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A tolerance on a set is a mathematical structure formalizing the idea of resem- 
blance or, to be more precise, the idea of being the same up to a small (or 

allowable) error, specified in advance. 

Basic definitions, as well as some advertising of the concept  of tolerance space, 

are contained in Part  I, which is introductory.  Part II, where some of the (mildly 
sophisticated) techniques are developed,  will primary interest the theoretically- 

minded mathematician. Part III is for applied mathematicians and other users. Its 

main theorems and ideas can be understood without reading Part II (but the 
proofs require the techniques presented in Sections 6-10). 

In writing Part III, I did not at tempt to give as many ready-to-use specific 

applications as possible. Actually, my aim was to present a few simple model 
examples from various useful branches of mathematics, in the hope that the 
reader  will work out the detailed result he needs himself, using the techniques 
developed here as tools and the examples for inspiration. 

P A R T  I. P H I L O S O P H Y  

1. What  is a To lerance  Space? 

1.1. A tolerance space is a set X supplied with a binary relation ~ (i.e., 
a subset ~ c X x X )  which is reflexive ( V x , ( x , x ) e ~ )  and symmetric 
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(Vx, y (x, y ) c ~ ( y , x ) c  ~). We write briefly Xe and abbreviate (x, y ) ~ :  to 
x~y. Note that we do not require the transitivity of ~; if we did, we would get an 

equivalence - a particular case of tolerance which does not interest us. 
Here  are some examples of tolerance spaces. 

1.2. X is a metric space, E > 0  a fixed number; the tolerance relation (also 
denoted e) is ' the distance between the points x and y is less than e', written xey 

(if 'less than' is replaced by 'less than or equal to', you still get a tolerance space 
on X, denoted X~, which may differ from X,).  

1.3. X is a topological space with a fixed covering to; the relation (also denoted 

by to) is ' the points x and y are both contained in one element of the covering to', 
written xtoy. 

1.4. X is the set of vertices of simplicial complex (or a simplicial set); the relation 
is ' the vertices x and y are in the same simplex'. 

1.5. X is the set of nodes of a difference scheme (used for the approximate 

solution of a differential equation); the relation is ' the nodes x and y are next to 
each other '  (or 'are in the same group of nodes used to calculate the recurrent  

value at some node'). 

1.6. X is the set of vertices of a (nonoriented) graph; the relation is 'x and y are 

vertices of the same edge of the graph'. (Of course, oriented graphs do not 

possess a natural tolerance space structure, because the symmetry property does 

not hold.) 

1.7. X = C~[0, 1] is the set of smooth functions on the closed interval [0, 1]; 

e > 0 is a fixed real number; the relation is ' the functions f and g and all their 
derivatives at all points of [0, 1] differ by less than E' (or 'by a value less than or 
equal to ~'). 

1.8. X is the set of finite (n-term) binary sequences, the relation is ' the two 
sequences differ by only one (or, say, two, or three) binary digits'. More 
generally, different types of finite codes with a specified level of error have a 
natural tolerance space structure. 

1.9. X is the set of all left cosets of a group G with respect to any of the 
elements Ha of a family {/-L: a ~ 92} of subgroups of G. The  relation is 'two 
cosets p = glH=, q -- g2H~ (gl,  g2 C G, c~,/3 E 92) have a nonempty intersection'. 

Note that tolerance space structures appear just as naturally in sets with 
continuous structures (1.2, 1.3, 1.7) as in discrete structured sets (1.4-1.6, 1.8). In 
fact, the role of tolerance is often to bridge the gap between discrete and 



TOLERANCE SPACE THEORY AND SOME APPLICATIONS 139 

continuous structures; the bridge appears as soon as we specify what error we are 
willing to tolerate (this will be explained in Section 3.5 below). 

2. Why Tolerance? 

The range of examples presented in Section 1 is hardly exhaustive. Taken from 
very varied branches of mathematics, the examples show that the exact idea of 
closeness or of 'resembling', or of 'being within tolerance') is universal enough to 
appear quite naturally in almost any mathematical setting. It is especially natural 
in mathematical applications: practical problems, more often than not, deal with 
approximate input data and only require viable results - results with a tolerable 
level of error, guaranteed in advance. 

At first glance it seems dubious that a definition as simple and general as that 
of tolerance can give rise to a meaningful theory. But it does (see, for example, 
Sections 7, 8, 11, developed in the most general case), and I, for one, must admit 
that I haven't stopped being surprised by this strange circumstance. 

I think one of the reasons Definition 1.1 works is that it expresses the idea of 
resemblance succinctly and precisely. The absence of transitivity in the definition 
is the crux of the matter. 'John resembles Joe' and 'Joe resembles Moe' does not 
necessarily imply 'John resembles Moe'. Another reason is that mathematicians in 
pre-tolerance times had devised theories for evaluating the 'degree of nontran- 
sitivity' (homological algebra is one), and these theories seem to feel quite at 
home in the tolerance setting. In fact, they tend to become simpler (e.g., Sections 
7-9). A further reason is that tolerance, in a way, is a trick for avoiding the 
specific hazards of infinite-dimensional function spaces, e.g., their local noncom- 
pactness (see Sections 8, 12); moreover, in a certain sense in tolerance space 
theory you can't even have large finite dimensions (see Section 10). 

To summarize the answer to the question in the title of this section, let us say 
that: 

(i) tolerance spaces appear quite naturally in the most varied branches of 
mathematics; 

(ii) the tolerance setting is very convenient for the use of many existing 
powerful mathematical tools; 

(iii) only results 'within tolerance' are usually required in practical applications. 

Arguing philosophically, one can say that equality (unlike tolerance) is mean- 
ingless in the physical world, since it can never be verified, neither in practice 
(because of measurement errors and the like), nor in theory (by Heisenberg's 
indeterminacy principle). The next step in the argument is to declare the classical 
mathematics of equality inadequate and replace them by 'tolerance mathematics'. 
Think of all the PhD's that would result from rewriting all of mathematics from 
the tolerance standpoint, as it was rewritten from the 'intuitionist' and 'con- 
structivist' point of view in bygone days and is now being rewritten from 
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'nonstandard' and 'fuzzy' positions! This article is definitely not a rallying cry for 
such a ridiculous endeavor. I have only tried to point out situations where the 
tolerance formalism gives rise to interesting mathematics and to potentially useful 
applications. 

3. The Category o[ Tolerance Spaces 

3.1. Let Xe and X,  be tolerance spaces. A morphism or map of tolerance spaces 
f e  Mor(Xe, Y,) is any* mapping f: X---> Y preserving tolerance, i.e., possessing 
the property 

Vx, x' e X,  x~x' ~ f(x)nf(x'). 

The identical morphism idx and the composition of morphisms o is defined in the 
usual way (as in set theory). Thus, we obtain the category of tolerance spaces, 
denoted by Tol. 

A morphism f: X e ~ Y, is injective, if 

Vx, x ' c X ,  x ~ x ' ~ f ( x ) ~ f ( x ' ) ,  [(x)nf(x ' )~x~x' ,  

surjective, if Vye  Y, 3x e X, f (x )=y  and bijective if both conditions hold. 
Bijectivity is also called isomorphism and denoted by -~; we do not distinguish 
isomorphic tolerance spaces. 

3.2. The set of all morphisms Mor(X~, Y,) possesses the canonical tolerance ~1, 
defined by the rule 

f(~n)g c* Vx c X f(x)ng(x). 

One can also consider the graphical tolerance ~ x '1 

f(~x n)gC~(Vx c X, 3x'e X, x¢x', f(x)ng(x')) and 

( w  c x ,  3~' c x ,  ~ , ' ,  g(~)nf(~') 

If f is a map of a set X into a tolerance space Yn, the induced tolerance, 

denoted f 'r1, arises in X in accordance to the rule 

x(f* n) x' ¢* f(x) nf(x'). 

In particular, for an inclusion i: B C> Y the induced tolerance or subtolerance i*r I 
on B is simply denoted by B n (this does not lead to misunderstandings). Together 
with the category Tol, we consider the category of pairs To12~ (X~, A¢) of 
tolerance spaces. 

* We consider only single-valued mappings here, although multi-valued mappings preserving 
tolerance are also interesting. 
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3.3. If A c X e ,  then the (I-fold) widening of A is the set CA= 
{x ~ X : 3 a  e Ax~a}. By induction, we define the k-[old widening of A: k~A= 
~:(k- 1)~A. The set Bd A = ~ A - A  is called the boundary of A. Note that in 
general 6C~A ~ ~A and Bd ~:A ~ Bd A :/: Bd Bd A -~ ~. 

The doubled tolerance of X~, denoted X2~, is given by the rule 

x(2~)x' ~ :rly ~ Xx(;y, y~x'. 

The tripled tolerance of Xe, denoted X3g, is 

x(3~)x'C:~3y, y '~  X, x~:y, y~y', y'~x'. 

