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A~tract. This paper deals chiefly with various issues pertaining to the existence and uniqueness 
of a finite deformation that gives rise to a prescribed right or left Cauchy-Green strain-tensor 
field. 

Following a review and discussion of available existence and uniqueness theorems appropriate 
to a pre-assigned right strain field, the extent of uniqueness of a generating deformation is 
established under minimal smoothness and invertibility assumptions. 

The remainder of the paper is devoted to the more involved corresponding existence and 
uniqueness questions for a given left strain-tensor field. These questions are first discussed in a 
three-dimensional setting and are then resolved for the special class of plane deformations. 
The results thus obtained stand in marked contrast to their counterparts for a given right strain 
field. 

Introduction 

The main aim of this paper is to deal with various questions concerning the 
existence and uniqueness of a finite deformation that generates a given right 
or left Cauchy-Green strain-tensor field. These issues are nonlinear analogues 
of the corresponding questions regarding the existence and uniqueness of a 
displacement field that gives rise to a pre-assigned infinitesimal strain-tensor 
field. The familiar results pertaining to infinitesimal strains are of great 
importance within the linearized theory of elasticity. In particular, the com- 
patibility conditions of the linear theory enable one to formulate the second 
boundary-value problem of elastostatics in terms of stresses alone. In the 
special case of plane strain or generalized plane stress for a homogeneous 
and isotropic elastic solid, this problem is further reducible to a boundary- 
value problem for the biharmonic equation through the introduction of 
the Airy stress function. A partial motivation for the present study stems 
from the possible usefulness of compatibility conditions for finite strain fields 
in connection with problems involving large deformations of continuous 
media. 

In Section 1, following some relevant preliminaries on finite deformations, 
we prove the equivalence of length- and distance-preserving deformations on 
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the assumption that the mappings involved are but once continuously differen- 
tiable and merely locally invertible. These results are then used to show that 
a smooth, locally invertible deformation is homogeneous if its right or left 
strain field is constant. 

In Section 2, we recall some known results pertaining to the existence issue 
for a prescribed right strain-tensor field. In this connection, the necessity and 
sufficiency of the compatibility conditions are discussed in some detail. 
Further, the extent of uniqueness of a deformation generating a given right 
strain field is reestablished under minimal smoothness and invertibility 
assumptions. 

In Section 3 the existence and uniqueness questions appropriate to a given 
left strain-tensor field are raised in a three-dimensional setting and certain 
difficulties attending their resolution are discussed. 

The uniqueness question posed in Section 3 is dealt with in Section 4 for the 
special class of plane deformations. This section contains two theorems that 
establish a relation between plane deformations generating the same left strain 
field on a simply connected domain. According to these theorems, every 
deformation producing a given left strain field may be represented in terms of 
a single such deformation by means of quadratures. 

Finally, in Section 5, necessary and sufficient conditions for the existence of 
a plane deformation giving rise to a prescribed left strain field are deduced. If 
these compatibility conditions hold on a simply connected domain, and 
barring certain troublesome degeneracies, a generating deformation is shown 
to admit an explicit integeral representation in terms of the pre-assigned strain 
field. Furthermore, in the presence of such degeneracies, the problem of 
constructing a deformation producing a given compatible left strain field is 
reduced to that of finding an analytic solution of an ordinary linear second- 
order differential equation in the complex plane. The existence of such a 
solution is demonstrated. 

1. Notation, preliminaries on finite deformations 

The symbols E2 and E3 are used throughout for Euclidean point spaces of two 
and three dimensions or - depending on the context - for the associated linear 
vector spaces. The letter R always denotes a closed region (in either E2 or E3) 
and/~ is the interior of R; in contrast, D stands for an open region (domain). 
Lower-case and capital letters in boldface- unless otherwise qualified- desig- 
nate vectors and (second-order) tensors, respectively. We call L÷ the collec- 
tion of all tensors with a positive determinant, O+ the set of all 
proper-orthogonal tensors, and S + the set of all symmetric, positive-definite 
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tensors. Thus, 

Q~O÷ if Q Q r =  1, d e t Q =  1, (1.1) (1) 

L ~ S  + i f L = L r a n d v ' L v > 0  for every v -¢: 0. (1.2) 

The notation {O;e~,e2,e3} is used to refer to a rectangular Cartesian 
coordinate frame for E3, with origin O and orthonormal base vectors 
{el, e2, e3}. If v is a vector and L is a tensor in there dimensions, we write vi 
and Lij for the components of v and L in the underlying coordinate frame; 
Latin subscripts always having the range (1, 2, 3). Further, summation over 

repeated indices is taken for granted, and subscripts preceded by a comma 
indicate partial differentiation with respect to the corresponding Cartesian 
coordinate. Strictly analogous notation is employed in two dimensions; in this 
case Greek subscripts with the range (1, 2) are used. 

If A and B are sets, we write f :  A ~ B, i f f  is a function defined on A with 
values in B, while f(A) stands for the range of f .  In particular, if A is a region 

(open, closed, or neither) in E2 or E3, we writef~C(A) if f is continuous on 
A, and feC~V(A) (N = 1, 2 . . . .  ) in the event that f is N times continuously 
differentiable on A. We say that f is smooth, provided f~C1(A), and write 
f~C°~(A) to convey that f has continuous deri.vatives of all orders on .4. 

We now recall certain prerequisites from the theory of finite deformations 

that will be needed in what follows. For this purpose, let R be a closed 

region (2) in E 3 . By a deformation, we mean a mapping ~: R--* E 3 described by 

y = ~ ( x ) = x + u ( x )  on R, (1.3) 

where x is the position vector of a generic point in R, .~(x) is its deformation 
:~ 

image in R = ~(R), and u is the associated displacement field. Such a mapping 

will be called a regular deformation if 

~C~(R) ,  J = d e t F > 0 ,  F=V)3 on R. (1.4) 

Here J is the Jacobian determinant of  ~, while F is its deformation-gradient 
tensor. Note that a regular deformation need not be globally one-to-one. 

Although global invertibility of deformations is an essential requirement in 
continuum mechanics, this restriction will be avoided in dealing with the 
purely kinematical issues considered in this investigation. 

t~) The superscript T indicates transposition; 1 is the identity tensor. 
t2) Actually, in all of the definitions and results cited in the present section, R can equally well be 
replaced by an open region D. 



274 J.A. Blume 

The letters C and G stand for the right and left Cauchy-Green strain-tensor 
fields ~l) of a regular deformation, whereas E denotes its Lagrangian strain- 
tensor (Green-St. Venant strain-tensor): 

C = F ~ F ,  G = F F  r, E = ½ ( C - I )  on R. (1.5) 

Both C and G are symmetric, positive-definite tensor fields with common 
(positive) principal values. According to the polar decomposition theorem, 
F~L÷ admits the unique right and left polar resolutions: 

F = Q U = V Q ,  Q~O+,  u s s  ÷, v ~ s  ÷ on R; (1.6) 

furthermore 

U : w / ~ ,  V=,v/-~, Q : F U  -1 on R. (1.7) <2) 

The tensors U and V, which are usually called the right and left stretch tensors 
of the deformation at hand, are thus the unique positive definite square roots 
of C and G. 

A regular deformation ~: R ~ E3 is homogeneous if its deformation-gradient 
field is constant. Such a deformation therefore admits the representation: 

~ ( x ) = F x + d  on R, F~L+;  F, d constant. (1.8) 

A mapping of this form is a pure homogeneous deformation in the event that 
F~S  + a n d d = 0 .  

