Acta Applicandae Mathematicae 5 (1986), 105-135. 105
© 1986 by D. Reidel Publishing Company.

Infinitesimal Methods in Control Theory:
Deterministic and Stochastic

NIGEL J. CUTLAND
Department of Pure Mathematics, University of Hull, Hull, England

(Received: 2 October 1984)

Abstract. In Part I, methods of nonstandard analysis are applied to deterministic control theory,
extending earlier work of the author. Results established include compactness of relaxed controls,
continuity of solution and cost as functions of the controls, and existence of optimal controls. In Part II,
the methods are extended to obtain similar results for partially observed stochastic control. Systems
considered take the form:

dx, = f(t. x, y, u(t. y)) de+ g(1, x, y, u(t, y)) db,,

dy,= f(t, x, y, u(t, y)) dt+ (1, y) db,.
where the feedback control u depends on information from a digital read-out of the observation process

y. The noise in the state equation is controlled along with the drift. Similar methods are applied to a
Markov system in the final section.
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1. Introduction and Preliminaries

1.1. INTRODUCTION

In the papers [6, 7] the author introduced nonstandard methods (particularly Loeb
space techniques [17]) into control theory, both deterministic and stochastic. In
the stochastic case this built on work of Keisler [13] and others who developed
efficient nonstandard techniques for solving stochastic differential equations. The
purpose of this paper is two-fold. First, to present a streamlined and complete
account of the methods developed in the papers mentioned above, using a slightly
different approach that simplifies things somewhat. Second, using this streamlined
approach we cover aspects of control theory not discussed in the earlier papers. In
the case of partially observed stochastic control systems we establish new standard
results, as outlined below.

The section headings give a guide to the plan of the paper. In the deterministic
theory (Part I) we go further than in [6]; we define a natural topology for controls
and show that under general conditions these are compact if we allow relaxed (or
generalised) controls. We establish continuity of solutions as a function of the
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control, and prove various optimality results. In Part I we are not claiming that our
results are new; the aim is to give further illustration of the naturalness of
nonstandard methods in control theory.

In Part I we build on the methods of Part I and establish new results for partially
observed stochastic systems. Elliott and Kohlmann [11] first investigated con-
trolled systems in which observations in a countable observation space were made
at a fixed finite sequence of times. The paper [7] used nonstandard methods to
extend their results to systems which were past-dependent. The new features in the
present paper are (i) a more general information pattern, and (ii) the noise in the
state equation is allowed to be controlled. The systems we consider take the form

dx, = f(t, x, y, u(t, y)) dt+ g(t, x, y, u(t, y)) db,,
dy, = f(t, x, y, u(t, y)) dt+ (1, y) db,,

where the control u is allowed to depend at time t on the observation y through a
cumulative digital read-out r,(y). Updating of the information r,(y) can take place
at any time.

For such systems we establish compactness of relaxed controls, continuity of
both the measure induced by control u and the cost J(u) (as functions of u), and in
consequence the existence of optimal controls. The final section of the paper
establishes similar results for a Markov controiled system in which all the noise can
be controlled.

The main features of the present approach that are different from earlier papers
are as follows. First, we do not concern ourselves about the construction of
solutions to dynamical equations, but simply content ourselves to quote existence
results (which could, of course, be established by nonstandard means, as in [5], for
example, for the stochastic systems we consider). This means that instead of
dealing with internal (‘nonstandard’) dynamical systems for discrete time te T =
{0, At, 2At, .. .} and then converting to standard dynamical systems for continuous
time, we work with internal solutions to internal equations for (nonstandard)
continuous time. These are given without any work by the transfer principle of
nonstandard analysis applied to standard existence theorems. Thus, for optimality
results, the main idea is the following. Given a nonstandard control V for a
dynamical system, take an internal solution XV to the internal equations; convert
this to a standard object xY, and show that x" is a solution for an appropriate
standard control v. To establish optimality, we may simply take V with cost
J(V)=Jy, the minimum cost; then J(v) = J(V) = Jy, so J(v) = J,.

The second feature that is different here follows from the first: our measure
spaces are necessarily hyperinfinite (i.e., not hyperfinite), whereas in earlier work
where discrete time was used, it was possible to use entirely hyperfinite spaces —
i.e., nonstandard measure spaces that are finite from the nonstandard point of
view. Hyperfinite spaces are very safe to deal with internally, so there is perhaps a
slight loss here, which is the price of making the rest of the development much
smoother. One significant advantage of the present approach is that we do not
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have to construct any liftings of functions; these are provided by *f (etc.), and
frequent use of Anderson’s Lusin Theorem.

1.2. PRELIMINARIES

Qur notation throughout is mainly conventional. By R we mean the real half-line
[0, o[ ; the symbol m is used to denote Lebesgue measure on R" for any n, as
dictated by the context. We use C(X) to denote the space of continuous real
functions on a space X; the Borel probability measures on a metric space M are
denoted by M#(M).

We assume familiarity with the basics of nonstandard analysis and the theory of
Loeb measure as expounded for example in [8], or [1]. Selected parts of the theory
that are important for this paper are recalled below.

We work in a fixed w,-saturated and enlarged nonstandard universe * V(R). On
occasions we omit the * on a function or operator: thus, for example 1Y (Lemma
7.13) must mean *AY because V is internal (nonstandard).

We use 7 as a variable ranging over *R; when we have a discrete time line
T ={0, At, 2At, .. .} we use sanserif symbols s, t, u to range over T.

The term bounded is used to mean finitely (or ¥-) bounded.

We frequently use the nonstandard criteria for continuity and compactness,
recalled in the following Proposition, along with similar criteria for density and
lower semi-continuity.

PROPOSITION 1.1. Let X be a Hausdorff topological space; let f: X —R, and
suppose that x€ X and ye *X.
(a) fis continuous at x iff f(y) = f(x) whenever y = x;
(b) f is lower semi-continuous at x iff °f(y) = f(x) whenever y = x;
(Here ° denotes standard part).
(c) X is compact iff every y € * X is nearstandard (i.e., there is x € X with y =~ x);
(d) a set Y< X is dense in X iff for every x € X there is ye ™Y with y = x.

Recall the criterion for being nearstandard in C[0, 1] (with respect to the
uniform topology): F e *C[0, 1] is nearstandard iff F is ¥-continuous; i.e.,
F(1,) = F(7») whenever 7, = 7.

For a product X =[]ic; X; recall that ye*X is nearstandard if y; is near-
standard for each standard i€ I.

As in [8], we use v to denote the Loeb measure obtained from an internal
measure v. Expectation with respect to v is denoted E to distinguish it from the
expectation E with respect to v;.. When considering Loeb measures on *R (or *R*
etc.) we use the phrases ‘for a.a. finite 7° or ‘for a.a. 7 € ns(*R)’ to mean ‘for almost
all T with respect to the o-finite measure on ns(*R) obtained from *m, on *[~n, nj
for each neN’. Here ns(*R) denotes the nearstandard (or finite) members of *R.

We make frequent use of Anderson’s Lusin Theorem:
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PROPOSITION 1.2 ([3];[8], Theorem 4.6). Let (X, B, n) be a Radon probability
space, and suppose that f: X —R is measurable. Then *f(x) = f(°x) for *p, - a.a.
xe*X.

Recall the following characterisation of weak standard parts of measures:

PROPOSITION 1.3 [4, 18]. Let X be Hausdorff; an internal Baire probability
measure v on * X is nearstandard {in the weak topology) iff v, (ns(* X)) = 1; in which
case °v(A) = v (st '(A)) for Baire sets A in X.

For Part II we need the following proposition, which is a variant of results of
Anderson and Keisler. Suppose that = (£}, &, (4,) .=<1, ¥} is an internal filtered
space carrying an internal Brownian motion B, adapted to (f.). Let
Q= (£, 4,(%4) ., P) be the adapted Loeb space obtained from £}, as described
in[8].p. 572; 50 P=v,.