In a similar way, one defines the k-[old tolerance k~ of X~. For A c X~, the 
notation k~A may be understood as the 1-fold widening of A in Xk~ or as the 
k-fold widening of A in X¢ - this is the same thing. 

If, for the given tolerance X¢, there is a tolerance r /on  X such that X¢ = Xk. ,  
it is natural to write ~ = ~/k. But beware: !Jk is not unique in general, although 
it is often unique up to isomorphism. For any rational m/n ~ Q~, we can consider 
(if it exists) the tolerance (m/n)~. 

Note that if [: X~ ~ Y~ is a morphism, then so is [: X~  ~ Yz, for any l, k ~ N, 
k<_l. 

3.4. A skeleton of the tolerance X~ is a subtolerance i: A~ ~ X ~  for which there 
exists a morphism (in the doubled tolerance) r: X~ ~ A2~ such that ro i = idA and 
Vx c Xx~r(x). If A~ is a skeleton of Xg, then CA -- X. 

3.5. EXAMPLE.  Suppose X c R 2 is the unit disk in the plane, A is the set of 
vertices of a square lattice of mesh h contained in X. Then, for e > ~ h the set 
A is a skeleton of the tolerance X~ (where the metric tolerance e is defined as in 
Example 1.2, namely x~y <::>llx-Y]I < e. This is a typical example: it shows how 
easily you can pass from a continuous object (the disk) to a discrete one (the set 
of vertices A) which approximates it, if you are willing to pay the price (double 
the tolerance). 

3.6. The Cartesian product of two tolerance spaces X~ and Y. is the tolerance 
space ( X x  Y)~×, defined by the rule 

(x, y)~ x r/(x', y ' ) ~  x~x', yrty'. 

(No confusion with the notation ~ x aq in Section 3.2 arises - we use the latter for 
morphism only.) 

3.7. A tolerance space X¢ is called finite, if the set X is finite, of finite type, if X~ 
has a finite skeleton, connected, if Vx, x' ~ X 3k  (k~)(x) ~ x', discrete, if Vx, x' E X 
x~x' ~ x = x' and trivial, if Vx, x' ~ X,  x~x'. 

The reader should pause at this point to imagine examples possessing various 
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combinations of these properties. In particular, examples of tolerance spaces of 
finite type, which play the role of compact sets (or sometimes, of bounded sets). 
However, the analogy with topology and functional analysis is often misleading - 
for example, the open disk, with any metric tolerance E on it, is of finite type, but 
Euclidean space R," is not (whatever the choice of E >0) .  Note that two 
Euclidean metric tolerances R~" and ~ ,  are always isomorphic, whatever the 
choice of E and e', but, of course, two unit disks D~' and D2, or two unit spheres 
S'~, S'~, are different if E :p ~' and E, E' < 1. 

In general, the difference between open and closed sets disappears when one 
introduces a natural tolerance structure. Continuity of functions is also irrelevant 
- the relevant objects are functions possessing only small (tolerable!) dis- 
continuities and variations (incidentally, such functions are always bounded on 
tolerance spaces of finite type). 

The following general statement may be helpful in developing an intuition of 
tolerance. Tolerance is pragmatic - it refuses to understand those concepts of 
pure mathematics (products of the human mind or objects of Plato's world of 
ideas, as you like) which are not verifiable in practice. 

4. Toleomorphism 

4.1. The isomorphism relation in the class of all tolerance spaces is very harsh - 
it means two tolerances are exactly the same. One would like to have a weaker 
relation expressing the idea that two tolerance spaces (not two elements of 
tolerance space, but the spaces themselves) are alike. In accordance to the 
tolerance philosophy, such a relation cannot be transitive (otherwise we get an 
equivalence), but must be reflexive and symmetric. The appropriate relation for 
tolerance spaces is called toleomorphism and is defined below (see Section 4.2). 
This relation is also meaningful for metric spaces, topological spaces, and other 
objects not possessing a fixed tolerance structure. The definition in this case is 
presented in Section 4.4. 

4.2. Two tolerance spaces Xe and Y,~ will be called toleomorphic if there exist 
two morphisms f: Xe---~ Y~, g: Y,~---~ Xe which are almost injective (i.e., Vx, x ' e  
X f(x) = f(x') ~ x2£x' and similarly for g), almost surjective (i.e., Vy ~ Y 3 x  e 
Xf(x)r ly  and similarly for g) and almost inverse to each other (i.e., Vx ~ X 3 y  c 
Yf(x)rly, g(y)2~x and similarly Vy ~ Y 3 x  e Xg(y)£x,  f(x)2r/y. In this case, the 
pair of maps (f, g) constitutes a toleomorphism of Xe and Yn; we write this as 

(f, g): x ~  Y~. 

4.3. EXAMPLES.  (i) The lattice of points L~ = {(k/n, I/n): k, 1 = 0, 1 , . . . ,  n} (in 
the unit square Q = [ 0 ,  1]×[0,  1]) supplied with the tolerance e =x/~/n is 
toleomorphic to the unit square Q itself with the same tolerance. In general, the 
skeleton A¢ of a tolerance X¢ of finite type is toleomorphic to Xe. 
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(ii) The circle S ~ = {(x, y), x 2 + y2 ___ 1} with tolerance ~ is toleomorphic to the 
annulus A = {(x, y), 1 - E/4 < x 2 + y2 < 1 + e/4} with the same tolerance. 

(iii) The ball B"={(x~):Ex~<l} is not toleomorphic to the sphere S " =  
{ (x i ) :£x~=l}  nor to the ball 2B"={(xi):£x~<2} if the metric tolerance E 
satisfies ~ < ¼. 

4.4. Two metric spaces X and Y are toleomorphic, if for any ~ > 0 there exist 
two positive numbers 61, 62 such that the tolerance spaces Xs, and X82 are 
toleomorphic (here, as usual, X~, denotes the metric tolerance x6~x'¢:~ d(x, x ' ) <  
60. Two topological spaces X and Y are toleomorphic, if for any two coverings 
~0t and oJ2 of X and Y there exist finer coverings co'~ < ~ot, ~o~ < ~ such that the 
tolerance spaces Xo,,, and Yo,- are toleomorphic (for any covering ~o of the 
topological space X, the tolerance space structure Xo, is defined in Section 3.2). 

4.5. EXAMPLES.  (i) Isometric and similar metric spaces are toleomorphic. 
(ii) Homeomorphic topological spaces are toleomorphic. 
(iii) The circle (as a metric or topological space) is not toleomorphic to the 

annulus. 

4.6 Toleomorphism of tolerance spaces is not an equivalence relation (no 
transitivity!), it is a tolerance on the class of all tolerance spaces. If X¢ is 
toleomorphic to yn and yn to Z~, it often follows that X2~ is toleomorphic to 
Z2¢, but this is not a general theorem. 

5. Tolerance is Crisp, not Fuzzy 

The ideas underlying tolerance space theory are not far removed from the ones 
of fuzzy mathematics. Perhaps for this reason T. Poston [14] uses various 
derivatives of the word 'fuzz' in his work on tolerance space. In any case, a 
juxtaposition of these two approaches is inevitable; we will be quite brief here. 

Mathematically, tolerance and fuzzy structures are in 'general position' - 
neither one implies the other in any reasonable sense. A prodigious amount of 
publications on fuzzy mathematics has appeared (for the basic ideas, see [23]), 
whereas very little has been published on tolerance spaces. 

Rather than express my antifuzz bias in my own words, I prefer quoting 
Saunders MacLane (see [12]): 

The original idea was an attractive one - instead of saying that an element x is or is not in the set A, 
let us measure the likelihood that x is in A. Someone then recalled that all mathematics can be based 
on set theory; it followed at once that all mathematics could be rewritten so as to be based on fuzzy 
sets. Moreover, it could be based on fuzzy sets in more than one way, so this turned out to be a fine 
blueprint for the publication of lots and lots of newly based mathematics. This has been duly done, 
complete with extravagant claims for applications (e.g., 'fuzzy decision theory'). Most of those 
intended do not seem to have materialized. New ideas are nice, but promotional gimmicks are not. 
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Leaving emotions aside, I would like to point out once again that tolerance 
space theory is a setting where existing powerful mathematical tools fit neatly, 
usually with simplifying modifications. Apparently the army of authors of fuzzy 
mathematics has found it difficult to adapt existing crisp mathematics to a fuzzy 
setting, and this setting, to my knowledge, has not produced, as of now, any 
powerful methods. 

6. Historical Note 

The main notions of tolerance space theory are due to E. C. Zeeman, who coined 
the term (a rather unfortunate one, I think), first thought of defining and using 
homology groups of tolerance spaces and applied this to theoretical biology in 
the well-known 1961 paper 'Topology of the brain and visual perception' ([21], 
see also [22]). 

