2 
a ~  ] < 2c(~+~) 

and remain in it thereafter. 
It should be noticed that the dissipativity ellipsoid obtained here may be improved 

by introducing several varied parameters into the function v just in the same way 
as it was done in [47, 49]for the Lorenz system. To make the dissipativity region 
of (2.1) more precise, we may also use additional quadratic forms as was done 
when investigating the Lorenz system [50, 51]. We should like to pay attention to 
a series of papers [52-59] and to papers [60, 61]. In [52-59] an approximation of 
attractors of the Lorenz system is developed with the help of estimates of solutions 
of two-dimensional ordinary differential equations. In [60, 61], an algebraic method 
of approach to the approximation of attractors is suggested. In this paper, however, 
in order to effectively use the estimates of the disposition of dissipativity region and 
of attractors of (2.1), we shall limit ourselves to the following simple lemmas. 
Denote 

1, forb < 2 
= b (2.3) 

2 b,,/~:T-l' f o r b >  2. 

Lemma 2.1. Let ( x ( t ) , y ( t ) , z ( t ) )  be an arbitrary solution of system (2.1). Then 
we have the estimate 

lim [y2(t) + (z ( t )  - r )  2] < g2r2. 
t---*oo 

Proof.  Let 
1 

v ( y , z )  = ~[y  2 + ( z -  r)21 . 

For any # e (0, #o), where #o = rain (1, b), we have 

v + 2#v =(#  - l)y2 + (# - b)z2 - 2r ( #  - b )  z + #r  2 

. -~- [, +.~2 

r 2 
-< ~ ; -  ~ j = 4 ( ~ - ) )  
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Hence 
b2r 2 

l im v(y( t ) , z ( t ) )  < 8(b- . ) .  
Minimizing with respect to # the right side of the last inequality, we get the estimate 
we have to prove. [] 

It follows from Lemma 2.1 that the system (2.1) possesses of the dissipativity 
region D* for which the following inclusion is true 

D* C { x l -  cc < x < ~ }  x D1, (2.4) 

where O1 = {y , z  l y 2 q- (z - r)  2 < g2r2}. 

Lemma 2.2. Suppose that 2 d -  b > 0 and a ( b -  2) > 0. Let (x ( t ) , y ( t ) , z ( t ) )  
be an arbitrary solution of (2.1). Then the following estimate is true 

lira [2(d - ar)z(t)  - x2(t) + ay2(t)] > O. (2.5) 

Proof.  Let 

v ( x , y , z ) = ( d - a r ) z - l x 2  + 2y2. 

We have 

v = - b  [ ( d -  ar)z - - -  2 d l x 2  + 2 a  2] 
b ~ y  > - b ~ .  

This implies the inequality (2.5). [] 

The following two remarks concern the dissipativity region of the Lorenz system. 
If a -= 0, then joining up the estimates of Lemmas 2.1 and 2.2 allows us to assert that 
there exists for (2.1) the dissipativity region D* for which the following inclusion 
is true 

D* C {x I - ~  < x < ~ }  × (Da f3 {z I z > 0}). (2.6) 

It should be noticed that the inclusion (2.5) also follows from [48, 49, 52]. There- 
fore, the estimates of Lemmas 2.1 and 2.2 may be considered as an extension of the 
corresponding results of these papers for the case a ¢ 0. 

Further, the inclusion (2.6) will be used when studying two questions: (a)  es- 
timates of the Hausdorff dimension of attractors; (b) conditions of the complete 
stability. It follows from the theorem of V.I. Yudovich [47] that the Lorenz system 
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is completely stable for 2d - b < 0. Thus, when investigating questions (a) and 

(b), we may assume without loss of generality that 2d - b > 0. That is why, with- 
out further special remarks, we shall employ (2.6) for the Lorenz system without 
restrictions on the system parameters which are contained in Lemma 2.2. 
In conclusion of this section we consider a system which arises in the dynamics of 
nematic liquid crystals [62, 63] 

d 
~ / n  = [~, nl, 

d d I~[n, ~nl =-Tf~ + x ( H ,  n)[n ,  H], 

where n, ~ ,  H are three-dimensional vectors; I ,  7, X are positive numbers; and 
(., .), and [., .] are scalar and vector products, respectively. In [62], these equations 
were numerically investigated by means of the following scalar variables: a = 
(H,  n),  r / =  (H,  [f~, n]), ~ = If~l 2. In these variables, we have 

do" 
d---t =77' 

dr/ 
dt - - ' 7 1 - 1 r / - ¢ o "  + XI-lo"(lHI2 - o"2), 

d__¢~ = _27 i_1~  + 2Xi_lar/" 
dt 

(2.7) 

Making another change of variables 

.),2 9 ,  

= - s - 

= 
4 i  2 z -- - -  

21 
t = --T~ 

7 

close to that used in [47] we get 

dx 
d---~ = - x  + y, 

a y  = (1 + 4 I T - 2 x l H I 2 ) x  - y - x z ,  
dr 
dz 
dr - 4 z  + xy. 

Thus, system (2.7) is reduced to the Lorenz system with the following parameters: 
Prandtl number d = 1, geometrical parameter b = 4, Rayleigh number r = 1 + 
4 I T - 2 x I H I  2. 

Obviously, Yudovich's condition of the complete stability 2d - b < 0 is true. 
Consequently, any solution of the system (2.7) tends to one of the equilibrium states 
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(0, 0, 0), (+IHI, 0, 0) as t ~ oo. Thus, the statement about the nontriviality of 

the dynamics described by (2.7), which has been proposed on the basis of numerical 

simulation, is not confirmed. 

3. RSssler System 

Let us consider one more three-dimensional system suggested by R6ssler [17], which 
as well as the generalized Lorenz equations, possesses the complicated behavior of 

solutions 

dx 
d---[ = - y  - z ,  

d y  
d---[ = z ,  

d z  
~ =  - b z  + a ( y -  y2). 
d t  

(3.1) 

Here a,  b are positive parameters. 

In [17], by means of numerical simulation, it has been established that for certain 

values of parameters (3.1) has a compact invariant set K .  In next section, we shall 
get for it an upper bound of the Hausdorff dimension. However unlike the case 

of (2.1) for the proof of this estimate we shall not employ information about the 
localization of compact set K in the phase space. 

We have no estimates for the dissipativity region and more than that, it is unknown 

if (3.1) is dissipative. We must emphasize that the negativeness of the divergence of 

a vector field does not ensure the dissipativity. As a suitable example, we indicate the 
system which results from (2.1) for a ----- 0 by change of a sign before the nonlinearity 

in the second equation (the so--called Gleick-Lorenz system, see [64]). 

It is not out of place to mention the paper [65]. There, the nondissipativity of the 
following two systems is proved 

dx 
d--[ = - y  - z ,  

d y  
- -  = x + a y ,  
d t  
d z  
d t  - bx  - c z  + x Y  
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and 

d x  
- y - z ~  

dt 
dy 

= x + ay, 
dt 
dz 
- -  = b - c z  + xy. 
dt 

Here a, b, c are positive parameters. These systems were considered and numerically 

investigated by RSssler [16, 17]. 

4. Lyapunov Functions in the Estimates of the Hausdorff 
Dimension 

Let L be a linear operator. We denote by oq (L)  _> . . .  > a n ( L )  the eigenvalues 
, 1 

of (L L)~.  For an arbitrary integer k _> 0, we put 

= k > o, (4.i) 
1, k u .  ( 

If d _> 0 is an arbitrary number, then we write it in the form d = do + s, where 

do _> 0 is an integer, s 6 [0, 1], and put 

wl-st'l"~os {L'~ 
~ , d ( r )  = do ~ J  d o + ~  , .  (4.2) 

Let E be an ellipsoid in R n. Let us denote by otk(E) the length of its axes and we 
assume that a l ( E )  > . . -  _> an(E). For an arbitrary number d > 0, we introduce 
the notation wd(E) by means of equalities analogous to (4.1), (4.2). It is known 

that the image, by L of the unit ball of R n, is ellipsoid E with the axes ak(E) 
coinciding with the numbers ak(L) [66]. 

Let D be an open domain in R n, let F be a Cl-mapping: D ~ R n. The latter 

means that, for any point x 6 D, the increment of F(x) under the transition from 
the point x to x + h allows the representation 

F(x  + h ) -  F(x) = L(x)h + o(h),  

where L(x) is a linear operator which is called the derivative of the mapping F 
in the point x. We shall suppose that the inclusion F(D) C D is true. Then, for 
an arbitrary integer m _> 1 on D, the Cl-mapping F m is defined. Denote its 
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derivative in the point x by L(m)(x). It is well known that the following relation 

holds 
L(m)(x) = L ( F m - I ( x ) ) . . . L ( F ( x ) ) L ( x ) .  (4.3) 

Let B(x ,  r) denote a ball of the radius r with the centre in the point x in R n. 
Consider the restriction F(x)  on B(x ,  r). Due to the Taylor formula for any h such 

that l hl < r, we have 

IF(x + h ) -  F(x) -  L(x)h I <_ sup IL(x ') - L(x)llhl. (4.4) 
x'EB(x,r) 

Denote by K a compact set in R n. Let K C I (  be a compact set such that 

Fro(K)  C ~" for any integer m _> O. Denote by p(x) a continuous function on 

I ( p ( x )  > 0 for any x C ~" 

Theorem 4.1. Suppose that the inequality 

sup wd(L(x < 1 
xEK 

is valid. Then (a) if # (K ,  d) < oc, then 

l im # ( F m ( K ) , d ) = O ;  

( b ) if K C F(  I (  ), then dirn K < d and for any integer m > 0 #( Fm ( K ), d) = 
O. 

Notice that in [39] a version of Theorem 4.1 for Hilbert space is proved which 
embraces the known theorem of R. Temam about the estimation of the Hausdorff 

dimension of a compact [34, Theorem 5.3.1]. 

In the proof of Theorem 4.1, the following two propositions stated by A. Douady 
and J. Oesterl6 are used [28]. 

Lemma 4.1. Let E be an ellipsoid in R n such that OLl(E ) ( t~, O.)d(E ) ( V and 
u < ~d. Then, for any 77 :> O, the set E q- B(~I) is included into the ellipsoid E I 
for which 

~d(E') _< (1 + ~ ) d . ,  

where n = (~d° /u) l l s .  
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Here and further, B ( r )  denotes the ball centered at 0 of radius r. 

Lemma 4.2. For an ellipsoid E C R n and a number c _> [wd(E)]~ the inequality 

~(E, d, ~)  < ewe(E), 

where~=~/do+l ,  c = 2 d ° ( d 0 + l ) 4 ,  isvalid. 