A rigid deformation is a distance-preserving regular deformation. We cite 
the following familiar result concerning rigid deformations33) 

THEOREM 1.1: A regular deformation ~: R -~ E3 is rigid i f  and only if  it admits 
the representation: 

~(x) = Q x + d  on R, Q~O+;  Q ,d  constant. (1.9) 

Actually, every distance preserving deformat ion-  in the absence of any regu- 
larity assumptions- can be shown to admit the representation (1.9) with Q 
merely orthogonal, rather than proper-orthogonal. In view of the polar 

(1) These tensor fields are also commonly referred to as the right and left Cauchy-Green 
deformation-tensor fields. 
~2) If L is a nonsingular tensor, L- ~ stands for its inverse. 
t3) See, for example, Gurtin [1], Art. 6. 
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decompositions (1.6), every homogeneous deformation can be uniquely re- 
solved into a pure homogeneous deformation followed or preceded by a rigid 

deformation. 
A regular deformation ~: R -~ E3 is said to be isometric if the length of every 

smooth arc in R equals the length of its deformation image. Following Gurtin 
[1] (p. 49), we now recall certain alternative characterizations of rigid 
deformations, m 

THEOREM 1.2: Let 9: R -~ E3 be a regular deformation. Then the following are 

equivalent: 

(a) C = FrF = 1 on R, where F = V~; 

(b) ~ is isometric; 
(c) ~ is rigid. 

Proof." What follows is a minor variant of the proof given in [1132) We show 
first that (a) necessitates (b). For this purpose, let A c R be a smooth curve 
and let s denote the arc length along A. Thus A admits the parameterization 

A: x = ~(s) (0 ~< s ~< l), ~C~([0 ,  l]), (1.10) 

* 
in which l is the length of A. Let A = ~(A), so that 

* 
A : y = ~ ( s ) =  =~(~(s)) (O~<s~<l), ~C ' ( [O, / ] ) ,  (1.11) 

From (1.11), the chain rule, and hypothesis (a) follows 

I (s)l = = N s ) l  = s Z). (1.12) °)  

Accordingly, if $(s) is the arc length along A, measured from ~(0), one has 

~(s)= I~(a)] da = d a = s  ( O ~ s ~ l ) .  (1.13) 

Hence, ~ is isometric. 
Next, we verify that (b) implies (c). Let ~ be an interior point of R. In view 

of the regularity of ~, the inverse-function theorem assures the existence of an 

(~) The theorem stated in [1] combines Theorem 1.1 with the result cited below. 
(2) Note that al though the restriction to globally invertible deformations is introduced in [ 1], it is 
not essential to the argument  presented there. 
(3) Here and in the sequel a superior dot indicates differentiation. 
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o, pen sphere N c R, centered at ~:,,on which ~ is smoothly invertible. Let 
N = ~(N) and call ~-1, defined on N, the inverse of ~. 

To see that $, is rigid on N, let ,A be a straight-line segment lying in N. It 
evidently suffices to show that A = ~A)  i,s also a straight-line segment. 
Sup,pose this were not the case and let A' c N be a polygonal approximation 

* * , 

to A,, such that A' an, d A have common end points,and the vertices of A' lie 
on A. The length of A' is thus smaller than that of A and hence A ' =  ~-1(,~,) 
is shorter than the stright-line segment A. This, however, is impossible since A 
and A' have the same end points. Consequently, ~ is indeed rigid on N. The 
rigidity of ~ on R follows from the rigidity of ~ in a neighborhood of every 
interior point on R, Theorem 1.1, and the continuity of ~ on R. 

To complete the proof of the equivalence of (a), (b), and (c), one invokes 
Theorem 1.1 to see that (c) implies (a). As is at once clear and is observed in 
[1], 12 in (a) may be replaced by G, U, or V. 

Our next objective is to show that a regular deformation ~: R--~E 3 is 
homogeneous if its right or left strain-tensor field is constant. If  ~ is twice 
continuously differentiable, rather than merely regular, this conclusion - as far 
as the constancy of the right strain-tensor is concerned - follows at once from 
a well-known relation ~1) between the second gradient of ~ and the first 
gradients of ~ and (2. The theorem below avoids the foregoing additional 
smoothness hypothesis. 

THEOREM 1.3: 

(a) Let ~: R ~ E  3 be a homogeneous deformation. Then C = F r l  7 and 
G = FF r are constant on R. 

(b) Suppose ~: R ~ E3 is a regular deformation and either C or G is constant 
on R. Then ~ is a homogeneous deformation. 

Proof." The truth of (a) is immediate from (1.8). With a view towards proving 
(b), assume first that (2 is constant on R and consider the pure homogeneous 
deformation given by 

:~ ' (x)=Ux on R, U=. , / -~ .  (1.14) 

* * * 

Let R = ~(R), R' = ~'(R) and define a deformation ~.: R' - ~  E 3 through 

* 

~.(y') = ~ ( U - l y  ') for all y '~R'.  (1.15) 

o) See equation (2.10), which seems to have its origin in a classical paper by Christoffel [2]. 
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* * 

Clearly, i is regular and i(R') = R. Moreover 

* 

(VI)r(V~)=U 'CU ' = 1  on R'. (1.16) 

* 

By (1.16) and Theorem 1.2, ~ is rigid on R. Hence, Theorem 1.1, in 
conjunction with (1.14), (1.15), assures the existence of  a tensor Q and a 
vector d, such that 

~ ( x ) = Q U x + d  on R, Q ~ O + ,  U = w / ~ ,  (1.17) 

whence ~ is a homogeneous deformation. 
Finally, suppose G is constant on R and let i: R -~ E3 be given by 

i ( x ) = V - l ~ ( x )  on R, V = x / ~ .  (1.18) 

Accordingly, i is a regular deformation and 

V I = V - J F  o n R .  (1.19) 

This identity, together with the second of (1.18) yields 

(V~)r(V~) = F r V - 1 V - ~ F = F V G - J F =  1 on R. (1.20) 

Theorem 1.2 now enables us to infer that ~. is rigid on R and is therefore of 
the form (1.9). Hence (1.18) furnishes 

~(x)=VQx+Va on R, Q~O+, V=v/~,  (1.21) 

and thus ~ is a homogeneous deformation. 

Note that Theorem 1.2, which was used in proving part (b) of Theorem 1.3, 
in turn follows from the latter theorem. 

We turn next to the special class of plane deformations. To this end, let R 
be a cylindrical region of  height h, with the closed cross section 1-I, and let 
{O; e~, e2, e3} be a coordinate frame relative to which R admits the represen- 
tation 

R = {x [ (x~, x2) ~H, -h i2  <~ x 3 <~ hi2}. (1.22) 

We call ~: R ~ E3 a plane deformation (parallel to the plane x3 = 0) provided 

y~=)3~(x~,x2), y3=x3  for a l l (x t ,x2)~H;  -h/2<~x3<~h/2. (1.23) 
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Such a mapping is a regular plane deformation if ~ additionally obeys (1.4), 
which in this instance yields 

[-FIlo F~2 FI2 i ]  
[Fo] = LF2' 0 , F~, = ~.a, J = det[F,a] > O on I-[o (1.24) °) 

In view of the above, :~: R ~ E3 is completely characterized by the sub- 
sidiary two-dimensional mapping )3, : H-~ E2. Writing R in place of H, we 
shall conveniently speak of the "plane deformation :~: R ~ E ~ , "  with the 
understanding that R now refers to a closed region in E~. In this context (1.3), 
(1.4), (1.5) are to be interpreted as appropriate two-dimensional statements: x 
at present is the position vector of a point in R with coordinates x, ,  while :~, 
u, and F, C, G, E are the vector and tensor fields with the components )3~, u~ 
and F~e, C,a, G,#, E~a. Further, 

= = ~(C,a - 6~a). (1.25) (2) r, t~=.f~3 , C~t ~ F~r~t~, G,a=F~rFar, E, tj ' 

Clearly, all of the definitions and results cited earlier in this section have strict 
counterparts for plane deformations. 

