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Abstract. In Part I, methods of nonstandard analysis are applied to deterministic control theory, 
extending earlier work of the author. Results established include compactness of relaxed controls, 
continuity of solution and cost as functions of the controls, and existence of optimal controls. In Part II, 
the methods are extended to obtain similar results for partially observed stochastic control. Systems 
considered take the form: 

dx, = f(t, x, y, u(t, y)) dr+ g(t, x, y, u(t, y)) db,, 

dy, = f(t, x, y, u(t, y)) dt+ g(t, y) d/~, 

where the feedback control u depends on information from a digital read-out of the observation process 
y. The noise in the state equation is controlled along with the drift. Similar methods are applied to a 
Markov system in the final section. 
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1. Introduction and Preliminaries 

1.l. INTRODUCTION 

In the papers  [6, 7] the au thor  in t roduced  nons tandard  me thods  (particularly L o e b  

space techniques  [17]) into cont ro l  theory,  bo th  determinist ic  and stochastic.  In 

the s tochast ic  case this built on  work  of Keisler [13] and others  who deve loped  

efficient nons tandard  techniques  for  solving stochast ic  differential equations.  The  

purpose  of this paper  is two-fold.  First, to present  a s t reamlined and comple te  

a ccoun t  of the methods  deve loped  in the papers  men t ioned  above,  using a slightly 

different  approach  that simplifies things somewhat .  Second,  using this s t reamlined 

app roach  we cover  aspects  of cont ro l  theory  not  discussed in the earlier papers.  In 

the case of partially obse rved  stochast ic  cont ro l  systems we establish new s tandard  

results, as outl ined below. 
T h e  sect ion headings  give a guide to the plan of the paper.  In the determinist ic  

theory  (Part  I) we go fur ther  than in [6]; we define a natural topo logy  for controls  

and show that  under  general  condi t ions  these are c o m p a c t  if we allow relaxed (or 

general ised) controls .  We  establish cont inui ty  of solutions as a funct ion of the 
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control, and prove various optimality results. In Part I we are not claiming that our 

results are new; the aim is to give further illustration of the naturalness of 
nonstandard methods in control theory. 

In Part If we build on the methods of Part 1 and establish new results for partially 

observed stochastic systems. Elliott and Kohlmann [11] first investigated con- 

trolled systems in which observations in a countable observation space were made 

at a fixed finite sequence of times. The  paper [7] used nonstandard methods to 

extend their results to systems which were past-dependent.  The new features in the 
present paper are (i) a more general information pattern, and (ii) the noise in the 

state equation is allowed to be controlled. The systems we consider take the form 

dx, = f ( t ,  x, y, u(t, y)) d t +  g(t,  x, y, u(t, y)) dbt, 

dyt = f(t ,  x, y, u(t, y)) d t +  g(t, y) d/~i, 

where the control u is allowed to depend at time t on the observation y through a 
cumulative digital read-out  r,(y). Updating of the information rt(y) can take place 

at any time. 
For such systems we establish compactness of relaxed controls, continuity of 

both the measure induced by control u and the cost J(u)  (as functions of u), and in 

consequence the existence of optimal controls. The  final section of the paper 

establishes similar results for a Markov controlled system in which all the noise can 
be controlled. 

The  main features of the present approach that are different from earlier papers 
are as follows. First, we do not concern ourselves about the construction of 

solutions to dynamical equations, but simply content  ourselves to quote existence 
results (which could, of course, be established by nonstandard means, as in [5], for 

example, for the stochastic systems we consider). This means that instead of 

dealing with internal ( 'nonstandard') dynamical systems for discrete time t c T = 
{0, At, 2At . . . .  } and then convert ing to standard dynamical systems for continuous 

time, we work with internal solutions to internal equations for (nonstandard) 
continuous time. These are given without any work by the transfer principle of 

nonstandard analysis applied to standard existence theorems. Thus, for optimality 
results, the main idea is the following. Given a nonstandard control V for a 
dynamical system, take an internal solution X v to the internal equations; convert  

this to a standard object  x v,  and show that xV is a solution for an appropriate 
standard control v. To  establish optimality, we may simply take V with cost 
J (V)  ~ J0, the minimum cost; then J(v)  ~- J ( V )  ~ Jo, so J(v)  = Jo. 

The second feature that is different here follows from the first: our measure 
spaces are necessarily hyperinfinite (i.e., not hyperfinite), whereas in earlier work 
where discrete time was used, it was possible to use entirely hyperfinite spaces - 
i.e., nonstandard measure spaces that are finite from the nonstandard point of 
view. Hyperfinite spaces are very safe to deal with internally, so there is perhaps a 
slight loss here, which is the price of making the rest of the development much 
smoother. One significant advantage of the present approach is that we do not 
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have to construct any liftings of functions; these are provided by *f (etc.), and 

frequent  use of Anderson's Lusin Theorem.  

1.2. PRELIMINARIES 

Our notation throughout  is mainly conventional.  By R + we mean the real half-line 

[0, oo[; the symbol m is used to denote Lebesgue measure on R" for any n, as 
dictated by the context. We use C ( X )  to denote the space of continuous real 

functions on a space X; the Borel probability measures on a metric space M are 

denoted by ~ ( M ) .  
We assume familiarity with the basics of nonstandard analysis and the theory of 

Loeb measure as expounded for example in [8], or [1]. Selected parts of the theory 

that are important for this paper are recalled below. 
We work in a fixed O~l-saturated and enlarged nonstandard universe * V(R). On 

occasions we omit the * on a function or operator:  thus, for example )t v (Lemma 

7.13) must mean , f i r  because V is internal (nonstandard). 

We use ~- as a variable ranging over  *R; when we have a discrete time line 

T = {0, At, 2At . . . .  } we use sanserif symbols s, t, u to range over  T. 

The term bounded is used to mean finitely (or b °-) bounded. 

We frequently use the nonstandard criteria for continuity and compactness, 

recalled in the following Proposition, along with similar criteria for density and 

lower semi-continuity. 

PROP OS I TI ON 1.1. Let  X be a Hausdorf f  topological space; let f: X - + R ,  and 

suppose that x c X and y E * X .  

(a) f is continuous at x iff f ( y )  ~- f ( x )  whenever  y ~- x; 

(b) f is lower semi-cont inuous  at x iff Of(y) >i f ( x )  whenever  y ~ x; 

(Here o denotes standard part). 

(c) X is compact  iff every y c * X is nearstandard (i.e.,  there is x c X with y ~ x); 
(d) a set Y c_ X is dense in X iff for every x c X there is y ~ * Y with y ~ x. 

Recall the criterion for being nearstandard in C[0, 1] (with respect to the 
uniform topology): F c * C [ 0 , 1 ]  is nearstandard ill F is ~-cont inuous;  i.e., 

F(r l )  -~ F('r2) whenever rl ~ "r2. 
For a product X = I ] i c l  X~ recall that y c * X  is nearstandard if y, is near- 

standard for each standard i ~ 1. 

As in [8], we use vL to denote the Loeb measure obtained from an internal 
measure v. Expectation with respect to v is denoted E to distinguish it from the 
expectation E with respect to vL. When considering Loeb measures on *R (or *R + 
etc.) we use the phrases 'for a.a. finite r '  or 'for a.a. r e ns(*R)' to mean 'for almost 
all r with respect to the o--finite measure on ns(*R) obtained from *mL on * [ - n ,  n] 

for each n c N'. Here ns(*R) denotes the nearstandard (or finite) members of *R. 
We make frequent use of Anderson's Lusin Theorem:  
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PROPOSITION 1.2 ([3]; [8], Theorem 4.6). Let (X, ~ , / z )  be a Radon probability 

space, and suppose that f: X---~R is measurable. Then *f(x) ~ f(°x) for * tzL - a.a. 
x E * X .  

Recall the following characterisation of weak standard parts of measures: 

PROPOSITION 1.3 [4, 18]. Let X be Hausdorff; an internal Baire probability 
measure v on * X is nearstandard (in the weak topology) iff vL(ns(* X)) = 1; in which 
case °v(A) = vL(st-l(A)) for Baire sets A in X.  

For Part II we need the following proposition, which is a variant of results of 
Anderson and Keisler. Suppose that 1~o-- (~, ~1, (~¢, ) ,~ ,  v) is an internal filtered 
space carrying an internal Brownian motion B~ adapted to (~¢,). Let 
11 : (12, ~g, (~3,),~, P) be the adapted Loeb space obtained from llo as described 
in [8], p. 572; so P = vL. 

PROPOSITION 1.4. (a) B(to) is a.s. 5~-continuous, and the process b = °B is a 
Brownian motion on ~ .  

(b) (Keisler's 5~-continuity) If F: *[0, 1]×I)---~*R is bounded, internal, jointly 
measurable and adapted to ~l~, then Gs = S~ FT dB~ is a.a. 5e-continuous. 

(c) If F in (b) is a lifting of a bounded adapted function f: [0, 1] × ~--~R then 

X s oi fs dbs = F7 dB,  all s, a.a. to. 
0 0 

ProoL (a) B is ,%continuous on the set U ~,4 M ,~,~ fl  . . . .  where 

to e 1),,.,,, ~--* ( l r -  r' I < 1/m---~ lB, - B,,[ < 1/n). 

