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ABSTRACT 

Patterns resulting from the sole interplay between reaction and diffusion are probably involved in 
certain stages of morphogenesis in biological systems, as initially proposed by Alan Turing. 
Self-organization phenomena of this type can only develop in nonlinear systems (i.e. involving positive 
and negative feedback loops) maintained far from equilibrium. We present Turing patterns 
experimentally observed in a chemical system. An oscillating chemical reaction, the CIMA reaction, 
is operated in an open spatial reactor designed in order to oblain a pure reaction-diffusion system. The 
two types of Turing patterns observed, hexagonal arrays of spots and parallel stripes, are characterized 
by an intrinsic wavelength. We identify the origin of the necessary difference of diffusivity between 
activator and inhibitor. We also describe a pattern growth mechanism by spot splitting that recalls cell 
division. 

KEY WORDS: pattern formation, morphogenesis, Turing patterns, reaction-diffusion, chemical 
reaction. 

1. INTRODUCTION 

How does organization spontaneously emerge in an initially uniform medium, be it 
chemical or biological? From egg to embryo then to adult organism, the development of any 
1. q , ~  Jlvl,.g thing goes through successive stages that involve complex mechanisms, a number of  
which are still poorly understood. 

In spite of  the crucial role of genes in biological systems, genetics cannot explain the 
onset mechanism of cell differentiation nor describe the mechanisms that drive pattern 
formation since each cell in a given organism has the same genetic information. Besides the 
genetic machinery, 'generic '  physical mechanisms (Newman & Comper, 1990) have to be 
considered. The latter are organizing principles of nonliving as well as living systems. 
Tkese physical processes include reaction-diffusion and mechano-chemical processes 
(adhesion, surface tension), gravitational effects, viscosity, phase separation and convection. 
In the following, we focus on reaction-diffusion patterning mechanism. 
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Concerning reaction-diffusion, let us recall that the first clear cut analysis of 
spontaneous pattern formation through the sole coupling of reaction and diffusion processes 
is owed to the British mathematician Alan Turing. In his famous paper 'The chemical basis 
of morphogenesis' (Turing, 1952), he produces a model of reaction medium made of 
chemical substances called 'morphogens' which diffuse through an initially homogeneous 
tissue and react. In this paper, it is essentially shown that various types of patterns can 
emerge, among which stationary symmetry breaking patterns referred to as "Turing 
patterns'. The paper is concerned with the onset of instabilities which are supposed to be 
adequate to account for the basic phenomena of morphogenesis in biological systems. The 
beauty of  Turing's idea lies in the counterintuitive organizing role of diffusion that usually 
smooths out any concentration inhomogeneity. Such a pattern formation mechanism calls 
for special but not too unusual kinetic features for the reaction, and for some differences 
in the diffusivity of reacting species. 

In this report, we present experimental observations of Turing patterns in a chemical 
system. We first summarize the prerequisites for the onset of a Turing instability. Then, we 
describe the reactor and the reaction that made possible these observations, followed by a 
description of various types of observed patterns. Finally, an unusual and fascinating pattern 
growth dynamics is presented. 

2. T H E  T U R I N G  I N S T A B I L I T Y  

Turing's idea instigated numerous theoretical studies among which the distinguished 
work of  Prigogine and coworkers in Brussels (Prigogine & Nicolis, 1967). The expression 
'diffusion-driven instability' has been coined to characterize this mechanism that was 
thereafter shown by the Brussels school to be pertinent to the formation of spatial 
dissipative structures in many fields such as biology, materials science, plasma physics. 
Well documented reviews can be found both from the nonlinear physics (Nicolis & 
Prigogine, 1977; Haken, 1978; Field & Burger, 1985) and from the biological (Meinhardt, 
1982; Babloyantz, 1987; Murray, 1989; Harrison, 1993) points of view. Concerning 
chemical reactions, it was shown that, in order to give rise to self-organization, a system 
i) has to be maintained far from thermodynamic equilibrium by a permanent supply of fresh 
reactants, that is, the system has to be open, ii) must involve positive (autocatalysis, 
substrate inhibition) and negative feedback loops. When so, the system can become unstable 
as one of  the control (bifurcation) parameter is moved beyond a critical value. Symmetry 
breaking instabilities of the basic thermodynamic state can develop, leading to 
self-organized states. Temporal or spatial dissipative structures are obtained. 