2. The main compatibility issue 

In the present section we discuss the questions of the existence and uniqueness 
of a regular deformation generating a given right strain-tensor field. The first 
theorem we cite deals with the uniqueness issue and asserts that two regular 
deformations give rise to the same right strain field if and only if one is 
obtainable from the other through a rigid deformation. This proposition was 
stated without proof by E. Cosserat and F. Cosserat [3]; proofs can be found 
in treatises on differential geometry, (3) where the mathematically identical issue 
arises in connection with the uniqueness of a curvilinear coordinate system 
that corresponds to a given metric tensor. The usual proofs demand that the 
deformations involved be twice continuously differentiable and globally in- 
vertible. The proof outlined below employs essentially the argument used by 
Shield [5], but requires merely that the desired deformation be regular. 

(t) Here [Fv] and [F~t~] denote the appropriate component matrices on F in the frame 
{O; el, e2, e3}. 
<2) We use 6~ and 6q to designate the Kronecker delta in two and three dimensions. 
<3) See, for example, Caftan [4], §30. Shield [5] recently presented a proof in the setting of 
continuum kinematics. 
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THEOREM 2.1: Let ~: R ~ E 3 and ~' : R ~ E 3 be regular deformations. Then 

( F ' ) r F ' =  FTF on R, where F = V~, F ' =  V~' on R (2.1) 

if  and only i f  there & a tensor Q and a vector d, such that 

~ ' ( x ) = Q ~ ( x ) + d  o n R ,  Q e O + .  (2.2) 

Proof." Differentiation of (2.2) leads immediately to (2.1). Conversely, sup- 
pose (2.1) holds. Then, 

F ' = Q F ,  Q = ( F ' ) - r F r ,  Q~O+ on R. (2.3) 

It is sufficient to show that Q is constant on R since an integration of the first 
of (2.3) at once confirms (2.2). For this purpose let ~ be a point in the interior 
of R. In view of the regularity of ~, there is an open sphere N c R, centered 
at ~, such that ~ is smoothly i.nvertible on N. We show first that Q is constant 
on N. Let ~ l,.defined on N = ~(N), be the inverse of ~ and consider the 
deformation ~: N ~ E 3  given by 

~(y) = ~,(~ l(y)) for all yeN. (2.4) 

Clearly, ~ is regular and (2.4), (2.3) give 

V~(y) = F ' (x)F- l (x)  = Q(x) for all yeN,  x = ~- ' (y) .  (2.5) 

Accordingly, 

(V~)r(Vz) = 1 on N, (2.6) 

so that Theorem 1.3 implies that V~, and hence also Q, is constant on N. The 
constancy of Q on R follows from its constancy in a neighborhood of every 
interior point on R and the smoothness of ~ and ~' on R. 

Note that two deformations producing the same right strain-tensor field 
also correspond to the same Lagrangian strain field. The analogue of the 
preceding theorem in the kinematics of infinitesimal deformations is the 
proposition that two suitably smooth displacement fields give rise to the same 
infinitesimal strain tensor if and only if they differ from one another by an 
infinitesimally rigid displacement field. 

We recall next conditions necessary and sufficient for the existence of a 
regular deformation that generates a pre-assigned right strain-tensor field. 
These "compatibility conditions" were encountered first in the differential 
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geometry literature as necessary and sufficient conditions in order that a 
Riemannian space be Euclidean. °) 

THEOREM 2.2: Let D ~ E3 be a domain. 

(a) Suppose ~: D --* E 3 is a regular deformation, let ~6C3(D), and assume 

(V~) r(V~') = C or ~p,Ppd = Co on D. (2.7) 

Then, C ~ S  + on D, C~C2(D) and 

a , , , ,  = - r , k , , ,  + - r , r,kq) = 0 on D, 

F/~k = ½(Cj-k,, + C~k,~ - C0,k) on D. 

(2.8) (2) 

(b) Conversely, i f  D is simply connected, C: D ~ S  +, and C~C2(D) satisfies 
(2.8), then there exists a regular deformation ~: D-~E3 ,  with ~'~C3(D), 
such that (2.7) holds. 

As far as part (a) is concerned, the necessity of (2.8) is readily established by 
computation. It may be useful to outline an economical procedure for doing 
so. One verifies easily that every ~e C3(D) obeying (2.7) satisfies 

FpiFp~.k= F~k, on D, F i j = ~ i , j  , (2.9) 

as well as the linear system 

Fu.~ =F~C~q'Fj~o on D, (2.10) 

Fij~ being defined by the second of (2.8). If one differentiates (2.9) with respect 
to xt and uses (2.10) to eliminate the first gradients of F from the resulting 
equation, one is led to 

FpiFp~,k~ = F~ki.t -- C~q' F~kpFitq on D. (2.11) 

Since Fpj, k~ = Fpj,~k on D, (2.11) implies (2.8). 
An existence proof for a solution F~L+ to (2.10) can be found in §46-49 of 

Cartan's [4] treatise. More recently, Thomas [7] adapted the proof given in [4] 

(1) Christoffel [2] and Cartan [4], ~43-49 are early references; see also ,Eisenhart [6], §23. 
(2) Here C~q I is the appropriate component of C-~. 
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to a broader class of systems of partial differential equations that includes 
(2.10). The argument employed in [4] and [7] relies ultimately on the existence 
theorem for systems of ordinary differential equations and depends crucially 
on the simple connectivity of the domain D. 

From a tensor field F~L+ that is twice continuously differentiable on D and 
that satisfies the linear system (2.10), one can construct a regular deformation 
obeying (2.7) as follows. In view of the symmetry of C, the second of (2.8) 
furnishes 

Fi./~, = F~u, on D, (2.12) 

whence 

Fo..~ , = F~,.j on D, (2.13) 

for every solution F of (2.10). Accordingly, since D is simply connected, 
Stokes' theorem implies the existence of a regular deformation ~: D ~ E3 with 
~,ffC3(D), such that 

171= F on D. (2.14) 

On setting 

B = F - r C F  - l  on D, (2.15) 

one finds with the aid of (2.10) and the second of (2.8) that B is constant on 
D, while F~L+ and C~S + justify that B~S +. Finally, one defines a deforma- 
tion ~ through 

~(x) = x / /~(x)  on D, (2.16) 

and invokes (2.15), (2.14) to confirm that ~ is a regular deformation comply- 
ing with (2.7). 

While (2.8) guarantees the existence of a regular deformation satisfying 
(2.7), the compatibility conditions are not sufficient to guarantee the global 
invertibility of such a deformation. 

Note that (2.8) is equivalent to 

R,~,I -= ~( + Ci~ j,, - C ~  - C~, ,~)  

+ C f q ' ( F j k p F u ,  - Fj~pFi, q) = 0 on D, (2.17) 
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so that (2.12) and the symmetry C yield 

Rokl = --R~ik = Rktij on D. (2.18) 

In view of these relations, (2.17) constitutes a system of six independent scalar 
equations. 

On account of the last of (1.5), the compatibility equations (2.17) may 
alternatively be cast in terms of the Lagrangian strain components Eo.. 

Although the latter linearize to the infinitesimal strains under the assumption 
of infinitesimal deformations, (2.17) do not reduce to the familiar compatibil- 
ity conditions of the linear theory unless products of the second displacement 
gradients are neglected as well. 

In the special case of plane deformations all but one of the scalar compat- 
ibility equations are trivially satisfied, and thus (2.8) degenerates into the 
single equation 

R1212 = 0 o n  D, (2.19) 

provided D c E 2 is now the open cross section of the relevant cylindrical 
region. Alternative constructive proofs of the sufficiency of (2.19) in the 
presence of plane deformations were given by Fosdick and Schuler [8] and by 
Shield [5]. The proof in [8] is confined to locally volume-preserving plane 
deformations. 

