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Abstract 

Basic FGF (bFGF) and acidic FGF (aFGF) are multipotential factors that stimulate and support prolifer- 
ation, migration and differentiation. Both bFGF and aFGF are non-secreted growth factors consistent with 
the lack of a signal peptide. However, bFGF and aFGF are deposited in extracellular matrix (ECM) 
suggesting that an alternative mechanism for FGF release exists. Four oncogenes, int-2, hst/K-fgf, FGF-5 and 
FGF-6 have been isolated that are highly homologous to aFGF and bFGF. Unlike bFGF and aFGF, they 
possess signal peptides and are secreted. These oncogenes transform cells and induce tumors, ostensibly via 
an autocrine mechanism. The involvement of bFGF and aFGF in autocrine transformation has been clarified 
by studies using FGF cDNA transfection. NIH-3T3 cells transfected with native bFGF cDNA and expressing 
20 to 100 times as much bFGF as parental 3T3 cells acquire an enhanced proliferation rate and higher 
saturation density. NIH cells transfected with a construct in which bFGF cDNA is altered by addition of a 
signal peptide, undergo autocrine transformation and exhibit morphological and biochemical alterations 
characteristic of highly transformed cells. Injection of cells expressing native bFGF even at levels 100 times 
greater than parental 3T3 cells fails to induce tumors or lung metastasis in syngeneic mice. Signal peptide 
bFGF-transected cells on the other hand, acquire a high tumorigenic and metastatic potential with tumor 
incidence and numbers comparable to those induced by ras transformed cells. Acquisition of a signal peptide 
converts bFGF into a transforming protein analogous to FGF-related oncogenes which naturally have signal 
peptide sequences. 

Introduction 

Growth and differentiation of mammalian cells is 
under the control of various cellular growth factors 
and their corresponding receptors. Uncontrolled, 
autonomous cell growth and tumorigenicity have 
been suggested to result from a constitutive inter- 
action of cellular growth factors and their receptors 
[1]. An autocrine mechanism of transformation has 
been demonstrated for a variety of polypeptide 
growth factors including v-s/s, CSF-1 and IL-3 
[2-4]. Autocrine transformation via an external 

stimulatory loop occurs when a secreted growth 
factor binds to cell surface receptors to generate a 
growth signal (Fig. 1A). Internal autocrine trans- 
formation results from the co-migration and con- 
tinuous interaction of growth factor and growth 
factor receptors along the secretory pathway of the 
cell (Fig. 1B). Experimental evidence exists for the 
involvement of both external [4] and internal [5] 
autocrine loops in neoplastic cell proliferation. Au- 
tocrine transformation has been investigated most 
extensively for the v-s/s oncogene which encodes 
for a PDGF-B homologue [2, 6]. v-sis is believed to 
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Fig. 1. External (A) and internal (B) autocrine loops. Schematic diagram of 2 types of autocrine loops involving growth factor and its 
receptor. G - golgi apparatus; E.R. - endoplasmic reticuluum. 

transform cells by activation of an intracellular im- 
mature form of the PDGF receptor [5]. Evidence 
for internal autocrine transformation by v-s/s in- 
cludes the lack of growth inhibition by neutralizing 
antibodies to PDGF [7] and the prominent down- 
regulation of surface receptors for PDGF [8]. 

Basic fibroblast growth factor (bFGF) and acidic 
fibroblast growth factor (aFGF) are potent growth 
and angiogenic factors abundant in normal and 
malignantly transformed cells [9-11]. Four onco- 
genes, int-2, hst/K-fgf, FGF-5 and FGF-6, have 
been isolated that are highly homologous to aFGF 
and bFGF [12-16]. High expression of bFGF in 
cells transfocted with bFGF cDNA leads to pheno- 
typic transformation in vitro [17-20]. However, 
other reports suggest that bFGF-transfected lines 
are neither transformed nor tumorigenic [21-24]. 
Therefore, unlike FGF related-oncogenes, it is not 
clear whether aFGF and bFGF have a transforming 

potential. This article will focus on the role of 
bFGF in the growth of normal and transformed 
cells with particular emphasis on the relationship of 
bFGF expression, cellular localization and auto- 
crine transformation. 