Nevertheless, like many other beautiful mathematical ideas, the main one 
underlying tolerance space theory goes back to Henri Poincar& Poincar6 con- 
trasts the 'mathematical continuum' (the real numbers) and the 'physical con- 
tinuum' (measurable magnitudes in the real world). In the latter, unlike the 
former, a = b and b = c does not necessarily imply a = c, because the (inevitable) 
errors in the first two relations may add, and eventually accumulate if the use of 
the transitivity rule is iterated. Poincar6 did not work out the mathematics of the 
physical continuum (at least in written form), but was undoubtedly aware that this 
should be done. He repeatedly returned to this topic in his nonmathematical 
books (in particular, see his Last Essays, p. 37 of the standard Dover edition in 
English). Tolerance, in the framework of Poincar6's pragmatic philosophy of 
science, distinguishes the meaningful (i.e., verifiable) part of mathematics, as 
applied to the physical world, from ideal (mathematical) mathematics. 

Another important development in the history of the subject was C. H. 
Dowker's remarkable (but rarely quoted) 1952 paper [4], where he constructed 
the homology theory of arbitrary binary relations. In the early 60s, the con- 
struction of a homology theory of symmetric binary relations (i.e., tolerance 
spaces) were undertaken by E. C. Zeeman, but his book [20], which has been 
'to-appearing' since 1961, is still, to my knowledge, unpublished. 

In 1972, the first rigorous exposition of tolerance space homology theory 
appeared in [16], followed by [17, 18] where almost fixed-point theorems and 
applications to difference schemes were presented. At approximately the same 
time (1973), I. M. Lapitski wrote a long paper on the homotopy of tolerance 
spaces [11] and A. V. Cernavski noticed that the L. V. Keldysh embedding of 
the 3-cube into the 4-cube has meaningful applications (the 3-channel theorem, 
Section 15) to coding theory (also unpublished, except for a brief mention in a 
joint paper [1]). 

More recent developments include T. Poston's fundamental thesis [14] (also 
unpublished), A. M. Vinogradov's work on group crystals (in this issue of Acta 
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Applicandae Mathematicae, pp. 169-180), the notion of toleomorphism (see 
Section 4) and the tolerance interpretation (the 3-cube theorem, Section 10) of 
L. V. Keldysh's embedding theorem. 

A striking aspect of this little history (which makes no claim to completeness) is 
the amount of unpublished work in the field. In this connection, I hope that this 
article, where the basic facts of the theory (which have been 'in the air' for over 
two decades) are finally set to paper, will facilitate further publications. 

P A R T  II.  T E C H N I Q U E S  

7. Homotopy 

7.1. Two morphisms f, g: X¢---~ Yn of tolerance spaces are called homotopic 
(notation: f-~ g) if there exists a number e > 0 and a morphism F: Xe x I, --. Y, 
such that F(x, 0 )= f (x )  and F(x, 1)= g(x) for all x ~ X; here I~ denotes the 
closed interval [0, 1], e is the metric tolerance (see Section 1.1) and X the 
Cartesian product (see Section 3.6). Two morphisms f and g are elementary 
homotopic (notation f ~ e  g) if for all x, x'~ X, x~x'~f(x)-qg(x'). Let us (tem- 
porarily) say that two morphisms are homotopic in the second sense, if there 
exists a finite sequence f0, fl . . . . .  fk of pairwise elementary homotopic morphisms 
f=fo~-ef~,f~ ~-~f2 . . . . .  fk-~ =~fk = g  linking f and g (intuitively, this means f 
can be transformed into g by a sequence of 'little pushes'). 

7.2. PROPOSITION. The two definitions of homotopy in Section 7.1 are 
equivalent. 

Proof. If f = g  in the first sense, we put k = (integer-part (l/e)) and fi(x)= 
F(x, i/k), i = 0, 1 . . . . .  k, obtaining a sequence of pairwise elementary homotopic 
morphisms fi joining f and g. Conversely, if we have a sequence f =  
fo~ef~ ~-~ . . . .  elk = g, then the required morphism F: Xe × I. = Y. may be 
constructed by putting e = 1/k and 

i i 
F(x, t)= fi(x), i - ~  < t <  i+  ~-k. 

7.3. Two tolerance spaces X¢ and Y. are homotopy equivalent (notation X~ ~- 
Y,), if there exist morphisms f: Xe---> Y,~ and g: Y,--*Xe, such that f og=idv  
and gof= idx. By Proposition 7.2, this definition has a simple geometric mean- 
ing: for example, X~-~ Xn means that there exists a finite sequence of 'little 
pushes' f~: X~---> Xn, beginning with the identity, deforming Xe along itself into 
x..  

7.4. EXAMPLES. For any E > 0 and any n, we have D~' = pt (where pt denotes 
the point with the unique tolerance on it). But R~' ~ pt! 
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7.5. PROPOSITION. Isomorphic tolerance spaces are homotopy equivalent. 
The proof is obvious: if f: X~---~ Yn is an isomorphism, then the map g = f-1 is 

a morphism and fog = i d x ,  gof=idy .  The converse statement to the prop- 

osition is false (e.g., I~/lO # pt). 

7.6. A tolerance space X¢ is called contractible, if X¢-~ pt. By Proposition 7.2, 
this means Xe can indeed be contracted to a point by a finite sequence of 'little 
pushes'. 

7.7. An ordered n-simplex in a tolerance space X~ is a sequence of n + 1 points 
Xo, x~ , . . . ,  x, all within tolerance of each other (repetitions are allowed); nota- 
tion: o-,---~,[Xo . . . . .  x,]. The points x~ are the vertices of the simplex. The 
assignment 

o~: ~ , [ x o , . . . ,  x , ] ~  t:,-,[xo . . . . .  x~_~, x ~ + , , . . . ,  x , ]  (i = o, 1 . . . . .  n) 

is the ith face operator, and ~ n - l [ X 0 , . . . ,  X i - l ,  Xi+l . . . . .  Xn] is the ith face of o-~ 
which of course is an ( n -  1)-simplex. The assignment 

6',: ~ , [ x 0 , . . . ,  x . ] ~  ~,+,[x0 . . . . .  x,, x, . . . . .  x ,]  

is the ith degeneracy operator; of c o u r s e  ~n+l[X0 . . . . .  Xi, xi, • • •, x,] is an (n + 1)- 

simplex. 

7.8. If f: X~---~ 3I, is a morphism of tolerance spaces, then the image of any 
n-simplex ~:.[Xo . . . .  , x.] in X~, f.(o-.) = "o.[f(xo) . . . . .  f(x.)], is also a simplex (in 
Y,). 

7.9. PROPOSITION. The definitions of Sections 7.7 and 7.8 determine a functor 
¢b from the category of tolerance spaces Tol to the category of semi-simplicial 
complexes SSC (see [13]). If X~ ~ Tol, then ~(Xe) = ({Kn}, {0~}, {6~,}) is called the 
semi-simplicial complex associated to X¢. If Xe is finite, the associated complex is a 
finite simplicial complex. 

Proof. Define K, ,  n/> 0, as the free Abelian group generated by the set of all 
n-simplices in X¢. Extend by linearity the operators 0~, and ~, defined in Section 
7.7 to homomorphisms 0~,: K ,  ~ K,_~ and 6~,: K ,  ~ K,+~ and extend the opera- 
tor f ,  to a homomorphism f,:  K,(Xe)---~K,(Yn). It is easy to check that the 
required commutation relations (see [13]) hold, so that ({K,}, {0~,}, {6~,}) is indeed 
a semi-simplicial complex and qb(jO = ({f,}) is a morphism in SSC. 

7.10. The category of pointed tolerance spaces Tolpt, by definition, consists of 
connected tolerance spaces with fixed base point, i.e., pairs (Xe, pt), pt ~ X with 
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morphisms sending base point to base point. Homotopy (and homotopy 
equivalences) are base point preserving, when we deal with Tolp,. 

7.11. Using the functor defined in Proposition 7.9, we can construct the homo- 
topy theory of tolerance spaces automatically, by copying the existing results of 
semi-simplicial theory (e.g., from [13]). In particular, there is a homotopy group 
functor from the category TOlpt to the category of groups (Abelian if n t> 2) with 
the usual properties. 

Since no applications to this theory are presented in this paper, we omit the 
details here. 

7.12. The homotopy theory of tolerance spaces was first developed by I. Lapitski 
in a long unpublished paper (1975) [11] and, independently (1983), by T. Poston 
(who uses loop spaces) in his (also unpublished) thesis [14]. The approach of 
these two authors is different, neither uses semi-simplicial complexes. 

8. Homology 

8.1. Denote by C,X¢ the free Abelian group (called nth chain group) generated 
by the set of all ordered n-simplices (see Section 7.7) of the tolerance space X¢. 
Define the differential 0,: C,X~--~ C,_IXe in the standard way, by putting 

0.~ . [xo  . . . . .  x . ]  = ~ ( - 1 ) % _ , [ x , ,  . . . . .  x ,_, .  x,+, . . . . .  x . ]  
i=o 

(*) 

on each n-simplex and extending by linearity to C.X~. An automatic verification 
shows that ~9,-1 o~. = 0, so that we obtain a chain complex {CX~ = (~=~ C,X~, O} 
called the ordered chain complex of the tolerance space Xe. 