By transfer of standard facts about Brownian motion, °v(l),,,,)--+ 1 as m--+~, so 
P(N,  U , ~ , , m ) =  1. Clearly b = ° B  has the right distributions to make it a 
Brownian motion, and is adapted. 

(b) The easiest proof of Keisler's oW-continuity theorem for the present setting is 
to adapt the proof in the notes [14]. As this proof has not been made public we take 
the liberty of quoting it here (suitably modified for our situation). 

Let 

A,.,. =(to: I~- ~-'1< l / m ~ l G . -  ~.1< 1/n}; 

as in (a), it is sufficient to show that for fixed n, °v(A,,m)--~ 1 as m---~ ~. For this we 
show that v (A ,M )~  1 for infinite M. 

Let At = M ) and let T = {0, At, 2At . . . . .  1 - 2At}. 

The complement /~,,~ is given by 

~,,.M={to:3"r, T ' ( IT--r ' I<I]M and IG~-GT,I>~ I]n)}, 

and we have 
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(1.5) 

Now using Doob's inequality for the internal martingale G we have for 
each t 

V(t sUP2at IG~-Gt]  ~ 1 / 2 n ) ~ ( 2 n ) 4 e ( ( G ( t +  2At) -  G(t))4). (1.6) 

Suppose that [F I ~< K, finite. An easy calculation using the transfer of It6's lemma 
for (G(t + 8 ) -  G(t)) a shows that 

/~((G(t + 6) - G(t)) 4) ~< 3K462 

for all 6. Combining this with (1.5) and (1.6) we have 

u(A.,M) <~ ~ (2n)43K4(2At) 2 ~ 0, 
toT 

as required. 
(c) is proved exactly as in [2], by establishing it first for a sequence of step 

functions approximating f. [] 

PART I: DETERMINISTIC C O N T R O L  T H E O R Y  

The theory worked out in Sections 2-4 can be found in the standard literature (see 
[12] for example). The emphasis here is to show how natural the nonstandard 
approach is for certain aspects of control theory: for example our proof of 
compactness of generalised controls (Theorem 2.7) should be compared with the 
lengthy presentation using a standard approach ([12], Theorem 8.1). The results 
and methods here,are developed from the results in [6], where the key ideas were 
first presented. 

2. Determinist ic  Controls  

In this section we define classes °Ro and T'o of controls appropriate for controlling 
deterministic dynamical systems; we establish the compactness of T'o in a suitable 
topology and the density of the subclass of °//o consisting of step controls. 

Assume that a compact metric space M - the control space - is given and fixed; 
this is the space in which controls take their values. 

DEFINITION 2.1. The class a//o of (ordinary, deterministic) controls is the set of 
measurable functions u: R+---~ M. (Controls differing on a null set are reckoned to 
be the same). 

A weak* topology is defined on °//o by means of the set :¢{, defined as follows. 
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D E F I N I T I O N  2.2. (a))'{is the set of bounded measurable functions g: R + x M---~ R 

having compact  support  and with g( t , - )  continuous for all t. 

(b) For u • ~o and g • )'{" the action of u on g is defined by 

1 
. ~  

= [ g(t, u,)dt.  bt(g) 
. t  0 

(c) The  3{-topology on °//0 has as subbase of open neighbourhoods the sets 

{u: [u(g)l < E}~ .~>o .  

We shall see that the complet ion of 9/o is the set 'Vo of relaxed (or generalised) 
controls, defined as follows. 

D E F I N I T I O N  2.3. The  class o//~ of relaxed (deterministic) controls is the set of 

measurable functions v: R +---> ~ ( M ) ,  the set of probabili ty measures on M, with 

the weak* topology. (By identifying each a • M with the Dirac measure 6, 

concentrated at a we have M c_ d/l(M) and ~o _c Y'o.) 

The  topology on a//o is extended to ~Vo by extending each g in J{" to R + x d~(M) 

with the definition 

u) = YM g(t, a) du(a) ,  g(t, 

for v • ~ ( M ) .  
In Theorem 2.7, below, we prove  that ~ is compact ,  using the nonstandard 

criterion for compactness.  This means that for each V • * ~ we have to construct  

v • T~ such that v = ° V (i.e., V ~ v), in the ~'{-topology; i.e., 

V(*g) ~- v(g) (all g • )'{). 

2.4. CONSTRUCTION OF THE STANDARD PART 

Let V • * ~ ;  define an internal *Borel measure Q on *R+× * M  by 

O ( C x  D ) =  i c  V,(D) d7 

for Cc_*R +, D~_*M. A standard Borel measure q(=OO in fact) is defined on 

R + x  M by 

q(X) = QL(St-I(X)). 

Notice that for a Borel set A ~_ R +, q(A x M) = m(A)  (Lebesgue measure),  so q 
can be disintegrated to give v • °F with the property 

L q( A x B) = v,( B) dt 

for Borel A ~_ N + and B _c M. We will see (Theorem 2.7) that v ~ V. 
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To show that V ~ v, we use Lemma 2.6 below, which will play a key role in later 
applications. First we make a definition. 

DEFINITION 2.5. Let g c K; a bounded uniform lifting of g is an internal 
*measurable function G: *R + x *M--~ *R such that 

(i) G(r,  a) = 0 if r is infinite; 
(ii) G is bounded; 

(iii) for a.a. finite r c * R  +, G('c, a ) ~  g(°r,°a) all a c * M .  

The following lemma appeared as the main theorem of [6], in a slightly different 
setting. The simplified proof below was given by Ed Perkins. 

LEMMA 2.6. Suppose that v is constructed from V as in (2.4) above, and that g ~ ~{ 
with bounded uniform lifting G. Then V( G) ~ v(g); i.e., 

I G(~-, V~)d r~  I g(t, v,)dt. 

Proof. There is finite (standard) time s such that g and G are zero outside [0, s]. 
Then 

| V( G) = ,  V , ) d r  = ,  G(r, a) d V~(a) dr  
,1 O 0 M 

= f G(r, a) dO(r ,  o~) 
[o, s]x*M 

/ 

= J.[o,s]x.M°G(r, a) dQL(I", a) (Loeb) 

= J'to, ~]x*M g(°r' °a) dOL('r, a) 

(since g(°r, °a) = °G(r, a) for QL-a.a. (r, a)) 

= f g(t, a) dq(t, a) (by definition of q) 
Jt O,s]×M 

= I~ (fM g(t, a)dv,(a))  (by disintegration theory) 

- $  

= [ g(t, v,) dt  = v(g). [] 
,1 0 

REMARK. This lemma shows that V(G)~-  V(G') for any two bounded uniform 
liftings G, G' of g c 5rf. 

Now we have 

THEOREM 2.7. The space of  relaxed controls 7/'0 is compact; in fact if V c * ~Vo 
then o V =  v, the control constructed as in (2.4). 
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Proof. Let  V c * ~ o ,  and let v e °Vo as g iven by (2.4). We  have  to show that  

V(*g)  ~- v(g)  for  eve ry  g c 9(. Def ine  ~: R+--~ C ( M )  by ~(t) = g ( t , - ) .  T h e n  f rom 

A n d e r s o n ' s  Lusin theo rem,  * ~ ( 7 ) ~  ~(°1-) f rom almost  all ~-, where  -~ refers  to the 

s u p r e m u m  norm topo logy  on C(M) .  Thus  for  a.a. finite ~-, 

*g(z ,  a )  ~ g(°~', °a )  for  all a ~ *M.  

So *g is a bounded  un i form lifting of g, and V(*g) ~ v(g) follows f rom L e m m a  

2.6. [ ]  

We  now show that  ~o  is dense in °Vo; in fact  we have  densi ty  of the s tep controls  

def ined by: 

D E F I N I T I O N  2.8. A cont ro l  u ~  6//o is a step control if there are t imes 

0 =  t o < t l < t 2 < ' " ,  with tn--~oo, such that  u, is cons tan t  on each  interval  

[tn, t,+~[. A step cont ro l  is uniform if the s tep sizes tn+~ - t~ are the same,  all n. 

Le t  °ll6 deno te  the uni form step controls .  

T h e  next  t heo rem was g iven in [6] in a slightly less genera l  fo rm;  the p roof  here  

is somewha t  different.  

T H E O R E M  2.9. The set °li~) is dense in ~). 
Proof. Le t  v ~  3/o. T a k e  any posi t ive  infinitesimal At, and let 

T = {0, At, 2At . . . .  }. It is sufficient to cons t ruc t  a cont ro l  U C * ~ o  such that  

° U = v and U is cons tan t  on [t, t + At[ for  each  t ~ T.  

Choose  infinite K c *N such that  KOAt ~ 0 ( take any infinite K <~ (At)-~/4). Fix an 

internal  sequence  of points  (a~)~K in * M  such that  M = {°a~:i <~ K}. It is then  

possible  to choose  an internal  sequence  (D~)~K of disjoint  *Borel  subsets of * M  

such that  U ~ K  D~ = * M  and a~ 6 D~ _~ monad(a~) for  all i. 