In these conditions, an isothermal chemical system kept homogeneous by vigourous 
mixing would exhibit uniform temporal changes, in particular periodic homogeneous 
oscillations. In the absence of stirring, reaction and transport processes can work together 
to produce spatial patterns. If  convection or any type of global motion is excluded, the only 
active transport process is the molecular diffusion of species. We are left with a simple 
reaction-diffusion system. Such systems are described by a set of nonlinear partial 
differential equations, the 'reaction-diffusion equations" of the following compact form: 
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where f i  accounts for the reaction rate (generally nonlinear), D i and C i are respectively the 
diffusion coefficient and concentration of the species i and A r is the Laplacian operator. 

Numerous modelling schemes which are able to exhibit Turing type instabilities have 
been proposed. For analytical and computational simplicity, most of the models consider 
only two variables. In such models, one can generally identify an activator and an inhibitor. 
The changes in the concentration of the activator tends to reinforce their own rates of 
change while the associated variations of the concentration of inhibitor opposes to this 
reinforcement. A pattern can only arise when the local balance between these antagonistic 
species is broken. This spontaneously occurs when the diffusion coefficient, Dh, of the 
inhibitor is sufficiently larger than that, Da, of the activator. For realistic models, one 
typically finds that D h and D a must at least differ by an order of magnitude for a diffusive 
instability to occur over a significant domain of parameters. 

The first known example of stationary reaction-diffusion patterns was not obtained in 
an isothermal chemical system. In 1944, Zeldovich experimentally observed a cellular 
arrangement in a flame front (Zeldovich, 1944).The pattern was shown to originate in a 
difference of  diffusivity between the temperature and some reactive species of  the gas 
mixture. Turing extended to isothermal reaction-diffusion systems the concept of  coupling 
between a local activation and a long range inhibition. As mentioned above, many 
theoretical works make use of the Turing instability to account for self-organization 
phenomena in numerous biological systems (Newman & Frisch,1979; Hunding, 1981; 
Babloyantz, 1987; Harrison et al., 1988; Lacalli et al., 1988; Murray, 1989; Hunding et aL, 
1990; Newman & Comper, 1990; Harrison, 1993). The expression of 'Turing pattern' and 
the concept of  an instability induced by diffusion extends also to dissipative structures 
experimentally observed in fields as diverse as nonlinear optics, semi-conductors, gas 
discharge, heterogeneous catalysis. 

However, the first experimental observation of Turing pattern in an isothermal single 
phase chemical system was made only in 1990 (Castets et al., 1990). This long delay is due 
to practical impediments of two types: i) the difficulty of designing appropriate 'open spatial 
reactors', ii) the necessity of developing chemical reactions able to fulfil the required 
properties (nonlinear kinetics and differences in the diffusivity of species). 

3. M A T E R I A L S  A N D  M E T H O D S  

3.1 T h e  O p e n  Spat ia l  R e a c t o r  

As for temporal dynamics of nonlinear chemical systems, the extensive experimental 
study of which developed after the appropriate open stirred reactor was used, the 
prerequisite for obtaining sustained spatial organizations was the design of 'open spatial 
reactors'. Such reactors have to meet two apparently contradictory conditions: ensure a 
permanent feeding by chemicals and avoid any hydrodynamic motion. A convenient way 
consists in making the reagents to diffuse into chemically inert hydrogels, the polymeric 
matrix of which discards any parasitic fluid motion. The second impediment lies in 
assuming a system identically fed at every space point, an assumption usually made in most 
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F i ~ .  1. Sketches of the open spatial reactors, a) Basic principles. Dimensions of the block of 
hydrogel: L x h x w; A is the width over which the chemical pattern of wavelength ~, 
develops; b) thin ship reactor: h ¢ L. Dimensions used: L = 20ram, h = 0.5 or 0.14 ram, w 
= 3 ram; c) standard disc reactor (parallel faces): diameter = 21 ram, w = 3 ram. 

of the theoretical studies but which is impossible to realize in practice. However, Turing 
patterns can also develop in systems only fed at boundaries (Herschkowitz-Kaufman, 1975; 
Dewel et  al., 1987; Boissonade, 1988). 