Proof From the condition of the theorem ,the existence of the positive number 
vl < 1 such that 

[p(F(xll  wd(L(xl)] (4.5) 

xEh 

follows. For any integer m _> 0, we denote 

,(m) = , ?  sup p(x) (4.6) 

Let ~ > 0 be an arbitrary number. There obviously exists m0 > 0 such that for any 
m > too, we have 

. (m)  < e. (4.7) 

Since for any two linear operators L'  and L" the relation 

Wd(Z'Z")  __< Wd(Z ' )~d(L")  

is true [66], then from (4.3) we infer 

m 

x~(L(m)(z)) < l'Ix~(L(Fm-~(z))). 
i = l  

From this and (4.6) we obtain 

~rt 

wd(L(m)(x)) --< H vl P(Fm-i+l(x))p(Fm-i(x)) = V~np(Fm(x) <_ v(m). 
i----1 

Thus 

supwd(L(m)(x)) <_ v(m). (4.8) 
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Use Lemma 4.1 with u = u(m) and a number  5 such that 

sup [[L(m)(x)[I < 5, u(m) < 5 d 
~e Tc 

and choose r/ > 0 satisfying the inequality (1 + nrl)'tu(m) < g. This is possible 

due to (4.7). Take e > 0 such that from (4.4) in which F and L are replaced by 
F m and L (m), it follows that 

]Fro(y)- Fro(x)- L(m)(x)(y-  x)l < rlly - xl (4.9) 

for all y C B(x, r) with r _< e. As we have mentioned above, we have 

L(m)(x)B(r) C E, 

where E C R n is an ellipsoid whose axes are equal to rai(L(m)(x)). Therefore, 

from (4.9), the inclusion 

Fm(B(x,r))  C Fm(x) -t- E -t- S(r~r) 

follows. Recalling (4.8), we have 

wd(E) = rdwd ( 1 E )  = rdwd(L(m)(x)) <_ u(m)r d. 

Thanks to Lemma 4.1, E + B(r / r )  is included in an ellipsoid E '  for which we have 

_< (1 + e / .  

Thus if {B(xi, ri)} is a coveting of K by balls with radii ri < ¢ then one can 

construct a coveting of Fro(I() by ellipsoids E~ with [Wd(E~)] a x < £~ri and 

_< Z (4.10) 
/ i 

For any compact set K '  in R n, we put 

~z(K',d,e) = inf E wd(Ei), 
i 

where the infimum is taken over all coveting of K '  by a finite number of ellipsoids 

Ei for which [wd(Ei)]~ < e. From (4.10), it follows that 

m 2- r # ( F  ( K ) , d , £ ~ e )  _< g#(K,d,¢). (4.11) 
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We show now, employing Lemma 4.2, that for an arbitrary compact set K t C h' ,  it 

is true that 
r ~  ) ' t  

# ( K ' , d ,  Ae) < C#(K ,d,e). (4.12) 

Indeed, for a covering of the compact set K ~ by a finite number of ellipsoids {Ei } 

with [Wd(Ei)] ~ ~ 8 we have 

#(K"d'Ae) < # (Ui Ei'd'Ae) <- E#(Ei'd'Ae) g i 

From this we get (4.12). 
Employing (4.12) with K t = Fro(K), from (4.11) we obtain 

#(Fm(K),H,A£}e) < C£#(K,d,e). (4.13) 

Suppose that #(K, d) < ~ .  Making e tend to 0, we shall have 

#(Fm(K),d) < C£#(K,d). (4.14) 

From (4.7), it follows that by choosing m large enough, we can make the number 

and, hence, the right side of (4.14) as small as we please. Thus the assertion a) is 
proved. 

In order to prove assertion (b) we demand that, for arbitrary/~, conditions )~/~} < 1 
z-  I 

and C£ < 1 are satisfied. Then # (K ,  d, e) < # ( K ,  d, ~£xe) and from (4.13) we 
get 

,(Fm(K), ,t, ,Xt '6) <_ Ct.#(K, d, ,Xt}c). 

Due to the inclusion K C F(K), from the last inequality we have 

#(K, d, At c) <_ Cry(K, d, 

Therefore, # (K ,  d, Ag}e) = 0 and, hence, # ( F r o ( K ) ,  d, M?[e) = 0. Making e 
tend to 0 in these two equalities, we obtain # ( K ,  d) = 0 and #(Fm(K), d) = O. 
The last equality is true for all m larger than a certain m0. But for m _< m0 its 
validity follows from the inclusion/( C F(K). Thus, assertion (b) is proved. [] 

Let us consider the application of Theorem 4.1 to ordinary differential equations. 
Let there be given a system 

dx 
-~ = f(t,x), (t,x) E R+ x R", (4.15) 
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where f ( t ,  :c) is a continuously differentiable vector function. Denote by x(t ,  x0) 
the solution of the system (4.15) with the initial condition x(0, xo) = x0. Let us 
introduce the variation equations on this solution 

dy _ Of  ( t ,x( t ,  xo))y,  (4.16) 
dt Ox 

where Of/Ox is the Jacobian matrix of the right-hand side of (4.15). The derivative 
of shift mapping Ft : :Co --~ x(t,  xo) Ox/Oxo coincides, as is known [67], with 
the Cauchy matrix L(t,  Xo) of the system (4.16), i.e. it is the fundamental matrix 

of the system (4.16) such that L(0, x0) = I ( I  is the unit matrix). 

Theorem 4.2. Suppose that there exist a continuously differentiable function v( x ), 
an integer do >__ 0, numbers s C [0, 1] and r > 0 such that K C Fr( I ( )  and the 
inequality 

xo)) + . . .  +  do(t,:c(t, xo)) 

x(t, x0)) + < 0 (4.17) 

is true for all Xo C K. Then d i m K  < do + s. 

Here and further, ~1 _> "'" >__ /~n are eigenvalues of the symmetrized Jacobian 
matrix 

l ( O f * / O x + O f / O x )  and  v ( x ) = ( g r a d v ( x ) ) * f ( x ) .  

We should emphasize that in Theorem 4.2 neither constancy of sign of the function 

v, nor constancy of sign of v is proposed. 
Observe the following. (1) For v(x) -- const the inequality (4.17) coincides with 

the condition which is contained in Smith's theorem about the Hausdorff dimension 
estimate [29]. (2) Without difficulty, theorem 4.2 can be extended on the Hilbert 
space [39]. 

Obviously (4.17) is satisfied if 

) q ( t , x ) + ' ' ' + / ~ d o ( t , x ) + s / ~ d o + l ( t , x ) + v ( t , x ) < O  (4.18) 

for all (t, x) C R+ × K. This inequality in the case when (4.15) is autonomous 
coincides with the widely known condition of Douady and Oesterl6 [28, 29]. 
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Before proving Theorem 4.2, we introduce the necessary notations and recall some 

known facts which we shall use in the proof. 
Denote by A k a Euclidean space whose elements are exterior products ~1 A. • "A(k, 

(i C R n with the scalar product (., ")Ak and the norm 1. [Ak. For a linear operator 
L : R n ~ R " ,  we denote by Lk the linear operator: A k ~ A k defined by the 

equality 

Lk(~IA"'A~k) = L~IA~2A"'A~k+~IAL~2A'"A~k+~IA~2A'"AL~k. 

The following relations (see [34, pp. 266, 259]) take place: 

wk(L) = sup ILxl A . . .  A LXklA k, (4.19) 
xa,...,~R",lx~l<_l 

and if L is a self-adjoint operator, then 

I[Lkll _< c~a(L)  + . . .  + c~k(L). (4.20) 

Notice that when L is a self-adjoint operator, then the numbers o~i(L) obviously 
coincide with the eigenvalues of L. 

Proof of  T S e o r e m  4.2. Let p(x) = exp[ - -v (x ) ] .  It is evident that due to 
Theorem 4.1 it is sufficient to verify the validity of the inequality 

p(xo) 
wd(L(v, Xo)) < p(Fr(xo)) - exp[v (x0 )  - v(Fr(xo))]. (4.21) 

Thanks to (4.19) for an arbitrary k > 0 we have 

wk(L(r,  xo)) = sup  [y ] ( r )  A... A yk(V)lAk , (4.22) 

where yi(t) = L(t,  x0)~i is the solution of (4.16). 
Let us estimate [ y ] ( r )  A . . .  A yk( 'r)[hk.  We have 

d--~d ]Yl A " "  A Ykl2Ak : ~x~k, ~of*  -lt- -~"xxOf) (yx A ' ' "  Ayk) 'yI  A ' ' "  A k 

By using (4.20) we obtain 

d l u ~  • _ . . . . . .  ^ " ^  u, lL  < 2(.x, + + ~, )b ,  ^ ^ ~kl,~ 
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o r  

d l y a  A . . .  A Yklh~ <_ ()u + " "  + ,Xk)lyl A ' - -  A Yklh~- 

Multiplying both sides of the last inequality by 

[/o' ] exp -- (~1 + " "  + ) % ) d r  , 

we find 

[/0' 1/ ?-/ I ~ l ^ . - - ^ y ~ l A ~ e x p -  ( ~ l + . . . + a k ) a ~  _<0. 

Hence, by integrating over the interval [0, 7-], we get 

I~IA." A ~IA~ < 1~1 ^ . . .  ^ ~klA~exP ()~a-t-...-t-)~k)dt. 

Since I~ ^ " "  ^ ~klA~ _< I~ I--. I~1, then it follows from the last inequality and 
(4.22) 

we(L(-, x,)) _< exp (a~ + . . .  + a~)dt. 

Recalling the definition of wd(L) for an arbitrary d > 0 we get 

// ~,d(L(7-,Xo)) _< ~,:p (a~ + . . . +  heo + ~aeo+~)dt. 

This implies that when (4.17) from the condition of the theorem is true, inequality 
(4.21) is also true. [] 

Notice that another version of the proof of Theorem 4.2 without using exterior 
products is suggested in [68]. 

Theorem 4.3. Let It" C D, where It" and D are compact subsets in R n. Suppose 

that for certain 7- > 0 the relation F m ( x o )  de=__I x(mT-,xo) E D is true for all 
Xo E K and for all integer m >_ O. Suppose also that there exist a continuously 
differentiable function v(x),  an integer do >_ 0, and a number s E [0, 1] such that 
(4.17) is satisfied for all Xo C D. Then 

l im # ( F ~ ( K ) , d o  + s) = O. 
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The proof of Theorem 4.3 is based on Theorem 4.1 and is analogous to the one 

of the previous theorem. 
Below, by means of Theorems 4.2 and 4.3, we prove a new convergence theorem 
and establish new conditions of point-wise monostability for the autonomous system 

dx 
d---t = f ( x ) ,  x C R n, (4.23) 

where f ( x )  is a continuously differentiable function. Their proofs repeat, almost 
word for word the proofs of the corresponding results of R. Smith [29]. 