Le t  ~ be the internal  a lgebra  on * M  g e n e r a t e d  by ( D ~ ) ~ .  For  each  

v c * M ( M )  define ~ on ~ by 

if(Di) =[K2t,(Oi)]/K 2 (1 ~< i <  K) 

~ ( D K ) =  1 -  ~ ~(D,). 
l ~ i ' < K  

Clearly,  the mapp ing  ~:--> ~ is internal;  not ice that  ~(D) ~ v(D) for D ~ ~ ,  and 

~ K  ~(D~)= 1 (so ~ is an internal  probabi l i ty  measu re  on (*M, ~)) ;  m o r e o v e r  
K2 ~(Di) c *N. 

Now we can  cons t ruc t  U. Let  AS = K2At and let S = {0, As, 22ts . . . .  }. Define an 

internal  cont ro l  V c * T~) by 

- s+As t 

V~ = (As)-1[ *v,  d'r (s c S) 
d $ 

V~= v~ ( s ~  ~-< s + a s ) .  

Not ice  that  for  each  s, we have  s < s + At < s + 2At < • • • < s + K2At = s + As. 
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Now define from V a control U ~ *ql0 with the following properties: 
(i) U is constant on [ t , t + A t [  (all t ¢  T); 

(ii) for each s E S, Ut is defined for s ~< t < s + As so that Ut = a~ for exactly 
K 2 Vs(D~) values of t. This is possible because ~<~K K 2 QdD~) = K 2, and there are 
exactly K 2 values t in Is, s + As[. 

The aim now is to show that °U = v; for this it is sufficient to show that qU = q*O 

(where qU is constructed from U as in (2.4); recall that for Bore|  X c R+x  M, 
qV(X) = O~(st-~(X))). Note that st-~(X)~ cr(Mx @), where M is the internal 
algebra on *R+ generated by sets of the form [s, s + As[. Thus it is sufficient to 
show that 

Qv(C x D) --~ O%(C x D) 

for C c ~ ,  D c @, with C bounded (finitely). 
From the definitions we have 

Thus 

OU([s, s +  AS[ × D,)= ~ Ut(Di)At 
s ~ t < s + A s  

~- K 2 "V~(D~)at = 9dD~)As. 

o r ( c ×  D ) =  j ;  i?~(D) dv 

~- fc V~(D)d'r= fc*v~(D)&r= o*°(C× D)' 

and the theorem is proved. [] 

3. Deterministic Control Systems 

A deterministic control system in which a state vector  x, ~ R a is controlled by a 
control u e °Ro g3ay be described by a differential equation such as: 

dxt=f( t ,x .u~)dt  (O~t<~h) 
(3.1) 

XO = C, 

where tl < ~ and c c R a. We also allow relaxed controls which operate in f as 
described in the previous section. We make the following assumptions on the 
function f: R + x R  a × M ~ R a :  

ASSUMPTIONS 3.2. (a) f is measurable, and f(t, . , . )  is continuous for each t; 
(b) Ill(t, #, a)ll ~< K(1 + [l~ll) for some constant K; 
(c) Equation (3.1) has a unique solution on [0, q] for each control (ordinary or 

relaxed) and all initial conditions c in some prescribed region D c_ R a. For v ~ °Vo, 
c c D denote the solution bv x v'c. 
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In the next section we will discuss objectives of control, and questions of cost 
and optimality. Here we establish continuity of the trajectory as a function of v, c. 

T H E O R E M  3.3. The solutions x ~'~ are continuous in (v, c) with respect to the 
uniform norm topology on Ca[0, h]. 

Proof. Let (V, 7 ) ~ ( v ,  c), with Ve*T#o and 7 e ' D ,  and let X =  XV'Vbe the 
internal solution to the equation 

d X . = * f ( ~ ' , X .  V,)d-r (0~<'r<~tt); 

X0 = 3 .̀ 

We have to show that X ~ x°'C; i.e., X is 9°-continuous and °X = x ~'~. 

The growth condition 3.2(b) on f transfers to *f, ensuring that X, and hence 
*f(~-, X,, V,) are bounded on [0, hi. So X is 5<continuous on [0, h]; let x = °X. By 
Anderson's Lusin theorem, for almost all r e *[0, tl] we  have 

*f(r ,  ~, a ) ~  f(°r, o~, °a) all a and finite ~, 

and thus 

*f(z, X,, a) ~ f(%', Xo, °a) all a. 

So *f(~', X,, a) is a bounded uniform lifting of f(t, x,, a); hence, 

o/'s 

= °X~ = °3'+ [ *f(r, X,, V,) d r  Xs 
,1 0 

| 
- g  

= c + [ f ( t ,  x,, vt) d t  (Lemma 2.6) 
d 0 

for s ~< h. Thus, x ~'~ -- x ~ X v'v as required. [] 

4. Cost and Optimal Control 

Let F be a closed region in R + x •a. Suppose that the objective of control for the 
system (3.1) is to steer the state x, so that (t, xt) e F. For a control v e °g0, let 
T ~'c = inf{t ~ t l : ( t ,  x , : ) e  F}. To ensure that T o'c is always defined, assume that 
{tl} × •d ~ F. A fixed time-horizon system is modelled by taking F = {h} x R a, so 
that T ~'c = h always. 

Now suppose that associated with each control v and c e R e there is a cost 
J(v, c) taking the form 

. r ~ , c  

J ( v , c ) =  { h(t,  x,~'c, v t ) d t + ~ ( r ~ , c  , xO.C) 
,I 0 

where h, h>~0. We assume that h satisfies conditions 3.2(a), (b), and /~ is 
continuous, with the property that h(t,~:) depends only on {£s : s~ t}  for 
~:• Cd[0, h], and /~(', ~) is nondecreasing for each fixed ~. 
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Now we can prove: 

115 

T H E O R E M  4.1. (a) The functions T 1)'~ and J(l), C) are lower semicontinuous. 
(b) "If T 1)'~ is continuous, then J(v,  c) is continuous; in particular, J(v,  c) is 

continuous for a fixed time-horizon control system. 
Proof. (a) Let v E °V0, c ~ R a and suppose that ( V, 3") -~ (v, c). We have to show 

that T 1)'~ <<- T v''/ and J(v,  c) <~ J( V, 3'). 
We know that x~'~=°(X v'v) (Theorem 3.3), so putting s = ° T  v'v we have 

(s ,x~ x) ( T  v'v, v v  ~,~ = "~- XT',j.v ) C *F; thus (s, x~ ) c F since F is closed, so T 1)'¢ <~ s 
ozV,v 

For lower semicontinuity of J: first notice that *h(z,  X v'v, a) is a bounded 
uniform lifting of h(t, x~ '~, a), by the reasoning applied to f in the proof of 

Theorem 3.3. Thus 

T v , ~ ,  

J(V,3') = f * h ( T , X  v'r, V , ) d ' r + * h ( r v " , X  v'¢) 
aO 

- $  

j h(t, 1)'~ v , ) d t + h ( s , x  vx) ~ ,  X t 
0 

. TV,C 

j 1),¢ h( t, x, , vt) dt + h ( T  1)'~, x v'~) 
0 

J(v, c) 

as required. 
(b) If T ~'c is continuous, then s = T 1)'c in the above, and so J (V ,  3")-~ J(v,  c). 

(Note that here it is not necessary to assume that h is nondecreasing in t.) [] 

We now have some optimality results: first define, for any region D ~_ R a, 

J ~ , , ( D )  = inf Jo(u, c);  J ~ , , ( D )  = in[ Jo(v, c). 
c o D  c ~ D  

It is easy to establish by standard means: 

C O R O L L A R Y  4.2. (a) For any compact region D ~ R  a there is a pair 
(v, c) c 7/'0 × D that is optimal; i.e., J(v,  c) = Jff-(D). 

(b) If T v'c is continuous (in particular, for fixed time-horizon systems) 
J~,,(D) = J0~o(D) for any region D ~ R a. 

Proof. (a) Take (v,, c,) such that IJ(v., c.) - J~,,(D) I < i /n;  by Theorem 2.7 and 
compactness of D, we may assume that (v,,  c,)---~ (v, c )~  ~ ×  D. By Theorem 
4.1(a), 

J(v, c) <~ lim J(v,,, c,,) = J ~ , ' ( D ) ,  

so J(v, c) = J~o"(D). 
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(b) is routine using the density of °//o in ~Vo (Theorem 2.9) and the continuity of 

J (v ,  c) (Theorem 4.1 (b)). []  

R E M A R K S  (1) Optimal ordinary controls can be obtained for systems in 

which the following convexity property holds: for each ( t , s  ¢) the set 

{(f(t, ~, a), h(t, ~, a)):  a E M} is convex. This is achieved by standard measurable 

selection results, whereby for any relaxed control v, an ordinary control u is 
constructed to give the same trajectory and running cost. 