The main part of the open spatial reactor is a piece of gel (fig.la) of which two opposite 
faces are in contact with the solutions of reagents contained in two reservoirs I and H. 
Usually, reagents are distributed in the reservoirs in such a way that solutions I and II are 
not or little reactive on their own. The reagents diffuse from the boundaries into the gel 
where they meet and react. The reagents are permanently renewed by pumps and stirred in 
the reservoirs, ensuring constant and uniform boundary conditions. Due to the asymmetric 
feed compositions, steep ramps of chemicals establish between the feed surfaces. The 
reaction-diffusion instabilities will generally be confined to a region of width A between the 
two feed boundaries where appropriate concentrations of the major species are met. There 
only, concentration patterns can develop. 

Polyacrylamide gel, previously used for studying sustained excitation waves (Noszticzius 
at  al., 1987; Dulos et  al.,  1992) in the Belousov-Zhabotinskii medium was initially retained 
for the search of stationary patterns. Later, agarose gel was also used. During 
manufacturing, the gel is loaded with a colour indicator which is essentially immobile in 
the gel matrix. As we shall see later, this colour indicator can play a crucial role in the 
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pattern development mechanism. 
Two geometries of reactors have been used but, in both cases, the distance w between 

the feed surfaces is the same so that the gradients of chemicals remain unchanged, i) In a 
first set of  experiments, we used a "gel strip reactor' (fig.lb) a geometry that, in numerical 
simulations,was shown to be convenient to evidence Turing patterns (Boissonade, 1988). 
The piece of gel is a thin ribbon, 3 mm wide, fed by the two long edges. Observations are 
made from the top, allowing a view of the plane that emends between the feed surfaces. 
ii) We also used the disc reactor (fig.lc) as initially proposed by the group in Austin 
(Ouyang & Swinney, 1991a, 1991b). The piece of gel is now a flat disc, 3mm thick, fed 
by the two circular faces. Observations are made perpendicularly to the feed surfaces and 
give a view in a plane perpendicular to that in the gel strip reactor. In all cases, monitoring 
is provided by a CCD video camera fitted with a macrolens. 

3 .2  T h e  C I M A  R e a c t i o n  

The reaction used is the 'C IMA'  reaction, an oscillatory redox reaction involving 
chlorite (C102-), iodide (I-) and malonic acid (MA) as initial reagents (De Kepper et al., 
1982). 

The oscillatory mechanism of the reaction was elucidated by Lengyel et aL (1990). The 
oscillatory behaviour actually occurs when the initial chlorite and iodide ions are nearly 
completely consumed. Thereafter, besides malonic acid, the major species are chlorine 
dioxide (C102) and iodine (I2) while chlorite and iodide become the true variables and play 
the roles of the ' inhibitor '  and of the 'activator' ,  respectively. 

The overall mechanism of the reaction is rather complex, but a simplified mechanism 
was proposed by Lengyel and Epstein (1992). It involves only three component processes 
for which the rate laws were experimentally determined: 

M A  + 12 ----IMA + I -  + H + 

CIO 2 + I -  ---, CIO 2- + 1/2I 2 

(2102- + I -  + 4H + ---, 2I 2 + CI- + 2H20 

(1) 

(2) 

(3) 

From a dynamical point of  view, reaction (3) involves the crucial feedback process. It 
is shown that, starting with C102, 12 and MA, the reaction can immediately oscillate and 
that during each oscillation, the concentrations of iodide and chlorite change by several 
orders of  magnitude. The rate of reaction (3) is inversely proportional to the iodide 
concentration, so that when iodide is consumed, this activates in own consumption. This 
' substrate inhibition' feature is the crucial nonlinear process in the reaction. 

4. E X P E R I M E N T A L  R E S U L T S  

An appropriate colour indicator for the CIMA reaction is starch. It forms a dark blue 
complex with iodine and iodide. 

Reagents are distributed as follows in the feed solutions: iodide is introduced 
symmetrically in both reservoirs, malonic acid in sulphuric acid solution only in reservoir 
I, and chlorite in basic solution only in reservoir 1I. Chlorite is the oxidizer. In the 
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Fig. ~, A Turing pattern in the gel strip reactor. View size 2.1 m m x  1.7 mm. Experimental 
conditions: temperature = 6°C, residence time in reservoirs = 3 min, [starch] = 3 g/l of gel. 
Concentrations in reservoirs: [I-]/ = [I-]u = 2.5 x 10 -3 M, [CIO2-]I ! = 2.4 x 10 -2 M, 
[MA]/= 1.2 x 10 -2 M. 

asymptotic state, reduced forms of iodine (I 2 and I- )  are present in the gel along the 
malonic acid-fed side: there, the gel colours dark blue. Oxidized forms of iodine (e.g. IO3- ) 
are present along the chlorite-fed side where the gel remains colourless. The temperature 
is maintained constant by a waterjacket. 