We shall assume that the system (4.23) has only isolated equilibrium states. 

Theorem 4.4. Let D be a bounded simply-connected open domain in R n. Suppose 
that its boundary is crossed strictly inwards by every solution of (4.23) which meets 
it. Suppose also that there exists a continuously differentiable function v( x) for 
which the inequality 

At(x) + A2(x) + v(x) < 0 (4.24) 

is true for all x E D.  Then each solution of(4.23)  in D converges to an equlibrium 
state. 

Proof.  Let x( t )  be a solution of (4.23). Let us show that any of its w-limit point 

q is an equilibrium state of the system (4.23). Indeed, assume that this statement is 
false. Then due to Pugh's lemma about closure [69], for any e > 0 there exists a 

system 
dx 
a-7 = g(x) ,  (4.25) 

where g(x)  is a continuously differentiable vector function such that iIf - g i l t ,  < 
e and g-flow has a dosed trajectory throught q. Choose e so small that for the 

eigenvalues )~1 >__ "'" >_ )~,~ of the symmetrized Jacobian matrix of the right-hand 
side of (4.25) the inequality (4.24) remains true, i.e. 

+ + < o 

for all x E D.  Thanks to Theorem 4.2, from the last inequality it follows that any 
compact set K in D which is invariant for the system (4.25) has the Hausdorff 
dimension less than 2. But in this case, the existence of the closed trajectory of the 
system (4.25) in D is impossible [29, Theorem 5]. 

Thus, w-limit set of the solution x( t )  of the system (4.23) consists of equilibrium 

states. Since they are supposed isolated, then from the simply-connection of the 
w-limit set it follows that it consists of the unique equilibrium state. [] 
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Note that the paper [38] offers another proof of Theorem 4.4 which does not use 

Smith's result [29, Theorem 5. The proof is based on ideas connected with the 
Plateau problem [70, 71] and is reduced to the following. 

Let us return to the closed trajectory through q. We denote this trajectory by 1". 

Let us pull a smooth two-dimensional surface K C D with a finite area on I'. The 

existence of such a surface for a smooth curve has been shown, for example, in [70]. 
Denote by # ( S )  Hausdorff 2-measure of a smooth two-dimensional surface S. It is 
obvious that F m ( r )  = 1-' for every integer m > 0. Therefore, we have 

inf # ( F m ( I ( ) )  > O. 
m>0 

The latter contradicts the relation 

lim # ( F ~ ( K ) )  = 0 
m ---~ ¢:x:) 

which follows from Theorem 4.3. Hence, the existence of the closed trajectory of 
the system (4.25) in D is impossible. 

Theorem 4.5. Suppose that there exists a continuously differentiable function v( x ) 
such that 

Aa(x) + A2(x) + v(x)  < 0 (4.26) 

for all x C R n. Then any bounded solution of the system (4.23) tends to an 
equlibrium state as t ---* o~. 

Proo f  Let x( t )  be a bounded solution of the system (4.23). Choose the number 

p > 0 such that the trajectory of the solution x(t)  is contained in the ball centred at 

the origin of radius p. There exist a number a > p and a continuously differentiable 

vector function fp (x )  having the following properties [29, Lemma 4]: 

= v x :  Ixl _< p, (4.27) 

x*L(x)  < 0 v x :  Ixl > (4.28) 

# l ( x )  + p,2(x) <_ ~ ( x )  + ,k2(x) Yx  C R " ,  (4.29) 

where #1 >_ • • • _> # ,  are the eigenvalues of the symmetrized Jacobian matrix of 
the vector function fp (z ) .  
From (4.27), it follows that x( t )  is a solution of the system 

dx 
-'d'[ = fp(x) .  (4.30) 
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Denote by D the ball, centred at the origin, of radius tr. From (4.27)-(4.29) it 

follows that all the hypotheses of Theorem 4.4 hold due to which x ( t )  will tend to 
an equilibrium state of the system (4.30) as t ~ oo. Thanks to (4.27) this equilibrium 
state is also an equilibrium state of the original system (4.23). [] 

Observe that by setting in Theorems 4.4 and 4.5 v (x )  -- const  we get convergence 
theorem and conditions of point-wise monostability of R. Smith [29]. 

Let us demonstrate the application of the theorems proved above. We start with 
the R6ssler system 

dx 
- -  : - - y  - -  Z ~  

dt 

dt - x, (4.31) 

dz  
-- b z + a ( y - y 2 ) ,  

dt 

where a~ b are positive numbers. 

T h e o r e m  4 . 6 .  

have 
Let K be a compact set invariant for the system (4.31). Then we 

2b 
dim K < 3 - . (4.32) 

- b +  x / ( a  + 2b) 2 + b 2 + 1 

Proof.  It is easy to see that the eigenvalues of the symmetrized Jacobian matrix 
of the right-hand side of (4.31) are the following numbers: 

1 { -b - I -  x/b 2 + 1 + a2(1 - 2y) 2 }. O, 

Hence, condition (4.18) can be written in the form 

Choose 

- ( l + s ) b + ( 1 - s ) x / b 2 + l + a 2 ( 1 - 2 y ) 2 + 2 v < O .  (4.33) 

v =  2 ( 1 - s ) ~ ( z - b x ) ,  

where ~ is a varied parameter. Then 

= ½(1  - + - a 2] 
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and inequality (4.33) is equivalent to the following 

- (1  + ,)b + (1 - s)~(y; ~) <0 ,  (4.34) 

where 

9~(y; n ) =  x/'b 2 + 1 + a 2 ( 1  - 2y) 2 + n[(a  + b)y-ay2]. 

Let us denote 
m = inf max ~o(y; ~). 

~; y 

From (4.34) we get due to Theorem 4.2 

m -  b 2b 
d i m K < 2 + - - = 3  

- m + b  r e + b "  
(4.35) 

We have 

( 1) 2 
~ o ( y ; t ¢ ) = -  Ov/b 2 + l T a2(1- 2y) 2 - ~ - ~  

1 +02[b 2 + 1 + a2(l - -  2y) 2] + ~ + n[ (a  + b)y - -  ay2]. 

Here 0 5~ 0 is a varied parameter. Further, 

1 
qp(y;n) < O2[b 2 + 1 + a 2 ( 1 -  2y) 2] + ~ + t;[(a + b ) y - a y  2] 

1 82(a 2 + b 2 + 1) q-~-~ - ( ~ a  - 482 a 2 )y2 _ [482 a s _ ~(a q- b)] y 

402a~ ~(a+?) ]2  [40~a2-~(a+b)]  ~ 
=--(na--4OZa 2) yq 2(na_402a2) J q 4(aa_402a 2) 

1 
q- 0 2 ( a  2 + b 2 -ff 1) + 

482" 

If we take the varied parameters n and 0 as follows na - 482 a 2 > 0, then 

[402a2-n(a+b)] 2 b2 1 
V(Y; n) -< 4(ha - 402a 2) + 02(a2 + + 1) + ~--~. 

Let us take 

= 402a a + 2b 
a + b '  

8 2 --- 
2x/ (a  + 2b) 2 q- b 2 + 1" 
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Then we have 
v ( v ;  _< + 2b)2 + + 1 

and (4.35) implies (4.32). [] 

For a = 0.386 and b = 0.2 [17] from the estimate (4.32), we get d i m / (  _< 
2.731. 

The authors of known published works [29-36] containing the bounds of the 
Hausdorff dimension for attractors of concrete ordinary differential equations used the 
estimates of the dissipativity region as a basis. These estimates allow us to localize 
an attractor in the phase space. The example given above shows that using function 
v makes it possible to obtain the dimension estimates without such localization. 

At the same time, if a system is dissipative and a Lyapunov function V is used 
for estimating of its dissipativity region, then it is possible to utilize in Theorems 4.2 
and 4.4 the same function V or, more generally, ¢ ( V ) ,  where ¢ is a continuously 
differentiable function, as v. The following example illustrate this idea. 
Consider the three--dimensional system arising in the research of the interaction be- 
tween waves in plasma [21] 

dx 
dt  - h y -  x - Y z '  

d y  
d t  - h x  - u y  + x z ,  (4.36) 

d z  
= - - Z  + xy~ 

d t  

where h, v are positive numbers. The analytical estimates of the Hausdorff dimension 
of attractors and the conditions of complete stability of this system were first stated 
in [32]. In [32], system (4.36) was investigated by means of its reducing to the 
generalized Lorenz equations (see below, Section 6). 

Let us change the variables: x ~-~ x ,  y ~-~ ~ y ,  z ~-~ z ,  where o~ 5~ 0 is a varied 
parameter. In the new variables, Equations (4.36) take the form 

d x  
d---t = s h y  - x - a y z ,  

dy  h 1 
= - - x  - v y  + - x z ,  (4.37) 

dt  a a 

d z  
= - z  + a x y .  

d t  

The eigenvalues of the symmetrized Jacobian matrix of the right-hand side of (4.37) 
are --1, and 

1 { _ ( v  + 1) + i (  v 1 ) 2 + ( 1  1 ( 1  o<)z]~} - - + + + - 
2 a o~ " 



26 G.A.  LEONOV AND V. A. BOICHENKO 

It follows from the results of  Section 2 that: (1) the system (4.37) is dissipative and 
there is an ellipsoid E ( a )  in the phase space such that any trajectory enters it and 

remains in it thereafter; (2) we can take a narrower set D given by 

D = E ( o O n  { x , z  I V ( x , z )  <_ h~}, 

where V ( x,  z)  = x 2 -t- ( z - h) 2, as a region of  dissipativity. 

Theorem 4.7. Let K be an attractor of the system (4.36).  Then we have 

d i m K  < 3 - 2 (v  + 2) . (4 .38)  
- v + 1 + ~ ( v _ 1 ) 2 + ~ _ h 2  

Proof.  The proof is based on Theorem 4.2. The inequality (4.18) becomes 

- ( ~  + 3)- ~(~ + 1) 

V/ (1 1 1 o~)z] 2 - l-( l -s) (v-l) 2+ ~+°~)2x ~ + [ ( 7  +°~)h+(7- 
+ 2v < 0. (4.39)  

Set 
= ~ v ( . , z ) ,  

where n is a varied parameter. Then 

v = 2 ( - x  2 -- z 2 + hz)  

and the inequality (4.39) is equivalent to 

- ( ~  + 3 ) -  ~(~ + 1) 

+ ~ ( - z  2 - z 2 + hz) < O. 