(2) It is routine to extend the results of Sections 3 and 4 to the case t~ = 0o. In this 

case, we need to assume that Equation (3.1) has a unique solution on R + for each 

control;  in Theorem 3.3 the continuity is with respect to the compac t -open  

topology on Cd(~+); and in Section 4 the results all hold if we allow T ~'c and 

J(v ,  c) to take the value ~. 

P A R T  II: P A R T I A L L Y  O B S E R V E D  S T O C H A S T I C  C O N T R O L  
T H E O R Y  B A S E D  ON A C U M U L A T I V E  D I G I T A L  R E A D - O U T  

If there are random elements in the evolution of the state xt of a controlled system, 

this is conveniently modelled by assuming that xt is the solution of a stochastic 

differential equation of the form 

dx, = f(  t, x, ut) d r +  g( t, x, u,) dbt, 

where b, is a Brownian motion. Controls  can be more efficient if information about  

the present or past of the trajectory can be fed back to the controller. In general, 

this will be incomplete or partial information - depending only on some observed 

component  y, c R "  o f  the state. In Section 5 we consider the situation where the 

information available to the controller is a digital read-out.  In this case we can 

obtain compactness  and optimality results (Sections 6-8) similar to those in the 
deterministic setting. The  methods here build on those used in Part II. 

5. Cumulative Digital Information for Stochastic Systems 

Suppose that Yt ~ •"  is a component  of the state of some stochastically evolving 
system. We begin by setting up our model of an information pattern where the 
controller has available at time t a cumulat ive digital read-out  r(t, y). For 
convenience we assume a fixed time horizon t~ = 1, so y = (yt)t<~. 

D E F I N I T I O N  5.1. A cumulative digital read-out  is a function r: [0, 1 ] × ~ "  --~ Nt 
(where ~g" = C" [0 ,  1]) such that 

(a) r, is measurable,  each t; 
(b) if y I t = y' [' t then rt(y) = rt(y'); 
(c) if r,(y) = r~(y') then rs(y) = rs(y') all s ~< t. 
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Condi t ions  (a) and (b) are equiva len t  to the requ i rement  that  r is 

(~c:"))-adapted,  where  ~ " )  = ~r{ys : y ~ (C", s <~ t}; 

i.e., rt is , ~ " ) - m e a s u r a b l e  for  each  t. Condi t ion  (c) is the accumula t ion  proper ty .  
We shall see later  that  we may assume without  any loss of general i ty  that  rf(y) is 

increasing with t. 

Associa ted  with r there  is a natural  information filtration j t r)  = (3t~r)),~l defined 
by p~r)= o-{r,}. Not ice  that  5~ has the proper t ies  

(a) o¢~, ') _~ ~ T  ~- ~ W ;  (s ~< t) 

(b) ,¢~r) is genera ted  by a countab le  number  of a toms (5.2) 
(namely the sets / 9 /=  ri-l({i})). 

We will consider  controls  u: [0, l] x c~,~ I> M that are oC(')-adapted ~- which is 

equivalent  to the requ i rement  that  if rt(y) = rt(y') then u(t, y) = u(t, y'). Before  

discussing controls ,  we show that any filtration satisfying (5.2) arises f rom a 
cumula t ive  digital read-out .  

T H E O R E M  5.3. Let 5 t = (~t)t~J be a filtration on (C" satisfying conditions (5.2). 

There is a cumulative digital read-out r such that 0¢ = 5 ~(r), with the additional 
property that r,(y) increases with t. 

Proof. Suppose  that  5~1 = tr{D~ : i ~ N}, where  D~ 4: 0, D~ f) Di = 0 if i 4: j, and 
tO ~q  D~ = cC". For  each t define a relat ion ~ ,  on N by 

i ~ , j  iff D~, D i are indistinguishable by sets in Pt 

(iff D~ ~ A ~ Dj c A for  all A ~ 5~t). 

Not ice  that  i ~ , j  implies i ~ j  for  s <~ t. 

For  each  i, let AI = tOi-,~ Di; we claim that  AI is an a tom of 5~,. T o  see that  

A le  J , ,  for  each  kJ-,i choose  A k c J ,  with D~c_Ak and D k f ) A k = O .  T h e n  
A~=Nk+,~Ak~5~, .  It is c lear  that A~ is an a tom of 5~,.  Not ice  that 

i ~,j+-~ AI = A~';land A~ ___ A~ if s ~ t. 
Now we can define the read-ou t  r by 

r,(y) = least j such that  y c A; 

( = least j such that  i ~ , j ,  if y ~ D~). 

T o  see that  o-{rt} = 5~,, note  that  A~ = r?~({j}), where  j is least with j ~ , i .  For  the 
accumula t ion  proper ty ,  no te  that if s ~< t and y ~ D~, with r,(y) = j and r~(y) = k, 
then 

r~-l({j}) = A ~ _  A~ = rsl({k}). 

It is c lear  f rom the cons t ruc t ion  of r that  r~(y) is increasing with t. [ ]  

T h e  fact  that  r is increasing with t means  that  for  each  y e ~ "  there  are only 
finitely many  updateS, as follows. 
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C O R O L L A R Y  5.4. Foreach y there is k = k(y) c N and there are times 0 = to(y) < 
tl(y) <"  • • < tk(y) = 1 such that r(t, y) is constant on each interval ]t~(y), t~+l(y)[. 

Proof. Fix y. Use the fact that r,(y) is increasing, and r~(y) ~ N, so r,(y) has finite 

range. []  

R E M A R K .  We cannot infer from this Corollary that 5 ~, increases at only a finite 

or countable number of times, as shown by the following example. Pick a countable 

collection of pairwise disjoint sets ( B ~ ) ~  from ~]~),  with Ultra B~ = ~ " .  Let  
(q~)~N be an enumeration of the rationals in [0, 1], and define 

#, = {0, ~ ' }  for t < ½, 

= o'{Bi : qi <~ t} for t/> ½. 

Clearly t s  ~ #t whenever ½ <~ s < t. 

We have not assumed that a read-out r,(y) is jointly measurable, nor that the 

information filtration (5~,),~<~ is right-continuous. For applications it is necessary to 
show how to obtain a jointly measurable read-out as follows. 

T H E O R E M  5.5. Let 5~, r be as in Theorem 5.3. Let 

1)mrs(y) if t > 0  

r;(y) = rt-(y) ~ [ ro(y) if t = 0. 

Then r' is jointly measurable, P-adapted, and r'~(y) is left continuous in t for each y. 
Moreover, for all but countably many values of t, r',(y) = rt(y) for all y. 

Proof. r' is definable from the countable collection of functions (rq(y))qeQ, so r' is 

easily seen to be measurable. Left continuity is obvious. For the last part note that 

if y, y' c Di then the jump times tp(y) and tp(y') of Corollary 5.4 are the same, and 

that for tp(y)< t <  tp+t(y) we have r',(y):- r,(y). []  

6. Controls for Stochastic Systems 

Suppose now that an information filtration o~ = (,¢,),~<1 is fixed, with readouts r and 
r' as given by Theorems 5.3 and 5.5. With a fixed control space M as in Section 2 
we now define the classes of controls for stochastic systems with information 

pattern given by .¢. 

D E F I N I T I O N  6.1. (a) The  class ~ of (admissible ordinary) controls is the class of 
jointly measurable functions u: [0, 1] × c~,~___~ M such that u is ,~-adapted. 

(b) The class of (admissible) relaxed controls 7/" is given by extending M to Jt/(M) 

as in Section 2. 
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Each  cont ro l  v ~ 7/" gives  a s equence  (v~)~N of contro ls  in ~ by set t ing* 

vd t) = v( t, y) for  y c D ~ .  

(Recall  that  (D~)~N are the a toms  of 5~). A natural  t opo logy  on ~V is induced by 

that  on IVi~ - namely ,  the restr ict ion of the p roduc t  t opo logy  on ~ '~ .  So a subbase  

of open  sets is p rov ided  by the sets 

(where vi(g) = .[~ g(t ,  v,(t)) dt of course) .  
T h e  c o m p a c t n e s s  of ~;o es tabl ished in Sect ion 2 is used to show that  ~ is 

c o m p a c t  as follows. 

T H E O R E M  6.2. 7/" is compact. 
Proof. Let  V c * 7 / ' .  For each  i~N we have  V~ = V(- ,  y) for  y ~ * D ~ .  T h e n  

V~ e *~Vo; let v (i~ = °V~ (using T h e o r e m  2.7). Now define v: [0, 1] x (¢" ---, ~ ( M )  by 

v(t, y ) =  vr?Y)(t). 

Since r' is joint ly measurab le  and J - a d a p t e d ,  so is v, i.e., v c 7/'. We now see that  

v = ° V ;  i.e., v~=°V~ for each  ioN.  Fix y c D ~ ;  then on each  interval  

]tp(y), tp+t(y)[ we have  r;(y) = rdy) = j, say. Thus ,  on this interval ,  

v,(t) = v(t, y) = vW(t) (by definition) 

= (° v j ) ( t )  

-_ (o Vi)(t) a.s., 

because  V is *5~-adapted and so V~ = V i on ]tp(y), tp+l(y)[. [] 

R E M A R K  6.3. It  follows f rom the p roof  above  and L e m m a  2.6 that  for  g ~ 

with b o u n d e d  un i form lifting G,  

j G(~-, V(T, V))d  j g ( t , v ( t , y ) ) d t  
0 n 

w h e n e v e r  Y ~ *Di and y ~ D~ (for finite i). 