PROPOSITION 1.4. (a) B{w) is a.s. ¥-continuous, and the process b=°"B is a
Brownian motion on ).

(b) (Keisler's ¥-continuity) If F:*[0, 11X Q—*R is bounded, internal, joindy
measurable and adapted to oA, then G, = |§ F, dB, is a.a. $-continuous.

(¢) If Fin (b) is a lifting of a bounded adapted function f:[0, 1] X Q—R then

.S ofS

J fs db; = J F.dB, alls,a.a w.
O 0

Proof. (a) B is $-continuous on the set U ,cry N ey Qo » Where
weQ, o(r—7|<1/m—|B,~ B, <1/n).

By transfer of standard facts about Brownian motion, °v(£}, ,,}— 1 as m—x, so
PN, U, Q. m)=1. Clearly b=°B has the right distributions to make it a
Brownian motion, and is adapted.

(b) The easiest proof of Keisler's ¥-continuity theorem for the present setting is
to adapt the proof in the notes [14]. As this proof has not been made public we take
the liberty of quoting it here (suitably modified for our situation).

Let

Apm =i |1 7|<1/m—>|G,— G| <1/n};

as in (a), it is sufficient to show that for fixed n, °v(A, ) — 1 as m— oo, For this we
show that v(A, ») = 1 for infinite M.

Let At=M""and let T ={0, At,2At, ..., 1—2At}.
The complement /—\,,,M is given by
Amm={o: 37, 7(r—7|< /M and |G,- G,|=1/n)},

and we have



INFINITESIMAL METHODS IN CONTROL THEORY 109

/—\,,,Mg{w:Elte T( sup !G,—Gt|21/2n>}. (1.5)
t<7=<t+2At

Now using Doob’s inequality for the internal martingale G we have for

each t )

u( sup |G, — G{= 1/2n) < @n)*E(G(t+ 240 - GW)?). (1.6)
t<sTst+2At

Suppose that |F| < «, finite. An easy calculation using the transfer of 1t0’s lemma
for (G(t+ 8) — G(t))* shows that

E((G(t+ 8)— G(t)*) <3k*8°
for all 8. Combining this with (1.5) and (1.6) we have

v(Aum) < Y, 20)3k*(2A0% =0,
teT
as required.
(c) is proved exactly as in [2], by establishing it first for a sequence of step
functions approximating f. O

PART I. DETERMINISTIC CONTROL THEORY

The theory worked out in Sections 2—4 can be found in the standard literature (see
[12] for example). The emphasis here is to show how natural the nonstandard
approach is for certain aspects of control theory: for example our proof of
compactness of generalised controls (Theorem 2.7) should be compared with the
lengthy presentation using a standard approach ([12], Theorem 8.1). The results
and methods here are developed from the results in [6], where the key ideas were
first presented.

2. Deterministic Controls

In this section we define classes %, and 7, of controls appropriate for controlling
deterministic dynamical systems; we establish the compactness of ¥} in a suitable
topology and the density of the subclass of U, consisting of step controls.

Assume that a compact metric space M — the control space — is given and fixed;
this is the space in which controls take their values.

DEFINITION 2.1. The class 4, of (ordinary, deterministic) controls is the set of
measurable functions u: R* — M. (Controls differing on a null set are reckoned to

be the same).

A weak™ topology is defined on A, by means of the set %, defined as follows.
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DEFINITION 2.2. (a) % is the set of bounded measurable functions g: R* X M >R
having compact support and with g(¢,-) continuous for all ¢.
(b) For ue A, and g € # the action of u on g is defined by

= o0

u(g) = J g(t, u) dt.

0

(c) The J-topology on U, has as subbase of open neighbourhoods the sets
{u: I”(g)l < 5}ge7{.s>()-

We shall see that the completion of 4, is the set ¥, of relaxed (or generalised)
controls, defined as follows.

DEFINITION 2.3. The class ¥, of relaxed (deterministic) conirols is the set of
measurable functions v: R*— (M), the set of probability measures on M, with
the weak™® topology. (By identifying each a€ M with the Dirac measure §,
concentrated at a we have M < M(M) and U, < V}.)

The topology on 4, is extended to ¥}, by extending each g in % to R* X M(M)
with the definition

g(t, V)=JM g(t, a) dv(a),

for ve M(M).

In Theorem 2.7, below, we prove that ¥, is compact, using the nonstandard
criterion for compactness. This means that for each V € * ¥}, we have to construct
ve Yy such that v =°V (i.e., V= v), in the #-topology; i.e.,

V(*g)~u(g) (all ge %),

2.4. CONSTRUCTION OF THE STANDARD PART

Let V € *%,; define an internal *Borel measure Q on *R* X*M by
Q(Cx D)= j V.(D)dr
C

for Cc*R*, D <*M. A standard Borel measure g(=°Q in fact) is defined on
R* X M by

g(X) = OL(st™'(X)).
Notice that for a Borel set A=R", g(A X M) = m(A) (Lebesgue measure), so ¢
can be disintegrated to give v € 7" with the property

q(AX B) = J v(B) di
A

for Borel A<R* and B < M. We will see (Theorem 2.7) that v = V.
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To show that V = v, we use Lemma 2.6 below, which will play a key role in later
applications. First we make a definition.

DEFINITION 2.5. Let g ¥; a bounded uniform lifting of g is an internal
*measurable function G: *R" X *M— *R such that

(1) G(7, a)=0if 7is infinite,
(1i) G 1s bounded;
(iii) for a.a. finite 7€ *R*, G(1, @)= g(°7,°a) all @ € *M.

The following lemma appeared as the main theorem of [6), in a slightly different
setting. The simplified proof below was given by Ed Perkins.

LEMMA 2.6. Suppose that v is constructed from V as in (2.4) above, and that g € %
with bounded uniform lifting G. Then V(G) = v(g); i.e.,

[ G(r, V) dr~ j g(t, v) dt.

Proof. There is finite (standard) time s such that g and G are zero outside [0, s].
Then

vie)=[ G v.ydr= J: (J

J0

G(t, a)d VT(a)) dr

M

— G(r. @) dO(r, &)

S0, s]x*M

~| °G(r, @) dQy(r, a) (Loeb)

Y*0,s]x*M

= gC7,°a)dQu(r, @)

IHO, s]x*M

(since g(°t,°a) =°G(r, a) for Q -a.a. (1, @))

J g(t, a)dq(t, @) (by definition of q)
{0,s]xM

= j (4( g(t, a) dv.(a)) (by disintegration theory)
V] M

=J g(t, v)dt = v(g). O
4}
REMARK. This lemma shows that V(G)= V(G') for any two bounded uniform
liftings G, G’ of ge #.

Now we have

THEOREM 2.7. The space of relaxed controls V is compact; in fact if V€*,
then °V .= v, the control constructed as in (2.4).
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Proof. Let Ve*¥,, and let ve ¥, as given by (2.4). We have to show that
V(*g) = v(g) for every g€ #. Define ¢: R*— C(M) by g(1) = g(t, ). Then from
Anderson’s Lusin theorem, *g(7) =.¢(°7) from almost all 7, where = refers to the
supremum norm topology on C(M). Thus for a.a. finite 7,

*g(7, @)= g(°1,%a) for all a e *M.

So *g is a bounded uniform lifting of g, and V(*g) = v(g) follows from Lemma
2.6. O

We now show that % is dense in ¥; in fact we have density of the step controls
defined by:

DEFINITION 2.8. A control ue @, is a step control if there are times
O=t<t<t,<---, with t,—>o, such that u, is constant on each interval
[ta. tasil. A step control is uniform if the step sizes t,.+, — 1, are the same, all n.
Let 9§ denote the uniform step controls.

The next theorem was given in [6] in a slightly less general form; the proof here
is somewhat different.

THEOREM 2.9. The set U} is dense in V.