2 

(4.40)  

The inequality (4.40) will be true if 

1 + (1 - ~ ) 2 - ~  + ~ ( x ,  z) < 0 

2h~] 
(4.41) 
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is true. Here 0 ¢ 0 is varied parameter and 

[ q o ( x , z )  = (1  - s ) 0 2  + o~ - 

+ [ ( 1 -  s)02 ( 1 o~)2 - ~;] 

+ 

X 2 

[2(1 - s)02 (~-'~ - o~ 2 ) 

z 2 

+ ~] hz. 

If 

( 1 - - 8 ) 0 2  + a - ~ >_ 0, 

then granting that/( C D and x 2 _ - z  2 q- 2hz on D we shall have 

(4.42) 

(1) q~(x,z) <_-4(1-s)02z 2+ [4(1-s)02 -~ +1 -e;]hz 

- 8)0 ( -~  + _ ~]2h 2. < [4(1 2 1 I) 

- 16(1 - s)O 2 

Choose 

~; = 4(1 - s)02 (~-~2 + 1) • 

Then, using (4.42), we get qa(x, z) _< 0 for o~ 3> V~. Thus, for o~ _> V/3, the 
inequality (4.41) will be true if 

[ ( 1  } 2 ] 1 
- (u+3)-s (u+l)+(1-s)O 2 ( u -  1) 2 + + a h 2 + ( 1 - s ) ~ -  < O. 

Choose 
02 = 1 

2V/(v - 1)2 + (-~ + o~) 2 

Then the last inequality can be written 

h 2 

(1)2 
- ( . + 3 ) - ~ ( . + 1 ) + ( 1 - ~ )  . - 1 ) ~ +  + ~  h~<O. 
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This implies 

s >  
. + 1 + ~ / ( . -  1)2 + ( ~  + ~)~h2 

= 1 -  2(v + 2) 

u + 1 +  ~ / ( u -  1) 2 + (2  + a )  2h2 

Finally setting a = ~ in (4.43) we obtain (4.38). 

(4.43) 

[] 

Numerical analysis [21] allowed us to establish that f o r ,  = 4, h = 4.92 there 
exists a strange attractor for the system (4.36). For these values of parameters, 
Theorem 4.7 yields d im K < 2.284. 

Notice that the upper bound dim K < 2.339 was stated in [32]. Let us show that 
applying the method of approach considered here, it became possible to improve the 
result by means of introducing a function v ~ const into the estimate of the Haus- 

dorff dimension. Indeed, suppose that v ( x )  - -  const i.e. v -- 0 and, consequently, 
the inequality (4.18) coincides with to the Douady-Oesterl6's condition. The identity 

v ---- 0 in (4.18) is equivalent to the choice of ~; = 0. The inequality (4.42) in this 
case is always valid. Therefore (I )2 

¢p(x, z) _< (1 - -  s)• 2 ~ - ~ + 1  h 2 

and (4.41) will be true if 

- ( u  + 3) -- s ( ,  + 1) 

+ ( 1 - s ) 0 2 { ( Y - 1 ) 2 +  [ ( l + a  / 

1 
+ (1 - ~)2-#- < o. 

Let us take 

02 = I 

+ ~--~+1 

2 ~ / ( y -  1) 2 + [(-~ + a) 2 + (1  + 1)21h2 

Then it follows from (4.44) that 

s > l - -  
2(. + 2) 

. +  1 + ~/(.  _ 1)2 + [(_~ +,~)2 + ( & +  1)2Ira 

(4.44) 

(4.45) 
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The right side is maximum for c~ = V~. Substituting this value in (4.45), we infer 
from Theorem 4.2 

d im K < 3 - 
2 ( .  + 2) 

v + l + ~ / ( v - 1 ) 2  + ~ h  2" 

This estimate for v = 4, h = 4.92 implies d im K _< 2.339, i.e. the result stated 
in [32] (see also below Section 6). 

Theorem 4.8. The system (4.36) is completely stable if 

< 4 ( 1 3 V ~ -  35)(v + 1). h 2 
£1 

(4.46) 

Proof. The proof is based on Theorem 4.4. Just in the same way as for Theorem 
4.7, we take the function 

2 v = -~[x + ( z  - h)2] .  

Then (4.24) can be written as 

- ( ~ + 3 )  

+ n ( - z  2 - z 2 + h z )  < O. 

The inequality (4.47) will be true if 

1 0 2  [ ( 1 ) 2  ] -(~ + 3) + ~ -  + (~ - 1) 2 + + ~ h 2 + ~ ( x , z )  < O, 

where 0 # 0 is a varied parameter, qa(x, z) = Ax 2 + Bz 2 - Cz and 

A = 0 2 + a - •, 

B = 0 2 - o~ - to, 

(4.47) 

(4.48) 
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Since, for each point in D,  the relation x 2 + z 2 -- 2hz <_ 0 is true then for A _> 0, 

02 + o~ - n > 0 (4.49)  

i.e. if 

we have Ax 2 < - A z  2 + 2Ahz. Hence 

~p < ( B - A ) z 2 - ( C - 2 A h ) z = ( B - A )  ( z  
C -  2Ah ~ 2 ( C -  2Ah ) e 

2-(-(/7 -- -~) J 4 ( B  - A) 

And since B - A = - 4 0 2 ,  then if (4.49) is valid, it is true that 

( C  - 2Ah)  2 
~<_ 

4 ( A -  B )  " 

We have 

Let us choose 

+ 1  , 

where ~- is a new varied parameter. Then it follows from (4.50), (4.51) 

(1 )2 
q~<_h2(r-1)202 ~ - + 1  . 

Take 

0 2 ~__ 

2 V / ( v  - 1) 2 + (-~ + 00 2 h 2 + (7- - 1) 2 (aAr + 1) 2 h 2 

In such case, the inequality (4.48) is true if (4.49) and 

(4.50) 

(4.51)  

h 2 < v + 3  
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are true. The last inequality is equivalent to 

[(1 ) 2 ( 1 )  2 ] 
+o~ h 2 + ( 7 - - 1 )  2 ~ - ~ + 1  h 2 < 8 ( v + 1 ) .  (4.52) 

The inequality (4.49) is valid for o~ 2 _> 4"r -- 1. Choose 

~-= 4 ( V / ~  - 1), 0~2 = V ~ - -  2. 

Then from (4.52) we get the condition (4.46). [] 

For u = 4, Theorem 4.8 ensures complete stability for h < 2.96. Notice that, in 
[32], complete stability for this value of u was stated only for h < 2.4. 

We will emphasize that we could extend a complete stability region here in com- 
parison with that obtained in [32] just on using in (4.24) a function v ~ const. 

Indeed, if v -- 0, i.e. ~ = 0 and, consequently 7- -- 0, then (4.52) becomes 

[(1 + ~ 1 2 (  1-I-  ~-~ -I- 112] h2 8(v I ) . <  + (4.53) 

The expression in the square brackets is minimum for a = X/~, therefore from 
(4.53) we get 

32 h 2 < ~-~(v + 1). 

This condition for u ---- 4 yields the known result h < 2.4 (see also below, Section 
6). 

In conclusion of the section, we offer two statements which are necessary for the 
development of the frequency method of approach to the questions considered above. 
Let the system 

dx 
d--t = f ( t , x )  (4.54) 

be given. Here f ( t ,  x) is a continuously differentiable r-periodic with respect to t 
vector function from R x G in R n, G C R n being an open domain. We denote by 

J(t,  x) the Jacobian matrix of the right-hand side of (4.54). Suppose that there exists 
an open domain D C G which has the property: if x0 C D, then x(t,  xo) C G for 
t E [0, 7"]. Let K be an arbitrary compact set in D invariant for the system (4.54). 

The following statement is obtained from Theorem 4.1 when p(x) =_ const  # 0. 
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Corollary 4.1, [29]. Assume that there exist a constant matrix H = H* < 0 and 
a continuous r-periodic with respect to t function O(t, x)  such that 

J * ( t , x ) H  + H J ( t , x )  + 2 0 ( t , x ) H  <_ 0 

for all (t, x) • R x G. Then, if for some p • [0, n] 

0 " [ ( n  p)O(t,x(t, xo)) + tr J(t ,x(t ,  zo))] dt < 0 

for all x o • I (  then dim K < p. 

Suppose now that the system (4.54) is autonomous. Let there exist a bounded 

simply-connected open domain D with closure D C G. Suppose also that its 
boundary is crossed strictly inwards by every solution of (4.54) which meets it. 
It follows from Theorem 4.4 for v(x)  =_ const.  

Corollary 4.2, [29]. Suppose that there exist a constant matrix H = H* < 0 and 
a continuous function O(x) such that 

J*(x)H + HJ(x) + 20(x)H < 0, 

(,~ - 2)0(x) + t~ J(x)  < 0 

for all x • D. Then each trajectory in D converges to an equilibrium state. 

5. Frequency Estimates of the Hausdorff Dimension 

Consider the system 

d x  I 
= Ax '  + B ~ ( t , C * x ' ) ,  ( t , x ' )  • R x G. (5.1) 

dt 

Here G is an open convex domain in Rn; A, B, C are constant n x n-matrices and 
if(t ,  a )  is a continuously differentiable r-periodic with respect to t vector function. 

Suppose that there exists an open subset D in G possessing the property: if 
x~ 6 D, then x'( t ,  xro) 6 G for t 6 [0, r]. Let K be any compact invariant subset 
in D.  Let X(P) denote the transfer matrix defined by the equality 

x ( p )  = C * ( p Z  - A) -1B, 

where p is a complex number, _r is the unit n x n-matrix. 
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Theorem 5.1, [32]. Let there exist positive numbers A and 7 such that the following 
hypotheses are satisfied: 

( l ) the inequality 

0o ] 
--Nj(t, c*x')  + N ( t ,  c*x')  ~ < ~lol ~ (5.2) 

holds for all y 6 Rn and ( t, x ' ) E R x G ; ( 2 ) the pair { A,  B } is controllable, 
the pair { A,  C}  is observable; 

(3) all eigenvalues of the matrix A +T I are situated to the right of the imaginary 
axis; 

(4) the frequency condition 

R e x ( i w  - 7) - Ax*(iw - 7 )x( iw - 9') _> 0 Vw C R 

holds. 
Then, if there exists a number p E [0, n] for which the inequality 

f "  [(,~ - p)~ + < e (5.3) J(t,x'(t,z'o))] tr  dt 0 Vx'o K 

is true we have d i m / (  < p. 