3. Remarks on deformations generating a given left strain-tensor field in three 
dimensions 

We now turn to the existence and uniqueness issues for a regular deformation 
that gives rise to a prescribed left strain-tensor field in three dimensions. 
Proceeding first to the uniqueness issue, let D be an open region in E3 and 
suppose ~: D -~ E3 and ~': D ~ E3 are regular deformations in C2(D) with the 
same left strain field. Thus 

G = F F r = F ' ( F ' )  r on D, where F=V~,  F '=V~' .  (3.1) 

If one sets 

Q = F r ( F ' )  - r  on D, (3.2) 

it follows from (3.1) and the smoothness of ~, ~' that 

F ' = F Q ,  Q~Cl(O), Q~O+.  (3.3) 
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Further, because F' = V~', Q obeys 

curl(FQ) = 0 or (FipQp),k = (FipQpk).~ on D. (3.4) 

Conversely, suppose F = V~ satisfies the first of (3.1) and QeC~(D) is any 
proper-orthogonal tensor field that conforms to (3.4). Then one can define a 
regular deformation ~': D --, E3, ~'e C2(D) that generates the same left strain- 
tensor field as ~ through the path-independent line integral 

~'(x) = F(~)Q(~) d~ or 33~(x) = (~,)Qpj(~,) d~j on D, (3.5) 
. 

provided D is simply connected and i ~ D  is fixed. 
Next, consider the homogeneous deformation 

~'(x) = Fx + d on D, (3.6) 

where F and d are constant, F~L+.  In this case, G = FF T is constant, and, 
according to Theorem 1.3, every regular deformation that generates this G is 
necessarily homogeneous. Thus, if (3.~1) and (3.6) hold, (3.3) requires that 

~/(x) = FQx + d' on D, (3.7) 

in which Q and d' are constant, Q~O÷.  If ~ is now understood to be the 
unique extension to E 3 of the mapping (3.6) originally defined on D, one has, 
on account of (3.7), 

,~'(x) = ~(i(x)) on D, (3.8) 

where i :  D ~ E3 is the rigid deformation given by 

i ( x ) = Q x + F - I ( d ' - d )  o n D .  (3.9) 

The mapping ~' thus corresponds to the rigid deformation i followed by the 
extended homogeneous deformation ~. 

As is evident from the preceding remarks, if ~' and ~' satisfy (3.1) and hence 
(3.3), ~' may be interpreted locally as a rigid mapping followed by the 
deformation ~. 

It appears difficult to determine the totality of regular deformations that 
generate the left strain-tensor field associated with an arbitrarily assigned 
regular deformation ~eC2(D). In order to accomplish this purpose, it would 
suffice to find the set of all proper-orthogonal tensor fields QeC~(D) obeying 
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(3.4) for the given F = V~. As is clear already, when ~ is a homogeneous 
deformation, Q satisfies (3.4) if and only if Q is constant. 

In contrast to the uniqueness issue for the left strain field discussed here, the 

corresponding issue for the right  strain field presents no particular difficulties, 

as is evident from the proof  of  Theorem 2.1. 

The ex i s t ence  issue for G -  like the corresponding uniqueness i s sue -  seems 
to be difficult to resolve in three dimensions. The object here is to establish 

necessary and sufficient conditions for the existence of a regular deformation 

generating a pre-assigned left strain-tensor field. 

With a view toward necessary  conditions, suppose ~: D ~ E 3  is regular, 
~E C2(D), and 

F F r = G  on D, where F = V ~ .  (3.10) 

Clearly, G~C~(D) and G ~ S  +. Further, (3.10), in conjunction with the left 
polar decomposition for F, guarantees the existence of a tensor field °) 

QeC~(D),  such that 

F = V Q  or F u = V ~ p Q p j ,  V=V/ -~ ,  Q ~ O +  on D. (3.11) 

Because F = V~ on D, Q satisfies 

c u r l ( V Q ) = 0  or (Vo, Qpj ) . k=(VipQpk) , j  on D. (3.12) 

Equations (3.12) are found to be equivalent to the following quasi-linear 

system of partial differential equations 

Qi~.k = Qip[Qqpt)q~k - Qq~f~qpk -- QqkI)qpj] on D, (3.13) ¢2) 

provided 

= 5Vq~ (Vip,jQp k - V~p,kQ~j) = --~'~qkj on D. (3.14) f~odk ~ - ~ 

Conversely, if D is simply connected and there is a tensor field QeCI (D) ,  
Q ~ O ÷  satisfying (3.13), there exists a regular deformation ~ C 2 ( D )  that 

(1) The smoothness of Q follows from the fact that Q = V-IF on D and from the differentiability 
of F and V = x/~. See, for example, Gurtin [l], Art. 3, for a proof that the components of V 
depend smoothly on the components of G. 
~2) A system of equations analogous to (3.13), satisfied by Q = FU- 1, U = ,4@ for a given right 
strain-tensor field C, was deduced by Shield [5], §3. In contrast to (3.13), the system obtained by 
Shield is a linear system for Q 
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obeys (3.10). Indeed, such a deformation is given by the path-independent line 
integral 

~(x) = V({)Q({) d{ or )3i(x ) = V,~({)Q,j({) d~j on D. (3.15) 
o 

Thus, conditions necessary and sufficient for the existence of a smooth 
proper-orthogonal tensor field Q conforming to (3.13) are at the same time 
necessary and sufficient for the existence of a regular deformation ~eC2(D) 
satisfying (3.10). As will emerge in Section 5, it is possible to obtain explicit 
necessary and sufficient conditions for the existence of a solution to (3.13) in 
the special case of plane deformations. Further, in these circumstances, the 
integration of (3.13) is either reducible to a quadrature or to the integration 
of an ordinary, linear differential equation of  the second order. 

4. Uniqueness of plane deformations generating a given left strain-tensor field 

The uniqueness question discussed in the previous section in the context of 
general three-dimensional deformations is dealt with at present for plane 
deformations. We thus establish two theorems concerning the extent of 
uniqueness of plane deformations producing a prescribed left strain-tensor 
field. From here on D stands for a domain in E2, all vectors and tensors being 
two-dimensional. 

THEOREM 4.1: Let ~: D ~ E2, ~" : D ~ E2 be regular deformations in C3(D), 
such that 

F F r = F ' ( F ' )  r o n D ,  F = V ~ ,  F ' = V ~ ' .  (4.1) 

Let 

Q = Fr(F ' )  - r o n D ,  (4.2) 

so that 

F ' = F Q  on D, Q e O + ,  Q~C2(D). (4.3) 

Assume 

Q ~ +_1 on D (4.4)(o 

~) IfQ = +1 on D one has ~(x) = +~(x) +d on D, with d constant. Thus, in this trivial case, 
~ and 9' differ either by a translation or by an in-plane rotation through n about the origin and 
a translation. 
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and set 

~ = -F~aJFa~,~, a = ~,~.~ + V~V~, b = e~aV~,a on D. (4.5) (1~ 

I f  a 2 + b 2 ~ 0 on D and b has at most isolated zeros on D, then either 

O~a = (6~aa + ~ a b ) / ~  b ~ on O 

or (4.6) 

Q ~  = - (6~a + e ~ b ) / ~  + b ~ on D. 

I f  a = b = 0 on d and D is simply connected, (4.6) holds again with a and b 

replaced by ~ + c and ~, respectively, where 

} ~(~) = e x p  7~({) d~, , ~(~) = ~ . ~ ( { )  d ~  ~ D, (4.7) 
. 

~ e D is an arbitrary f i x ed  point, while c = Q~(~)/e~aQ~a(~). 

P r o @  Since F ' =  V~' and F ' eC~(D) ,  (4.3) demands  that  

c u r l ( F Q ) = 0  or ~ ( F ~ Q ~ ) , , = 0  on D. (4.8) 

Further ,  because Q ~ O +  on D, Q admits  the representat ion 

cos t a  - s i n m ~  
= or 

[Q~] k sin ~ cos m 

Q ~  = ~ cos ~ - e~  sin ~ on D,, o e [ 0 ,  2~). (4.9) 

While the functions cos m and sin m are in C~(D), m itself need not  be 

cont inuous  on D. It  is clear, however,  that  m is twice cont inuously  differen- 
tiable on any subdomain  of  D on which it is cont inuous.  