Proof. Let ve¥,. Take any positive infinitesimal At, and let
T =1{0, At, 2At, .. }. It is sufficient to construct a control U e *%, such that
°U =1up and U is constant on [t,t+ At| for eachte T.

Choose infinite K € *N such that KAt~ () (take any infinite K < (At)""/*). Fix an
internal sequence of points (@;);<x in *M such that M ={°g;:i=< K}. It is then
possible to choose an internal sequence (D;);<k of disjoint *Borel subsets of *M
such that U <;<x D; =*M and a; € D; < monad(a;) for all i.

Let % be the internal algebra on *M generated by (D));<x. For each
v € * M(M) define ¥ on & by

#(D,) =[K*»(D)YK? (1=<i<K)
WDg)=1- ) #D).
1=si<K

Clearly, the mapping v—> ¥ is internal; notice that (D)= v(D) for D e &%, and
Yi<x #(D;)=1 (so ¥ is an internal probability measure on (*M, 9)); moreover
K29(D;) € *N.

Now we can construct U. Let As = K?At and let S ={0, As, 2As, . . .}. Define an
internal control V e *7, by

~ StAS
V.= (As)ﬂJ *p,dr (s€S)
V.=V, (s=7<s+As).

Notice that for each s, we have s<s+At<<s+2At<--:<s+ K?At=s+As.
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Now define from V a control U € *%, with the following properties:

(i) U is constant on [t,t+Af] (all te T);

(i) for each s€ S, U, is defined for s<t<s+As so that U, = a; for exactly
K2 V(D)) values of t. This is possible because ¥ ;<x K?>Vi(D;) = K2, and there are
exactly K* values tin [s,s + As[.

The aim now is to show that °U = v; for this it is sufficient to show that gV = ¢"*
(where gV is constructed from U as in (2.4); recall that for Borel X cR* X M,
qY(X)= QY (st '(X))). Note that st™'(X)e o(sA X D), where o is the internal
algebra on *R™ generated by sets of the form {s. s+ As[. Thus it is sufficient to
show that

QU(C X D)= Q"(Cx D)

for Ce o, De %, with C bounded (finitely).
From the definitions we have

QU([s,s+As[xD)= )  U(D)At

s=t<s+As

= K?V4D)At = Vi(D,)As.
Thus

QU(Cx D)= J V.(D)dr
C

zj' V.,(D)dT-——J- %5 (D)dr = O™(C x D),
. ,

C

and the theorem is proved. 0

3. Deterministic Control Systems

A deterministic control system in which a state vector x, € R? is controlled by a
control u € %, may be described by a differential equation such as:

dx, = f(t, x,, w)dt (O=st=<1t)
3.1

Xo = C,

where t; <% and ¢ eR%. We also allow relaxed controls which operate in f as
described in the previous section. We make the following assumptions on the
function f: R* xR?x M—>R%:

ASSUMPTIONS 3.2. (a) f is measurable, and f(¢, -, -) is continuous for each ¢;
(b) |If(1, &, a)l| < «(1 +||&]]) for some constant «;
(c) Equation (3.1) has a unique solution on [0, #,] for each control (ordinary or
relaxed) and all initial conditions ¢ in some prescribed region D < R¢. For v € %%,
¢ € D denote the solution by x*°.
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In the next section we will discuss objectives of control, and questions of cost
and optimality. Here we establish continuity of the trajectory as a function of v, c.

THEOREM 3.3. The solutions x*¢ are continuous in (v, c) with respect to the
uniform norm topology on C%[0, t,].

Proof. Let (V, y)= (v, ¢), with Ve*¥, and ye*D, and let X = X VY be the
internal solution to the equation

dX.,.=*f(T, X’r’ v‘r)d’r (OS‘TS’I);
X() =Y.
We have to show that X = x*¢; i.e., X is ¥-continuous and °X = x"*.
The growth condition 3.2(b) on f transfers to *f, ensuring that X, and hence

*f(r, X,, V,) are bounded on [0, ;). So X is -continuous on [0, 1,];let x =°X. By
Anderson’s Lusin theorem, for almost all =< *[0, t;] we have

*f(r, & )= f(°1,°¢,°)  all « and finite £,
and thus
*f(r, X, a) = fC1, xo,, %) all a.

So *f(r, X, a) is a bounded uniform lifting of f(, x,, a); hence,

xs=°Xs=°7+J *f(r, X,, V,)dr

0

=c +J f(t, x,, v)dt {Lemma 2.6)
(]

for s<t. Thus, x*°=x=~ X" as required. O

4. Cost and Optimal Control

Let I be a closed region in R* X R“. Suppose that the objective of control for the
system (3.1) is to steer the state x, so that (¢, x,) € I'. For a control v e ¥, let
T =inf{t < t;:(t, x{) e ['}. To ensure that T is always defined, assume that
{n}xR4cT. A fixed time-horizon system is modelled by taking I' = {t;} XR9, so
that T = t; always.

Now suppose that associated with each control v and c € R? there is a cost
J(v, ¢) taking the form

L Tv.C

J(v, ¢) = jo h(t, x¥¢, v) dt + R(T*¢, x°)

where h, h=0. We assume that h sgtisﬁes conditions 3.2(a), (b), and h is
continuous, with the property that h(t, &) depends only on {§&:s=<1i} for
£e CY0, 1], and h(-, £ is nondecreasing for each fixed &.
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Now we can prove:

THEOREM 4.1. (a) The functions T and J(v, c) are lower semicontinuous.

(b) If T is continuous, then J(v, c) is continuous; in particular, J(v, c) is
continuous for a fixed time-horizon control system.

Proof. (a) Let v e ¥, ¢ € R* and suppose that (V, y) = (v, ¢). We have to show
that T*¢< TYY and J(v, c)< J(V, ).

We know that x®¢=°(X""") (Theorem 3.3), so putting s =°T""” we have
(s, x2)=(TY"", XY,)€*T; thus (s, x{)el since I' is closed, so T* <s=
OTV'V.

For lower semicontinuity of J: first notice that *h(r, X", a) is a bounded
uniform lifting of h(t, x{*°, a), by the reasoning applied to f in the proof of
Theorem 3.3. Thus

~TV.y

J(V,y)= *hir, XY, V,)dr+*R(TV", XV)

Y0
s ~
=1 h(t, x?<, v,)dt+ h(s, x>°)
Y0

- TU.(‘

WV

h(t, x2¢, v) dt+ h(T><, x¥)

“0

J(v, c)

as required.
(b) If T** is continuous, then s = T in the above, and so J(V, vy) = J(v, ¢).
{(Note that here it is not necessary to assume that his nondecreasing in t.) |

We now have some optimality results: first define, for any region D < R?,

J3oD)= inf Jo(u.c);  Joo(D)= inf Jo(v, c).
ceD ceD
ue U, ve¥Vy,

It is easy to establish by standard means:

COROLLARY 4.2. (a) For any compact region D cR? there is a pair
(v, c) € Vo X D that is optimal; i.e., J(v, ¢) = J§«D).

(by If T*° is continuous (in particular, for fixed time-horizon systems)
J&o(D) = J (D) for any region D —R®.

Proof. (a) Take (v,, ¢,) such that |J(v,, ¢,) — JJ°(D)| < 1/n; by Theorem 2.7 and
compactness of D, we may assume that (v,, ¢,)— (v, ¢) € ¥, X D. By Theorem
4.1(a),

J(v, ¢) < lim J(v,, ¢,) = J§(D),

n—»oc

so J(v, ¢) = J§o(D).
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(b) is routine using the density of 4, in ¥, (Theorem 2.9) and the continuity of
J(v, ¢) (Theorem 4.1(b)). O

REMARKS (1) Optimal ordinary controls can be obtained for systems in
which the following convexity property holds: for each (¢, &) the set
{(f(1, &, a), h(t, & a)): a € M} is convex. This is achieved by standard measurable
selection results, whereby for any relaxed control v, an ordinary control u is
constructed to give the same trajectory and running cost.