Recall the definition of controllability and observability. The pair {A, B } is called 
controllable if the rank of the matrix (B, A B , . . . ,  An- IB)  is equal to n. The pair 

{A, C} is called observable if the rank of the matrix (C, A ' C , . . . ,  ( A * ) n - I c )  is 
equal to n. Various criteria of the controllability and the observability can be found 
in [13]. 

Suppose now that the system (5.1) is autonomous, i.e. it can be written as 

dx  t 
= Ax' + B~5(C*x'), x' E G. (5.4) 

dt 

Suppose that there exists an open bounded simply--connected convex domain D such 
that D C G. Suppose also that its boundary is crossed strictly inwards by every 
solution of (5.4) which meets it. 

Theorem 5.2, [32]. Let there exist positive numbers A and 7 such that the following 
hypotheses are satisfied: 

(1) the inequality 

77* [ 0 @ * . . , .  ,, 0 ~ .  • , 1 ~ ( c  x )] ,7_ [ - S j ~  • ) + < ,~l~{ ~ (5.5) 
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holds for all r I E R n and x r E D; 

(2) the pair {A, B} is controllable, the pair {A, C} is observable; 

(3) all eigenvalues of the matrix A d-T I are situated to the right of the imaginary 
axis; 

(4) the frequency condition 

R e x ( i w -  7 ) -  A x * ( i w -  7 ) x ( i w -  7) >- 0 Vw • R 

holds. 

Then if the inequality 

( ~ -  2)-y + t~- y(x') < 0 w '  e ~ (5.6) 

is true, then each trajectory of (5.4) in D converges to an equilibrium state. 

Notice that the hypothesis (2) in Theorems 5.1 and 5.2 may be relaxed by strength- 
ening the hypothesis (4) (see [31]). 

The following lemma is necessary for the proof of Theorems 5.1 and 5.2. The 
only restriction we lay on the vector function ~5(t, ~r) in this lemma is that it is 

continuously differentiable on the set R x {a I a = C*x' ,  x' E ~2}, where ~ is 
an arbitrary open convex domain in R n. 

Lemma 5.1. Let there exist positive numbers )~ and 7 such that the inequality 

1'7" r0 * t ] 
[ - 0 T ( , c * x ' )  + ~ ( t , c * x ' )  ~ _< ~1~12 (5.7) 

is true for all r t E R n and (t, x ' )  E R x oQ and the hypotheses (2)-(4)  of Theorems 
5.1, 5.2 are satisfied. Then there exists a square n x n-matrix H = H* < 0 such 
that the inequality 

J*(t ,  x ' ) H  + H J ( t ,  x ' )  + 2 7 H  < 0 (5.s) 

is valid for all (t, x ')  C R × ~ .  

Proof. By virtue of Yakubovich-Kalman's theorem [13, Theorem 1.2.6], there 
exists a square n × n-matrix H = H* which satisfies the inequality 

z ' *H[ (A  q- ~/I)z' q- B~] - (z '*C~ - AiC*z'] 2) _< O (5.9) 
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for all z r C R n and ~ E R n. Hence, 

z ' * H [ ( A  + - r r ) z '  + B~] < 0 (5.10) 

for all z r C R n and ~ C R n, which satisfy the quadratic relation 

z '*C ~-  ~lC*z'l 2 < 0. (5.11) 

For arbitrary t C R and x~, x~ C ,(2, we put z' r = Xl - X'~ and ¢ = ~( t ,  C* x'a) 
qs(t, C*x~). Since 

fl [~,C*(~lxi+(1-~l)x;)]d~iC*~', 0ff 
• ( t , c*x~) -~( t , c*~'~)  = 

then using (5.7) with r/ = C*z ~, we get that z r and ~ satisfy the inequality (5.11) 
and, hence, for these z r and ~ (5.10) is true, i.e. 

(x~ - x ~ ) * H { ( A  + ~/I)(xta - x ~ )  

+B[~(t, C 'x~) -  ~(~, C*~)]}  < 0. (5.12) 

Setting f ( t ,  x') = Ax' + BqS(t, C*x') and taking into account the relation 

J ( t , x ' ) v  = lim h -a [ f ( t , x '  + hv) - f ( t , x ' ) ]  Vv e R" ,  
h---*O 

l ~ X t we get from (5.12), with x I + hv and x~ = z ~, where x ~ is an arbitrary point 
of ~ ,  that 

v * [ J * ( t , x ' ) H  + H J ( t , x ' )  + 27H]v  < O. 

It follows from (5.9) that for ~ = 0, the matrix H is negative definite [13, Lemma 
1.2.4]. [] 

Using Corollary 4.1 and Lemma 5.1 with J2 -- G, we get the assertion of Theorem 
5.1. 

The validity of Theorem 5.2 follows from Corollary 4.2 and Lemma 5.1 with 
S'2 = D.  

We shall demonstrate now the applications of Theorems 5.1 and 5.2 by means of 
the generalized Lorenz system. Rewrite the system (2.1) in the form (5.1). To do 
this we put x'  = col (z,  y, z), B = diag ( - x 3 ,  - 1 ,  - 1 ) ,  C = diag (x2,1,  1), 

A =  0 - 1  
0 0 b 
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,/~(~r) = ~-1col  ( - g l v  + n2n31avw, u(w - r ) , - u v ) a n d a  = eol (u, v, w). 

Here a l  > 0, t¢2 > 0, aa > 0 are varied parameters, d l =  d - t q / ~ 2 1  g 3 .  

Denote ao = Jc2nala. Introduce the positive number A* defined as follows: 

f o r a =  0 
/ ~ . _  1 

9,t~ 2 ~ 2 r 2  -~ 2t~lr -31- t~12; (5.13) 

for a > 0 
1 

A* = [(1 -4- ao)£r -t-[aor - ~zll]; (5 .14)  
292 

fora  < 0 

{ 1 - ~ o  492r2 _ l ( a o r  _/~1)2, 4~2 ~ 
A* = if [1 q- aol(aor - gl )  -4ao~r  >__ O, 

~(11 + aole~ - a o .  + ~1), 
if l1 + aol(aor -- t~l) - -  4aoer <__ O. 

(5 .15)  

Let us denote by #0(Y, z) the largest eigenvalue of the matrix ½(O~*/Oa q- 
0~i/0o'). Let D* be a dissipativity region of the system (2.1) which satisfies the 
inclusion (2.4) for a ~ 0 and the inclusion (2.6) for a = 0. 

Lemma 5.2. We have the estimate 

#o(y,z) <_ A* V(x,y,z) E D*. (5.16) 

Proof. Since 

=±( o 

~ - ½ ( l - ~ o ) y  

w -½(1 -ao )y )  
0 0 , 
0 0 

(5.17) 

where w = ½[(1 + ao)z - r - t%], then the characteristic equation for this matrix 

det 
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reduces to 

1 
( -#~;2)  3 + ~ # ~ 2 { ( 1 - a o ) 2 y  2 + [ ( 1  + a o l z - r - ~ l ]  2} =0. 

Therefore 

1 
#o = ~-~2 V/(1 - ao)2y 2 + [ ( 1  + a o ) z - r - ~ i ]  2. 

From the inclusion (2.4) it follows 

t~o <_ 2-~x/caz2 + c2z + c3, 

where 

(5.18) 

cl =4ao,  c2 = 2 [ ( 1 - a o ) 2 r -  (1 -Fao)(n l  + , ) 1 ,  

c3 = ( 1 - a o ) 2 ( £  2 - 1)r 2 -F ( s l  -t- r)  2. 

Consider separately the cases a -- 0, a > 0 and a < 0. 
Case a = 0. We have cl = 0, c2 = --2ha, c3 = £2r2 + 2tclr + t~. Due to 

the inclusion (2.6) in D*, we have z _> 0. Hence, it follows from (5.18) 

# o < ~  + 2 ~ 1 r + ~ .  

Before starting the consideration of the cases a > 0 and a < 0, we introduce the 
following notations. We let qOl(Z) = Oz  2 + c2z and denote by M the maximum 
q~l(z) in the segment [--Aa,A2],  where A 1 = ( e -  1)r and A 2 = (e + 1)r. 
Function q01 (z) is equal to zero for z = 0 and for z = zl, where zl = --c2/Cl. 

Case a > 0. We have 

M = [ max{~Pl(-A1) '991(A2)} if c2 _~ 0; 

t Cpl(A2) if c2 _> 0. 

Moreover, 

Vl (A2)  -- ~PI(--A1) = 4£r(1 + ao)(aor-  a l ) .  

Therefore, i f a o r  - ~;1 ~ 0, then ~pl(A2) -- ~1( - -A1)  < 0. But 

1 
xc2 = - 3 a o r  + a2or-- nl - aot¢l  
z 
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and, consequently, if aor  - '~1 _< 0, then 

1 
~c2 ~ --4aor + ao(aor -- ~1) < O. 

Thus 

We have 

M = [ ~1(- -A1) '  

t 

i f a o r - n l  ~_ 0; 

i f a o r - - n l  >_0. 

991(-Aa)  + c3 = [(1 + ao)Ir - (aor - / ' ; 1 ) 1 2 ,  

~1(,A,2) + C3 = [(1 + ao)Ir + aor - -  gl] 2. 

From this, (5.16) follows. 
Case a < 0. We have 

{ ~1(z1/2) 
M = ~ I ( - - A 1 )  

~,(z1/2) 

~1(A2) 

if c2 _~ 0, z l / 2  >_ --A1; 

if z l / 2  ~_ --A1; 

if c2 ~ 0, z l / 2  ~ A2; 

if z l / 2  ~ A 2. 

(5.~9) 

The inequalities z l / 2  >__ --A1 and z l / 2  _< A 2 are equivalent to the inequalities 

(1 + ao)(aor - n l )  >_ --41aoler 

and 
(1 + ao) (aor  - t~l) _~ 4laol t r ,  

respectively. Therefore (5.19) may be rewritten in the form 

qO1(Z1/2) 

M -~ ~ I ( - -A1)  

~1(A2) 

if I(1 + a o ) ( a o r  - ~1)1 _< 4[aoltr; 
if (1 q- a o ) ( a o r  - -  ,q ) <_ -4[aoltr; 
if (1 + a o ) ( a o r  - -  ~ 1 )  >_ 41aoltr. 