Let 

Z~ = cos 2~(s in  2m).~ - sin 2~(cos  2~),~ on D. (4.10) 

~) Here and in the sequel e~a is the two-dimensional alternating symbol: ~1|=~22=0, 
g 1 2  ~ - - ~ 2 1  ~ 1 .  
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On any domain  o f  continuity o f  09, (4.10) reduces to Z~ = 209.,. Substitution 

from (4.9) into (4.8), after some manipulat ion and an appeal to (4.10), (4.5), 

yields 

Z~ = [6~a sin 209 + e,a( 1 - cos 209)]~ on D. (4.11) 

On differentiating (4.11) with respect to x;. and using (4.10), (4.5), one 

eventually arrives at 

e~Z~.; " = a( 1 - cos 209) + b sin 209 = 0 on D, (4.12) 

f rom which follows 

(a 2 + b 2) COS 2 209 - 2a 2 cos 209 + a 2 - b 2 = 0 on D. (4.13) 

Assume first a 2 +  b 2 ~  0 on D. Then, by (4.12), (4.13), at each point  on D 

either 

cos 209 = 1, sin 209 = 0 (4.14) 

or  

a 2 - b ~ - 2 a b  
- - _ _  cos 209 a 2 + b 2 ,  sin 209 a 2 + b 2 .  (4.15) 

Note  that  (4.14), (4.15) coalesce only at zeros o f  b and that b = 0 th roughout  

D is excluded by (4.4), in view of  (4.9). N o w  assume further that b has at most  

isolated zeros ~1) on D and let Do be the subdomain  o f  D on which b # 0. 

Suppose there is a point  in Do at which (4.14) holds. Then, the continuity o f  

cos 209 demands that (4.14) hold at all points o f  D, which is precluded by 

(4.4). Hence (4.15) holds on D. Consequently,  either 

a - b  
cos 09 - sin 09 - 

 +b2 
or 

- a  b 
cos 09 - sin 09 - 

aZ~C~-U~ 5' v /a2  + b2 

on D 

on D, 

(4.16) 

and (4.16), (4.9) now confirm (4.6). 

o) Actually, it is sufficient to assume that the subset of D on which b fails to vanish is connected. 
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Next, suppose a = b = 0 on D and D is simply connected. In this case, the 
last two of (4.5) become 

V,., +V,Y, =0 ,  e~y~.~ = 0  on D. (4.17) 

On account of the second of (4.17), one may define a function qeCZ(D)  

through the first of (4.7), the line integral here involved being path-indepen- 
dent. Accordingly, one has 

q.~ =r/y~ on D, (4.18) 

which-  together with the first of (4.17)-  leads to 

r/,~ = q(~.~ + 7~,) = 0 on D, (4.19) 

so that q is harmonic and hence in C~(D) .  One may thus define another 
function, ~ ~ C ~ ( D ) ,  through the path-independent line integral appearing in 
the second of (4.7). The latter implies the Cauchy-Riemann equations 

~.~ = ~,~q.~ on D. (4.20) 

By virtue of (4.20), the complex-valued function de te~ ined  by 

g(z) = g(x) + iq(x) on D, z = x~ + ixz, (4.21) 

is analytic on D; further, because of (4.18), one has 

dg 
- n(~z + iy~) on D. (4.22) 

dz 

A direct computation based on (4.11), and involving (4.10), (4.17), justifies 

Z,,~ = 0  on D. (4.23) 

Let p be the scalar field defined by 

} p(x) = e x p ~  ~ ( ~ )  d ~  on D, (4.24) 

noting that the foregoing line integral is path-independent owing to (4.23). 
With the aid of (4.24), (4.10) one readily verifies that the complex-valued 
function f given by 

f ( z )  = p(x) e - ~ )  on D, z = x~ + ix~, (4.25) 
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is analytic and nonzero on D, as well as that 

2df 
. . . .  ~ 2 + i ~  on D. (4.26) 

f dz 

From (4.26), (4.11) one draws 

2 d f  _ i(e2i, o _ 1)(72 + i])i ) on D, (4.27) 
f dz 

or, invoking (4.22) and r /~  0 on D, 

2 dd~fz = / (e2i~ - 1)f~zg o n D .  (4.28) ~/ 

Substitution from (4.25) into (4.28), in turn, leads to 

d f  dg 
r/~z = - p  sin o) ~z  on D. (4.29) 

Thus, if one sets 

v = - p s i n o ) = I m { f }  o n D ,  

(4.29) becomes 

d f  dg 
r/~zz = V ~ z  on D (4.31) 

or, by (4.30) and (4.21), 

~(U,2 "~- iv.O = v(r/.2 + iq.0 on O. (4.32) 

Equating real and imaginary parts of this identity, one infers that 

V(X) = Clq(~[ ) on D, 

provided c~ is a real constant. From (4.30), (4.21), 
analyticity of  the functions f and g, follows 

f ( z )  = c~g(z) + cz on D, (4.34) 

(4.30) (~) 

(4.33) 

(4.33), as well as the 

o) Recall (4.25). 
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in which c2 is another real constant. S ince f  ~ 0 on D, c~ 2 + c22 ~ 0. Moreover, 
because q = Im{g} ~ 0 on D, (4.34), (4.25) give 

co(x) = -arg{c~g(z) +c2} on D, cot[0, 2~). (4.35) (1) 

If c~ = 0, then c2 ~ 0, co = -arg{c2} on D, and hence 

c o = 0  i f c z > 0 ,  c o = n  i f c 2 < 0 .  (4.36) 

As is clear from (4.9) and (4.36), c~ = 0 leads to Q~a = +6,a,  so that cl ~ 0 by 

(4.4). 
Thus, set 

C = C2/Cl,  (4.37) 

whence (4.35) may be written as 

co(x) = -arg{cj[g(z) + c]} on D. (4.38) 

Since Im{g} > 0, one has 

co(x) = -arg{g(z)  + c} on D if c~ > 0, 
(4.39) 

co(x) = -arg{g(z)  + c} + ~r on D if c~ < 0. 

This, together with (4.21), (4.9), furnishes 

Q,a = ___[6,~(/~ + c) + e~tyl]/x/(la + C) 2 "]- q2 on D. (4.40) 

Finally, observe that q(~) = 1, #(~) = 0 by (4.7); consequently, the evaluation 
of  the constant c in (4.40) leads to c = Q,,(~)/ea~Qt~a(~). This completes the 
proof. 

Before turning to the next theorem, we add a remark concerning the case in 
which a 2 +  b 2 #  0. Thus, let ~, ~' satisfy the hypotheses of  Theorem 4.1 and 
suppose in particular that a 2 -b b 2 ~ 0 on D, while b has at most isolated zeros 
on D. If  one assumes that ~ C4(D), rather than merely in C3(D), substitution 

o) From here on we take for granted that arg{clg(z) + £2}~(-2n, 0]. 
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from (4.15) °) into (4.10) and (4.11), upon equating the ensuing right-hand 
members, yields 

ab., - ba., - abv~ + bZe,aVt~ = 0 on D. (4.41) 

Therefore, in the present circumstances (4.41) is a necessary condition for the 
existence of a deformation ~'(x) ~ +__~(x) + d on D with the same left strain 
field as ~. One can show by example that there are plane deformations in 
C~(D) for which (4.41) fails to hold, although a and b have no common zeros 
and b has at most isolated zeros on D. If ~: D -~ E~ is such a deformation, it 
follows that ~ ' : D ~ E 2  is regular, in C3(D), and satisfies (4.1) only if 
~'(x) = +y(x)  + d  on D. 

The following theorem is a converse of Theorem 4.1 and supplies an 
algorithm for the construction of a deformation ~' that generates the same left 
strain field as a given deformation ~. 

THEOREM 4.2: Let D be simply connected and ~: D ~ E2 be a regular deforma- 
tion in C4(D), F = V~. Suppose the fields a, b, and ~ ,  defined through (4.5), 
satisfy a2 + b  ~ # 0  on D and obey (4.41). Then the deformation ~" :D ~ E 2  
determined by 

~'(x) = F(~)Q(~) d~ or 33.'.(x) = F~a(~)Qar(~) dCr on D, (4.42) 

in which Q is given by either of (4.6), is regular, ~'~C4(D), and ~' conforms to 
(4.1). 