8.2. If f: X¢--~ Yn is a morphism of tolerance spaces, then it sends simplices into 
simplices (see Section 7.8) and by extending we obtain the induced chain group 
homomorphism f,: C,X¢---~ C ,Y  n . It is easy to check that it commutes with the 
differential, i.e., O, of, = 0, of,_l. 

8.3. The sets Ker O, and Im 0rt+l are subgroups of C.X~ and KerO. 
(since O. o0,+1 = 0). The quotient group 

H,X¢ = Ker 0./Im 0,+l 

is called the nth homology group of the tolerance space Xe. 

Im On+l 

8.4. If f: Xe ~ Y~ is a morphism, the induced homomorphism /,  is constant on 
cosets rood Im 0, (because of the commutativity relation 8.2), so that we have a 
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(well-defined) induced homomorphism of homology groups (also denoted f,), 

8.5. In a standard way (for details see Section 10) we can now define relative 
homology groups Hn(Xe, A t) for pairs of tolerance spaces Xe D Ae, the differen- 
tial d,: H,(Xe,  Ae)---~H, Ae, induced homomorphisms and other standard in- 
gredients of homology theory. The result may be summarized as follows. 

8.6. THEOREM. The homology theory ( H . , (  ) . , d , )  outlined above is a 
covariant functor from the category Tol 2 of pairs of tolerance spaces to the category 
of graded Abelian groups, satisfying the analogues of all the Steenrod-Eilenberg 
axioms [5]. 

In particular, there is an exact homology sequence for pairs (of tolerance spaces) 
with a natural differential, and any homotopy equivalence induces an isomorphism 
of all homology groups. 

For the proof (which is quite standard), see Section 10 below or my paper [16]. 

8.7. The fact that the above homology theory satisfies Steenrod-Eilenberg 
axioms means that most of the apparatus of homological topology is ready to use 
without any new constructions or modifications (e.g., cohomology, exact 
sequences, Kunneth and universal coefficients formulae, homology dimension, 
duality theorems, etc.) 

8.8. EXAMPLES. For finite tolerance spaces, the homology groups are simply 
those of the associated simplicial complex. For E < 1, the unit sphere S, ~ has the 
usual homology HkS", =7/ for k = 0 ,  n and = 0  otherwise. For any e > 0 ,  
HkR," = 0 for all k except 0 (/-/oR," = Z). More generally, HoX~ = Z if and only if 
Xe is connected. 

8.9. REMARK. According to Zeeman's definition of isomorphism ([22], p. 283), 
the disconnected pair of points and three points within tolerance of each other 
are isomorphic tolerance spaces. However, they have different homology groups 
Ho (namely 7/(~ 7/ and 77, respectively). It should also be noted that homology 
groups are not toleomorphism invariants. 

8.10. Suppose A¢ is a skeleton of the tolerance space (see Section 3.4), i.e., there 
are morphisms i: A~ C X¢, r: X,---~ A2~ satisfying roi = ida and Vx ~ X,  r(x)~x. 
Then the embedding i is a homotopy equivalence (since roi=idA and 
i or=eidx) ,  hence the homology of A and X is the same (in the doubled 
tolerance). 

Further, any morphism f: A¢---~ A~ can be canonically extended to the mor- 
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phism f: X ~  X t by putting f =  iofor. Then the diagram 

f, 
H , A  > H , A  

H , X  > H , X  

is commutative. Identifying H.A  and H~X by the isomorphism i. = r~ ~ we may 
view [, and f.  as the same homomorphism. 

Conversely, any morphism g: Xe--~X e canonically induces the morphism 
~: A~----~ A e via the formula ~ = rogo i and the corresponding square diagram is 
also commutative. 

8.11. Thus, from the homological point of view, instead of any tolerance space 
Xe of finite type, we may consider its (finite!) skeleton A e, as long as we are 
willing to pay the price - take homology in the doubled tolerance. 

9. Almost Fixed Points 

9.1. An almost fixed point of the morphism f: Xt --> Xt is a point Xo c X such that 
xo~f(xo). The tolerance space Xt possesses the almost fixed point property, if any 
morphism f: X¢--~ Xt has a fixed point. 

9.2. For any n, the morphism f: Xe---> X~ induces the endomorphism f,: H,X~ 
H,X~. The alternated sum* of traces** of these endomorphisms is known as the 
Lifschitz number of jr: 

A(f) = ~ (-1) '  Trj6 
i = 1  

9.3. LEMMA. If Xe is a finite tolerance space, then the Lifschitz number of any 
morphism f: Xe ~ Xe is defined. 

The proof is obvious: since Xe is finite, H , X  e is always finitely generated and 
vanishes for sufficiently large n. Hence, the sum (1) defined. 

9.4. THEOREM. If the morphism f: X~--~ X~ of a finite tolerance space has a 
nonzero Lifschitz number )t([) :/: 0, then [ has an almost fixed point. 

The proof is given in Section 10 or in [17]. 

* This sum is defined (finite) if Tr  [~ = 0 for all sufficiently large n. 
* *  The trace is only defined for free finitely generated Abelian groups; if H,,X¢ is not free, we take 
its quotient group mod torsion and consider the trace of the quotient endomorphism fn on the 
quotient group H,,X¢ mod torsion. 
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9.5. C O R O L L A R Y  ([17]). All finite contractible spaces possess the almost fixed 
point property. 

Proof. If X~ - p t ,  then by Theorem 8.6 H,X~ ~- Hn(pt); the latter group is 7/ if 

n = 0 and trivial otherwise. Hence,  for any morphism f: X ¢ ~  X~ we have 
A(f) = E ( - 1 ) " T r  f ,  = Tr  fo = 1, so that Corollary 9.5 follows from Theorem 9.4. 

9.6. R EMAR KS .  (i) The  condition A(f) # 0 is not sufficient for f to have a real 

fixed point. The  simplest example is the map interchanging the two points of the 

trivial two-point tolerance. 
(ii) Further, the condition A(f):p 0 is not necessary for the existence of an 

almost fixed point. Thus, the identity map of the torus T, c R 3 (• is some small 

number) even has many ordinary fixed points, although A(idT) = 0. 

9.7. The Lifschitz number of the identity map of any tolerance space Xe is called 

the Euler characteristic of Xe and denoted x(Xe). 

9.8. For the classical approach to almost fixed points, see [7] and its bibliography. 

10. Dimension 

10.1. In the 16th century, the German cossist (=algebraist)  Michael Stifel, 
discussing dimension, wrote that one cannot "go  beyond the limits of the cube as 

if there were more than three dimensions, since this would be unnatural" (see 
[15], pp. 148 if). From the point of view of classical 20th century mathematics, 

this statement sounds naive and/or erroneous. However,  it happens to be a 

mathematical truth from the tolerance point of view. We will show in this section 
that manifolds (locally) are either 0, 1, 2 or 3-dimensional. More precisely, that 
the n-cube I n is toleomorphic (as a metric space, see Section 4.4) to 13 whenever  
n >/3, but I ° = pt, I = [0, 1], 12 and/,3 are nontoleomorphic to each other. We do 

not give a general definition of tolerance dimension here (or else the reader will 

suspect that the 3-cube Theorem 10.6 below is not a general principle, but the 
result of cleverly doctored definitions). 

10.2. The L. V. Keldysh embedding k: I 3---~ 14. This construction, undertaken in 
a classical framework for a totally different purpose (see [8, 9]) can be modified 
to show that the 3-cube is toleomorphic to the 4-cube, and, more generally, to 
the n-cube. The  main point is that, for any • > 0, 13 embeds in 14 so that the 
• -neighborhood of the image k(I  3) covers /4 and any two points of k(/3) whose 
distance in 14 is less than • can be joined by an arc (in k(I  3) Of diameter less than 

2e. 
Let  • > 0 be given. Take 77 = • /5  and choose m e N so that 1/m < 2r/. Partition 

13 into m 3 little cubes with edges (of length 1/m) parallel to the coordinate axes. 
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Let K1 be the union of all the edges of the little cubes. Denote by U~ the interior 
of the union of all cubes (with edges of length 1/2m parallel to the axes) whose 
centres are at the vertices and the midpoints of all the edges in K~ ; then U~ is a 
neighborhood of K~. The set U2 = 1 3 -  I]1 (the bar denotes closure) is a similar 
sum of cubes with edges 1/2m while B = I 3 - ( U 1 0  U2) is the (connected) 
common boundary of the domains UI and /-/2. 

In each U~, i = 1, 2, take a decreasing sequence of m polyhedra 

U~ = U . = . . .  = U. .  

obtained by uniformly shrinking U1 towards K~ (when i =  1) and carrying out a 
similar construction when i = 2. Denote by Bi~ the boundary of U~r in Ui,~-l. 