(2) It 1s routine to extend the results of Sections 3 and 4 to the case t; = o, In this
case, we need to assume that Equation (3.1) has a unique solution on R for each
control; in Theorem 3.3 the continuity is with respect to the compact-open
topology on C4(R*); and in Section 4 the results all hold if we allow T and
J(v, ¢) to take the value .

PART II: PARTIALLY OBSERVED STOCHASTIC CONTROL
THEORY BASED ON A CUMULATIVE DIGITAL READ-OUT

If there are random elements in the evolution of the state x, of a controlled system,
this is conveniently modelled by assuming that x, is the solution of a stochastic
differential equation of the form

dx, = f(¢, x, u,yde+ g(t, x, u) db,,

where b, is a Brownian motion. Controls can be more efficient if information about
the present or past of the trajectory can be fed back to the controller. In general,
this will be incomplete or partial information — depending only on some observed
component y, € R™ of the state. In Section 5 we consider the situation where the
information available to the controller is a digital read-out. In this case we can
obtain compactness and optimality results (Sections 6-8) similar to those in the
deterministic setting. The methods here build on those used in Part II.

5. Cumulative Digital Information for Stochastic Systems

Suppose that y, e R™ is a component of the state of some stochastically evolving
system. We begin by setting up our model of an information pattern where the
controller has available at time ¢ a cumulative digital read-out r(t, y). For
convenience we assume a fixed time horizon t;, =1, s0 y = (y,)i=1.

DEFINITION 5.1. A cumulative digital read-out is a function r: [0, 1] X €™ —N
(where €™ = C™[0, 1]) such that

(a) r, is measurable, each ¢;
(b) if ylt=y'{tthen r(y)=r(y);
(c) if r(y)=nr(y) then r,(y)=r(y") all s< 1.
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Conditions (a) and (b) are equivalent to the requirement that r is
(#™)-adapted, where F™ =a{y,:ye €™ s<t};

ie., r, is #™-measurable for each r. Condition (c) is the accumulation property.
We shall see later that we may assume without any loss of generality that r,(y) is
increasing with .
Associated with r there is a natural information filiration $7 = (${"),~, defined
by ${” = of{r,}. Notice that .# has the properties

(@ SO I FM; (s<1)

(b) #{ is generated by a countable number of atoms (5.2)
(namely the sets D, = r7'{i})).

We will consider controls u: [0, 11X €™ — M that are $”-adapted - which is
equivalent to the requirement that if r,(y)=r,(y") then u(t, y) = u(t, v'). Before
discussing controls, we show that any filtration satisfying (5.2) arises from a
cumulative digital read-out.

THEOREM 5.3. Let $ =(4,) < be a filtration on €™ satisfying conditions (5.2).
There is a cumulative digital read-out r such that $ = 9", with the additional
property that r,(y) increases with t.

Proof. Suppose that $, = o{D;:ieNj}, where D, #@, D, D; =@ if i # j, and
Ujerg Di = €™. For each t define a relation ~, on N by

i ~.j iff D;, D; are indistinguishable by sets in %,
(ff Dic A< D;c Aforall Ae 4,).
Notice that i ~,j implies i ~j for s=<1t.

For each i, let Ai=U,;_; D;; we claim that A} is an atom of %,. To see that
Alc ¥, for each k+,i choose A,e.9 with D,c A, and D, N A, =0. Then
Ai= Mg, Ax € .. It is clear that A! is an atom of .%,. Notice that
i~ jo Al=Aland Alc A if s<u.

Now we can define the read-out r by

r.(y) =least j such that y€ A}
(=least j such that i ~,j, if ye D;).
To see that o{r,} = %, note that A}=r;'({j}), where j is least with j~,i. For the
accumulation property, note that if s<¢ and ye D;, with r.(y) = and r,(y) = &,
then
rit (i) = Ale Af=ri({KD).
It is clear from the construction of r that r,(y) is increasing with . U

The fact that r is increasing with ¢ means that for each y € €™ there are only
finitely many updates, as follows.
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COROLLARY 5.4, Foreachythereisk = k(y) e N and there are times 0 = t,(y) <
L(yy<---<(y)=1 such that r(t, y) is constant on each interval 1t(y), t\(y)[.

Proof. Fix y. Use the fact that r,(y) is increasing, and ri(y) € N, so r(y) has finite
range. =

REMARK. We cannot infer from this Corollary that .%, increases at only a finite
or countable number of times, as shown by the following example. Pick a countable
collection of pairwise disjoint sets (B;);cy from F{ . with U, Bi= €™. Let
(g:)ien be an enumeration of the rationals in [0, 1], and define

5, ={0, €™} for t <%,
=0o{B:q =<t} for =1,

Clearly 4, ¢ $, whenever l<s<t

We have not assumed that a read-out r(y) is jointly measurable, nor that the
information filtration (#,),<, is right-continuous. For applications it is necessary to
show how to obtain a jointly measurable read-out as follows.

THEOREM 5.5. Let $, r be as in Theorem 5.3. Let

lim r,(y) if t>0
st

rdy) =r(y)= _
roly) if t=0.

Then t' is jointly measurable, $-adapted, and r'(y) is left continuous in t for each y.
Moreover, for all but countably many values of t, r'{y)=ry) for all y.

Proof. r' is definable from the countable collection of functions (7,(y))qec, 50 ' is
easily seen to be measurable. Left continuity is obvious. For the last part note that
if y, y'€ D; then the jump times ,(y) and #,(y") of Corollary 5.4 are the same, and
that for £,(y) <t < t,.(y) we have ri(y) = r(y). O

6. Controls for Stochastic Systems

Suppose now that an information filtration J = (%) <, is fixed, with readouts r and
¢’ as given by Theorems 5.3 and 5.5. With a fixed control space M as in Section 2
we now define the classes of controls for stochastic systems with information
pattern given by .%.

DEFINITION 6.1. (a) The class % of (admissible ordinary) controls is the class of
jointly measurable functions u: [0, 1]X €™ — M such that u is $-adapted.

(b) The class of (admissible) relaxed controls V' is given by extending M to (M)
as in Section 2.
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Each control ve ¥ gives a sequence (1;);cy of controls in 7, by setting*
vi(t)=o(t,y) foryeD;.

(Recall that (D;) ;. are the atoms of #,). A natural topology on ¥"is induced by
that on ¥, — namely, the restriction of the product topology on 7. So a subbase
of open sets is provided by the sets

{U:Il)i(g)l < e}iEN,ge?(.€>()

(where v;(g) =Jo g(t, v:(1) dt of course).
The compactness of %, established in Section 2 is used to show that 7" is
compact as follows.

THEOREM 6.2. ¥ is compact.
Proof. Let Ve*¥. For each ieN we have V;= V(-,y) for ye*D;. Then
Vi e * Vs let 0 =°V, (using Theorem 2.7). Now define v: [0, 11X €™ — #(M) by

o(t, y) = 0"(1).

Since 7' is jointly measurable and $-adapted, so is v, i.e., v e 7. We now see that
v=°"V; ie, v;=°V; for each ieN. Fix ye D;; then on each interval
16(¥), 1 (¥) we have ri{y) = r.(y) = j, say. Thus, on this interval,

vi(ty=o(t, y) = v¥(r) (by definition)

= V(1)
=V as.,
because V is *$-adapted and so V= V; on J5,(y), ti(y). 0

REMARK 6.3. It follows from the proof above and Lemma 2.6 that for ge &
with bounded uniform lifting G,

1 =1
| G vim Ynar= | gl ve ) a
1] 0
whenever Ye*D, and ye D; (for finite i).

Step controls in % are defined as for U, and are now shown to be dense in 7.

DEFINITION 6.4. A control u € %U is a step control if there are times 0= 1, < t; <
<o <ty <ty = 1 with u(t, y) constant on [, ., for each fixed y. Denote by %°
the uniform step controls — i.e., those for which £, — # is constant.