(5.2o) 

We have for the square root in (5.18) 

v/~I(-A1) + c3 
=(1  + ao)tr - (aor - t~l) if (1 + ao)(aor - ~1) <_ -41ao l t r ,  

~/Vl(A2) + c3 
= -- (1 + ao)£r -- (aor -- ~1) if (1 + ao)(aor -- ~1) >_ 4[aol~r 
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or  

. v / ~ l ( - A 1 )  + c3 

=11 + aolgV - a o r  +/~1 if (1 -3 L ao)(aor-- tq) < --4[aolgr, 

J ~ I ( A 2 )  -4- C3 

=[1 + aolgr - a o r  +/~1 if (1 -4- ao)(aor -- K1) _~ 4la0lgr. 

Moreover 

( 1 - - a ° ) 2  [ 4~2r2 4 l ( a ° r  -- t~l)2] " ao ~1  ( Z l / 2 )  "31- C3 - -  

From (5.20)-(5.23) the estimate (5.16) follows. 

(5.21) 

(5.22) 

(5.23) 

[] 

The following lemma yields the conditions ensuring the fulfillment of the hypothe- 
ses of Theorem 5.1 and 5.2 concerning the linear part of a system. 

Lemma 5.3. Iffor arbitrary numbers ~1 > 0, x2 > 0, x3 > 0, A > 0 and V > 0, 
the inequalities 

d + A/~2/~ 3 - -  7 < 0, b + A - 7 < 0, (5.24) 

4~2(d + A~2~3 --~)(1 + ~ - 7 ) -  ~2(e -  ,1~3/~2) 2 > 0 (5.25) 

hold, then for the system (2.1) written in the form (5.1), the hypotheses (2)-(4) of 
Theorems 5.1 and 5.2 are fulfilled. 

Proof. The validity of the condition concerning the spectrum of the matrix A + T I  
follows directly from (5.24), (5.25). Controllability and observability of correspond- 
ing pairs are evident. Let us check the validity of the frequency condition. For any 
complex number p, we have 

l 
_ _  K 2 K 3  

p+d 
x ( p )  = o 

0 

Therefore 

[X*(P) + X ( P ) ] -  AX*(p)x(p) 

~2da I 
-- (p+d)(p+l) 0 

- -  ] 0 p+l 
0 1 p+b 

I .+ Rep+d+Atc2tcz 
--t¢2 t~ 3 lp+d[2 
__ te2dl (p-'l-dq'-2At¢2 t¢3) 

21p+dl2(~+a) 
0 

tc2dl (~-l-d+2 As¢2 t¢3) 
-- 2[p+d[2(p+l) 0 ) ( Re pq-1)[PTdl2 + Atc~d~ + Alp+d[ 2 

- -  ip+dl=iv+zl 2 0 • 
Re p + b + A  

0 -- ip+bl2 
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Setting p = iw -- 7 and using Sylvester's criterion, we conclude that the frequency 
condition is true if the following inequalities hold 

d+)~t;2~¢3-7<0, b + ~ - 7 < 0 ,  
[4n3(d + ~ n 2 n 3 - 7 ) ( 1  + ~ - 7 ) - n 2 d 2 ] i ( d - 7 )  2 + w21 > 0. 

[] 

Let us now proceed to upper bounds of the Hausdorff dimension of the attractors 

of the generalized Lorenz equations. 
Let us introduce the following square equation with respect to 7 

4tca(d + ~*~2tc3 - 7 ) ( 1  + ~* - 7 ) -  t c 2 ( d -  2 = o. 

Denote by 7* the number which is equal to the largest real root of this equation if 

it exists. Otherwise, let 7* = 0. 

Theorem 5.3. Let K be an attractor of the system (2.1). Then 

where 

d i m K  < 3 -  ( d +  b +  1 ) /k l ,  

kl = inf m a x { d +  .X*Jc21c3,b + ~*,'),*}. 
I¢1 >0,1¢2>0,tza>0 

(5.26) 

Proof. Take an arbitrary number 7' > max{d  + A*tz2J¢3, b + A*,7* }. Then 
for 3/ = 7' and .k = A*, the inequalities (5.24), (5.25) hold. Obviously, there 
exist a number A' > A* such that for 7 = 7'  and A = A' the inequalities (5.24), 
(5.25) remain valid. Due to Lemma 5.3, these values 7 and A ensure the validity 
of the hypotheses (2)-(4) of Theorem 5.1. For ~ > 0, we denote by D~ the e -  

neighborhood of the set D*. Due to (5.16), we can choose ¢ so small that the 
inequality 

1 .  0 . ,  0~ i . , ]  ~, 
--ffg-(c x ) +  < 1,71 x )j ,7_ 

is true for all q C R 3 and x t E D~*. Hence, if .~ = A t and G = D~*, then 

hypothesis (1) of Theorem 5.1 holds. Setting D = D~* in the latter and taking into 
account the inclusion K C D* C D, we conclude from Theorem 5.1 that 

d i m K  < 3 -  (d + b + 1) /7 ' .  
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Since 7'  is an arbitrary number we get the estimate (5.26). [] 

The next result slightly deteriorates the one of Theorem 5.3, but gives a rather 
simple bound of dimension for the attractors of the Lorenz system. 

Corollary $.1. Let a = 0, b > 1. Let K be an attractor of the system (9.1). Then 

dim K < 3 - (d + b + 1)/k2, (5.27) 

l[d--~-b--~- ~(d b)2 + ( b / v / b  1-q-2)dr] where ks = ~ -- -- . 

Proof. Denote 

(b - d) tq  S :  

Choose the following values for varied parameters 

Due to the choice of g3, we have "7* = m a x { d  + ~*g2d/~q, 1 + )~*}. Due to 
the choice of g2, we have d q- ,~*jc2d/t¢l -- b + ~*. Therefore, in view of b > 1, 
we get 

max { b +  = b +  A*. (5.2s) 

Substituting the expressions for gl and t¢2 to the right-hand side of (5.28) we obtain 
from Theorem 5.3 that (5.27) is true. [] 

Let us compare the estimate given by Corollary 5.1 with that of R. Smith [29, 
Theorem 9]: 

where 

1[ k3=~ d 

Let us prove that 

d i m K  G 3 - -  ( d +  b +  1)/ka,  

+ b +  2 b r / v / b -  l + i ( d +  b + l b r /  - 4db 

k 2 - k a  < 0 ,  (5.29) 
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i.e. that estimate (5.27) is better than Smith's result. 
We have 

br 

4 d r -  2 b 2 r / ~  - ½b2r2/(b- 1) 
+ 

~/i  ........ l i  d (d+~)br 1 b2~2 

Therefore, (5.29) is equivalent to 

br [v/(d- b)~ + (b/v'b- 1 + ~)d~ 

+~/¢d-bl~ + ¢d + blbr/v~- 1 + Jb2~/¢b- 1~] 

+ 4 ~  - 2b~/  bv~:- 1 - ~ b ~ / ( b -  1) < O. 

Since b/x/'-b- 1 > 2 and, without loss of generality, we can assume that r > 1, 
then it is sufficient to check the following inequality 

def  br 
A =  b~57--/_ 1 [~/(d - b)2 + 4d + ~ / ( d -  b) ~ + 2(d + b) + 1] 

+ 4 d ,  - 2 6 2 ~ / V ~ -  1 - ~ b ~ r ~ / ( b -  1) < 0. 

Consider separately the case d -  b >_ 0 and d - b < 0. 
Let d -  b ~ 0. Then 

~ / ( d -  b) ~ + 4d + v/ (d  - b) 2 + 2(d + b) + 1 > 2 ( d -  b). 

Therefore 

A< bv/_~_~2(d-b)+4dr-2b2rf~/b 1 -  b2r2/(b-1) 

< - ~b2r2 / (b -  1) < 0. 

Let d -  b < 0. Then 

br[ ] A < ~ v/ (d  - b) ~ + 4d + x / ( d -  b) 2 + 2(d -t- b) q- 1 

- ~ b 2 r 2 / ( b -  1) < 0. 
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The inequality (5.29) is proved. 
Let us also compare the estimate given by Corollary 5.1 with the one stated by 

R. Temam [34, Theorem 6.1.1] 

k4 
d i m K  < 2 + d +  b +  1 +  k4'  (5.30) 

where 

b(~ + d) 
k4 = - ( d + b + l ) + m l +  4~/m~(b- 1)' 

m~=max(b,d) ,  me = m i n ( 1 ,  d). 

Let us prove that the estimate (5.27) is better than (5.30). To do this we must 
check that 

d + b + l  k4 
+ > 1. (5.31) 

k2 d + b +  l +k4 

The inequality (5.31) is equivalent to 

m l  + 
b(~ + d) 

4~¢ /m2(b -  1) 

1 
-- (d+ b ) -  ~ / ( d -  b) ~ + ( b / v ~ -  1 + 2)dr > O. 

The latter will be true if 

[ l ( d + b )  + m l -  (d+b) + 

- 1 ( d - b ) 2 - l ( b / v / - b -  1+2)dr > O. 

b2(r -t- d) 2 

1 6 ( b -  1) 

(5.32) 

But the validity of (5.32) is obvious since we have 

b~(~ + ~)~ ( b l v ~ -  1 + 2)dr 4(b-  1) 
) 2 (b-  2) 2 

br - d + 2dr). 
- 2,/F:- 1 ~ (~-  V)) (d~ + 

Consequently, the inequality (5.32) is true except when d = b = r = 2. In this case, 
the right-hand side of (5.32) is equal to zero. However, without loss of generality, 
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we can ignore this case because the Lorenz system is completely stable for these 
values of the parameters (see Corollary 5.2 below). 

In particular, for d = 10, b = 8/3 ,  r = 28 Corollary 5.1 infers d im K _< 2.421, 
Smith's estimate d im K _< 2.666 and Temam's estimate dim K < 2.538. 

From Theorem 5.3, we have d i m K  < 2.405 (nl = 24, n2 = 1.3, ~;3 = 0.45). 
Note also that A.Eden, C.Foias, and R.Temam recently obtained a new estimate of the 

Hausdorff dimension of attractors of the Lorenz system. For the considered values 
of the parameters, this estimate infers dim K _< 2.4081 [35, 36]. 

On the basis of Theorem 5.2, we now obtain the conditions of the complete stability 
of the generalized Lorenz equations. 

Theorem 5.4. 

n3 > 0 such that 

, ~ * t ¢ 2 / ' ;  3 - -  b - 1 _< 0, A* - d - b _< 0, A* - d - 1 _< 0, 

- b - - d -  b)  - _> 0 

Then system (2.1) is completely stable for r < r'.  