The diverse biological activities of basic and acidic 
FGF 

Basic FGF and aFGF are multipotential factors 
that stimulate and support a variety of normal cell 
functions such as proliferation, migration and dif- 
ferentiation. They stimulate the proliferation of a 
large number of cells of mesodermal and neuroec- 
todermal origin including fibroblasts, vascular en- 
dothelial and smooth muscle cells, chondrocytes, 
myoblasts, glial and rat neuronal precursor cells 
[9-11]. bFGF and aFGF are chemotactic factors for 



a number of cell types including endothelial cells, 
fibroblasts and astroglial cells [25-27]. In the pres- 
ence of bFGF, endothelial cells in culture retain 
their contact-inhibited monolayer appearance seen 
in vivo [28], chondrocytes produce collagen type II 
[29], sheep preadipocyte fibroblasts differentiate 
into adipocytes [30], and neurite outgrowth is in- 
duced in PC12 cells and hippocampal neurons [31- 
33]. Both bFGF and aFGF are angiogenic factors 
[9, 34, 35] as they support the complex angiogenic 
process involving degradation of capillary base- 
ment membrane, migration, proliferation and en- 
dothelial tube formation. Another FGF-like pro- 
tein found in adult tissue is the keratinocyte growth 
factor (KGF). KGF is a mitogen present in stromal 
cells derived from epithelial tissue [36]. KGF is 
unique among the FGF family in that it is a specific 
mitogen for epithelial cells. 

FGF-related oncogenes 

Several oncogenes have been identified to be mem- 
bers of the FGF family (Table 1). These oncogenes 
share with bFGF the 3 exon/2 intron structure and 
the conservation of 2 cysteine residues. They all 
encode for proteins that are 40% to 50% homolo- 
gous to bFGF and aFGF, however with addition of 
a potential signal peptide sequence at the amino 

Table 1. The FGF family of homologous polypeptides 
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terminus. Apart from encoding for secreted FGF- 
like molecules these oncogenes also differ from 
bFGF and aFGF in that they are rarely found in 
adult tissues. In contrast, they are expressed during 
embryogenesis, neo-natal development and in 
many tumors. 

The first FGF homologue to be described was 
int-2 [12]. int-2 is a cellular gene that is induced to 
become transcriptionally active after integration 
(int) of mouse mammary tumor virus (MMTV) 
into the mouse genome [37]. int-2 encodes for a 
protein of about 240 amino acids with a short 
stretch of non-charged amino acids that may func- 
tion as an atypical signal sequence. Evidence for 
possible secretion of int-2 was suggested by its lo- 
calization in the Golgi apparatus and endoplasmic 
reticulum of overexpressing COS cells [38]. int-2 is 
not detectable in normal mammary glands nor in 
other adult tissues, int-2 is expressed at several 
different stages in embryogenesis and in mouse 
embryonal cells [39-41] and is amplified in a num- 
ber of tumors such as breast cancer and squamous 
cell carcinoma of the head and neck [42, 43]. hst/ 
K-fgf are identical oncogenes, hst was originally 
identified in DNA isolated from a human stomach 
tumor (hst) and from a non-cancerous portion of 
human mucosa that had the ability to transform 
NIH 3T3 ceils after transfection [13, 44]. The gene 
has an open reading frame that encodes a protein of 

Common name MW Signal peptide Found in Target cells 

FGF 1 acidic FGF 18000 - adult (neural) fibroblasts 

(HBGF-1) endothelial cells 

neuronal cells 
FGF 2 basic FGF 18000 - adult fibroblasts 

(HBGF-2) endothelial cells 

neuronal cells 
FGF 3 int-2 27000 + mouse embryo ND 

tumors 
FGF 4 hst/K-fgf 23000 +" mouse embryo fibroblasts 

tumors endothelial cells 
FGF 5 FGF 5 29000 + mouse embryo fibroblasts 

tumors 
FGF 6 FGF.6 ND + tumors ND 
FGF 7 KGF 28000 + skin keratinocytes 

N.D. - no data available 
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cloned gene transforms NIH 3T3 cells and has 70% 
identity to the hst oncoprotein. 