I f  a = b = 0 on D, define functions I~ and ~ on D through (4.7). Let Q be given 
by either of  (4.6) but with a and b replaced by I~ and q, respectively. Then ~' 
determined by (4.42) is regular, ~'~C4(D), and ~' obeys (4.1). 

Proof: Suppose first (4.41) holds with a 2 + b 2 # 0 on D, and let Q be given by 
either of (4.6). In order to reach the desired conclusion, it is sufficient to show 
that Q e O + ,  Q~C3(D), and that Q satisfies (4.8). The latter assures the path 
independence of the line integral in (4.42), while (4.42) implies F ' =  FQ, and 
thus (4.1), since Q is orthogonal. 

The proper orthogonality of Q follows directly from (4.6). Further, because 
F~C3(D), (4.5), (4.6) imply that Q is at least in C1(D), and (4.6) results in 

Q~a.;, = euaQ,~(ab,a - ba.a)/(a 2 + b 2) on D. (4.43) 

t~) Recall that (4.15) was shown to hold at every point of D. 
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With the aid of (4.41) and (4.6), Equation (4.43) may now be written as 

O~.~ = ½e~lle,~Q~O~Qp;~ p on D. (4.44) 

One infers from (4.44) and y,~CZ(D) that Q is actually in C3(D), rather than 
merely once continuously differentiable. 

It remains to show that (4.8) holds. To this end, note from (4.44) and the 
orthogonality of Q that 

I ~ Q ~ , ~  = - ~ Q ~  on D. (4.45) 

Substitution for ~, from (4.5) now gives 

~Fu~Q~. ~ = ~Q~Fu~.~  on O. (4.46) 

In view of (4.6) and because ~,~Fu,,~ = 0 on D, (4.46) is found to be equivalent 
to 

~.F~Q~.~, + ~Fu~.~Q~ ~ = 0 on D, (4.47) 

which con f i~ s  (4.8). 
Next, assume a = b = 0 on D, so that the last two of (4.5) reduce to (4.17). 

Let q and p be defined through (4.7). One now argues as in the proof of the 
last theorem that the required line integrals are path-independent and that 
~, q are both in C~(D). On defining Q by 

Q,a = ~(6,ap + e , a q ) / ~  + qz on D, (4.48) 

one infers Q e O + ,  QeC~(D).  Moreover, (4.48) together with (4.18), (4.20) 
yield 

Q~a.~ = q~,aQ,,(fozp + ep~q)Tp/(~2 + q2) on D. (4.49) 

But (4.49), (4.48) entitle us to assert (4.44) also in the present instance, which 
once again enables us to justify (4.8). The line integral in (4.42) is thus 
path-independent, and ~' so determined is in C4(D) with d e t F ' >  0 on D; 
further, ~' satisfies (4.1). The proof is now complete. 

As is evident from (4.5), any deformation ~ that is h a ~ o n i c  on D gives rise 
to the case in which a = b = 0 on D. This class of de fo~a t ions  includes 
two-dimensional conformal mappings and homogeneous defo~at ions .  The 
subsequent example shows that there are nonharmonic mappings for which 
a = b  = 0  on D. 
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Let D = {x I Xl > 0, x2 > 0} and consider the deformation ~: D ~ E z  given 
by 

)3~(x) = Log X l ,  .~2(X) = Log X 2 on D. (4.50) 

Then, clearly, ~6C~(D),  

I';' I": 
whence ~ is a regular deformation. Here, (4.51), (4.5) give 

7 l (X)=l /x~,  72(x)= l /xz ,  a = b = 0  on D. 

Choosing ( ~ ,  ~2) = (1, 1), one finds from (4.52), (4.7) that 

q (x )=x ,x2 ,  p(x)=½(x~ z-x22) o n D ,  

and (4.48) with the upper sign yields 

1 2x,x2 ] 
[Q~a]-x~ + x~[_-2x,x2 x ~ - x ~ 3  on D. 

Finally, from (4.54), the first of (4.51), and (4.42) follows 

33~(x) = -Log[2x, / (x~ + x22)], 33~(x) = Log[2x~/(x2t + x~)] 

(4.51) 

(4.52) 

(4.53) 

(4.54) 

on D. (4.55) 

5. Existence of plane deformations generating a given left strain-tensor field 

In this section we prove two theorems concerning the existence of a plane 
deformation that gives rise to a pre-assigned left strain-tensor field. The first 
of these two theorems establishes necessary existence conditions; the second 
theorem asserts that the latter are also sufficient. 

THEOREM 5.1: Let 9: D --* E2 be a regular deformation in C4(D) and 

(Vg)(V$')T= G or .f~,v.fa,r = G~a on D, (5.1) 

so that G ~ C 3 ( D ) ~ S  +. Let 

v = ~ on D, (5.2) 



294 J.A. Blume 

m~, = ~u V~ ~ V#~,,,~ -- e=a V~ 1 VA#,#, (5.3) 

n~ = ~ ,V~f l  V,,,~ + e~ ,V~ ~ V~, ,  on D, 

p = n=,~ + e~,m~n,, q = e~,n~.# + m~n=, r = e~,m,,~ - n~n~ on D. (5.4) 

Then 

p 2  + q2 - -  r2 >/ O on  D (5.5) 

and the scalar f ield A, given by 

A = x /p  ~ + q2 - r ~ on D, (5.6) 

is in C~(D). Moreover, i f  either A = 0 on D or A has at most  isolated zeros on 

D, the following equation holds throughout with at least one o f  the two sign 

alternatives: 

(p~ + q~)m~ + r(6~,q + e=ap)n, + q=p - p,~q 

+ [A(6=~o - e=~q)n~ + A.=r - r=A] = 0 on D (5.7) 

Proof: The smoothness, symmetry, and positive definiteness of  G are immedi- 
ate from (5.1) together with the regularity and assumed additional smoothness 
of ~. Further, by (5. l) and the left polar decomposition of  V~, there is a tensor 
field QeC3(D), such that 

V g = V Q  or p=,~=V=aQa ~ o n D ,  

Accordingly, Q obeys 

curl(VQ) = 0 or e~(V=aQa~)., = 0 

V = x/c~, Q e O +  on D. (5.8) 

on D. (5.9) 

The above system constitutes a pair of  scalar equations, which is found to be 
equivalent to the quasilinear system of partial differential equations 

a.¢.r = Q=~[Qo~Q,,~ - aplj[~p,~, - -  Qp~f~p;¢#] on D. (5.10) 

where 

~ - -  ~ p ~  ~ _ ~ = = I V , ~  (Vau.aQ.r - V~u.~Q,a) on D. (5.11) 
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Since Q e O +  on D, Q admits the representation 

Q~a = 6,a cos o9 - e~a sin 09 on D, o9~[0, 2~). (5.12) 

As is observed in the proof  of  Theorem 4.1, the scalar field o9 may not be 
continuous on D. However, it is apparent from (5.12) and the smoothness of  
Q that the functions cos o9 and sin 09 are in Ca(D), and thus 09 is three times 
continuously differentiable on any subdomain of  D on which it is continuous. 