4.1 T u r i n g  P a t t e r n s  in  the  G e l  S t r i p  R e a c t o r  

The typical settling time for stationary concentration profiles across the gel strip 3 ram 
wide is about 3 hours (since D~ 10 -5 cm2.sec-1). Thereafter, for feed concentrations 
conveniently chosen, a stationary pattern, as illustrated figure 2, can develop. Typically, 
from left to right, it is composed of: 

- a broad dark band of  reduced iodine state, parallel to the feed boundaries. 
- another thinner dark band, parallel to the first one and separated from it by a thin clear 

stripe of oxidized iodine state. 
- several rows of clear spots emerging from a slightly darker background. The rows of 

spots also develop parallel to the feed boundaries. 
- moreover, a wide clear structureless region of oxidized iodine state occupies about two 

thirds of  the width of the gel. 

The pattern is stationary and can be sustained indefinitely. The arrangement in bands 
and rows preserves the symmetry of the boundaries, but the presence of clear spots in the 
rows breaks this symmetry. The spotted pattern is the result of a spontaneous symmetry 
breaking instability of the system. Spots are regularly spaced. They exhibit a regular 
hexagonal arrangement and the wavelength of the structure is about 0.17 ram. This 
wavelength remains unchanged in reactors with other geometries and dimensions(e.g, an 
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lag. 3. Monolayer Turing patterns in the disc reactor. Contrast enhanced images of the central part 
of the reactor. View size 3.6 mmx 3.6 ram. Experimental conditions: temperature = 6"C, 
residence time in reservoirs = 10 rain, [starch] = 1.75 g/l of gel. Concentrations in reservoirs: 
[I-]! = [I-~rl = 2.9 x 10 -3 M, [CIO2-]t / = 2 x 10 -2 M. 3a) Hexagonal array of clear spots 
(oxidized iodine state, minimum of [I-]): [MA]! = 3.5 x 10 -3 M. 3b) Striped pattern: [MAIl 
=5 x 10-aM. 

annular gel strip) (De Kepper et al., 1991). The wavelength is intrinsic 1 to the system. 
Hence, the observed pattern meets all the characteristic properties of  a Turing pattern, that 
is stationarity, spontaneous symmetry breaking, intrinsic wavelength. 

The number of  rows of  spots strongly depends on the control parameters: as a function 
of  the feed concentrations, patterns made of one to five rows of spots have been observed 
in the gel strip reactor (Castets et al., 1990; De Kepper et aL, 1991; Boissonade et al., 
1994). 

4 .2  T u r i n g  P a t t e r n s  in  the  D i s c  R e a c t o r  

The rows of spots seen in the gel strip reactor correspond to parallel layers filled with 
patterns in the disc reactor. We will limit the discussion to the case where patterns develop 
in a monolayer. For appropriate feed concentrations, the pattern can be made of only one 
layer. Typically, depending on the control parameter value, two types of patterns can be 
observed. As illustrated on figures 3a and 3b, the pattern can be made either of spots 
arranged in hexagonal arrays or of parallel stripes. 

More recently, we have designed bevelled disc reactors (Boissonade et al., 1994) in 
order to obtain a continuous change of control parameter in the plane of observation. In 
these reactors, the circular feed surfaces are no longer parallel. The gradient of thickness 

1 Contrarely, in the Rayleigh-Benard cells, induced by convection in a thin layer of 
liquid with a vertical gradient of temperature, the wavelength of  the structure strongly 
depends on the thickness of the fluid layer, a geometric factor of the system. 
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rig. 4. Monolayer patterns in a bevelled disc. (Circular faces making an angle of 4 degrees, bottom 
width 1.9 ram, top width 3.4 ram). View of a bottom portion of the disc. From bottom to top: 
uniform state ~ hexagons of spots ~ stripes. Experimental conditions; temperature = 6°C, 
residence time in reservoirs = 6 rain, [starch] = 2.1 g/1 of gel, [I-]/= [I-]u = 2 x 10 -3 M, 
[CIO2-]n = 5 x 10 -2 M, [MA]t = 1.3 x 10 -2 M. 

produces a gradual change in the concentration ramps across the gel. As a result, for the 
same set of  boundary feed concentrations, different types of patterns can be observed at 
different positions along the surface of the disc. This is examplified in figure 4 where 
various patterns can be seen extending over successive, almost parallel regions. They 
organize as follows with increasing thickness of the gel: i) a uniform region, ii) a band of 
clear spots exhibiting an hexagonal arrangement, iii) a domain of stripes. The same 
sequence uniform-hexagons-stripes is analytically predicted as a function of parameters in 
two-dimensional systems. It has also been produced in simulations close to onset, in 
three-dimensional systems where the patterns are confined to a monolayer, like in the 
experiments reported here (Dufiet & Boissonade, preprint 1996). 