Step controls  in 0/ /are  defined as for  °//0, and are now shown to be dense in 7/'. 

D E F I N I T I O N  6.4. A control  u c 0?/is a step control if there  are t imes 0 = to < tl ( 

• • • < t, < tn+l = 1 with u(t, y) cons tan t  on Its, t~+~[ for  each  fixed y. D e n o t e  by U s 

the uniform s tep controls  - i.e., those  for  which t~+l - ti is constant .  

T H E O R E M  6.5. ~/s is dense in ~V. 
Proof. Let  v ~ oF; fix a posi t ive infinitesimal At. F r o m  the p roof  of T h e o r e m  2.9, 

*Because of the restriction of the time interval [0, 1] here, whenever we mention ~ from now on we 
mean the controls in ~ restricted to [0, 1]. 
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there are step controls U~)e*~?~ with U ") constant on [ t , t + A t [  for each 
t = k A t <  1, such that °U ~)= v~ for finite i. Now define U c  *0//~ by 

U(r, Y)= U&~(~-) 

where R~(Y) = * rt(Y) on [t, t + At[. Then clearly U c * ~/*. We show that ° U = v 
(i.e., °U~ = v, for finite i); this will establish the density of 0//~ in °F. 

Fix y c /9 , ;  on an interval ]to(y), tp+l(y)[ we have r , (y )= j ,  say. Thus, on 
[re(y) +At,  te+j(y)[ we have R , ( y ) =  j and U(~', y ) =  U~(~-). So on the standard 
interval [tp(y), tp+~(y)[ we have 

(o u~)(t) = (o u~ , ) ( t )  = vj(t) 

= v,(t), 

since v is ~¢-adapted. 
This proves the result. [] 

7. S tochas t i c  C o n t r o l  Sys t ems  

We now consider a stochastic control system with information structure and 
controls as described in the previous sections. We model such a system by a state 
z, = (x,, y,)~ Rd+,, = R,,  say, evolving according to past-dependent differential 

equations of the form: 

dxt =f( t ,  x, y, u(t, y ) ) d t +  g(t, x, y, u(t, y)) db, ( t ~  < 1) 

dy, = f(t, x, y, u(t, y)) d r +  g(t, y) d/~ (7.1) 

with xo, Yo fixed. The independent Brownian motions b,/~ have dimensions d, m 
respectively. The component y, of the state is the observation; so controls depend 
on a cumulative digital read-out of the observation. 

ASSUMPTIONS ON COEFFICIENTS 

The coefficients f, f ,  g, g take their values in R a, R ~, R a @ R  a, R ' @ R "  
respectively. We make the following assumptions, which are the usual kind of 
assumptions required to ensure that for each control Equations (7.1) have a 

solution that is weakly unique (i.e., unique in distribution on ~"): 

(a) f, [,  g, ~ are jointly measurable and adapted in (x, y) to ~"~, 
where ~n~ = (,~],~) = (o-{~s : s <~ t, ~ e ~"}); 

(b) for each fixed (t, y), the functions f, [, g are continuous in (x, u); 
(c) g is uniformly Lipschitz in x, g is uniformly Lipschitz in y; 
(d) g, ~ are positive definite, and g is symmetric; 
(e) f, [, g, ~, g if, g- l [ s a t i s fy  linear growth conditions of the form 

I[o(t, x,  y,  a)[[~ ~(1 + [l(x, y)l[), 

where ]]glt = (• g~),/2 for a matrix g. 

(7.2) 
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CONTROLS 

The control u in Equations (7.1) is assumed to belong to the class of admissible 

controls ~ discussed in Section 6. We also allow relaxed controls v ~ ~V; such 
controls operate in the drift terms f, f exactly as for deterministic systems (Section 
2). We define the effect of a relaxed control in the diffusion g by defining 

g(t,  x, y, v) = g2(t, x, y, a) dr (a )  

for v c At(M). Here ( . ) m  denotes the unique nonnegative definite square root 
matrix. Thus we are defining the covariance gZ(t, x, y, vt) in the same way that the 
drift f( t ,  x, y, v,) is defined, recognising that it is the covariance g2 rather than the 
diffusion g itself that determines the dynamics. 

SOLUTIONS TO EQUATIONS (7.1) 

Suppose that a control v c ~V is fixed. It is convenient to write f~(t, x, y) for 
f i t ,  x, y, v(t, y)), and similarly for l a n d  g. 

With the given conditions on the coefficients, there is on any space carrying 
Brownian motions b, /~ a unique solution ~'~--(~:~, ~ )  to the equations without 
drift: 

(a)  d~,  = go(t, ~, "q) db, 

(b) d r  h = g(t, 7/)d/~ 

(~:, c R a, ~:,, = xo) 

(r/, ~ R", rio = y~3 
(7.3)~ 

for 0 <~ t <~ 1. This solution induces measures as follows: 

DEFINITION 7.4. 
(a) a ~ is the measure induced on g"  by s rv ; 

(b) a~ 'n is the measure induced on c£, by the solution to 7.3v(a) 
for each fixed n e g " ;  

(c) A2 is the measure induced on g "  by the solution to 7.3(b). Note that A, is 
tight. 

The measure a~ "~ is measurable as a function of 7/ (with respect to the 
completion of A2) and gives the following disintegration of A°: 

AV(A × B) = fB A~'n(A) dA2('r/) (7.5) 

for Borel A, B. 

The dynamical Equations (7.1) may be solved using the Girsanov measure 
change technique (or using nonstandard methods as developed in [5]). The 
solutions obtained are unique in law. Well-known theory tells us the following: 
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T H E O R E M  7.6. Let IX ~ be the measure induced on ~ by any solution to Equat ions  

(7.1) ]:or control v. Then  txv ~ 3, v, and  the density po = dtx~/dA ~ is given by 

pv(,~)=exp (3' 4,)~(t, ~')d/3(,~)-~ (3' 'd~)2dt 
) 0 

where 

(;°t ~'= (#, n ) e  ~ ' ,  4 = , 3'= g , 

and ¢i is the Brownian motion on ( ~ " ,  ~ )  given by ~ =[. 3, -I d~. 

We also record here for future reference the following standard consequence of 
the linear growth conditions 7.2(e) on the coefficients. For v e U let z ~ = (x ~, y~) 
be any solution to Equations (7.1). 

LEMMA 7.7. E(llz~ll 2) is uniformly bounded ]:or v ~ 72, where IIz~l[ = sup,~tliz~l[. 

The main theorem in this section is the following. 

T H E O R E M  7.8. The measure IX ° is continuous as a [unction of  v (with respect to 

the weak* topology on ~(qg")) .  
Proof. Let V~ *72 and let v = ° V  as in the previous section. We have to show 

that /x v ~ / x v ;  by the Loeb-Anderson-Rashid  characterisation of weak standard 

parts [4, 18], it is sufficient to show that 

i x ~ ' :  i xV( s t - l ( ' ) ) .  (7.9) 

The plan is as follows. Fix an internal solution Z v = ( X  v ,  y V )  to Equations *(7.1). 

i.e., 

dXV = *fv(-r, X v,  YV)  d,r + * gv(,r, X v, y V )  dBT 

d yV = * f v 0  -, X v,  yV) d~-+*~(T, y V ) d B , ,  

where B , / ]  are (internal) *Brownian motions; these and the solution Z v live on an 

internal space 1~0 = (~, s~, (SCT)~I, U). Let 1~ = (1~, ~3, (N),~I,  P) be the standard 
filtered Loeb space constructed from llo (see Section 1). We will see that almost all 
paths of Z v are be-continuous; so we may define a continuous process z v on l l  by 

V z = ° ( z V )  a.s. (P). 

We will show that z v is a solution to Equations (7.1) for control v. If so, then 

ix~(A) = P ( z  v ~ A)  = P ( Z  v ~ s t - l (A ) )  

= vL (Z  v c s t - I (A) )  

= I ~ V L ( s t  I ( A ) ) ,  

which establishes (7.9), and we are done. 

We proceed by a series of Lemmas. 
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LEMMA 7.10.  (llzVll 2) is finite and, hence, Ilzvll is finite, a.s.(P).  
Proof. By Lemma 7.7 transferred,  (llzVll 2) is finite; Loeb theory tells us that 

E (Oll Z Vll2 ) ° (llzvllh [] 

LEMMA 7.11. Z v is P-a.s .  55-continuous (hence, txV(st- l (~"))  = 1). 

Proof. If the coefficients *f, *f, *g, *~ are bounded, this follows from Keisler's 
55-continuity theorem (Proposition 1.4(b)). For coefficients satisfying the linear 
growth conditions 7.2(e), a routine truncation argument (as in [7], Lemma 7.12(b)) 
using Lemma 7.10 then shows that Z v is a.s, 55-continuous. [] 

This lemma allows us to define a standard process z v on 11 by z v = oZv  P-a.s. 
The goal now is to show that z v is a (weak) solution to (7.1)~ on 1~. We will need 
to know the following. 