Define the continuous function q~: I3---~ I by putting 

½ if x c B  
1 r 
- 4  if x c B l ~  

q~(x) = 2 2 m + l  

1 r if x C B2r 
2 2 m + 1  

and extending ~ within Air = Uir - ~.r+l so that q~lA,, is bounded by its values on 
the boundary of Air, within U1 so that q~] u, is bounded by (2 l) + m/(2m + 1) and 1, 
and within U2 so that ~#l u,_ is bounded by ½ - m/(2m + 1) and 0. Then 0 <~ ~o(x) <~ 
1. The graph of the function ~ is the required embedding. 

10.3. In Section 10.2 above we have presented the Keldysh embedding 13--~ 14 
as it appears in [8] (the original construction [9] was more complicated). Another 
construction still can be obtained by using the engulfing lemma (see [19]). We 
can use it to obtain Keldysh-type embeddings I k'--~ I" directly whenever k/> 3 
and n >i k. It is easy to verify that the engulfing lemma fails to work when k < 3. 

10.4. A map f: X--~ Y in the category of metric spaces (in particular, an 
embedding) is called e-dense gf the e-neighborhood of the image f (X )  covers Y. 
An e-dense embedding has the 2e small arc property if for all x, y c  
f (X) ,  d(x, y) < e implies the existence of an arc l c f ( X )  joining x and y such that 
diam(l) < 2e. 

10.5. T H E O R E M  [9]. When E < ½, any e-dense embedding I----> I 2 cannot have 
the small arc property. When E< 1 any e-dense embedding I2---~ 13 or I1---->I 3 
cannot have the small arc property either. 

The proofs are a rather unpleasant technical exercise (especially for the 
embeddings in i3) and are omitted here. The reader should have no trouble with 
the case I--* 12, where the Peano curve embeddings (see the figure in Section 15) 
provide an excellent illustration. (Moving from the boundary of 12 inward, it is 
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easy to obtain a contradiction with the Jordan curve theorem.) The values of E in 
the statement of the theorem (½ and ¼) are not the best possible; the calculation of 
their maximal values ( 'Keldysh constants') is a mildly interesting unsolved 
problem. 

10.6. The main result of this section is the following: 

T H R E E - C U B E  THEOREM.  The 3-cube is toleomorphic (as a metric space, see 
Section 2.1) to the n-cube whenever n >! 3 and is not toleomorphic to the point, the 
line segment and the square. 

Sketch of the proof. To prove the first part of the theorem when n = 4, take any 
• > 0 and choose N so that 2 - u <  •. Let • be the (metric) tolerance on the 
4-cube 1 4 c R 4  and 6 be the tolerance on I3={(x~):x4=O}. The direct 

I~---~I~ is the Keldysh embedding 10.2, which is a toleomorphism map f: 3 4 
4 3 morphism for an appropriate choice of 6. The opposite morphism g: I~---~ Is  is 

defined by sending each point of I 4 into the nearest point of f(i3) (or, if there are 
more than one such points, the one which has the smallest x4 (eventually 
X3, X2, X1) coordinate). The fact that f, g: 13~----I 4 is a toleomorphism readily 
follows from the definition of the Keldysh embedding. 

In the case n > 4 a similar construction works. Or one can use engulfing 
techniques (see Section 10.2). 

The other statements of the 3-cube theorem are essentially re-wordings of 
Theorem 10.5 and are proved in the same way. 

10.7. Intuitively, the 3-cube theorem says the following. If we look at things with 
some (even every small) tolerance for error (as in real life we must), we cannot 
perceive any dimension above three, although moderately sharp vision dis- 
tinguishes the line, the plane and 3-space. In this connection, see A. M. 
Vinogradov's article in this issue. 

11. Homology Theory 

11.1. This section fills in the details missing in Sections 8-9, thus making our 
exposition of the homology theory of tolerance spaces practically self-contained. 
In general, here we follow [16]. 

11.2. The nth chain group C,X¢ of a tolerance space X¢ is defined in Section 8.1 
and consists of finite linear combinations c =Xzio'~,, zi ~Z of simplices o'~, = 
~,[x~ . . . . .  x~,] (see Section 7.7) of X,. The differential 0h: C,X~---~ C,-IX¢ is 
defined in the standard way (Equation 8.1 (*)) and possesses the property 
0n_lo0, = 0. Indeed, it suffices to prove this property for one simplex crn = 
~,[xo . . . . .  Xn], but in this case it follows from the fact that (an_lOO,)(tr,) is the 
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sum of n ( n -  1) summands which may be grouped in pairs of identical ( n -  2)- 

simplices not containing the vertices x~, xj and appearing with opposite signs 
( -1) i ( -1)  i and ( -1) i ( -1)  j+l. Thus, {C, Xe, 0,} is a chain complex, and this allows 
us to define the homology groups H~X~ of a tolerance space (see Section 8.3) as 
the ones of this chain complex. 

1 1.3. By definition, the chain complex of the pair (X~, A¢) of tolerance spaces 
(see Section 3.2) is the sub-chain complex C,(X¢, A~) of C , X  t consisting of all 
n-chains with zero coefficients for all simplexes from Ae (these chains are 
sometimes called chains rood A). We have obvious maps: 1,.'c" C,X¢--> Cn(X t,  A¢) 
(setting the coefficients of simplices of A~ equal to zero), /3: C,X~-->C,A~ 
(setting the coefficients of simplices not belonging to A~ equal to zero) and the 
inclusions a: Cn(Xe, A~)---> C,X¢ and ~,.'c" C.A~---~ C,X~ . Denote by 0 and 0 ° the 
boundary operators of the chain complexes { C,X~} and { C,A¢} respectively (from 
now on we omit the dimension subscript in our notations for operators) and 
define 0 = jCO°ot and d = 0°/3a. All this information appears in the diagram 

, C.(X¢, A¢) -- Cn_l(X~, A+) , - ' -  

, . . .  

' C, Ae ' Cn- 1A~ , • • • 

(1) 

11.4. LEMMA. (i) 0o0 = 0 (in other words { C,( X t, Ae), O} is a chain complex. 
(ii) O°d = dO (in other words, d is a chain map of degree (-1) of the chain 

complex { C,(Xe, Ae), O} into the chain complex {(?,At, 0(~). 
(iii) ~jc= jc  O (in other words, jc  is a chain map of degree 0 of the chain 

complex {C ,X  e , O} into {C,(X t , Ae), 0}). 

The three statements follow from straightforward calculations using the 
(obvious) relations j c  a = ic/3 = id, j c ic  =/3a = O, aj c + ic/3 = id. For example 

~ = jc  Oa F Oa = jc  d(id - i/3) = ico Oa _ j c  Oic/3 cga 

= O -  jcico°fl Oct = O. 

11.5. Lemma 11.4 implies that we can define relative homology groups 
H,(X~, A~) (for pairs of tolerance spaces), as promised in Section 8.5, as quotient 
groups of Ker 0 by its subgroup Im 0. 

We leave to the reader the (straightforward) construction of the homomorphism 
~: H.(X~,A~)--~H.(Y.) ,B.))  induced by a morphism of pairs qz(X~,A~)--> 
( Y , ,  B,). 



154 A .  B.  S O S S I N S K Y  

11.6. Lemma 11.4 also implies that the homology sequence of the pair (X+, A+) 

d i j d 
• . .  -> H,A+ -> H,+,X+ --> H,,(X+, A+) -> H,_,A+ - > . . .  (2) 

is well defined and is exact. The exactness of (2) follows from diagram chasing in 
(1) or from the (obvious) exactness of the short sequence 

CX+ 

A \  
CA+ < C(X+, A+) 

(3) 

where C without any subscript denotes the direct sum of the corresponding 
groups with subscripts, e.g., CA+ = t~)~=0 C,A+. 

11.7. It is just as easy to show that the differential d of the homology sequence 
(2) is natural, i.e., that we have the commutative diagram 

d 
H,,(X+, A+) > H,,_,A,+ 

r°l d 1 Ct'A'° ' 
H.CY.,  13.) > H._IB+ 

for any morphism f: (X¢, A+)--~ (Yn,/3.). 

11.8. The excision axiom in the homology theory of tolerance spaces can be 
stated as follows: if X+ D A ~ Ao and A0 is contained in the interior of A (i.e., 
~Aoc A, see Section 3.3), then the inclusion i: ( X - A 0 ,  A - A 0 ) Q ( X ,  A) in- 
duces an isomorphism in homology: 

i,: H n ( X -  Ao, A -  Ao) =, H,(X;  A). 

The proof immediately follows from the fact that the chain groups C , ( X -  
Ao, A - Ao) and C~(X, A) are naturally isomorphic and their boundary operators 
coincide. 

11.9. The dimension axiom says that H,(pt)= 0, when n >/1 and Ho(pt)~-7; its 
proof is trivial. Thus, we have established all the analogues of Steenrod- 
Eilenberg axioms of homology theory, except the homotopy axiom, which we 
now consider. Note that its proof below is quite elementary (unlike that in 
classical homology theory) and does not involve acyclic models (see [5]); it 
follows easily from the next lemma. 
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11.10. LEMMA. If  two morphisms f, g: X~--~ Yn are elementary homotopic, then 
the induced homomorphisms f . ,  g. in homology coincide. 