THEOREM 6.5. U® is dense in V.
Proof. Let v e ¥, fix a positive infinitesimal At. From the proof of Theorem 2.9,

*Because of the restriction of the time interval [0, 1] here, whenever we mention ¥, from now on we
mean the controls in ¥, restricted to [0, 1].
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there are step controls U®e*q§ with U'” constant on [t,t+At{ for each
t= kAt <1, such that °U"”’ = v, for finite i. Now define U € *@* by

U(r, Y)= UR ()

where R(Y)="r(Y) on [t,t+At[. Then clearly U € *%*. We show that U = v
(i.e., °U; = v; for finite i); this will establish the density of %® in 7.

Fix ye D;; on an interval ]t,(y), t,.1(y)l we have r(y)=j, say. Thus, on
[6(y) + At, t,51(y)[ we have R,(y)=j and U(r, y)= U"(7). So on the standard
interval [£,(y), t,+1(y)[ we have

CUND=CUD)1) = vi(1)
= v;(1),

since v is f-adapted.
This proves the result. O

7. Stochastic Control Systems

We now consider a stochastic control system with information structure and
controls as described in the previous sections. We model such a system by a state
z,=(x, y) eR¥*™ =R", say, evolving according to past-dependent differential
equations of the form:

dx, = f(t, x, y, u(t, y)) de + gl1, x, y, u(z, y))db, (1=<1)
dy, = f(t. x, y, u(t, y) dt + g(¢, y) db,

with xq, yo fixed. The independent Brownian motions b, b have dimensions d, m
respectively. The component y, of the state is the observation; so controls depend
on a cumulative digital read-out of the observation.

(7.1)

ASSUMPTIONS ON COEFFICIENTS

The coefficients f, f, g, g take their values in R, R™, R‘Q@R?, R"®R™
respectively. We make the following assumptions, which are the usual kind of
assumptions required to ensure that for each control Equations (7.1) have a
solution that is weakly unique (i.e., unique in distribution on €"):

(@) f.F, g. g are jointly measurable and adapted in (x,y) to F™,

where % = (FM)=(gl&:s<t, £€ €));
(b) for each fixed (¢, y), the functions f, f—, g are continuous in (x, u);
(¢c) g is uniformly Lipschitz in x, g is uniformly Lipschitz in y;
(d) g, g are positive definite, and g is symmetric; (7.2)
©) f,f. g & g 'f. & 'f satisfy linear growth conditions of the form

6t x, y, a)ll=< (1 +]|(x, ).

where |igll = (X g})"* for a matrix g.
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CONTROLS

The control u in Equations (7.1) is assumed to belong to the class of admissible
controls U discussed in Section 6. We also allow relaxed controls v e 7 such
controls operate in the drift terms f, f exactly as for deterministic systems (Section
2). We define the effect of a relaxed control in the diffusion g by defining

gl Xy, 1) = (JM gt x.y, a) dv(a)> "

for ve M(M). Here (-)"* denotes the unique nonnegative definite square root
matrix. Thus we are defining the covariance g*(t, x, y, v,) in the same way that the
drift f(¢, x, y, v,) is defined, recognising that it is the covariance g~ rather than the
diffusion g itself that determines the dynamics.

SOLUTIONS TO EQUATIONS (7.1)

Suppose that a control ve ¥ is fixed. It is convenient to write f,(¢, x, y) for
f(t, x, y, v(t, y)), and similarly for f and g.

With the given conditions on the coefficients, there is on any space carrying
Brownian motions b, b a unique solution {* = (£°, °) to the equations without
drift:

(a) d&=g.(t. &, m)db, (&€ RY, & = Xo)

) _ (7.3),
(b) dn, =gt pdb, (R ER™ 0= yo)

for O < r=<1. This solution induces measures as follows:

DEFINITION 7 4.
(a) A® is the measure induced on 4" by ¢°;
(b) A7'" is the measure induced on %" by the solution to 7.3,(a)
for each fixed ne €™;
(c) A, is the measure induced on €™ by the solution to 7.3(b). Note that A, is
tight.

The measure A" is measurable as a function of = (with respect to the
completion of A;) and gives the following disintegration of A°:

A°(AX B) =J APT(A) dAa(m) (7.5)
B

for Borel A, B.

The dynamical Equations (7.1) may be solved using the Girsanov measure
change technique (or using nonstandard methods as developed in [5]). The
solutions obtained are unique in law. Well-known theory tells us the following:
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THEOREM 7.6. Let u* be the measure induced on €" by any solution to Equations
(7.1) for control v. Then u® <€ X°, and the density p* =du’/dA” is given by

1 -1
p0=ew(| v onnaBO-] (v )il
Q0 0
where
f g0
Cemees (-2
{=( e ¢ 7 " \og
and B is the Brownian motion on (€", A*) given by B ={ vy~ ' d{.
We also record here for future reference the following standard consequence of

the linear growth conditions 7.2(e) on the coefficients. For ve ¥ let z° = (x*, y°)
be any solution to Equations (7.1).

LEMMA 7.7. E(|z") is uniformly bounded for v e V', where ||z°|| = sup = \||z}].
The main theorem in this section is the following.

THEOREM 7.8. The measure u’ is continuous as a function of v (with respect to
the weak™ topology on M(€")).

Proof. Let Ve™*% and let v =°V as in the previous section. We have to show
that u” =~ u"; by the Loeb-Anderson-Rashid characterisation of weak standard
parts [4, 18], it is sufficient to show that

p'=nl (s (7.9)

The plan is as follows. Fix an internal solution Z¥ = (X", YV) to Equations *(7.1).
ie.,

dXY=%*fu(r, XV, YV)dr+*gu(7, XV, YV)dB,

dYY=*fu(r, XV, YV)dr+*g(r, YV)dB,,
where B, B are (internal) *Brownian motions; these and the solution Z" live on an
internal space Qg = (Q, A, (H,).<1, v). Let @ =(Q, ¥, (%),<1, P) be the standard

filtered Loeb space constructed from €2, (see Section 1). We will see that almost all
paths of ZY are #-continuous; so we may define a continuous process z" on by

2V =Z") as. (P).
We will show that 2" is a solution to Equations (7.1) for control v. If so, then
w’(A)=P(zV e A)=P(ZY e st '(A))
=y (ZY est™'(A))
=i (st7'(A)),
which establishes (7.9), and we are done.

We proceed by a series of Lemmas.
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LEMMA 7.10. E(|Z|) is finite and, hence, | Z" is finite, a.s.(P).
Proof. By Lemma 7.7 transferred, E(|ZY]P) is finite; Loeb theory tells us that
ECIZYIP) < E(\ZY]P. 0

LEMMA 7.11. ZV is P-a.s. $-continuous (hence, wy (st '(€")) = 1).

Proof. If the coefficients *f, *f, *g, *g are bounded, this follows from Keisler’s
F-continuity theorem (Proposition 1.4(b)). For coefficients satisfying the linear
growth conditions 7.2(e), a routine truncation argument (as in [7], Lemma 7.12(b))
using Lemma 7.10 then shows that ZV is a.s. $-continuous. U

This lemma allows us to define a standard process z¥ on Q by z¥ =°Z"Y P-ass.
The goal now is to show that z" is a (weak) solution to (7.1), on . We will need
to know the following.

LEMMA 7.12. Let K < €™ be compact. The measures (A{"") yev ek are uniformly
light; i.e., for each € >0 there is compact K. < €% with A}™(K,)=1— € for all
(v,n)e VXK.

Proof. By Prohorov’s Theorem [19], Theorem 6.7, it is sufficient to show that the
set of measures (A{"™)yey nex 18 relatively compact. Using the nonstandard
criterion for compactness, it is enough to show that A" is nearstandard for every
Ve*¥, Ye*K.