That FGF-like oncogenes encode for proteins 
that are secreted and expressed in tumors and in 
the developing embryo suggests that these onco- 
genes may be involved in malignant autocrine 
transformation. The possession of a signal peptide 
sequence therefore appears to be an important fac- 
tor in determining the transforming potential of 
members of the FGF family. 

Fig. 2. Multiple cellular pathways for bFGF action. Schematic 
diagram of possible bFGF pathways in a cell producing bFGF 
and the high and tow affinity FGF receptors, bFGF is syn- 
thesized and retained as a cytoplasmic protein (A); Polar secre- 
tion of bFGF into extracellular matrix (B); Matrix-bound bFGF 
is released by matrix-degrading enzymes or heparin-like mole- 
cules (C) and interacts with cell surface low and high affinity 
FGF receptors; Direct transfer of bFGF from low to high affin- 
ity FGF receptors (D); bFGF binds to high affinity receptors 
generating a mitogenic signal (E) and is rapidly internalized and 
degraded in lysosomes (F); Intact bFGF is translocated into the 
nucleus by either high (F) or low (G) affinity receptor mediated 
endocytosis. It is not yet known wether direct translocation of 
bFGF to the nucleus occurs. 

206 amino acids, hst has a long non-homologous 
N-terminal extension region of about 55 amino 
acids relative to bFGF with a potential hydrophob- 
ic signal peptide sequence. K-fgf, an oncogene de- 
rived from transfection of Kaposi's sarcoma DNA 
into NIH 3T3 cells, appears to be identical to hst 
[14, 45]. The mature K-FGF protein is a glycosylat- 
ed 23 kDa protein containing 175-176 amino acids 
that is secreted into the conditioned medium [46]. 
K-FGF is a mitogen for fibroblasts and endothelial 
cells, hst/K-fgf and int-2 are both located on chro- 
mosome 11 band q13, 40 to 50kB apart and are 
co-amplified in human melanoma [42, 47]. An- 
other FGF-related oncogene, FGF-5, was original- 
ly isolated by transfection of human bladder tumor 
DNA into NIH 3T3 cells [15]. FGF-5 encodes a 267 
amino acid protein with a long hydrophobic amino 
acid terminus. FGF-5 has been found to be ex- 
pressed in mouse embryos [48]. A fourth FGF like 
oncogene, FGF-6, was isolated from a mouse cos- 
mid library by screening with the hst gene [16]. The 

Multiple cellular pathways for basic FGF 

To understand the mode of FGF action, it is neces- 
sary to consider pathways for both exogenous and 
endogenous FGF. A schematic overview of pos- 
sible intracellular and pericellular pathways for 
bFGF-mediated mitogenic activity is shown in Fig. 
2. The biological activity of exogenous bFGF is 
mediated through specific high affinity saturable 
cell surface receptors [24, 49-55]. A low affinity, 
large capacity class of binding sites for bFGF has 
also been identified [56-58]. Unlike most other 
polypeptide growth factors, basic FGF is a non- 
glycosylated, non secreted, cell associated protein. 
However, despite the lack of signal sequence there 
is considerable evidence for the release and deposi- 
tion of bFGF into the extracellular matrix (ECM) 
of normal cells in vitro [59-62] and basement mem- 
branes in vivo [63-65]. 

The mechanism of bFGF release is still un- 
known. However, there appears to be a class of 
secretory proteins that do not possess hydrophobic 
signal sequences and are released by a secretory 
pathway distinct from the classical endoplasmic re- 
ticulum and Golgi apparatus route [66]. A number 
of possibilities have been proposed for bFGF re- 
lease, none of which have been proven yet. One 
proposed mechanism for FGF translocation into 
ECM is release via cell death, cell lysis or micro- 
injury. However it is improbable that such an un- 
controlled growth factor release would lead to po- 
lar deposition and the specific pattern of distribu- 
tion observed in basement membranes in vivo. 