Proof. To prove f .  = g . ,  it suffices (see [10]) to establish the existence of a 
chain homotopy joining f c  and c g . ,  i.e., a homomorphism D: C.Xe---~ C.+IYn 
such that c c fn - g .  = OD + DO; but D can be constructed by defining it on each 
simplex as follows 

n 

D(sC.[Xo . . . . .  x.]) = ~ (-1)%q.+,[f(xo) . . . . .  f(Xq), g(Xq) . . . . .  g(x.)] 
q = O  

and then extending to chains by linearity. The verification of the formula 
C C f .  - g .  = OD + DO is straightforward. 

11.11. It now follows immediately from Lemma 11.10 and Proposition 7.2 that 
homotopic morphisms f, g: X~---~ Y,~ induce the same homomorphism f ,  = g, in 
homology. 

Further, if f: X~--~ Y,7 and g: Y,--* X¢ are homotopy equivalences, inverse to 
each other, i.e., g o f = i d x  and fog  = i d v ,  using the functorial character of 
homology theory, we get g of. = (go f ) .  = (idx).  = idH.x and f o g .  = (fog). = 
(idy).  = idn .v ,  which implies that f .  and g. are mutually inverse isomorphisms of 
H.X~ and H.  Yn- This establishes the homotopy axiom in the homology theory of 
tolerance spaces and concludes our proof of Theorem 8.6. 

11.12. Our next goal is to present the missing details of Section 9. 
Recall that the trace Trq~ of the endomorphism q~: G---~ G of a finitely 

generated free Abelian group G is the trace of the matrix ((aii)), where f(ei)= 
Y,a~ie ~ for some free basis {e~} of G (Tr q~ is, of course, independent of its choice). 
If G is not free, then its quotient rood torsion G' = G/Tor G is free, and for Tr ~0 
we take the trace Tr ~0' of the quotient endomorphism ~0': G'---~ G'. 

11.13. Suppose f: Xg--~ Xe is a morphism of the tolerance space X~. Assume 
that the homology groups H.X~ are finitely generated for all n. Then (see Section 
9.2) the number A(f)= ]£(-1)iTr fi (where J~: I-IiX~--~ I-tiX¢ is the homomorphism 
in the homology of dimension i induced by f) is called the Lifschitz number of the 
morphism f. It is certainly defined if the homology of X¢ is trivial in dimensions 
greater than some fixed number no. By Theorem 8.6 A(f) is a homotopy class 
invariant of f. The Lifschitz number may be defined on the chain level by putting 
hc(f)  = ~ ; ( - 1 ) i T r f  c (where fic: CiX¢---~ CiX~ is the induced homomorphism of 
the chain group). 

11.14. LEMMA. The two definitions of Lifschitz number given in Section 11.13 
are equivalent in the sense that AC(jO = A(f) when both are defined. 

Proof. This immediately follows from the following purely algebraic fact, 
known as the Hopf lemma: 
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Suppose ~oi: Ci---~ C~ is a chain complex morphism of finitely generated free 
Abelian group chains and (~0~),: HiC--~I-I~C is the induced homomorphism in 
homology; then 

(-1)  ~ Tr q~, = ~ ( -1) '  Tr (q~i),. 
i = 0  i=1 

The proof of this relation may be found in [10]. 

11.15. Our last step is the proof of Theorem 9.4, which states that morphisms of 
finite tolerance spaces with nonzero Lifschitz number have almost fixed points. 
Suppose the converse: f: X~--~ X~ is a morphism, X~ is finite, h(f) ~ 0 but for any 
x ~ X~ it is false that x~f(x). Then no simplex £n[xo,..., x,] is mapped into itself. 
For the free basis of CnX¢ take the set of all n-simplices and consider the matrix 
((a0)) of the endomorphism f c  in this basis. All the diagonal elements of this 
matrix are zero (no simplex is mapped into itself), hence Tr f c  = 0 and hc(f)  = 0. 
But then, by Lemma 11.14, h ( f ) =  0, contradicting the assumption of Theorem 
9.4, which is therefore proved. 

P A R T  I I I .  A P P L I C A T I O N S  

12. Almost Solutions 

12.1. Roughly speaking, an almost solution of an equation (or a system of 
equations) is an object which, when substituted into the equation, transforms it 
into a numerical 'almost identity', i.e., a relation between numbers which is true 
only approximately (within a prescribed tolerance). The formal definition is given 
below (12.3). It applies to a wide and disparate class of equations (algebraic, 
integral, differential, linear, nonlinear, etc.); the existence theorem for almost 
solutions (12.6) are applicable to totally unrelated branches of mathematics. 

12.2. One should not confuse almost solutions with approximate solutions. The 
latter term is used by mathematicians to mean 'approximation of an exact 
solution', whereas an almost solution may exist in cases when the given equation 
has no exact solutions whatsoever (see Figure 1 for a simple example). There is 
nothing wrong with this in practice, although most mathematicians are so 
conditioned that they dislike such a situation. From the pragmatic point of view, 
however, exact solutions are ideal abstractions which do not actually exist and, 
moreover, in most nontrivial cases arising in the applications, cannot be expres- 
sed in a finite number of symbols. In most practical cases, the existence of an 
exact solution is unnecessary: in the case of Figure 1, say, if f(x) is electric 
current flowing through a conductor, x is time and E is small enough (less than 
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[ 

f(x) 

Fig. 1. 

the sensitivity of our ammeter), then the almost solution x0 gives the time when 
the ammeter reading will actually be zero. 

12.3. Suppose we are given a tolerance space F~* (the 'function space'), a 
morphism (the 'operator') A: F~ ~ F~ and a map (the 'norm') H" II from F to R~). 
An almost solution of the equation A(f) = 0 is any fo~ F~ such that IIA(fo)ll < E 
(or, in other notations, IIA(f0)lle0). 

12.4. Suppose the space F~ is supplied with a binary operation + with a zero and 
inverse elements. Denote by A1 the operator in Fe defined by the relation 
Al( f )=  A( f )+[ .  Then the existence of an almost solution of the equation 
A(f) = 0 is equivalent to the existence of an almost fixed point of the operator 
AI: E---~ F in the tolerance e' on F induced by the norm II II in R~, i.e., an 
element [ such that A l ( f ) d f ;  here E'= II (see the notation in Section 3.2); 
this is because AgO = 0 if and only if f = AdD. 

This simple consideration can be used to convert the almost fixed point 
theorem (Section 9) into a general theorem on almost solutions. We leave this 
general reformulation to the reader, and consider instead some specific situations 
when this theorem applies. 

12.5. Suppose F e is the space of real-valued functions on a fixed tolerance space 
X~, i.e., Fe = Mor(X¢, Rx), where ~ = ~'A is the canonical tolerance on F (see 
Section 3.2); the sum of functions in F is the usual one ( f+ g)(x)=/(x)  + g(x); 
the norm II II is the least upper bound of a function's values (llfll= 
sup{[/(x)l:x ~ X}; the number e > 0  (the 'tolerance of error') is fixed; for an 
operator A defined on a part of F~ (i.e., A e Mor(G¢, G¢) for some subtolerance 

* We do not require the norm to be defined on the entire space Fe. We need only know what 
functions are 'within tolerance of zero'. 
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Ge c Fe) let A1 denote the map* A1 - A + i d  Ge defined by A~(f)  = A ( f ) + f .  
The  problem is to find sufficient conditions for the existence of an almost 

solution of the equation A(/ ' )=  0 in the tolerance e ' =  11 I[*(e) • We will assume 

that the tolerance E' is greater than ~ (i.e., ~ c  e'). The  main result is the 

following. 

12.6. T H E O R E M .  An  almost solution of the equation A ( f ) =  0 exists if we can 
find a contractible** finite subtolerance (see Section 3.2) Ke c Fe which is mapped 
into itself by the operator A + id~ = A1 (i.e., A1 c Mor(K¢, Ke)). 

This statement immediately follows from Corollary 9.5. 

12.7. For the reader who has read through Section 8 in Part II, let us mention 

that the contractibility condition in Theorem 12.6 may be replaced by either of 

the following two weaker assumptions: 

(i) Ke is acyclic (i.e., HoKe = 7/, H,  Ke = 0 when n >/1) 
(ii) the Lifschitz number A(AI) is non-zero. 

12.8. If we replace the contractability condition (or (i), (ii)) by a convexity 
assumption (which is stronger), the conclusion of the theorem obviously holds; 

we then obtain an analogue of the classical Schauder theorem. 

12.9. The o r e m 12.6 is also valid if we require the contractability of K,, (instead 

of that of K~). 

12.10. It is impossible to omit the finiteness requirement imposed on K~ in 
Theorem 12.6: it is easy to construct appropriate counterexamples ('parallel 

translations' in an infinite space K~ = F~). It is also easy to find examples of finite 

spaces K~ (e.g., with one-dimensional homology isomorphic to 7/) and an 
operator  A~ without almost fixed points ( 'rotation around the generator '  of the 

group I-IIK~), so that the contractability condition cannot  be omitted either. 