~'" uniformly LEMMA 7.12. Let K ~ q~" be compact. The measures (A 1 )~V,,~K are 
tight; i.e., for each ~ > 0  there is compact K~ ~_ ~a with )t ~"( K,)  >~ 1 - ~ for all 
(v, "q) c ~ x  K. 

Proof. By Prohorov's Theorem [19], Theorem 6.7, it is sufficient to show that the 
V.v/ set of measures (A~)~,~-,,~K is relatively compact. Using the nonstandard 

criterion for compactness, it is enough to show that ~ ~'Y is nearstandard for every 
Vc*~V,  Y ~ * K .  

Let ~cv, v be a solution to Equation *(7.3)v(a) with Y constant; i,e., 

d~ :v'Y = *gv(r ,  ~v.Y, y )  dB~. 

Arguing exactly as in the proof of Lemma 7.11 we see that ~v,v is a.s. 
55-continuous. Thus, ()t lV'Y)L(st-I(~a)) = 1, which shows (as in [4, 17]) that h, v,Y is 
nearstandard with standard part (A v'Y)L(st-a(. )). [] 

We use this lemma to show that the functions */(etc.)  are liftings of the functions 
[ (etc.) in the sense of the following lemma. 

LEMMA 7.13. For 0 = f, g, f,  g: for almost all (~-, Z) c *[0, 1] x *~"  (with respect 
to (*m x 

*0(~', Z,  a) ~- 0(%', °Z, °a) for all a ~ *M. 

Proof. We give the proof for 0 = f; the others are similar. Fix e > 0. Since A2 is 
tight, we can take compact K _~ ~¢" such that A2(K) >~ 1 - e. Take K, c_ ~a as 
given by Lemma 7.12 and define f: [0, 1] z K ~  C(K,  × M, R a) by 

f(t, "o)(~, a) = f ( t ,  ,~, rt, a). 

Since K, x M is compact, the space on the right is separable, metric, so by 
Anderson's Lusin Theorem 

 i(o ,oY  

for almost all (~-, Y)e *[0, 1] x * K  (with respect to (*m X*A2)L). Thus there is 
internal B ~_ *[0, 1] × *K with (*m × *)t2)(B) ~> 1 - e, such that 



124 N I G E L  J. C U T L A N D  

*f(r, Y)~ f ( ° r , °Y) ,  all (r, Y) c B .  

This means that for all (r, Y, X) c B x *K, and a ~ *M 

*f(r, X, Y, a ) ~ f ( ° r , ° X , ° Y , ° a ) .  

Now using the transfer of the disintegration (7.5) we have that 

l 

(*rex A V)(Bx*K,) = J *x ~,,V(*K,)d(*m×*X2)(~, Y) 

> (1 - e)(*m × *)t2)(B) 

(1 - -  E) 2. 

Taking E arbitrarily small establishes the result. [] 

For application we require *f (etc.) to be a lifting of f (etc.) with respect to 
( m * × / , v ) L ,  rather than the measure (*m x)tV)L as in Lemma 7.13. This is 
established with the aid of the following lemma and its corollary. 

LEMMA 7.14. The density p V is 5e-integrable with respect to )t v 
Proof. By transfer of standard theory outlined earlier, 

tzV(B)=fBpVd)tV for all internal *Borel B_~*c£ ", 

so/~x~(p v) =- 1. 

Also, 

pV(Z) = exp 19.(Z) d/3,(Z) -½ O,(Z) 2 d r  
t 0 

where 

,g) i,[))v 
and/3 is an internal Brownian motion on (* ~",  A v). 

The linear growth conditions (7.2) on the coefficients, together with fact that Z v 
is a.s. finite (Lemma 7.10), ensure that 

° t zv (c . )~  1 as n ~ %  

where (7, = {z:1119(.,  z)ll  2 -< n}. 
Now consider an internal measurable A c__*cg" with AV(A)-~O. We have to 

show that Sa pV day ~ O. Notice that 

(p V)2 =exp(fo1219d/3-½ j~' (2~)2 dr) " exp(ff192 dr) 

= o-. 6, say, 

where cr is defined like pv using 219 in place of t9. N o w / ~ , ,  (or) = 1 (for the same 
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reasons as E x v ( p V )  = 1), and ~5=exp0"O2d~ -) is bounded on (7.. Thus, by 

H61ders inequality 

So 

,, n C, ,  x . ,  A N  C .  

° I 
pVdAV<~ p V d A V = o / ~ v ( ~ , )  (by definition ofpV) 

A n 

= 1 - ° p , v ( C , ) ,  which---~0 as n---~ oo, 

and we are done. [Z] 

C O R O L L A R Y  7.15. (a) t~ v ~ A v and dp.V/dA v = °p; (b) (t~v)L ~ (*A2)L, where 

t ~  is the measure induced on ~ "  by a control v c °V. 
Proof. (a) For internal measurable A ~_ *~"  we have 

~ Z ( A ) = ° ~  V(At= o V d~ v =  °o V dXZ 
A 

since p v is ~-integrable; (a) follows. 
(b) follows from (a) because A2(B) = Av(~e  x B) and ~ ( B ) =  ~ ( ~ d  x B). ~ 

C O R O L L A R Y  7.16. (a) For 0 = each o f f ,  g, f ,  ~,: for almost all (~', Z )  with respect 
to (* m x t~ v)L,  

*O(T, Z ,  a) --~ O(°'r, °Z ,  °a),  all a ~ *M.  

(b) Hence, for a .a .  to, *0(~-, Z v, o~) is a bounded uniform lifting of  O(t, z v, a). 
Proof. (a) Combine Lemmas 7.13 and 7.15(a); (b) follows by Keisler's Fubini 

theorem. [] 

Applying the above results to the information structure we have: 

LEMMA 7.17. For a.a.  Y ~  , ~ m  (with respect to (I~2V)L) 

Y E * Di iff ° Y ~ Di , for all finite i. 

Hence, for a .a .  to, 

Y V  ~ * D i iff y V 6 Di , for all finite i. 

Proof. From Anderson's Lusin theorem this holds for a.a. Y w.r.t (*A2)L ; now 
apply Corollary 7.15(b). [] 

Combining this Lemma with Corollary 7.16(b) and Remark 6.3 we obtain: 

LEMMA 7.18. For a .a .  to, for all t, 

° t  ° l  

O 0 
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i' i' (b) *fv(r ,  Z v) d r  ~ lois, z v) ds; 
} ) 

* t  * t  

(c) gV(r, Z v) dr  ~ g;(s,  z v) ds, 
0 0 

where we mean (g~)2, not (g2)o, etc. 

Applying Corollary 7.16(a), to the diffusion coefficient g, we obtain: 

LEMMA 7.19. The internal function *~,(z, yV)  is a lifting of ~,(t, yV) and is 
adapted to (~I~)~<<1. Hence, for a.a. oJ, for all t, 

*t *t 

d 0 J 0 

where ~= °~. 
Proof. Recall from Section 1 that °/3 is a Brownian motion on IZ. By transfer of 

standard theory *g(z, yV)  is adapted to (Mr); it is a lifting by Corollary 7.16(a). 
The rest follows by Anderson's It6 integration as discussed in Section 1. [] 

We are almost ready to show that z v is a solution to (7.1) for the control v = ° V. 
From Lemmas 7.18 and 7.19 we have: for a.a. o), for all t, 

(a) x V = ° x  v 

°(i J ) = Xo + *fv(z,  Z v) d~'+ *gv(r,  Z v) dB~ 
l} 0 

j ° , 
= x o +  fo(s, zV) ds+ *gv(r,  ZV) dB,  ; (7.20) 

0 ) 

(b) yV = o y v  

°(j' i BO = y o +  *fv('r, ZV) d r +  *g(z, y v )  d 
0 0 

=Yo+ fv(s, z V) ds + g(s, YV) d/)~- 
) O 

From this it is clear that z v solves (7.1) provided we can establish the following: 

LEMMA 7.21. There is a d-dimensional Brownian motion b on ~ ,  independent of 
b, such that a,s. we have 

°i(' f t *gv(r, Z v) dB~ = go(s, z V) d/~ all t, 
) 0 

Proof. Let 

013"t o f t  M, = ~ *gv(r,  Z v) dB,  = G('r, m) dB~ 
0 0 
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say. From Lemma 7.7 and the linear growth condition on g, we see that IIG(. (o)11 is 
finite for almost all co, and /~(I,]IIGTI[2d~ ") is finite. Thus, setting G Cm= 
(G v - N )  ^ N, for suitably small infinite N we have G Cm is ~L  2 (i.e., I[GCN)I] 2 is 
9~-integrable) and, almost surely, G~ N)= GT, all z. Thus 

°i' M, = G~ r~ dBT all t, a.s. 
l) 

By results of [16], since G (m is 5eL 2 then I G(N~dB is also 9% z, so M is an 
L2-martingale. Moreover, 

o I o t 

= *g~/('r, Z v) d~" a.s. 