Another proposed mechanism is polar secretion 
and comigration of bFGF with surface and matrix 



heparan sulfate (HS) containing proteoglycans 
(Fig. 2). Basic FGF in the ECM is bound to HS- 
proteoglycans which constitute a low affinity, large 
capacity class of binding sites for bFGF. Matrix- 
bound bFGF is continuously mobilized to interact 
with cell surface high affinity FGF receptors [56, 
57, 67]. Matrix-bound bFGF could be locally re- 
leased by either matrix and heparan sulfate degrad- 
ing enzymes [59, 63, 68, 69] or direct competition 
by secreted heparin-like molecules [63, 68]. An- 
other possible mechanism could be direct transfer 
of bFGF from low to high affinity membrane FGF- 
receptors (Fig. 2). 

The mitogenic activity of bFGF administered 
exogenously is receptor-mediated. Most cells pos- 
sess FGF receptors which are phosphorylated and 
internalized upon binding of FGF [57, 70-73] (Fig. 
2). Radio-labeled bFGF cross linking studies sug- 
gest that FGF receptors are composed of two major 
glycoproteins of 130 and 150 kDa [24, 54]. Recently 
a 130 kD high affinity receptor for FGF has been 
purified and cloned [74-77]. The FGF receptor was 
found to be identical to thef/g gene product and to 
contain an intracellular tyrosine kinase domain. 

Upon binding to high affinity receptors and gen- 
eration of the mitogenic signal, bFGF is rapidly 
internalized [57, 73] (Fig. 2). Lysosomal degrada- 
tion of the receptor-ligand complex may account 
for the down-regulation of surface receptors and 
the self-limiting response of the cell. However the 
finding that intact bFGF is translocated into the 
nuclei of target cells [78, 79] requires that an al- 
ternative non-lysosomal transport pathway exists. 
Moreover, unlike growth factors such as EGF or 
PDGF, which are totally degraded, internalized 
non-nuclear bFGF is only partially degraded into 
discrete large fragments of 8-16 kDa which persist 
for up to 24 hrs [57]. One alternative pathway could 
involve high affinity receptor-mediated endocyto- 
sis with direct translocation of the FGF-receptor 
complex to the nucleus as suggested for other poly- 
peptide growth factors [80]. Low affinity receptor- 
mediated endocytosis of a bFGF-HS complex is 
another attractive alternative for bFGF internal- 
ization and nuclear translocation (Fig. 2). It has 
been demonstrated that cell surface and matrix 
heparan sulfates are rapidly endocytosed [81], and 
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that direct nonlysosomal transport of heparan sul- 
fate from the cell surface to the nucleus occurs [82]. 
Heparin and heparan sulfates have been shown to 
protect bFGF from proteolytic degradation even 
under acidic conditions such as those found in 
mammalian lysosomes [83-85]. Endocytosis of a 
HS-bFGF complex could therefore account for the 
fact that a full-length bFGF is found in the nucleus 
and that cytoplasmic bFGF is only partially degrad- 
ed into large fragments upon internalization. 

A potential role for bFGF in the nucleus 

It is generally believed that polypeptide growth 
factors generate their biological activities through 
interactions with cell surface-specific receptors. 
The interaction activates an intracellular signal 
transduction cascade which eventually results in 
cell division. There is little doubt that high affinity 
cell surface receptors provide the specificity and 
sensitivity of cells to polypeptide growth factors. 
However, there is accumulating evidence that vari- 
ous growth factors also have nuclear sites of action. 
Nuclear binding sites for insulin, epidermal growth 
factor, nerve growth factor and PDGF have been 
demonstrated, and their accumulation in the nu- 
cleus has been found to be rapid and specific [80]. 
bFGF administered to Gl-arrested aortic endothe- 
lial cells has been localized to the nucleolus and 
shown to stimulate ribosomal gene transcription 
[78]. Furthermore, it has been shown that nuclear 
and nucleolar localization of bFGF in adult bovine 
aortic endothelial cells are related to the state of 
proliferation [79]. Exogenously administered 
bFGF enters the nucleus and nucleolus of growing 
cells at the G1-S transition, bFGF is not detected in 
the nucleus of quiescent confluent cells despite a 
continuous cellular uptake of bFGF throughout the 
cell cycle. It is of interest to note that direct nuclear 
translocation of endogenous bFGF was not observ- 
ed suggesting that bFGF has to get to the cell 
surface first in order to be transported to the nu- 
cleus. Nuclear bFGF may control basal cell growth 
by regulation of gene transcription via a direct in- 
teraction with DNA or through activation of nucle- 
ar protein kinases. 