12.11. The statement of Theorem 12.6 is simplified if we require that the space 
Fg itself be finite. This condition will be satisfied automatically if we consider only 
uniformly-bounded functions from X~ into ~ .  Denote  

Then  the following statement holds. 

* This will not necessarily be a morphism in the tolerance ~ - we may have to double the tolerance. 
** This means (see Section 7 for details) that there exists a sequence of morphisms g~: K~--~ K¢, 
i= 1 . . . . .  n, of Ke 'collapsing K to a point', i.e., such that g~ =idK, gi(x)~gH(x) for all x~ K, 
i= 1 . . . . .  n -  1 and g,(K)=ptc K. 



TOLERANCE SPACE THEORY AND SOME APPLICATIONS 159 

12.12. LEMMA. If X e is a finite tolerance space, then F' = Mor(X~, R~ ~ )  is also 

finite. 
The proof is a straightforward verification of definitions and is left to the 

reader. Note that this lemma has no analogues in classical functional analysis 
(usually function spaces are not even locally compact). 

13. The Dirichlet Problem 

13.1. In this section we consider, as an illustration, a specific difference scheme 
boundary-value problem where Theorem 12.6 works. It should be noted that the 
theory of difference schemes and its computer implementation is the most natural 
field for the application of tolerance space theory, but little has been done to date 
here. 

13.2. Suppose X¢ is a tolerance space with a fixed nonempty subtolerance 
Fc c Xc (the 'boundary') and a morphism fo: F¢ ~ ~a (the 'boundary condition'). 
Denote by Ke the set of all morphisms f: Xc ~ Rx which coincide with )~ on Fc, ~: 
being the canonical tolerance (~ = ~A). Assume that K~ 4:0 (i.e., there exists at 
least one extension of fo from F~ to X ~ -  ~ :  X~ ~ Ra). In this situation we say 
that the functions [ ~  K~ satisfy the (generalized) Dirichlet condition (X~, F~, fo). 

13.3. THEOREM.  If Kt satisfies the generalized Dirichlet condition (X~, F e, fo) 
and x~ is finite, then K e is contractible and finite. 

The proof is presented below (see Section 13. l(I). 

13.4. Now suppose that under the assumptions of Section 13.2 we are given an 
equation A(f) = 0 such that the operator A~ = A + idK is a morphism from Kt to 
Ke (we then say that the operator A1 preserves the Dirichlet condition). The main 
result of this section is the following. 

13.5. THEOREM.  The equation A(IO--0 always has an almost solution in the 
class of functions Ke satisfying the generalized Dirichlet conditions (X~, F~, fo) if 
X~ is finite and the operator A~ = A + idr preserves the Dirichlet condition. 

(By an almost solution here we understand an almost solution in the tolerance 
containing e': here, as in Section 12.5, we assume that ~ e', where e '=  [[ [l*(e) 
and e > 0 is the desired precision for the almost solution.) 

This theorem follows immediately from Theorems 13.3 and 12.6. 

13.6. In the theory of difference schemes [6], X¢ is the lattice on which the 
approximating functions are defined, ~" is the mesh of the lattice, F is the set of 
boundary points of X, ]~ the boundary-value function, A the precision with which 
the computer works (i.e., the order of last digit appearing in the presentation of 
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real numbers) and A is the finite-difference operator approximating the given 
differential operator. 

13.7. The reader should not think that Theorem 13.5 means that the Dirichlet 
problem always has an almost solution. It does if the following three conditions 
are met: 

(i) X~ is finite; 

(ii) A~(fo)~fo: 
(iii) fCg ~ Al(f)¢Al(g). 

In computer applications conditions (i) and (ii) are easy to satisfy. However, 
condition (iii) is far from automatic, and the user of the theorem must play 
around with if, E, )t to make it work in the most efficient way. 

Similarly, in applying the more general Theorem 12.6, the difficult part is 
finding a finite K~ such that A1 restricted to it is a morphism. 

13.8. Conditions (i)-(iii) are always satisfied in the case of the discrete harmonic 
operator (see [2]) so that the Dirichlet problem always has an almost solution in 
this case; but this is well known anyway. A general theory ('harmonic analysis on 
tolerance spaces') suggested by E. C. Zeeman is discussed in T. Poston's thesis 
[14]. 

On the other hand, it is easy to construct examples of parabolic equations for 
which (iii) fails and the finite-difference method diverges [2]. 

13.9. Theorem 13.5, when it is applicable to a Dirichlet problem in partial 
differential equations being processed by computer, guarantees the existence of 
an almost solution of the finite difference scheme approximating the given 
differential equation, as well as an almost solution of the differential equation 
itself, independently of the existence of an exact solution of the latter. 

The point of this theory is to tackle the question of existence by applying 
homological algebra directly to the real problem processed by computer. The 
classical approach to difference schemes, in contrast, is very roundabout: first use 
existence theorems for the exact solution of the continuous differential equation 
(proved by very delicate applications of homology theory in an infinite-dimen- 
sional setting), then find a sequence of finite approximations of the equation (the 
difference schemes) and their approximate solutions and, finally, prove that these 
approximate solutions converge to the existing exact solution. It is not surprising 
that in serious problems this program cannot be carried out entirely and com- 
puter processing of difference schemes has become an experimental science. For 
another direct approach to the existence problem for difference schemes, see the 
work of A. A. Dezin [3]. 
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13.10. Proof of Theorem 13.3. Recall that Ke c Mor(X¢, R~), where X¢ is a finite 
type and K~ satisfies the Dirichlet condition, i.e., f ~ Ke ::~ fir = fo, where F c X 
and the boundary condition fo: F¢--> Ra can be extended to a morphism fo: X¢ 
Ra. Suppose No is the number of points in X and Xo c F. 

It is easy to see that the functions are uniformly bounded (e.g., by the constant 
M =  If(xo)l + [No+21h. Hence, by Lemma 12.12, Ke is finite. 

Now let us collapse Ke to the point fo (thus showing its contractability), i.e., 
construct the following sequence of morphisms of K~ into itself: 

idK = go ~ e  g l  ~---e . . . .  e gN = const: K~ ~ {fo}. 

To do this, take an integer N so large that NA > M. Suppose (by induction) that 
we have constructed a morphism gk : K~ ~ Ke satisfying the condition 

O( k): Vx ~ X V f  c K¢ [ f o ( x )  - gk( f)(x)l ~ ( N -  k)A. 

In order to construct gk+l (satisfying Q(k  + 1) and elementary homotopic to gk) 
it suffices to put gk+l----Sk+l ° gk, where Sk+l 'slices off' the largest and smallest 
values of all functions gk( f ) ,  making them nearer by h to the values of fo at all 
points of x e X such that 

I fo(X)-  gk(f)(x)l  = ( S -  k)A. 

To be more precise, we put 

gk(f)(x), if I f o ( x ) - g k ( f ) ( x ) [ < ( N - k ) A ,  
(sk+i o gk)( f ) (x)  = g k ( f ) ( x ) -  A, if f o ( x ) -  gk( f ) (x)  = ( N -  k)A, 

gk( f ) (x)  + A, if f o ( x ) -  gk( f ) (x)  = - ( N -  k)A, 

and inductively define gk+l = Sk+l o gk- It is easy to check that gk+l is hereby well 
defined (using Q(k)) ,  that gk+l satisfies Q(k  + 1) and gk ~--~ gk+l. Obviously gN is 
the constant map to fo and the theorem is proved. 

14. Linear Algebraic Systems 

14.1. The theory as developed in Part II does not yield any meaningful results 
concerning the approximate solution of linear algebraic systems, although the 
statement of the problem, as it really stands in computer practice, sounds very 
natural in terms of tolerance spaces. Here we very briefly state a version of the 
problem and explain why Theorem 12.6 does not work in this case. 

14.2. Let Fe denote the truncated n-dimensional vector space, consisting of 
vectors all of whose coordinates are less than a certain number M (the upper 
bound of real numbers which the computer is designed to process), where ~ > 0 is 
a fixed number of our choice (not less than the precision of the computer), A is a 
given linear algebraic operator from R" to R" whose matrix consists of elements 
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not greater than a certain given number N (where N ~  < M) and b is a fixed 

element of F e. The  problem is to find sufficient conditions for the existence of an 
almost solution of the equation A ( x )  = b with respect to a certain tolerance • on 

Fe (e > 0 being as small as possible for the given M, N, A, b). 

14.3. Theorem 12.6 does not work here because the operator  Am (defined by 

AI(X)  = A ( x )  + x - b) is not a morpbism of F e into Fe in the general case (it is not 

defined on all of Fe, especially if dettlA~l is small). When A, is defined, existence 

follows from elementary considerations such as the contracting operator  prin- 

ciple. 