Let £¥° be a solution to Equation *(7.3)y(a) with Y constant; i.e.,

de'Y = *gV(T’ gV‘Y’ Y) dB‘r

Arguing exactly as in the proof of Lemma 7.11 we see that £¥'Y is a.s.
P-continuous. Thus, (A YY), (st (€4)) = 1, which shows (as in [4, 17]) that A} Y is
nearstandard with standard part (A{"Y)(st™!(+)). 0

We use this lemma to show that the functions *f (etc.) are liftings of the functions
f (etc.) in the sense of the following lemma.

LEMMA 7.13. For6=f, g, f, g: for almost all (t, Z) € {0, 11X *€" (with respect
o (*mxAY)),
*or, Z, )= 0(°1,°Z,°a) for all a € *M.
Proof. We give the proof for 8 = f; the others are similar, Fix € > 0. Since A, is

tight, we can take compact K < €™ such that A,(K)=1-e. Take K. < €¢ as
given by Lemma 7.12 and define f:[0, 1]x K — C(K. X M, R?) by

-

f(t, n)(&, a)=f(t, £, 7, a).

Since K. X M is compact, the space on the right is separable, metric, so by
Anderson’s Lusin Theorem

*fr. V) =fCr.°Y)
for almost all (7, Y) e *[0, 1] X *K (with respect to (*m X *A,),). Thus there is
internal B < *[0, 11X *K with (*m X *A,)(B) =1 — ¢, such that
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*f(r, V)=~ fC°7,°Y), all (7, Y)eB.

This means that for all (7, Y, X)e Bx*K_and a e *M
*flr, X, Y, ) = fC7,°X,°Y, °a).

Now using the transfer of the disintegration (7.5) we have that
(mx AVBX*K) = | *AYYEK) dCmx )z, V)
B

= (1-€e)(*mXx*1;)(B)
=(1-¢€)2
Taking e arbitrarily small establishes the result. |

For application we require *f (etc.) to be a lifting of f (etc.) with respect to
(m*x uY),, rather than the measure (*mxAY); as in Lemma 7.13. This is
established with the aid of the following lemma and its corollary.

LEMMA 7.14. The density p¥ is ¥-integrable with respect to AV,
Proof. By transfer of standard theory outlined earlier,

wY(B) =J pY dAY for all internal *Borel B < *¥¢",

B

SO E-)‘V(pv) =1.
Also,

1

p¥(2)= exp(L 0.(2)dB.(Z)—1 J.Ol 0.(2)" dr)

where

* -1 ,% ’
=((s =) (7)
0.2=(( vg) f)) =D
and B is an internal Brownian motion on (*¢", A V).

The linear growth conditions (7.2) on the coefficients, together with fact that Z"
is a.s. finite (Lemma 7.10), ensure that

‘u¥(C,)—1 as n—>wo,

where C, ={Z:||®(-, Z)|’ < n}.
Now consider an internal measurable A < *%" with AY(A)=0. We have to
show that {4 p¥ dAY = 0. Notice that

1 1 1
(pv)2=exp<J 20 dB—%J (26)? d7> . exp(J 0? d7)
0 0 0
=06, say,

where o is defined like p" using 20 in place of ®. Now E,v(¢) =1 (for the same



INFINITESIMAL METHODS IN CONTROL THEORY 125

reasons as E,v(pY)=1), and 8=exp(f®°d7) is bounded on C,. Thus, by
Holders inequality

1/2 1/2
I de,\Vs(j ad)\v) (J SdAV) ~0.
ANC, ANC, ANC,

So

J pVdAY < L pVdAY =°uY(C,) (by definition of p")
A

n

=1-°uY(C,), which—0 as n— o,
and we are done. O

COROLLARY 7.15. (a) u) <AY and dpY/dAY =°p; (b) (uY) < (*As)L, where
W3 is the measure induced on €™ by a control ve V.
Proof. (a) For internal measurable A < *%" we have

plA =¥ (A)="] pYarv=] ¥ ary
A A
since pV is P-integrable; (a) follows.
(b) follows from (a) because A,(B) = A®(€% X B) and u%(B)= u°(€*x B). [

COROLLARY 7.16. (a) For 6 = each of f, g, f, §: for almost all (7, Z) with respect
o *mxpuY),

*o(r, Z,a) = 0(°1,°Z,%°a), allae*M.

(b) Hence, for a.a. w, *0(7, ZV, a) is a bounded uniform lifting of 6(t, z", a).
Proof. (a) Combine Lemmas 7.13 and 7.15(a); (b) follows by Keisler’s Fubini
theorem. 0]

Applying the above results to the information structure we have:
LEMMA 7.17. For a.a. Y € *%™ (with respect to (uy)L)
Ye*D, iff °Ye D;, forall finite i.
Hence, for a.a. w,
YVYe*D, iffyVeD,, forallfinitei. .

Proof. From Anderson’s Lusin theorem this holds for a.a. Y w.r.t (*A,); ; now
apply Corollary 7.15(b). a

Combining this Lemma with Corollary 7.16(b) and Remark 6.3 we obtain:
LEMMA 7.18. For a.a. w, for all t,

(a) J.'*fv(r,Z")dfzjqfv(s,zV)ds;
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(b) Jx*f_v(ﬂ ZYydr= J r Fols, z¥) ds;

ft

(c) JO *g%(r, Z¥) dr ~ J

t
ga(s, zV)ds,
0]

where we mean (g,)*, not (g%),, etc.

Applying Corollary 7.16(a), to the diffusion coefficient g, we obtain:

LEMMA 7.19. The internal function *g(7, YV) is a lifting of g(1,y") and is
adapted to (A,),<1. Hence, for a.a. , for all t,

~t st

| *ar, Y4B~ | g5 y*)db,,

0 0
where b =°B.

Proof. Recall from Section 1 that °B is a Brownian motion on €. By transfer of

standard theory *g(r, YV) is adapted to (,); it is a lifting by Corollary 7.16(a).
The rest follows by Anderson’s Itd integration as discussed in Section 1. O

We are almost ready to show that z ¥ is a solution to (7.1) for the control v =°V.
From Lemmas 7.18 and 7.19 we have: for a.a. w, for all ¢,

(a) x/=°XV

= x0+°(J'0' *fo(r. ZV)d7+ J

0

t

*gv(r. 2¥)dB,)

1

= x0+J fo(s,zV)ds+ (j *gu(t, ZY) dBT>; (7.20)
)] 4]

by y/=°vV
A

= y(,+°(J-(: *fo(r, ZY) dT+j *a(r, YY) dB',)

0

t i
=yo+j s, 2¥)ds+ | gls,y")db,.
{

) (1)
From this it is clear that z " solves (7.1) provided we can establish the following:

LEMMA 7.21. There is a d-dimensional Brownian motion b on S, independent of
b. such that a.s. we have

rt

ot
J' *¢v(t, ZY)dB, =J g,(s,z¥)db, all ¢,
0 0

Proof. Let

-t

o ot
M, = J *gu(r, ZV)dB, = J G(r, »)dB,
Q )]
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say. From Lemma 7.7 and the linear growth condition on g, we see that | G(- )| is
finite for almost all w, and E(} |GJ?d7) is finite. Thus, setting G™ =
(G v —=N) A N, for suitably small infinite N we have GV is ¥L? (i.e., |G™|? is
S-integrable) and, almost surely, G = G,, all . Thus

ot
M, = J G™MAB, all 1. as.
QO

By results of [16], since G is SL? then { G'™dB is also ¥L°, so M is an
L*-martingale. Moreover,

= OJ.O’ *gi(r, ZV)dr as.
= J.(: g>(s,z¥)ds by Lemma 7.18(c).
Following [10], Theorem 5.3, p. 449, let
b, = JOI gol(s,z2V)dM, = J.(: 6, dM;, say;

this exists because E(f 6, d[M],02) = I. Then
t
[5],=j’ 6, d[M]6.=1t-1,
()]

so that b is a Brownian motion. Clearly M, = f¢ g, (s, z¥)db,, as required. It is
routine to see that (b, b) is a Brownian motion, so that b is independent of b. []

From (7.20) and Lemma 7.21, we see that z" is a solution to the Equations (7.1)
for control v. As we have seen, this establishes that ¥~ uY, and the proof of
Theorem 7.8 is complete. O

8. Cost and Optimal Partially Observed Stochastic Control
Let us now suppose that for the stochastic control system discussed in the previous
section there is a cost J(v) of implementation of each control v € ¥, given by

J(v) = E(Jl h(t. 2°, o(t, y*)) di+ ﬁ(zv)),

0
where z” = (x", y*) is a solution to Equations (7.1). We assume that h, h =0, and
that h satisfies the_same conditions (7.2) (a), (b), (€) as f; the function h: €" >R is
measurable, with h(-, n) continuous for each fixed n € 6™, and |h({)] =< (1 +||Z])).
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The continuity of the cost function J(v) is established below, by the method used
in the proof of continuity of u”. As a corollary we obtain optimal controls.