196 

Autocrine transformation by bFGF 

Basic FGF is synthesized by many normal cells and 
adult tissues. Despite the abundance of bFGF in 
the pericellular space in vitro and in vivo, cells with 
available, functional FGF receptors (e.g. endothe- 
lial cells) do not appear to be transformed. 
NIH-3T3 cells transfected with native bFGF cDNA 
and expressing 20 to 100 times as much bFGF as 
parental 3T3 cells and 10 times as much as endo- 
thelial cells acquire an enhanced proliferation rate 
(Fig. 3) and a higher saturation density. However 
they are density-arrested in vitro and non-tumori- 
genic in syngeneic mice (Table 2) [21, 24, 86]. Cells 
transfected with native acidic FGF cDNA show 
similar properties in vitro and in vivo [87]. Ex- 
tremely high over-expression of bFGF has been 
reported to result in cell transformation [19, 20]. 
3T3 cell lines that over-express bFGF at a very high 
level, 300-1000 fold greater than endothelial cells 
are morphologically altered, and their FGF recep- 
tors are down-regulated. The conditioned media of 
these cells contain high levels of biologically active 
bFGF. Thus, it is possible that cells over-express- 
ing of bFGF are transformed in culture as a result 
of continuous external stimulation by released 
bFGF. Tumors produced in nude mice by cells 
over-expressing either acidic or basic FGF are of 
low frequency, small, slow-growing and spontane- 
ously regressing [20, 86, 87] and might arise from a 
local paracrine stimulation of host cells. 

It is possible that external autocrine stimulation 
by bFGF released from cells over-expressing bFGF 
can confer growth advantage in vitro but may prove 
to be inefficient in vivo since soluble, non-matrix 
bound bFGF is very labile and rapidly inactivated 
[83-85]. The instability of secreted bFGF may ac- 
count for the observation that melanocytes trans- 
fected with native bFGF acquire properties in vitro 
similar to those of metastatic melanoma cells but 
are not tumorigenic in vivo [88]. Moreover in a 
reconstituted skin environment, bFGF transfor- 
mants revert to a normal melanotic phenotype with 
restricted growth indicating that constitutive pro- 
duction of bFGF by itself is insufficient to make 
melanocytes tumorigenic. 

NIH cells transfected with a construct, in which 

bFGF cDNA is altered by addition of a signal se- 
quence, undergo autocrine transformation and ex- 
hibit morphological and biochemical alterations 
characteristic of highly transformed cells [21, 24]. 
The signal peptide bFGF (spbFGF)-transformed 
cells have an accelerated proliferation rate, are not 
density arrested and are capable of anchorage-in- 
dependent growth, spbFGF cells possess few func- 
tional FGF receptors at the cell surface supporting 
the idea that these cells are transformed by consti- 
tutive interaction with, and down-regulation of, 
the FGF receptor [24]. FGF receptors in NIH 3T3 
cells transformed by the FGF-related oncogene, 
K-fgf, are also down-regulated [19, 24] suggesting 
that autocrine transformation by K-fgf is mediated 
via the FGF receptor. FGF receptors are not down- 
regulated in ras-transformed cells even though 
these cells produce substantial amounts of bFGF 
[89], suggesting that the bFGF produced by ras- 
transformed cells is not involved in autocrine trans- 
formation. 