5. T H E  O R I G I N  O F  T H E  D I F F E R E N C E  

B E T W E E N  D I F F U S I O N  C O E F F I C I E N T S  

As already mentioned, one of the main problems in obtaining Turing structures is linked 
to the requirement for a large enough difference between the diffusion coefficients of the 
activator and of the inhibitor. But, all the small molecules in aqueous solution such as those 
involved in the CIMA reaction have almost the same diffusion coefficient. It was 
theoretically shown (Hunding & Sorensen, 1988; Lengyel & Epstein, 1992; Pearson & 
Bruno, 1992) that the fast reversible binding of a species on immobile inert sites can lead 
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rig. S. Transition from stationary pattern to time-dependent pattern in the gel strip reactor. Agarose 
gel 2%, thickness of the strip: h = 0.14 ram. Experimental conditions: temperature = 2.5"C, 
residence time in reservoirs = 3 rain, concentrations in reservoirs: [1-]t = [I-]t I = 2.5 x 
10 -3 M, [CIO2-]t t = 2.4 × 10 -2 M. a) One single row of stationary spots: [starch] = 1.26 
g/l of gel, [MA]I = 5 × 10 -3 M. b) Travelling wave pattern: [starch] = 0.42 g/l, [MA]I = 8.5 
× 10 -3 M. The whole pattern moves parallel to the horizontal feed surface. 

to a decreased effective diffusivity of  this species. 
In our system, two macromolecules of reduced mobility are in contact with the reacting 

species: these are polyacrylamide and starch. In order to evaluate the possible role of  gel 
and starch in Turing pattern formation, experiments were performed in gel-free systems and 
in different types of  gels (polyacrylamide and agarose gels) (Agladze e t  al., 1992). The 
sequences observed in all cases are analog to that described in figure 2. This demonstrates 
that the gel plays no crucial role in the formation of the stationary Turing pattern. However, 
by decreasing the starch concentration in agarose and in gel-free media, a transition from 
stationary pattern to waves was found. Such a transition is illustrated figure 5 in a gel strip 
made of  agarose. The row of stationary spots that develops at high starch concentration 
(fig.5a) is changed into a train of travelling waves at lower starch concentration (fig.5b). 
Waves travel, as indicated by the arrow, parallel to the feed boundaries. Thus, in agarose 
gel and in gel-free solutions, the presence of the colour indicator is fundamental to create 
the difference in diffusivity between activator and inhibitor required for Turing pattern 
formation. Starch reduces the effective diffusion coefficient of iodide (the activator) by 
forming a reversible complex with iodine and iodide. 

6. G R O W T H  D Y N A M I C S  O F  T H E  P A T F E R N  

Until now, we have studied the asymptotic states of the system, without considering the 
setting up dynamics of  the stationary pattern. In most cases, starting from the uniform state, 
crossing the critical parameter value for the onset of Turing patterns induces the emergence 
of isolated spots at random locations.The pattern is often nucleated by heterogeneities in the 
gel (i.e. dust particles). Around these spots, the spatial pattern grows in concentric circles 
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rig. 6. Pattern growth dynamics by spot splitting. Experimental conditions: temperature = 5"C, 
residence time in reservoirs = 10 rain. Concentrations in reservoirs: [I-I/ = [I-It / = 2 x 
10 -2 M, [MAIl = 7 x 10 -3 M. a-d: series of snapshots taken at 4 rain intervals. 

that form at a distance from the already developed elements of the pattern. Then, the circles 
break into spots that ultimately organize in hexagonal arrays. 