15. The Three-Channel Principle 

15.1. Roughly speaking, the principle in question says that three continuous 
channels are enough to transmit information coming in on any number n of 

continuous channels. More precisely, if 3 <~ k ~< n, then the input information 
from n continuous channels can be coded continuously into k continuous 

channels, transmitted and then uncoded back into n output channels with error 

within any prescribed tolerance. If k ~< 2 and n t> k, this cannot be done. The 
exact formulation appears below (15.6) The principle is essentially another way of 
stating the three-cube theorem (10). Based on the work of L. V. Keldysh [8, 9], it 

was first noticed [1] by A. V. Chernavski (or (~ernavskil, in another tran- 
scription). 

15.2. We begin with an informal discussion of the simplest case k = 1, n = 2. Let  

us try to use the Peano curve to transmit information coming in via two input 

channels Xl(t), x2(t) by means of one transmission channel y(t) which will then be 

decoded into two output channels Xx(/), x(t) with error  less than a small fixed 

e > 0 .  
Recall that the Peano curve is a continuous surjective map p: I---> O (where 

I = [0, 1] is the segment and O = I x I the square) obtained as the limit of a 

sequence of embeddings /9,: I---~ O. Each curve L~ = pk(I) is a polygonal line 
without self-intersections passing through 2 2k little squares filling up the square; 
for k = 3, this line is shown on Figure 2. Take k such that 1/2 2k < E (e.g., k = 3, 
we can then use the figure). Choose the parameter  s on the curve L3 proportional 
to distance along the curve, normed by the conditions s ( A ) =  0, s ( B ) =  1. 

The  input signal xl(t), Xz(t) may be viewed as moving point P ( t ) =  
(x~(t), Xz(t)) c O. Finding the point lfi(t) on the line L3 nearest* to P(t), let us 
transmit its coordinate via the transmission channel: y ( t )=  s(P(t)) .  The  number 
s =  y(t) allows us to recover  the point lfi(t) (using Figure 2 again), whose 

* If there is more than one such point, choose the one with the smallest coordinate s(P(t)) o n  L 3 . 
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coordinates £1(t), £2(t) can be sent to the two output channels. Then,  obviously, 

we have 

J£,(t)-x,(t)J<~< 2 ( i = 1 , 2 ) ,  

so that the transmission error  is less than the prescribed tolerance E. 

Unfortunately,  this method of transmitting continuous information is no good 
at all. This is because even a very small change in the position of the point P(t) 
(e.g., from P1 to P2, see Figure 2) can lead to a large discontinuous jump in the 
value of the coordinate s of the nearest point on the polygonal line (thus in our 

case S(Pl) = 10/64, but s(/52) = 55/64. Small variations in the input data can bring 
about huge jumps in the data sent along the transmission channel, so that the 

transmission algorithm described above fails to be effective. 

15.3. The  reason for the failure of the approach described in Section 15.2 is that 

points within tolerance in Q are not within tolerance on L (with respect to a 

natural metric on L). An effective continuous transmission algorithm of two 
channels via one channel would be ensured by an embedding p': L ~ Q  such that 
points are within tolerance on L and Q simultaneously (i.e., a toleomorphism, see 
Section 4). The  Peano embeddings do not possess this property and, in fact, no 
embeddings of the segment into the square with this property exist. We give an 
exact formulation of this fact in the next subsection. 
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15.4. An embedding of metric spaces h: M-- -~N is called e-dense,  if the e- 
neighborhood of the image h(M) covers N. 

T H E O R E M .  For any  • < ½, all • -dense  embeddings  of  the line segment  into the 

square p: I---~ Q have the fol lowing property: there exist two points P~, P2 ~ L = 

p ( I )  whose distance in Q is less than • but whose distance along L is greater than ½. 

This theorem is essentially a restatement of Theorem 10.5. 

15.5. For the same reasons as in the case k = 1, n = 2, effective continuous 
transmission of n channels via k channels is impossible when n 1> 3 and k ~< 2 

(one or two channels are not enough). But three channels are always enough, 

precisely because embeddings of the 3-cube into the n-cube with the required 

property do exist (Section 10). 

15.6. We now state the three-channel principle in classical terms (avoiding 

tolerance terminology). To  do this, we need the following definition: a real- 

valued function on a metric space with distance d is called • -a lmos t -con t inuous  

(where • > 0 is a fixed number), if 

( 3 • ' >  0 3Xo W > 0 3x  d (Xo, x) < ~ & [ f(Xo) - / ( x ) [ / >  e') ~ •' < e. 

T H E  T H R E E - C H A N N E L  T H E O R E M .  W h e n  k >! 3, for any • > 0 and arbitrary 

n, there exists a fami ly  of  k • -a lmos t -con t inuous  functions 

y , ( x ,  . . . . .  x . )  . . . . .  y k ( x ,  . . . . .  x . )  (1)  

with values in [0, 1], defined for all xi c [0, 1], i = 1 . . . . .  n, and  a fami ly  of  n 

continuous functions 

-~l(Yl . . . . .  Yk) . . . . .  Xn(Yl  . . . . .  Yk) (2 )  

with values in [0, 1] defined for all yj ~ [0, 1], j = 1 . . . . .  k ,  such that for all 

i = 1 . . . . .  n and any sequence of  numbers 

0 x ° . . . . .  x n , O < ~ x ° ~ l  ( i = 1  . . . .  , n )  

we have 

ix o_,~(y~(xlo, . ,  o . ,  x~ )  . . . . .  y~(x  ° . . . . .  x°))l < ~. 

W h e n  k = 1 and n >i 2, as well as when k = 2 and n >t 3, famil ies  of  funct ions 

(1) and (2) with the above properties no konger  exist if e is taken less than ~. 

15.7. The proof is approximately the same as that of the 3-cube theorem in 
Section 10; it is an effective construction, yielding an algorithm for actually 
constructing the 'coding functions' y l , . . . ,  yk and the 'uncoding functions' 
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£t . . . . .  £, so that the three channel principle is not only a theoretical theorem, 

but (eventually) a practicably applicable one. 

15.8. In the statement of the three-channel theorem, the words 'E-almost- 
continuous' can be replaced by 'continuous', but then the proof becomes much 
more difficult. For practical purposes, this change in the formulation is useless, 
however. 

16. Applications to Biology 

16.1. It is perhaps appropriate that we conclude our list of applications of 
tolerance space theory with theoretical biology, with which it all began (in E. C. 
Zeeman's work). We will not summarize Zeeman's work here, referring the 
reader to the original paper 'The topology of the brain and visual perception' 
[21] and its sequel [22]. I will only mention that [2l] contains a simple model of 
the brain's neuron network as a certain tolerance space (called the 'thought 
cube'), an informal sketch of tolerance space homology, including the fixed point 
theorem and applications of this theorem to brain functioning (visual perception 
in particular) in which thoughts or images are fixed points. 

16.2. Another way to model visual perception, in which the image on the retina 
is endowed with a tolerance space structure, has been proposed by A. M. 
Vinogradov, whose paper on the subject appears in this issue. The main point of 
the first part of his paper is that the three-channel theorem explains why we 
perceive the world as three-dimensional. 

16.3. Various biological networks (and not only nerve cells) may be modelled as 
tolerance spaces. In particular, the various structures of the DNA double spiral 
can be viewed as points of a tolerance space, two spirals being within tolerance if 
they resemble each other in a certain specified sense. Then, perhaps, evolution 
and/or mutation may be viewed as certain tolerance space maps. No serious 
research, to my knowledge, has been done in this direction, however. 

17. Questions 

In this section we mention a few open questions which might be the topic of 
further research. 

17.1. There are at least two alternative approaches to the foundations of 
tolerance space theory, based on different definitions of morphism (map). The 
first involves multivalued maps, the second uses what may be called the 'almost' 
approach: maps f: X~--~ Yn are not necessarily defined for all x c X but only 
within tolerance of any point of X, surjective means 'almost surjective' (i.e., the 
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image f(X) is within tolerance of any point y c Yn (compare 4.2), etc. Are these 
approaches worth looking into? The second is very natural, but does not yield a 
category. But should it? 

17.2. Is there a meaningful abstract definition of tolerance dimension? 

17.3. Are almost fixed point theorems (Section 9) possible (a) in the case of 
morphisms f: K~---~ Kn with £ ~ a? (compare 9.12)? (b) when the underlying space 
is not of finite type? 

17.4. Say that two natural numbers are within tolerance if there is a short 
algorithm (e.g., using less than 1000 operations on your personal computer) 
transforming one into the other. (Then 0 and 101°° are within tolerance, while 0 
and certain fairly large primes p, p ~ 10 l°° are not). Can the investigation of this 
tolerance space structure on N shed some light on current problems involving 
large numbers, e.g., coding? 

17.5. Are there meaningful tolerance space models of physical situations, with 
tolerance implied by the Heisenberg indeterminacy principle? 

17.6. Can a differential and integral calculus based on tolerance spaces be 
developed and applied, in particular, to difference schemes? 
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