We suggest that spbFGF transforms cells via an 
internal autocrine loop, since these cells do not 
secrete biologically active bFGF despite the pres- 
ence of a signal peptide, and their proliferation rate 
is not affected by neutralizing antibodies to bFGF. 
Such an 'internal' interaction may include all sub- 
cellular sites including the plasma membrane 
where bound bFGF cannot be dissociated from the 
high affinity receptor by a large excess of native 
bFGF or other measures known to release FGF 
from the receptor. 

Suramin, a drug reported to interfere with 
growth factor receptor interactions [8, 90, 91], rap- 
idly reverts the transformed phenotype, inhibits 
accelerated and anchorage-independent growth 
and induces restoration of cross-linkable FGF re- 
ceptors in the plasma membrane of spbFGF-trans- 
formed cells [24]. Suramin would have to be taken 
up by spbFGF-transformed cells in order to disrupt 
an internal autocrine loop, and suramin uptake 
into endosomes has been demonstrated in v-sis 
transformed cells [8]. However, suramin is a highly 
charged, membrane-impermeable molecule [92], 
and it cannot be excluded that in spbFGF-trans- 
formed cells, occupied FGF-receptor complexes 
reside in the plasma membrane in a state which is 



80. inaccessible to exogenous bFGF and neutralizing 
antibodies but which is accessible to suramin. Sura- 
min might also work indirectly, via a secondary yet 
unidentified mediator, to interrupt bFGF receptor 
interactions. 

A basic question still remains as to the molecular 
mechanism by which a signal peptide-bearing 
bFGF or FGF related-oncoprotein results in trans- 
formation. It could be that a structural, post-trans- 
lational modification of FGF now being processed 
through the endoplasmic reticulum and Golgi ap- 
paratus may lead to an atypical interaction with the 
receptor. The localization of bFGF-receptor inter- 
action is very likely to play an important role in 
spbFGF-induced autocrine transformation. While 
native bFGF can interact with the FGF receptor 
only at the cell surface, a signal peptide-bFGF 
might be able to bind the receptor inside the cell 
anywhere along the secretory pathway. Such an 
intracellular interaction may activate different 
modes of signal transduction by exposing novel 
substrates to the tyrosine kinase activity of the FGF 
receptor. 

The malignant potential of signal peptide bFGF 

Cancer cells are characterized by their autonomous 
unrestrained growth together with their ability to 
invade and colonize sites and tissues inaccessible to 
normal cells. Activation of a tumorigenic and 
metastatic phenotype in vivo is a more critical and 
appropriate index for evaluating the transforming 
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Fig. 3. The relation of basal growth rates of cloned bFGF- 
transfected NIH 3T3 cells and the amount of bFGF synthesized 
by these cells. Hatched bars-  growth rate, open bars-  levels of 
bFGF as determined by immunoprecipitation. 1) NIH 3T3 cells; 
2) B-7 cells - NIH 3T3 cells expressing native bFGF; 3) B-35 - 
NIH 3T3 cells expressing higher levels of native bFGF; 4) 
spbFGF- NIH 3T3 cells expressing signal peptide bFGF. Cells 
were plated in 24 well plates at 104 cells/well and counted after 72 
hours in culture. The amount of bFGF synthesized was deter- 
mined by laser densitometry of bands generated in a quantita- 
tive immunoprecipitation of bFGF. 

potential of an oncogene than is transformation in 
culture. When injected into syngeneic mice, 
spbFGF-transformed cells form large and rapidly 
growing tumors. The differential transforming and 
malignant potential of native and signal peptide 

Table 2. Tumorigenic and metastatic potential of NIH 3T3 cells expressing native bFGF and signal peptide bFGF 

Cell lines bFGF activity Tumors % Metastases % 
units/104 cells frequency frequency 

NIH 3T3 0.05 0/12 0 0/12 0 
bFGF (B7) 0.80 0/9 0 0/12 0 
bFGF (B35) 4.60 0/9 0 0/6 0 
spbFGF 0.80 21/24 88 23/28 82 
NIH EJ 3T3 0.45 11/12 92 17/22 77 