" t  

= ~ g~(s, z v) ds by Lemma 7.18(c). 
d O 

Following [10], Theorem 5.3, p. 449, let 

/~, = g~l(s, z dM~ = 0~ dM~, say; 
0 0 

this exists because E(Ir~ O, d[M]sOi~) = I. Then 

i' [/~], = 0~ diM],0" = t" I, 
) 

so that /~ is a Brownian motion. Clearly M, =1"~I gv(S, zV)d/~,  as required. It is 
routine to see that (b, b) is a Brownian motion, so that /~ is independent of b. [] 

From (7.20) and Lemma 7.21, we see that z v is a solution to the Equations (7.1) 
for control v. As we have seen, this establishes that /z ~ / ~ v ,  and the proof of 
Theorem 7.8 is complete. [] 

8. Cost and Optimal Partially Observed Stochastic Control 

Let us now suppose that for the stochastic control system discussed in the previous 
section there is a cost J(v)  of implementation of each control v E T', given by 

-1  

O 

where z v = (x v, yV) is a solution to Equations (7.1). We assume that h, h~> 0, and 
that h satisfies the same conditions (7.2) (a), (b), (e) as f; the function h: ~" --~ R is 
measurable, with h(-, 7) continuous for each fixed ~ E ~ m  and [/~(~)1 <~ r ( l  + II lll. 
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The continuity of the cost function J(v) is established below, by the method used 
in the proof of continuity of /x  ~. As a corollary we obtain optimal controls. 

T H E O R E M  8.1. The cost function J(v) is continuous. 
Proof. Let V c * 7/" and let v = o V. We have to show that J(V) -~ J(v). 
Let z ° =  z v = ° z V  be the solution to the dynamics obtained in the proof of 

Theorem 7.8. The proof of Lemma 7.18 with h in place of f shows that 

- 1  - 1  

j *hv(r, ZV) dr= j l%(t, zV)dt a.s., 
0 0 

and similarly *h(ZV) ~ h(z ~) a.s. By Lemma 7.10 and the linear growth con- 
ditions, we have U,(Ii~*h~v(r, ZV)dr)  and E(*h2(Zv)) are finite; so 
S~ *hv(r, Z v) dr and *h(Z v) are ~-integrable (by [16, l], Lemma 12). 

Thus 

J(V) = ff~ *hv(r, Z v) d r + * h ( Z  v) 

o °1 ) 
~ E ( j  *hv(r, ZV) dr+°(*h(ZV)) 

I) 

- 1  hott,  id,+.t  ))(byabove) 
o 

: J (v ) ,  

as required. [] 

Now define 

j£v= inf(J(v)) and J ~ =  inf(J(u)). 
ve'F ueql 

The following corollary is a routine application of Theorem 8.1, together with the 
compactness of 7/, and the density of q / in  7/'. 

C O R O L L A R Y  8.2. (a) There is an optimal control v c 7/" achieving the minimum 
c o s t  J~; 

(b) J ~  = J;~.  

REMARKS (1) Optimal ordinary controls can be obtained, as in the deterministic 
setting, given certain convexity conditions. For example, suppose that for each of 
the functions 0 = f, f ,  g2, h we have the decomposition 

O(t, x, y, a) = Oo(t, x, y)+  01(t, x, y)02(t, a), 

and for each t and the set (f2, f2, (g2)2, h2)(t, M) is convex. Then standard 
measurable selection techniques will convert any relaxed control into an ordinary 
control giving the same trajectories; hence there is an optimal ordinary control. 
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(2) The  methods of this section and Section 7 can be extended in various ways, 

mostly routine. These include the following. 

(a) Let  c be the initial point in Equations (7.1); then writing t~ ~'~ and J(v, c) 
respectively for the measure on ~"  and the cost for control v, starting at c, we 

have that /~'c and J(v, c) are continuous in (v, c). Thus, for a compact  region 
D ~ R", there is an optimal pair (v, c) achieving the minimum cost 

J~(D)  = inf J(v, c). 
c ~ -  D ,  v c  "i/" 

(b) Vary the running time of the problem, in the following way. Let  F be a 
closed region in [0, 1 ] x R " ,  with {1}×R"c_F.  Then define, for any solution 
zO,C = (xV,C, yO,C) to (7.1) starting at c, 

T~'C(w) = inf{t : (t, z~ '¢) c F}. 

Now specify a cost for control v of the form 

J ( v , c ) = E  h~(t, zV '~ )d t+h(rv '~ , z  ~'~) 
) 

where/ '7>/0, /~( . ,  ", 7) is continuous for each fixed r I e ~'~, h(t, 6") depends only on 

(~=)=~t, and/Y(., ~) is nondecreasing for each fixed ~. (The function h is as before.) 
In the framework of Section 7, suppose that Z v'~ is an internal solution for 

Ve*<V and starting point ~/. Then °Z  v'~= z ~'~, say, is a solution for v - - ° V  

starting at c = ° y .  It is routine to see that T~'~(~o)<~°TV'~(w), and so J(v, c) is 

lower semi-continuous. As in the deterministic setting, this is sufficient to establish 

the existence of an optimal pair (v, c) for any compact region D. 
(c) As in the deterministic setting, the time-horizon can be extended to 0c. 

9. Markov Systems and their Control 

In this section we discuss Markov controlled systems, showing that results similar 
to those of Sections 7 and 8 can be obtained in this case with the noise in the 

observation process also controlled. Thus it is not necessary to treat the state and 
observation process separately, and we consider systems of the form 

dx, = f( t, x,, u,(rt(x,))) dt + g( t, x,, u,(r,(x,))) db, ( t <~ 1), (9.1) 

where Xo e R a is fixed and b is a d-dimensional Brownian motion. The control at 

time t is a function of an instantaneous digital read-out r,(x,); we have dropped the 
cumulation property, and the controls are truly Markov. Details of this system are 
given below. 

Information. We assume a fixed instantaneous read-out r: [0, 1] x R d ~ N with r 
jointly measurable. 

Controls. An ordinary Markov control is a measurable function u: [0, 1] × N---> 
M; a relaxed Markov control takes values in d,/(M). 
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Denote by a//M and ~M the Markov controls (ordinary and relaxed respectively). 
Notice that a control u can be thought of as a sequence of deterministic controls 

(u)i~N given by u~(t) = u(t,  i), so °/tM = a//o~ and similarly for °UM. A Markov  step 

control is one with u~ a step control, all i. A uniform step control has uniform step 
sizes for each i; write 0//~ for the Markov step controls. 

Conditions on coefficients. We begin by making the following assumptions on the 
coefficients. 

(a) f, g are jointly measurable; 

(b) f ( t ,  ~, ') and g(t, ~,-) are continuous, all (t, ~); 

(c) g is positive definite, symmetric; 

(d) f, g, g 1 are bounded. 

(9.2) 

Notice that we have dropped the condition that g be Lipschitz in the space 
variable. The above conditions are sufficient to ensure the existence of solutions to 
Equation (9.1) for any given control (see, for example, Theorem 5.5 of [13]). We 
do not know of any uniqueness theorem for an equation like (9.1) (even if the 
Lipschitz condition on g is imposed) so we make the following further special 
assumption: 

ASSUMPTION 9,3. The solutions to Equation (9.1) are unique in distribution. 

At the end of this section we indicate a way to avoid making this assumption. 

Cost. We assume a cost function J taking the form 
- I  

II 

where h, h are nonnegative, bounded, h satisfies the same conditions as f, and/~ is 
continuous. 

Since ~M ~(~? and °g'M ~-rq = = ~ o, the natural topology on Markov controls is the 
product of the )'/'-topology on deterministic controls. Then, from the results of 
Section 2 we have 

T H E O R E M  9.4. (a) "VM is compact ,  and for V E * ogM the standard part v = ° V is 

given by vi = o Vi for i c N. 

(b) °'t/h is dense in qlM. 

In preparation for the main theorem we make the following observation. 

LEMMA 9.5. Suppose that n:[0,  1]---~N is measurable and N: *[0, 1]--~*N is a 

lifting of  n. Suppose further that V c * ~M with v = o V,  and 0 ~ Y( with uniform 

lifting ®. Then 

f( 1 f~ 1 ®(~-, V ( r ,  N~)) d r  ~ O(t, v(t ,  n,)) dr. 
) ) 
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Proof. Let Ai = n-~{i} and Bi = N-I{i}. Since Niifts n, the set B~Ast-l(A~) is null 

for each finite i, and t_J~.~ B~ has measure 1 (both with respect to *mL). So 

Io O('r, V(-r, N,)) d~"--~ )_], O( "r, Vi(r)) d r  
) i o n  i 

~- ~ [ O(t, v~(t))dt (by Lemma 2.6) 
i ~ b q  J A  

F 1 

= | O(t, v(t, n,)) dt. [] 
J~ 

We shall also need the following important theorem of Krylov [15]. 