Assume, that for r --- r ~, there exist numbers ~1 >_ 0, n2 > 0, 

( 5 . 3 3 )  

( 5 . 3 4 )  

Proof.  It is easy to see the following. The number A*, defined by equalities 

(5.13)-(5.15) can be regarded as a function of variable r when all the other parameters 
fixed. This function is strictly increasing. Then it follows from (5.33), (5.34) that 

for r < r '  there exists the number 7 < d h- b q- 1 such that 

A*/,g2K 3 71- d - 7 < 0,  A* -a I- b - ,'~ , (  0,  

4~a(A*~2~a + d -  7)(1 + A* - 7 ) -  ~2(d-/ ' ;1/£3//~2) 2 > 0. 

Hence, for r < r ' ,  due to Lemma 5.3, the hypotheses (2) - (4)  of Theorem 5.2 hold 
with A = A*. Setting D = D* and taking into account (5.16) we deduce that for 
A = A*, hypothesis (1) of Theorem 5.2 is also true. Since D* is a dissipativity 
region of the system (2.1), then the validity of Theorem 5.4 follows from Theorem 

5.2. [] 

The next result slightly deteriorates the one of Theorem 5.4 but gives a rather 
simple condition for the complete stability of the Lorenz system. 

Corollary 5.2. Let a = 0, b > 1. I f  

r < 4 bx/'g-Z~- l ( b +  1)(d + 1) (5.35) 
d ( b +  2v/b - 1) 
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then system (2.1) is completely stable. 

P r o o f .  We shall show that the conditions of Theorem 5.4 will be fulfilled if we 
take 

r ' =  4 bx/~L-- l ( b +  1 ) ( d +  1) br' 

d ( b + 2  b~Z~-~) ' ~ ' -  2 bvC:-Y-l' 

/ ( b +  1)nl 

Indeed, due to this choice of varied parameters, the inequalities (5.33), (5.34) are 
reduced to the unique inequality 

,k* < d + 1. (5.36) 

Substituting A* defined by (5.13) into (5.36) we get that (5.36) is equivalent to 

b2rt 2 

4(b- 1) 
+ 2r'~ + ~ -  4(d+ 1)~,~ < o. 

The validity of the last inequality is verified by the direct substitution of the chosen 
values o f r  t, ~1, ~2 and ~3. [] 

R.Smith proved [29, Theorem 10] that the Lorenz system is completely stable if 

2x /~  - 1 ~ x/b + l ( d  + b) d + 1 } (5.37) 
r < b rain ( 7 ~ - ~  ~ ' , / d  + b + 1 

Let us show that the inequality (5.35) supplies a larger domain than (5.37) in the 
space of parameters of the Lorenz system. In order to verify this fact, it is sufficient 
to rewrite the right-hand side of (5.35) in the form 

2V/-~-  1 2 b ~ ( d  + 1) 

b d(b + 2 v ¢ -  1) 

and to utilize the inequality 

2b(d + 1) 
d(b + 2 bVCg-:-f- 1) 

d + b  > 
d + b + l "  
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In particular, for d = 10, b = 8 /3  (5.35) infers r < 3.96 while from (5.37) we 

ge t r  < 3.29. 
From Theorem 5.4, we receive the complete stability of the Lorenz system for 

r < 4.5 (~1 = 0.4, ~;2 = 0.37, ~3 -- 0.8). 
We shall state now another effectively verified condition of the complete stability 

of the generalized Lorenz equations. Its proof is based on the following trivial 
consequence from Theorem 5.2. 

Rewrite the system 
dz 
- ~  = f(:c) (5.38) 

in the form of (5.4) with A = 0, B = - I ,  C = I and ~ ( x )  = - f ( x ) .  It follows 
from Theorem 5.2 that if, for certain A > 0, the inequalities 

-•[j*(x) + J(x)] + > 0, 

(n - 2)~ + tr j ( x )  < 0 

are true for all x 6 D, then each trajectory of the system (5.38) in D converges to 
an equilibrium state. 

Of course, this statement follows from Corollary 4.2 but it is important here that 

it is embraced by the frequency Theorem 5.2. 
For an arbitrary a > 0 we put 

a 2 

a 

Theorem 5.5. If  for a certain a one of the two hypotheses: 

(1) t r p ( a )  < Iq(c,)l, 

4 ( d + b ) ( b + l )  [trio+ 1+ Id arl] 2 - - -  - > 0 ;  
o~ 

(2) t r p ( a )  > Iq(a)l, 
a 2 

4 ( d +  1 ) ( b +  1)p(a)  - ( a - ~ )  £2r2p(a)  

2. ° 

is fulfilled then the system (2.1) is completely stable. 
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Recall that the number/~ is defined by (2.3). 

Before beginning the proof of  Theorem 5.5, we shall introduce the necessary 

notations and formulate an auxiliary statement. Let 

~ 2 ( z )  = c 4 z  2 + 2c5z, 

where c4, c5 are arbitrary real numbers. 

The following simple lemma, the proof of which we omit, gives the value of 
minimum of qo2(z) in the segment [--A1,  A2], the numbers A1 = (g -- 1)r  and 
A 2 = (g + 1)r  being introduced above. 

Lemma  5.4. Let 

Then 

(1) 
(2) 
(3) 
(4) 
(5) 

m =  m i n  qo2(z). 

if c4 < O, c5 + c4r < 0 then m = ~p2(A2); 
if c4 < O, c5 + c4r > 0 then m = q o 2 ( - A 1 ) ;  
/ fc4 > 0, c5 + c 4 A 2  _< 0 then rn = ¢p2(A2); 
/ fc4 > O, c5 -- c4A1 > 0 then m .= ~fl2(--A1); 
if¢4 > O, - -c4A 2 < c5 __< ¢4A1 then m = ~2( - -E5/54) .  

P r o o £  
z ~ z. We get 

Let us carry out the change of variables in (2.1): x ~ ax ,  y ~-~ y, 

dx d a 
dt - d x  + -~y o yZ, 

a y  = ~ x ( r  - z )  - y ,  
dt 
d z  
- -  = - b z  + a x y .  
dt 

Since the inclusion (2.4) takes place, it is sufficient to show that the matrix 

(5.39) 

I(J*+J)+AI 
A -  d 1--rd-az o~(r 2~ ~ + - z ) ]  

1 d - - a z  = 7[-"S--  + o ~ ( r -  z)] A -  I 
o 

B 

is positive difinite for A - A0 = - t r  J on the set D1.  Due to Sylvester's criterion, 
it is sufficient to state that 

¢ ( y , z )  ~ d e t [ l ( J  * + J ) +  AoI] > 0 (5.40) 
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for all (y, z) E D1. We have 

¢(y, z ) = ~ ] - ( d + b +  1)~  +[b+d(b+ 1)1~o-bd 

-~(Ao . . . .  1)(o< a)2y 2 I(A 0 b)[ d-az----~-+o<(r-z)]2 

Denote u = (d + b)(d + 1)(b+ 1). Since ,~o = d + b+  1 and (y,z) e D1, we 
have 

2 
( z - - r )  ~ 

1 a 2 1 (a  ~ )  
¢ ( y , z ) > u -  ( d + b ) ( ~ - ~ )  / ?2 r2+~(d+b)  _ a 

- ~ ( d + l )  d - - a z + ~ ( r - z ) ~  =~[~2(z )+c6] ,  

where the coefficients of the polynomial qP2 (z) and the constant c6 have the following 
values: 

) c 5 = ( d + Z ) ( a + ~ )  + a r  -(d+b)(a - a )  r, 

c6=4u-(dTb)(a-a)2(£2-1)r2-(dT1)(dTar) 

To estimate qo2(z) from below, we shall use Lemma 5.4. We first note that the 
following obvious relations hold 

c~ + c4r =q(a ) ,  

c5 + c4A2 =q(~) + £rc4, 
c 5  - c, A1 =q (a )  - ~rc4. 

(5.41) 
(5.42) 
(5.43) 

Moreover 

[ . 1  
~2(~2)  + c~ =4u - (d + 1) ~r ( .  + ~ )  - ( ~ -  at) , 

[ o 1 qD2(-A,)+c6=4u-(d+l) gr(a+--~)+ (d-at) . 

(5.44) 

(5.45) 
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Therefore, if q(c~) _< 0, then it follows from (5.44) that 

~(~,~) + c0 -- 4u - (d + 1) [terl~ + -~1. + !aid _ ar (5.46) 

But if q(c~) > 0, then it follows from (5.45) that 

c p 2 ( - A 1 ) + c 6 = 4 u - ( d +  l) e~l~+-~l+ I d - a r l  (5.47) 
o~ 

Finally, 

~ ( - ~ , l c , )  + ~ 

=_[1 _ _ ~ )  ~ ~ ,  
4uc4 (d + b) (~ 

C4 

Suppose that hypothesis (1) of the theorem holds, i.e. £rc4 <_ [q(o~)l. 
Assume that c4 _< 0. If q(c~) _< 0, then the validity of the theorem follows from 

(5.41), (5.46) and Lemma 5.4 (case 1). If q(ce) >_ 0, then the validity of the theorem 
follows from (5.41), (5.47) and Lemma 5.4 (case 2). 

Assume that c4 > 0. If q(a) <_ -£rca, then the validity of the theorem follows 
from (5.42), (5.46) and Lemma 5.4 (case 3). If q(c~) _> @re4, then the validity of 
the theorem follows from (5.43), (5.47) and Lemma 5.4 (case 4). 

Thus, if the hypothesis (1) holds, then the theorem is proved. 
Suppose now that hypothesis (2) of the theorem holds, i.e. ere4 > Iq(~)l. Then 

the validity of the theorem follows from Lemma 5.4 (case 5) and (5.41), (5.48). [] 

From Theorem 5.5 we get the following simple condition of the complete stability 
of the Lorenz system. 

Corollary 5.3. Let a = O. If 

or  

r <  (d+  b)(b+ 1) b < 2 ,  
d ~ 

{ 1 1 }, b>2, 
r <  bd mJn d + l ' b - 1  - 
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then (2.1) is completely stable• 

Proof. We have p(a) = ( b -  1)a 2, q(a) = d(d + 1). The hypothesis (1) of 
Theorem 5.5 is reduced to the inequalities 

Choose 

t r ( b -  1)a 2 _< d(d+ 1), 
d 

s i r  + -- < 2x/ (d  + b)(b+ 1). 
O~ 

r <  

d 

x / (d+b) (b+ 1) 

Then these inequalities become 

t r ( b -  1)d < (d + b)(d + 1 ) ( b +  1), 

Hence, we have the complete stability if 

(d+b) (b+  1) 

td 

r < (d + b)(b + t ) /d ,  b < 1, 

or 

( d + b ) ( d + l ) ( b + l ) m i n {  1 1 } b > l .  
r < ed d+  1' b------1 ' 

Recalling the notation of £, we obtain the conditions which are formulated in Corol- 
lary 5.3. [] 

For d = 10, b -- 8/3, Corollary 5.3 gives the complete stability of the Lorenz 
system for r < 4.4. 