Let 

Z, = cos 2og(sin 2o9)., - sin 2og(cos 2o9).~ on D. (5.13) 

On any domain of  continuity of o9, (5.13) reduces to Z, = 2o9.,. Multiplication 
of (5.10) by earQ,~ and a subsequent appeal to (5.11), (5.12), in view of  (5.13), 

yields 

~ = m~ + (6~ cos 209 + e~ sin 2o9)n~ on D, (5.14) 

with rn~ and nt~ defined through (5.3). Differentiating (5.14), using (5.13), and 
invoking (5.14) once again, one eventually arrives at 

e,~7.~.;. = p sin 2o9 + q cos 2o9 - r = 0 on D, (5.15) 

where p, q, r are given by (5.4) and are in Ct(D). From (5.15) follows the 
quadratic equation for cos 2o9: 

(p2 + qZ) cos z 2o9 - 2qr cos 2o9 + r 2 _ p 2  = 0 on D. (5.16) 

The latter has real roots only if (5.5) holds. Moreover, (5.15), (5.16), (5.6) 
demand that either 

(p2  + q2) COS 2o9 = qr +pA,  

or  

(p2 + q2) cos 2o9 = qr - p A ,  

(p2 q_ q2) sin 209 =pr -- qA 

(p2  _ qZ) sin 2o9 =pr + qA 

(5.17) 

at each point of  D. Note that the two alternatives in (5.17) coalesce only at 
zeros of  A. From (5.17) one draws 

(p2 + q2)[p cos 2o9 - q sin 2o9] = (p2 + qZ)A on D (5.18) 

and, since (5.5), (5.6) imply that A = 0 at a common zero o f p  and q, 
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p cos 2~0 - q sin 2~o = A on D. (5.19) 

The smoothness of p, q, cos 2~o, sin 2~o now assures that AeC~(D). 
Suppose first that A has at most isolated zeros (~) on D. In this event a 

continuity argument confirms that either the first two or the last two of (5.17) 

hold at a / /points  of  D. 
Next, if A vanishes identically on D, the two alternatives in (5.17) coalesce 

and hold on D. Thus in this case, as well as if A has at most isolated zeros on 

D, one infers from (5.17), (5.13), 

(p2 + q2)~ = qp,~ _pq,~ +_ (Ar,~ - rA,~) on D. (5.20) 

The upper or lower sign in (5.20) holds throughout D according as the first or 

second possibility in (5.17) is valid on D. Combining (5.17), (5.20), (5.14), one 
arrives at (5.7). This completes the derivation of  the necessary conditions (5.5) 

and (5.7). 
We now proceed to a theorem that establishes the sufficiency of  (5.5) and 

(5.7). 

THEOREM 5.2: Let D be bounded and simply connected. Let G: D - ~ S  ÷ be in 
C3(D) and continuously differentiable on the closure • of  D, V = x//--~. Suppose 
the fields m, n, p, q, and r, defined through (5.3), (5.4), obey (5.5). Further, 
let A, given by (5.6), be in CI(D) and satisfy (5.7) throughout D with at least 
one of the two sign alternatives. Then if  either p 2 + q2 ~ 0 on D or p = q = 0 on 
D, there exists a regular deformation ~,: D ~ E 2 ,  ~C4(D), such that (5.1) 

holds. 

Proof: In order to show that (5.5), (5.7) guarantee the existence of a 
generating deformation ~, it is sufficient to show that these "compatibility 
conditions" for G imply the existence of a proper-orthogonal tensor field 
Q~C3(D) that satisfies (5.9). To see this, note that if Q is such a tensor field, 

one may define ~ through 

~(x) = V(~)Q(~) d~ or )3~(x) = V~a(~)Q¢~(~) d ~  on D, (5.21) 

provided ~ D  is fixed. The above line integral is path-independent by virtue 
of (5.9); the deformation ~ so determined is regular, in C4(O), a n d - o n  
account of  (5.2) and the orthogonality of  Q -  obeys (5.1). 

o) It is actually sufficient to assume that the subset of D on which A fails to vanish is connected. 
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Assume first that p and q have no common zeros on D. Set 

qr +_ pA pr -T- qA 
on D, (5.22) c p2+q2 ,  S - p 2 + q 2  

where A is given by (5.6) and the upper or lower sign is used according as 

(5.7) holds with the upper or lower sign. The functions c and s are at least 
once continuously differentiable on D, and one verifies with the aid of (5.6) 
that 

c 2 + s  ~ =1  o n D .  (5.23) 

Differentiation of (5.22) leads to 

- - S  
c,~ - p 2  + q2 [qP.~ -Pq,~ + (Ar,~ - rA,~)], 

(5.24) 

c 
s,~-p2+q2[qp.~--pq.~+(Ar,~--rA.~)] on D. 

In view of (5.7), (5.22), one may write (5.24) as 

c.~ = - s[m~ + (6~c + e~as)na], 
(5.25) 

s., = c[m, + (6~t~c + e~as)na] on D. 

Because of  the smoothness of m and n, (5.25) is easily seen to imply that c and 
s are actually in C3(D). Let ~ be a fixed point in D and define 09eC3(D) 
through 

09(x) = ~ [c({)s,~({) - s({)c,~({)] d ~  + 03 on D, (5.26) 

in which o5 is a constant determined by 

cos 203 = c(~), sin 203 = s(~), 03e[0, ~). (5.27) 

The line integral in (5.26) is path-independent in view of  (5.23). Further, one 
finds that (5.26), (5.27) require 

cos 209=c,  sin 2o9=s  o n D ,  (5.28) 
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which, in conjunction with (5.26), (5.25), (5.23), justifies 

~o,~ = ~[m~ + (6~a cos 2~o + e~a sin 2og)na] on D. (5.29) 

Next, define Q~C3(D) through 

Q~ = 6~a cos ~ - ~a sin ~ on D. (5.30) 

Evidently, Q~O+ on D and, because of  (5.29), one has 

Q=~.~ = ~pQ=o(m~ + Q ~ Q ~ n , )  on D, (5.31) 

whence 

= 5(Q,am~ + Q~,n~) on D. (5.32) ~#aa,a.a i 

Substituting into (5.32) for Q,~, ma, and n~ from (5.30) and (5.3), one arrives 

at 

eaaV~,Q,a, a = -~aaVoa.a cos ~ - v~a.a sin ~ on D, (5.33) 

or, on appealing to (5.30) o n ~  again, 

ea~ Vp,Q,a. a = -ea; .v~, .~Q, a on D. (5.34) 

Thus, (5.9) holds. 
Next, suppose p = q = 0 on D. In this case (5.5) requires r = 0 on D and 

(5.7) holds trivially. Moreover, (5.4) reduces to 

n,. ,  + ~,am,na = O, ~,an,.a + re,n,  = O, e,oma. , - n ,n ,  = 0 on D. (5.35) 

If, in addition, n = 0 on D, (5.35) becomes 

e,am,, a = 0 on D, (5.36) 

so that one may define a scalar field w ~C3(D) through the path- inde~ndent  
line integral 

lI: 
m(~) = ~  m~({) d~, on D, (5.37) 

where ~ s ~  is an arbitrary fixed point. Let QeC~(~)  be given by (5.30), 
whence Q e O +  on D. In the present instance one finds from (5.37), (5.30) that 
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(5.31) holds once again. This, as before, entitles one to assert that Q satisfies 
(5.9). 

We now turn to the case in which p = q = 0 on D, but n fails to vanish 
indentically on D. We shall show that in these circumstances, the problem of  
finding a tensor field Q e O +  c~ C3(D) obeying (5.9) is reducible to the integra- 
tion of an ordinary linear differential equation of  the second order. 

Suppose for the time being that there exists a Q~O+ ~C3(D) satisfying 
(5.9), and hence also (5.10). Such a tensor field admits the representation 
(5.12), and, because of (5.10), ~o obeys (5.14) with Z~ given by (5.13). 