T H E O R E M  9.6. For each real number k > 0 there is a number l >  0 with the 
following property. Suppose that z, is a d-dimensional process of the form 

" I  " l  

0 (I 

where zo~ R e, the functions 4,, qJ are progressively measurable, and b is a 
d-dimensional Brownian motion living on an adapted space. If  114'11, II~'ll and 

Idet ~-~1 are uniformly bounded by k, and h:[O, 1]xR'l--->R is L d÷~ and non- 
negative, then 

E ( f  o' h( t, z,) dr) ~< lllhlld+ , . 

Now we move to the counterpart  of Theorem 7.8. 

T H E O R E M  9.7. Let tz ° be the measure induced on q~d by solutions to (9.1) for 
control v. Then Ix ° is continuous in v. 

Proof. We will mention in detail only those features in the proof that are different 
from those of Theorem 7.8. 

Let V~  *7/M; let X v be an internal solution to Equation *(9.1): 

d X  v = *f('r, X v , VT(*r,(XV))) d-r + * g(r, X v ,  V,(*r~(XV))) dB , ,  

with X v = xo. From X v construct the standard continuous process x v = ° X  v, 
living on a filtered Loeb space 1~. The  aim is to show that x v is a solution to (9.1) 
for control v = ° V; as before this suffices to prove the theorem. []  

LEMMA 9.8. For a.a. oo, *f(~-, XV~. a) is a uniform lifting of f(t, x v ,  a), and 
similarly for g. 

Proof. By Anderson's Lusin Theorem 

*f(,c, Y, a ) -~ f (% ' , ° Y , ° a ) ,  all a,  

for a.a. (~-, Y ) c * [ 0 ,  1]×ns(*Rd). Thus, we can obtain for each finite n 
an internal set A , ~ * [ 0 ,  1 ]×*R d with * m ( A , ) < . l / n  such that for all 
(r,  Y) c *[0, 1] × ns(*Rd)\A, we have 
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*f('r, Y, a) ~ f(°T, ° Y, °~), all c~. 

Now apply the transfer of Krylov's theorem to the process X v, with k given by 
the condition 9.2(d). Taking h = Xa,, (the characteristic function of A,)  we see that 

(v x * m)({(o~, 7): (T, xV(02)) c A,}) ~< In - 'm+l . 

Hence, for a.a. (02, r) with respect to (v x *m)L 

(T, xV(w))¢  N A , .  

This means that for a.a. (w, T) 

*f(~', xV(0)), a)~f(%-,°XV(w),°c~), all a. 

An application of Keisler's Fubini Theorem now establishes the lemma. []  

In a similar way we obtain: 

LEMMA 9.9. For a.a.  o) 

*r~(X~ v) = ro,~(xV), for a .a .  T. 

Proof. By Anderson's Lusin Theorem 

*r~(Y)-- ro~(°Y), a.a. (~-, Y)~*[0 ,  1]×ns(*Ra).  

Now proceed as in the proof of Lemma 9.8. [] 

Combining these results with Lemma 9.5 we have the counterpart of Lemma 
7.18. 

LEMMA 9.10. For a.a.  02, for all t, 

lj lj (a) * f(~', X v ,  V,(*r,(XV))) d~'-~ f ( s ,  x~,V vs(rs(xV))) ds, 

(b) g-(T, XV~, V , (* r , (XV) ) )  d~ '~  g2(s, x v ,  vs(r~(xV))) ds. 
) ) 

Proof. Writing n,(~o) = rs(x v) and N, (w)= * r , ( X V ) ,  Lemma 9.9 tells us that for 
almost all 02, N,(~o) is a lifting of nt(02). Apply this in Lemma 9.5 with the uniform 
liftings given by Lemma 9.8, and the result follows. [] 

The proof that x v is a solution to Equations (9.1) for control v is now completed 
in the same way as the proof of Theorem 7.8, using the technique of Lemma 7.21. 
This concludes the proof of Theorem 9.7. [] 

The following results for the system (9.1) are established using the ideas in the 
proof of Theorem 9.7 (just as in Section 8 we called on the methods developed in 
the proof of Theorem 7.8). 

T H E O R E M  9.11. The cost function J(v) is continuous. 
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C O R O L L A R Y  9.12. (a) There is an optimal control v e °UM; (b) J ~ ,  = Jo ~ . 

Omitting the uniqueness assumption. If we omit the special assumption '9.3', then 

Equations (9.1) will in general have a set of solutions . ~  for each control v, giving 

rise to a setJt  ~ of probability measures on q~d, and a set ~ of corresponding costs. 

If we write t~ x for the measure corresponding to a particular solution x, and let 
J(x) denote the cost, then ~ v = { / z ~ : x  e ~ }  and ~¢~={J(x) :x  e ~ } .  We also 

write 

:g~~= U ~'~ and ,¢~v~= U J'~. 

It is natural now to define the cost J(v) of a control v as follows. 

D E F I N I T I O N  9.13. (a) J(v) = inf ~¢~ (= inf{J(x) : x e o~}); (b) Jo = inf j~M. 

We shall see that there is an optimal control with optimal trajectory. The 

fundamental result from which everything else follows is stated below. 

T H E O R E M  9.14. Suppose that V6*~/'M with internal solution X to Uquation 
*(9.1). Let v = ° V  and x = ° X .  Then x is a solution for control ~; and Ix x =o x 

and J(x) = °J(X).  

Pro@ This is exactly what was established in the proofs of Theorems 9.7 and 

9.11. [] 

We now give a series of elementary applications of this theorem. 

T H E O R E M  9.15. (a) Let v c TM. The sets ~ and j v  are compact; (b) the sets 

Jl'~u and j r ~  are compact. 

Proof. (a) Let  txx e*~C{v; so X is a solution for control *v. Let x = ° X .  By 
Theorem 9.14, °/x x =  tzxc ://~ (since ° (*v)= v). Thus :gv is compact,  by the 

nonstandard criterion for compactness. The other parts of the theorem are proved 

similarly. 

C O R O L L A R Y  9.16. (a) For any control v there is a solution x ~ "  with J ( x ) =  

J(v);  (b) There is an optimal control v with optimal trajectory x such that 

J ( x )  = J ( v )  = J, , .  

Since each control v now gives a set of measures and costs, the notion of 
continuity in v is replaced by upper semi-continuity. Recall the definition (as used 

by Choquet  and others). 

D E F I N I T I O N  9.17. Let A, B be topological spaces and let F: A----~ ~P(B) be a set 
valued mapping. Then  F is upper-semi-continuous if {x:F(x)~_ G} is open in A 
whenever  G is open in B. 

It is easy to establish the following nonstandard criterion for upper-semi- 
continuity (which we abbreviate u.s.c). 



134 NIGEL J. CUTLAND 

T H E O R E M  9.18. F is u.s.c iff whenever x ~-a then 

F(x) c_ monad(F(a)) ,  for a c A,  x ~ *A. 

(Here monad(S) = N{*G:  So_ G, G open} for any S c  B.) 

Now we have 

[] 

T H E O R E M  9.19. The functions At ~ and .~o are u.s.c, as functions of the control v. 
Proof. Let V ~ v ~ V M ,  and let p~cM v. By Theorem 9.14, ° / x c M o ;  so 

/~ c monad(M~). Hence,  Mv~_ monad(~t~), and ~ is u.s.c. The proof for ~ is 

similar. []  

R E M A R K .  Theorem 9.14 actually tells us that if V ~ v then M v c st-t(M~); in 

the proof above we then used the fact that st-~(M ~) c_ monad(M~). In our situation, 

M ~ is compact,  so st I(M~)= monad(~t~); similar remarks apply to ~¢~. 

Finally we see that 

T H E O R E M  9.20. J(v) is lower semi-continuous. 
Proof. As remarked above, if V-~ v then ~ v  c_ s t -~( j  ~) so s t (J  v) c_ ~ .  Thus 

o j ( V )  = °inf j v  

= inf(st(~v)) 

~< inf f ~  

= J(v). [] 

Existence of an optimal control could be alternatively deduced from this last 

result. 

R E M A R K S  (1) The  remarks at the end of Section 8 apply also to the Markov 

situation discussed here. 
(2) Boundedness on coefficients could be relaxed in favour of linear growth 

conditions, using simple truncation arguments. 
(3) It is actually only necessary in (9.1) to assume that the diffusion part is 

Markovian; this is handled in Theorem 9.7 by first considering a solution to 

dZ~ = *g(~', Z~, V~(*r~(X,))) dB~ 

and applying the Krylov Theorem. The  equation with drift is then handled using 

the Girsanov formula as in Section 7 (Lemmas 7.14-7.16). 
(4) In [9], Section 6, the author announced results similar to the above for 

Markov-type systems in which the read-out was cumulative, based on in- 
stantaneous obseryations made at a fixed finite number of times. Unfortunately, an 
error in the proof has been discovered. The proof required the existence of 
densities at every fixed t, and this does not seem to follow from the results of 
Stroock and Varadhan [20] as had been supposed. However,  in a private 
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communication, T. L. Lindstr0m has shown how to use Krylov's inequality to 
obtain pointwise densities, and thus it seems that the result of [9], Section 6, is 
valid. Lindstr0m discusses Markov-type systems in the forthcoming book [1]. 
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