THEOREM 8.1. The cost function J(v) is continuous.

Proof. Let Ve*¥ and let v =°V. We have to show that J(V) = J(v).

Let z°=zY =°Z" be the solution to the dynamics obtained in the proof of
Theorem 7.8. The proof of Lemma 7.18 with & in place of f shows that

1

-1
J *hv(T.Zv)dT=J ho(t, z°)dt  as.,
0

4]

and similarly *E(Zv)fh(z“) a.s. By Lemma 7.10 and the linear growth con-
ditions, we have E(f *ni(r,ZV)dr) and E(*h*(ZY)) are finite; so
fo *hy(r, ZVYd7 and *h(Z"Y) are F-integrable (by [16, 1], Lemma 12).

Thus

J(V)= (J'O *hy(T, Zv)d~r+*h(ZV))

E(J *hy (7, Z")d~r+°(*h(ZV)))

E(J hy(t, z° dt+h(z”)) (by above)

,

as required. ]

Now define

J§=inf(J(v)) and J{= inf (J(u)).
veV ueU
The following corollary is a routine application of Theorem 8.1, together with the
compactness of ¥, and the density of % in V.

COROLLARY 8.2. (a) There is an optimal control v € V achieving the minimum
cost J§;
() I3 =71

REMARKS (1) Optimal ordinary controls can be obtained, as in the deterministic
setting, given certain convexity conditions. For example, suppose that for each of
the functions @ = f, f, g%, h we have the decomposition

01, x, y, a) = 0u(t, x, y) + 6:(1, x, y)6:(t, a),

and for each t and the set (fs, f2,(g%)2, h2)(t, M) is convex. Then standard
measurable selection techniques will convert any relaxed control into an ordinary
control giving the same trajectories; hence there is an optimal ordinary control.
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(2) The methods of this section and Section 7 can be extended in vartous ways,
mostly routine. These include the following.

{(a) Let ¢ be the initial point in Equations (7.1); then writing u*° and J(v, ¢)
respectively for the measure on €" and the cost for control v, starting at ¢, we
have that u”° and J(v, ¢) are continuous in (v, ¢). Thus, for a compact region
D < R", there is an optimal pair (v, ¢) achieving the minimum cost

JYDY=inf J(v,c0).
ceD,veV
(b) Vary the running time of the problem, in the following way. Let I" be a
closed region in [0, 1]xR", with {I} XR" cT. Then define, for any solution
2= (x", y”) to (7.1) starting at c,

T w)=inf{r:(t, 27 ) e T}

Now specify a cost for control v of the form

. Tuv.c

J(v, ¢)= E(J ho(t, z%¢) dt + h(T?, z"“))

0
where h =0, h(-. -, ) is continuous for each fixed 5 € €™, h(t, {) depends only on
(&)s=:,and (-, ) is nondecreasing for each fixed {. (The function h is as before.)

In the framework of Section 7, suppose that ZY” is an internal solution for
Ve*¥ and starting point y. Then °ZVY = z><, say, is a solution for v =°V
starting at ¢ =°y. It is routine to see that T"“(w)<°T"""(w), and so J(v, ¢) is
lower semi-continuous. As in the deterministic setting, this is sufficient to establish
the existence of an optimal pair (v, ¢) for any compact region D.

(c) As in the deterministic setting, the time-horizon can be extended to .

9. Markov Systems and their Control

In this section we discuss Markov controlled systems, showing that results similar
to those of Sections 7 and 8 can be obtained in this case with the noise in the
observation process also controlled. Thus it is not necessary to treat the state and
observation process separately, and we consider systems of the form

dx, = f(t, x,, w(r(x))) de + g(t, x,, u(r(x,))db, (£1=1), 9.1

where xocR? is fixed and b is a d-dimensional Brownian motion. The control at
time ¢ is a function of an instantaneous digital read-out r,(x,); we have dropped the
cumulation property, and the controls are truly Markov. Details of this system are
given below.

Information. We assume a fixed instantaneous read-out r: [0, 11X R* — N with r
jointly measurable.

Controls. An ordinary Markov control is a measurable function u:[0, 1]xN—
M; a relaxed Markov control takes values in #(M).
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Denote by %, and ¥\ the Markov controls (ordinary and relaxed respectively).

Notice that a control u can be thought of as a sequence of deterministic controls
(U)ien given by w;(2) = u(t, i), so Uy = UG and similarly for V. A Markov step
control is one with u; a step control, all i. A uniform step control has uniform step
sizes for each i; write 23, for the Markov step controls.

Conditions on coefficients. We begin by making the following assumptions on the
coeflicients.

(a) f, g are jointly measurable;

(b) f(r, &) and g(1, &,-) are continuous, all (t, §); ©0.2)
(¢} g 1s positive definite, symmetric; '

(d) f.g, g ' are bounded.

Notice that we have dropped the condition that g be Lipschitz in the space
variable. The above conditions are sufficient to ensure the existence of solutions to
Equation (9.1) for any given control (see, for example, Theorem 5.5 of [13]). We
do not know of any uniqueness theorem for an equation like (9.1) (even if the
Lipschitz condition on g is imposed) so we make the following further special
assumption:

ASSUMPTION 9.3. The solutions to Equation (9.1) are unique in distribution.
At the end of this section we indicate a way to avoid making this assumption.

Cost. We assume a cost function J taking the form
-1

J(u)= E(J h(t, x*, u(r(x)) dt+ E(x“)),

0

where h, h are nonnegative, bounded, h satisfies the same conditions as f, and his
continuous.

Since Up = UY and Vy = VY, the natural topology on Markov controls is the
product of the F#-topology on deterministic controls. Then, from the results of
Section 2 we have

THEOREM 9.4. (a) ¥ is compact, and for V € * ¥V the standard part v="V is
given by v, =°V, for i e N\.
(b) AUz, is dense in Uy .

In preparation for the main theorem we make the following observation.

LEMMA 9.5. Suppose that n:[0, 1]—N is measurable and N:*[0, 1]—*N is a
lifting of n. Suppose further that V € *Vyy with v="°V, and 0 J with uniform
lifting ©®. Then

1 1
j O(7, V{7, N))dr= I o(t, v(t, n)) de.
O 4]
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Proof. Let A; = n~'{i} and B; = N"'{i}. Since Nifts n, the set B;Ast™'(A,) is null
for each finite i, and U,,, B; has measure 1 (both with respect to *m, ). So

1
J o(r, V(r, NT))dej O(r, Vi(r)) dr

ieN “B;

=y j’ o(t, v,(1))dt  (by Lemma 2.6)

ieN 7A,

= J o(t, v(t, n,)) de. O

We shall also need the following important theorem of Krylov [15].

THEOREM 9.6. For each real number k>0 there is a number 1> with the
following property. Suppose that z, is a d-dimensional process of the form

-t -

Zt: ZO+J qbs dS+J d’sdst
) O

{
where zoeR?, the functions ¢,  are progressively measurable, and b is a
d-dimensional Brownian motion living on an adapted space. If ||¢|, ||| and
|det | are uniformly bounded by k, and h:[0,11xRY—>R is L**" and non-
negative, then

E(Ll h(t, z2) dt) .