The consequence from Theorem 5.5 formulated below turns out to be useful in the 
investigations of some concrete systems. This will be clear by means of examples 
considered in the last section. 

Corollary 5.4. Assume that d = ar. If 

r < (b+ 1)(bid + 1) / l  2, (5.49) 

then the system (2.1) is completely stable. 

Proof. We have q(a)  = 0. The hypothesis (1) of Theorem 5.5 is reduced to the 
inequalities 

( p(~)  < o, 4(d + b)(b + 1) - ~ + > 0. (5.50) 
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Choose & = v/a. Then p(a) = - 4 ( d  + 1)a < 0 and the second inequality of 

(5.50) is written in the form 

r 2 < 
(d+ b)(b+ 1) 

£2a 

Substituting in the last inequality a = d/r we obtain 

(d+b)(b+ 1) 
r <  

~2d 

[] 

In order to estimate the dissipativity region of the generalized Lorenz equations, 
in Theorem 5.5 we use&he inclusion (2.4). Further improvement of the complete 

stability conditions of the (2.1) is possible by means of improving this inclusion. In 
some cases, it may be useful to use Lemma 2.2. As an example, we formulate here 

the following result for the Lorenz system. 

Theorem 5.6, [ 33]. Let a = 0, b > 1. If 

r <  
4(d+b)(b+ 1) 

. / ( d + b ) b ~ - - 4 ( b - - D ~  1 
d[2 + V (d+l)(b-1) l 

then system (2.1) is completely stable. 

For d = 10, b = 8/3,  Theorem 5.6 gives the complete stability of the Lorenz 

system for r < 4.5, i.e. the same result as that of Theorem 5.4. 

The form (5.4) of the system (5.38) allows us to obtain a simple estimate of the 

Hausdorff dimension of the attractors of the Lorenz system from Theorem 5.1. Its 

proof is analogous to the one of Theorem 5.5. 

Let a > 0 be an arbitrary number. Let us take into consideration the cubic 
equation 

//3 -4- al  tfl + a 2 / / +  a3 =- 0 (5.51) 

with the coefficients 

al = - ( d  + b +  1), 
I 

-  dr, 

a3 = -db W ~--~ol2b2r2/(b-1) + l d2b/o~2 + l dbr + lo~2r2(b -1 ) .  
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Denote by v0 the largest real root of (5.51). Let 

k5 = i n f m a x { d + b +  1 , b + a 2 r ( b  - 1 ) /d ,  vo}. 
ol 

Theorem 5.7, [3]. Let a = 0, b > 1. Let K be an attractor of system (2.1).  Then 

d i m K  < 3 - (d + b + 1)~ks. (5.52) 

Note that the version of  Theorem 5.7 without varied parameter c~ (or = 1) was 

first obtained in [30]. 

For d = 10, b = 8 /3 ,  r = 28 the estimate (5.52) implies the same result as 

Theorem 5.3, d i m  K < 2.405 (c~ = 0.6). 

6. Applications to Concrete Systems 

In this section, applications of the above obtained results concerning the general- 
ized Lorenz system (2.1) are illustrated by examples of concrete physical systems: 
rigid body rotation in a resisting medium, convection of a fluid contained within an 

ellipsoidal rotating cavity, interaction between waves in plasma. 

We could also consider the following: the forced motion of  gyrostat [72, 73], the 

convection of  a horizontal layer of  fluid making the harmonic oscillations [74], the 
model of Kolmogorov flow [75]. However, the three examples presented below allow 
us to fully demonstrate applications of  the main theorems proved in the preceding 

sections for (2.1). 

6.1. RIGID BODY ROTATION IN RESISTING MEDIUM 

Consider the rotation of rigid body about the center of mass in a linearly resisting 
medium when there is a constant moment with direction along one of  its main axes. 
The Euler equations describing such a rotation of the body read 

A1---~- = (A2 - A3)w2w3 - s lw l  + m,  

doa2 
A2-"~" = (A3 - A1)wlw3 - s2w2, 

dw~ 
A3 ~ = (A1 - A2)wlw2 - s3w3, 
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where Ai are moments of inertia of the body, wi are components of the angular 

velocity vector, m is a constant moment of external forces, and si are coefficients 

of resistance. 
Many published works are devoted to different types of stability of equilibrium 

states of the system (6.1) (see, for example, [76] and references contained there). 
However, complete stability of (6.1) was apparently first investigated in the paper 

[33]. 
Further, we shall suppose that the inequality (A1 - A 2 ) ( A a  - A 1 )  is true. Indeed 

if the opposite inequality holds, then (6.1) has a unique equilibrium state for any value 
of m but this case isn't of any interest for a complete stability study. 

The following change of variables [72] reduces the system (6.1) to (2.1) 

m 
wl  ~ s2sa (A3  - A 1 ) - I T - l z ,  

81 

w3 ~ s 2 S - l  x ,  t ~ 1 A 2 t .  
82 

w2 ~ s 2 s 3 S - 1 T - l y ,  

Here 

S = [ A { I A 2 I ( A 3  - A 1 ) ( A 2  - A3)I] ], T =  m ( A  1 - A2). 

The parameters of (2.1), by means of such a change, take the values: 

m 
d = S a A 2 A 3 1 ,  b = S l A - ( 1 A 2 ,  r -  - - ( A 3  - A 1 ) T ,  

82 82 818283 

a = s ~ A 2 A ~ ( A 1  - A 2 ) ( A a  - A ~ ) - ~ T  -2 .  

Using Theorem 2.1 and Corollary 5.4, we immediatley get the following result. 

Theorem 6.1, [33]. Suppose that (A1 - A2)(Aa - A1) > 0. System (6.1) is 

globally asymptotically stable if 

rn2(A1 - A 2 ) ( A a  - A1) < s2s2s3 • 

System (6 .1)  is completely stable if 

m2(A1 - A 2 ) ( A 3  - A1) < s ~ A ? 2 ( s ~ A 2  + s 2 a ~ ) ( s ~ A 3  + szAa),  

81A2 < 2s2A1 

o r  

m 2 ( A ~  A 2 ) ( A 3  A~)  < 4 s 2 A : ~ A ; 2 ( s ~ A ~  2 2 -- -- -- s 2 A 1 ) ( s l A a  + s3A1) ,  

s l A 2  >__ 2s2A1. 
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6.2. CONVECTION OF THE ROTATING FLUID 

In [46], the convection of the fluid contained within ellipsoidal rotating cavity is 
considered. The axis of rotation coincides with one of the main axes of ellipsoid and 
composes an angle unequal to zero with the vector of gravity. Convection is excited 
by the external horizontal heating. 

The system of differential equations arising in this model read 

dx ao d 2 
dt - d(y - x) (aoR + 1) 2 yz ,  

dt - (aoR + l ) x -  y -  x z ,  

dz  
- -  = - z  + x y ,  
dt 

(6.2) 

where d, R~ a0 are positive numbers. 
System (6.2) coincides with (2.1) if we set 

aod 2 R 
b = 1, a - ( a o R +  1) 2, r = (aoR + 1). 

Theorem 6.2, [33]. System (6.2) is completely stable if 

1 
R < ~ ( x / 8 a o ( d +  1 ) +  1 -  1 ) .  (6.3) 

Proof.  We shall use Theorem 5.5 to prove the theorem. We have used the 
notations of Theorem 5.5/? = 1, p(c~) = - 4 ( d  + 1)a. Hypotheses (1) of Theorem 
5.5 is reduced to the unique inequality 

1 o+ 1 
which is true for 

1 

Taking 

[ ' J 4 a ° d x / 8 ( d  + 1 ) - - 4  aOd2 --j-- 

d 
OLin 

Xf2(d + 1) '  

> O, 

+1--1] . 
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we get condition (6.3). [] 

In [46], for d = 4, a0 = 0.04, R = 250 the existence of strange attractors was 
discovered by means of  numerical experiments. It follows from Theorem 5.3 that 
for these values of  parameters, the upper bound of the Hausdorff dimension is 2.895 

( g l  = 400, n2 = 10, n3 = 0.09). 
It follows from Theorem 2.1 that if d = 4 and a0 = 0.04, then (6.2) is globally 

asymptotically stable for R < 3.5. Theorem 5.4 ensures complete stability for 

R < 7.6 (hi = 0.9, n2 = 0.5, n3 = 0.8). We get immediately the same result 
from Theorem 6.2. 

6.3. INTERACTION BETWEEN WAVES IN PLASMA 

In [21] (see also [77]), on the example of  the interaction of  waves in plasma, the 
following equations 

d z  
d---[ = hy  - y l  x - y z ,  

dy  = hx  - u2y + x z ,  (6.4) 
dt 
dz  
- -  = - z  + x y  
dt 

are deduced. This system describes the interaction of  three resonantly coupled waves 

two of them being parametrically excited. Here, the parameter h is proportional 
to the pumping amplitude and the parameters yl and u~ are normalized dumping 
decrements. 

The change of variables 

x ~-~ v l v 2 h - l y ,  y ~-+ u l x ,  z ~ u l u 2 h - l z ,  t H u ~ l t  

reduces system (6.4) to the form of (2.1) with the parameters 

d = u~-lv2, b = v [  1, a = - v ~ h  -2 ,  r = V l l v 2 1 h  2. 

Numerical computations [21] showed that if u 1 - -"  1, u2 = 4, h = 4.92, then 
there exists a strange attractor for the system (6.4). For these values of  parameters, 
it follows from Theorem 5.3 that an upper bound of  the Hausdorff dimension of  this 

attractor is 2.339 (~1 = 3.1, ~2 = 0.7, n3 = 0.9). For these values of  ul and 
v2, hypothesis (2) of  Theorem 2.1 reduces to the inequality h < 2 which ensures 
the global asymptotic stability of (6.4). We infer from Theorem 5.4 the complete 
stability in the case of  h < 2.4 (~1 = 0.6, n2 = 0.25, ~3 = 1.6). 
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We should like to draw the reader's attention to the fact that in Section 4, by means 

of introducing the Lyapunov function into the estimates of  the Hausdorff dimension, 

we succeeded in getting better results for the system (6.4), with vl  = 1 , (see 

Theorems 4.6 and 4.7) than those given in the present subsection. 
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