NIH 3T3 cells expressing moderate levels of bFGF (B7 cells), high levels of bFGF (B35 cells) and signal peptide bFGF (spbFGF cells), 
as well as ras-transformed cells (NIH EJ 3T3) were injected into syngeneic NII-I/NSF mice. The number of mice with apparent tumors 
was measured 4 weeks after a subcutaneous injection of 5 x 10s cells. The number of mice with apparent lung metastases were estimated 
by explorative thoracotomy performed 4 weeks after tail vein injection of 3 x l0 s cells. 
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bFGF has been analyzed in an experimental metas- 
tasis model in vivo. Injection of cells expressing 
native bFGF even at levels 100 times greater than 
parental 3T3 cells failed to induce any detectable 
macroscopic or microscopic lung metastases (Table 
2). spbFGF cells on the other hand, demonstrated 
a high metastatic potential with tumor incidence 
and numbers comparable to those induced by ras- 

transformed cells, spbFGF cells formed large and 
rapidly progressive and aggressive lung tumors ap- 
parent within 2 to 3 weeks after the injection of the 
transformed cells. The metastatic and tumorigenic 
potential of spbFGF-transformed cells may be re- 
lated to their increased ability to degrade matrix 
and to their possession of altered fibronectin recep- 
tors, i.e., integrins (Yayon and Klagsbrun, in prep- 
aration). 

Conclusions 

Basic FGF does not appear to be a transforming 
protein. Transfection and over-expression of 
bFGF in cells alters morphology and increases 
growth rates but does not induce tumorigenicity or 
promote metastatic potential in vivo. These results 
are consistent with numerous observations show- 
ing that a transformed phenotype in vitro is not 
necessarily indicative of a neoplastic phenotype in 

vivo. For example, malignant and non-tumorigenic 
human prostate carcinoma cell lines show similar 
morphology and growth rates in vitro [93]. In a 
model system for cancer suppression genes, trans- 
fer of a normal chromosome 11 into Wilm's tumor 
cells supresses their tumorigenicity, but the cells 
are unaltered in culture [94]. 

The lack of a signal peptide ostensibly prevents 
bFGF from being involved in autocrine stimulatory 
loops. However if bFGF is altered by the addition 
of a signal sequence, cells transfected with this 
construct exhibit morphological and biochemical 
alterations characteristic of highly transformed 
cells and acquire a highly tumorigenic and meta- 
static potential as well. Possession of a signal se- 
quence may be a prerequisite for a growth factor 
gene to become a transforming oncogene. Acquisi- 
tion of a signal peptide converts bFGF into a trans- 

forming protein analogous to FGF-related onco- 
genes which naturally have signal peptide sequenc- 
es and are transforming. We speculate that the 
hydrophobic signal sequences allow transforming 
growth factors to gain access to otherwise inacces- 
sible compartments and that inappropriate sub- 
cellular localization plays a major role in bFGF- 
induced cellular transformation. 

Key unanswered questions 

There has been major progress in recent years in 
understanding the biochemical and biological char- 
acteristics of the FGF family. However, our knowl- 
edge is still very limited as to how bFGF expression 
is regulated at the molecular level and what role 
bFGF and related oncogenes play in physiological 
and pathological processes in vivo. A number of 
specific key questions need to be addressed. For 
example: 
1. Where is bFGF localized in cells and is the sub- 

cellular localization of bFGF different in normal 
and transformed cells? 

2. What is the significance of differential local- 
ization to the mechanism of autocrine trans- 
formation in general? 

3. What are the mechanisms for transport of bFGF 
into the extracellular matrix? 

4. What is the biological role of extraceUular ma- 
trix bFGF? 

5. What are the signal transduction pathways asso- 
ciated with bFGF mitogenesis on one hand and 
differentiation on the other hand? 

6. How is the activity of bFGF regulated in tissues 
which have abundant amounts of bFGF and 
FGF receptors but which are neither growing 
nor undergoing active angiogenesis. 

These and many other questions need to be ad- 
dressed so that ultimately the role of bFGF in 
growth control and transformation can be under- 
stood. 
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