Now we move to the counterpart of Theorem 7.8.

THEOREM 9.7. Let u’ be the measure induced on € by solutions to (9.1) for
control v. Then p° is continuous in v.

Proof. We will mention in detail only those features in the proof that are different
from those of Theorem 7.8.

Let Ve*%y; let XV be an internal solution to Equation *(9.1):

dXY =*f(r, XY, V,(*rA X)) dr+*g(r, XY, V.(*r.(XV))) dB,,

with X§ = xg. From XV construct the standard continuous process x¥ =°XV,
living on a filtered Loeb space €. The aim is to show that x is a solution to (9.1)
for control v ="°V; as before this suffices to prove the theorem. U

LEMMA 9.8. For a.a. o, *f(r, XY, @) is a uniform lifting of f(t, x}, a), and
similarly for g.
Proof. By Anderson’s Lusin Theorem

1. Y, ) =f(°7,°Y,%a), all a,

for aa. (7, Y)e*0,1]xns(*R%). Thus, we can obtain for each finite n
an internal set A, <*0,1]x*RY with *m(A,)<1/n such that for all
(7, Y)e*[0, 1]% ns(*R*)\ A, we have



132 NIGEL J. CUTLAND
*Hr, Y, a)=f(C7,°Y,%a), all a.

Now apply the transfer of Krylov’s theorem to the process X ¥, with k given by
the condition 9.2(d). Taking h = x,, (the characteristic function of A,) we see that

(rx*m){(w, 1): (1, XY (@) € A)) < In~"41,
Hence, for a.a. (w, 1) with respect to (v X *m),.
(1, X (0)) ¢ 0 A,
This means that for a.a. (w, 7)
*f(r, X7 (0), @)= fC7,°X Y (0),°a), all a.
An application of Keisler’s Fubini Theorem now establishes the lemma. O

In a similar way we obtain:

LEMMA 99. Fora.a. o
*ri(XY)=ro(x¥), fora.a.r.
Proof. By Anderson’s Lusin Theorem
*r(Y)=r,°Y), aa.(r, Y)e*O0,1]xns(*R9).
Now proceed as in the proof of Lemma 9.8. 0

Combining these results with Lemma 9.5 we have the counterpart of Lemma

7.18,

LEMMA 9.10. For a.a. w, for all t,

() Lt *fr, XY, Va(rAXY)) dr~ L £, xY, (r(x V) ds,

(b) j *o2(r, XTV,VA*r,(XY)))dmj (s, x¥, vi(ry(x V) ds.
Q0 [V}

Proof. Writing n,(w) = r(x.”) and N{w)="*r.(XY), Lemma 9.9 tells us that for
almost all o, N;(w) is a lifting of n,(w). Apply this in Lemma 9.5 with the uniform
liftings given by Lemma 9.8, and the result follows. 0

The proof that xV is a solution to Equations (9.1) for control v is now completed
in the same way as the proof of Theorem 7.8, using the technique of Lemma 7.21.
This concludes the proof of Theorem 9.7. O

The following results for the system (9.1) are established using the ideas in the
proof of Theorem 9.7 (just as in Section 8 we called on the methods developed in
the proof of Theorem 7.8).

THEOREM 9.11. The cost function J(v) is continuous.
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COROLLARY 9.12. (a) There is an optimal control ve Vy; (b) J¥=J3m.

Omitting the uniqueness assumption. If we omit the special assumption ‘9.3’, then
Equations (9.1) will in general have a set of solutions Z* for each control v, giving
rise to a set A(° of probability measures on €%, and a set $° of corresponding costs.
If we write u* for the measure corresponding to a particular solution x, and let
J(x) denote the cost, then M° ={u*:xe ¥*} and $°={J(x):xe ¥*}. We also
write

M= #* and g'~=U gv

vEVM vEVM

It is natural now to define the cost J(v) of a control v as follows,

DEFINITION 9.13. (a) J(v) =inf #° (=inf{J(x): x € 2°}); (b) Jo=inf F"™.

We shall see that there is an optimal control with optimal trajectory. The
fundamental result from which everything else follows is stated below.

THEOREM 9.14. Suppose that V € *¥\ with internal solution X to Equation
*(9.1). Let v="V and x =°X. Then x is a solution for control v; and p* =°n~
and J(x)=°J(X).

Proof. This is exactly what was established in the proofs of Theorems 9.7 and

9.11. O

We now give a series of elementary applications of this theorem.

THEOREM 9.15. (a) Let ve V. The sets M° and $° are compact; (b) the sets
M¥w and $Vv are compact.

Proof. (a) Let p~X € *#”; so X is a solution for control *v. Let x =°X. By
Theorem 9.14, °u™ = u* € M¥ (since °(*v) = v). Thus M* is compact, by the
nonstandard criterion for compactness. The other parts of the theorem are proved
similarly. a

COROLLARY 9.16. (a) For any control v there is a solution x € ¥* with J(x) =

J(v); (b) There is an optimal control v with optimal trajectory x such that
J(x)=J(v) = Jo.

Since each control v now gives a set of measures and costs, the notion of
continuity in v is replaced by upper semi-continuity. Recall the definition (as used
by Choquet and others).

DEFINITION 9.17. Let A, B be topological spaces and let F: A— 2(B) be a set
valued mapping. Then F is upper-semi-continuous if {x: F(x) = G} is open in A
whenever G is open in B.

It is easy to establish the following nonstandard criterion for upper-semi-
continuity (which we abbreviate u.s.c).



134 NIGEL J. CUTLAND
THEOREM 9.18. F is u.s.c iff whenever x = a then

F(x) < monad(F(a)), foraec A, xe*A.
(Here monad(S) = N{*G:S< G, G open} for any S c B.) O
Now we have

THEOREM 9.19. The functions #* and $° are u.s.c. as functions of the control v.

Proof. Let V=~ve ¥y, and let pe #Y. By Theorem 9.14, °pe M°; so
w € monad(.#”). Hence, #" < monad(.#"), and .#" is u.s.c. The proof for ¢ is
similar. g

REMARK. Theorem 9.14 actually tells us that if V= v then MY = st (AMPY; in
the proof above we then used the fact that st~'(#”) < monad(.(*). In our situation,
M® is compact, so st '(#M*) = monad(#°); similar remarks apply to #°.

Finally we see that

THEOREM 9.20. J(v) is lower semi-continuous.
Proof. As remarked above, if V=~ uv then ¥ < st™'(#*) so st(#¥) < #°. Thus

SJ(V)="Cinf $V
=inf(st(#"))
<inf ¢
= J(v). t

Existence of an optimal control could be alternatively deduced from this last
result.

REMARKS (1) The remarks at the end of Section 8 apply also to the Markov
situation discussed here.

(2) Boundedness on coeflicients could be relaxed in favour of linear growth
conditions, using simple truncation arguments.

(3) It is actually only necessary in (9.1) to assume that the diffusion part is
Markovian; this is handled in Theorem 9.7 by first considering a solution to

dZ, =*g(7, Z., V.(*r(X,)) dB;

and applying the Krylov Theorem. The equation with drift is then handled using
the Girsanov formula as in Section 7 (Lemmas 7.14-7.16).

(4) In [9], Section 6, the author announced results similar to the above for
Markov-type systems in which the read-out was cumulative, based on in-
stantaneous observations made at a fixed finite number of times. Unfortunately, an
error in the proof has been discovered. The proof required the existence of
densities at every fixed t, and this does not seem to follow from the results of
Stroock and Varadhan [20] as had been supposed. However, in a private
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communication, T. L. Lindstrgm has shown how to use Krylov’s inequality to
obtain pointwise densities, and thus it seems that the result of [9], Section 6, is
valid. Lindstrem discusses Markov-type systems in the forthcoming book [1].
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