However, a more surprising pattern growth can be observed in an agarose gel loaded 
with polyvinylalcohol. Several hours after a small supercritical increase in the malonic acid 
concentration, growing patches of Turing spots appear in the previously uniform 
background. They are nucleated, as usual, by heterogeneities of the gel. The already 
developed spots elongate in the radial and azimuthal directions, and after having reached 
a critical size, they divide into two spots of quasi-identical sizes (fig.6). The separated 
daughter spots located at the border of the growing pattern repeat the splitting process. The 
divisions go on until the whole plane is filled. While pattern keeps growing at the border, 
spots in the inner part rearrange into regular hexagons. A similar growth mechanism has 
been found in numerical simulations (Pearson, 1993) and in another reaction (Lee et al., 
1994) exhibiting bistability between two uniform state branches. The spot splitting growth 
mechanism of the pattern is triggered by a spatial perturbation. This pattern formation 
strongly reminds us of  cell division in living systems and could bring another perspective 
to replicating systems. 
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7. C O N C L U D I N G  R E M A R K S :  

R E A C T I O N - D I F F U S I O N  A N D  M O R P H O G E N E S I S  
I N  B I O L O G I C A L  S Y S T E M S  

During the long time delay between Turing's prediction and the experimental realization 
of  Turing patterns in a chemical system, reaction-diffusion processes received much 
attention from theoreticians, specially from biomathematicians which often use them to 
account for some aspects of morphogenesis. Since the individual steps of  development are 
fairly independent, models can be written for such elementary developmental events. The 
reaction-diffusion theory has been now applied to quite a large number of biological 
situations. The basic principles on which models of this type rely are local self-enhancement 
and long range inhibition. Among the most extensive and famous works based on 
reaction-diffusion, we mention those by Meinhardt and by Murray. 

Using its 'activator-inhibitor' or 'activator-substrate' systems or combinations of these 
with other features, Meinhardt (Meinhardt, 1982; Koch & Meinhardt, 1994) can account for 
events as diverse as pattern formation on mollusc shells, hydra regeneration, pattern 
formation on the coat of mammals, formation of reticulated structures like the fine veins 
on the wing of a dragonfly, the faceted eye of drosophila, etc... 

Among the many works of  Murray, we will select his fascinating, if not the most 
convincing studies of pattern formation on the coat of mammals (Murray, 1989). The author 
uses a reaction-diffusion model to account for the stripes of the zebra and the spots of the 
leopard. For him, stripes and spots result from a spatial distribution of the concentration of 
a morphogen due to a reaction-diffusion process. He envisions this inhomogeneous 
distribution of  morphogen as a 'prepattern' and the final pattern on the coat of mammals 
would be a response to this reaction-diffusion prepattern. At a given stage of the 
development of the embryo, melanocytes would or would not produce melanin (the pigment 
which colours hairs)depending on their position in the morphogen concentration field. 

A key problem in the application of the reaction-diffusion theory to morphogenesis lies 
in the necessity of  identifying morphogens in developing tissues. It is only recently that 
genes and molecules controlling development can be isolated and that their specific function 
can be determined. 

Several molecules which regulate cell adhesivity or extracellular matrix production are 
positively autoregulatory. In developing vertebrate limb,various such factors have been 
identified (Newman, 1990). These are the transforming growth factor [3 (TGF[3) which 
stimulates its own synthesis, and other differentiation factors which regulate the periodic 
deposition of the adhesive matrix macromolecule fibronectin. The latter periodic deposition 
is well simulated by a reaction-diffusion model mechanism elaborated for this particular 
case. This periodic deposition provides a prepattem for the skeleton. However, let us 
mention that a completely different model is able to account for the same prepattern 
formation: the mechanical model is proposed by Murray and Oster (Oster et aL, 1983) for 
generating the cell condensations which evolve in a developing limb and which eventually 
become cartilage. 

In the case of  hair formation in the green marine alga Acetabularia, calcium has been 
identified as a possible morphogen (Goodwin et al., 1985). The distance between hairs that 
simultaneously develop on an annulus at the growing tip of the alga is constant and 
corresponds to the intrinsic wavelength of the pattern. A periodic distribution of calcium 
along this annulus has been experimentally demonstrated and simulated by a 
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reaction-diffusion model (Harrison et al., 1988). It prefigures the hair pattern that 
subsequently develops. According to Murray (1988), "actual hair growth with its mechanical 
deformation of the plant is a subsequent process which uses and reflects the prepattem. It 
is possible that calcium is directly coupled to the mechanical properties of the cytoplasm. 
Such a coupling could be incorporated into the mechanochemical theory of morphogenesis." 

The latter example together with that of  vertebrate limb development underline the 
necessary interplay of  several pattern forming mechanisms (reaction-diffusion, 
mechanochemistry, chemotaxis, surface tension, etc...) in morphogenesis. 
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