The assumed smoothness of G, along with (5.2), implies that the vector field 
m defined in (5.3) can be continuously extended onto/~.  If m now stands for 
this extension, m~C2(D)c~ C(/~) and admits a Helmholtz resolution 

m, = 0.~ - e,a~b,a on D, (5.38) 

where the scalar potentials 0 and ~b are both in C2(D). Next, define functions 
f~ ~ C2(D) through 

f ,  = e-~(g~a cos 0 + e,a sin O)na on D. (5.39) 

Equations (5.39), (5.38), and the first two of  (5.35), by direct calculation, are 
found to yield 

f~., = 0, e,af,,a = 0, or f2,~ = e;,ufl., on D. (5.40) 

Accordingly, f2, f~ are conjugate harmonic functions and are thus in C°~(D). 
Further, from (5.39), 

f,f~ = e-2*n,n~ on D. (5.41) 

The zeros of  n therefore coincide with those of  f and are necessarily isolated 

since f2, f l  are harmonic conjugates and n is assumed not to vanish identically 
on D. Combining (5.38), (5.41), and the third of  (5.35), one obtains 

~p,,, =f,f~ e 2~ on D. (5.42) 

The harmonicity of f on D now implies °) that gpeC~(D). 
Substitution from (5.38) into (5.14) yields 

Z~ - 0., = -e,a~b.a + (6,a cos 2~o + e,a sin 2~o)nt~ on D. (5.43) 

o) See, for example, Courant and Hilbert [9], p. 502. 
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I f  one sets 

tr = 2~o - 0 on D, (5.44) 

the smoothness of  cos 09, sin ~o, o~, and 0 implies that tr is twice continuously 

differentiable on any domain of  continuity of  ~o, while cos a and sin a are both 

in C~(D). Next, let ~eC~(D)  be given by 

• ~ = cos a(sin a).~ - sin a(cos a),,~ = ~ - 0,~ on D. (5.45) ~) 

On any subdomain of D on which w is continuous (5.45) reduces to ~ ,  = a a.  

On account of  (5.45), (5.44), and (5.39), Equation (5.43) can be written as 

• ~ = - e ~ . ~  + e~(6~ cos a + ~ sin a)f~ on D. (5.46) 

A direct calculation based on (5.46), (5.45), and (5.40) gives 

• ,,, = 0 on D. (5.47) 

One may thus define a scalar field p ~C2(D) through 

0(~) = exp e , ~ ( { )  d ~  on D, (5.48) 

where ~ D  is fixed, the line integral here involved being path-independent by 
virtue of  (5.47). 

Next, let z = Xl + ix~. One verifies with the aid of  (5.48), (5.45) that the 

complex-valued function ~ defined by 

h(z) = p(x) e -ia(x)/2 on D, z = X 1 + ix2, (5.49) 

is analytic and nonzero on D and that 

h'(z) ~ dh(z) /dz  = -~h(z)[~:(x)  + i ~ ( x ) ]  on D. (5.50) 

Further, if f ,  is the pair of  functions defined in (5.39), let 

f ( z )  =f : (x )  + ~,(x) on D, z = x~ + ix:. (5.51) 

~) Recall (5.13). 
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view of  (5.40), the function f is analytic on D. Finally, let q~(z, 2) be In 
determined by 

~ ( z , £ ) = ~ b ( x )  o n D ,  z = x t + i x ~ ,  ~ = x ~ - i x 2 .  (5.52) (~) 

Clearly, ~ is real-valued, ~ C~(D), and 

6z(Z, 2) = ½[~b.,(x) - i~b.z(x)], 

e )  : e), e) : (5.53) 

q~(z,  e) = ¼[~b.,,(x) - ~b.2~(x) - 2i~b.,2(x)], $,e(z, e) = q~2(z, e) on D. 

Combin ing  (5.50), (5.46) and using (5.51), (5.52), (5.53), one arrives at 

- 2 h ' ( z )  = 2 h ( z ) ~  + h(z)f(z) e ~+/a(x) on D, ~ = ~(z, ~), (5.54) 

so that,  because of  (5.49) 

- 2  e ~[h'(z) + h (z )~]  =f(z)h(z) on O. (5.55) 

Partial  differentiation of  (5.55) with respect to z yields ~3) 

- 2  e ~{h"(z) + h ( z ) [ ~  - ~2]} =f'(z)h(z) on D, (5.56) 

and on eliminating h(z) between (5.55), (5.56), one is led to 

f(z)h"(z) - f'(z)h'(z) + ~,(z, e)h(z) = 0 on D, (5.57) 

provided 

~(z, 2) = f ( z ) [ ~  - ~ ]  - f ' ( z ) ~  on D, ~ = ~(z, 2). (5.58) 

Since f a n d  4~ are determined by G, the same is true o f ~ ,  which is in C~(D). 

o) Here and in the sequel, a superior bar indicates complex conjunction. Moreover, we say that 
~(z, ~) is defined for every pair of complex conjugate numbers (z, ~) such that z is in D. 
t~) We write ~z, ~zg in place of O~/8z, ~2~/Oz ~, respectively. The subscripts z and _~ are thus 
exempt from the usual range and summation convention in what follows. 
(3) Observe that if h(z)=hl(x ) +ih~(x) is analytic on D and /q(z, z-)=h(z) on D, then 
/q_.(z, z-) = {ht.~(x ) - h2.2(x ) - i[h~,2(x ) + h2,~(x)]}/2 = 0 by the Cauchy-Riemann equations. 
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Moreover, it is clear from (5.57) that ~(z, z-) is independent of  ~ and hence 
analytic o) on D. 

The preceding considerations which presupposed the existence of the requi- 
site proper orthogonal tensor field Q, serve to motivate the following construc- 
tion of such a tensor field. For this purpose, guided by (5.57), we start by 
considering the ordinary differential equation 

f(z)w"(z) - f ' ( z )w' (z)  + ff,(z, z-)w(z) = 0 on D, (5.59) 

where f is the analytic t2) function defined by (5.51), (5.39), (5.38), and ~ is 
given by (5.58), (5.52), (5.38). The analyticity o f~  on D may be deduced from 
its definition and known properties of ~ and f as follows. Observe first fr6m 
(5.50, (5.52), (5.53) that (5.42) may be written as 

4 ~  =f(z) f (z)  e ~ on D, $ = t~(z, ~), (5.60) 

so that 

4~zze = f (z )  e~[f ' (z)  + 2f(z)~] on D. (5.61) 

Multiplication of (5.61) by f(z), in view of (5.60), yields 

f(z)~=e - [f'(z) + 2f(Z)~z]q~e = 0 on D, (5.62) 

which, on account of (5.58), implies 

~,e(z, ~) = O, g(z, ~) = g(z), g analytic on D. (5.63) 

Accordingly, the differential equation (5.59) becomes 

f(z)w"(z) - f ' ( z )w' (z)  + g(z)w(z) = 0 on D (5.64) 

and thus has analytic coefficients. 
We now show that (5.64) admits a nontrivial solution, analytic on D, which 

may be used to construct a proper-orthogonal tensor field Q~C3(D) obeying 
(5.9). 

The existence of two linearly independent analytic solutions of  (5.64) in a 
neighborhood of  any point z ,  of  D at which f ( z , )  # 0 (ordinary point) is 

(') u fi(z, e) -= g,(x) + g2(x) on D, ~z,  z-) -- {g~.l(X) - g2,2(x) + i[gl,2(x) + g2,1(x)] }/2 = 0 on D 
implies the Cauchy-Riemann equations. 
(2) See equation (5.40). 
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guaranteed by the theory of linear ordinary differential equations. ") We 
confirm next that the general solution of (5.64) is also analytic in a neighbor- 
hood of a zero o f f  Let z , e D  be a (necessarily isolated) zero o f f  Thus there 
is a neighborhood N of z , ,  such that 

f ( z )  = (z - z,)~tA(z), A ¢ 0 on N, (5.65) 

where M is a positive integer and A is analytic on N. From (5.65), (5.58), 
(5.63), one infers that z ,  is a regular singular point of (5.64) and that the 
roots of the corresponding indicial equation are zero and M + 1. Therefore, ~) 
the differential equation (5.64) has a solution on N of the form 

w~(z) = (z - z , )  'vI+ ~P(z), q~ analytic on N, q~(z,) # 0. (5.66) 

The existence of a second analytic solution of (5.64) on N that is linearly 
independent of Wl is established next. Let 

~2(z, £) = e-~[w](z) + Wl(Z)d~]/f(z) on N, z # z , .  (5.67) 

Clearly, ~2 is in C ~ on its domain of definition. Differentiating t3) (5.67) and 
bearing in mind (5.53), (5.58), (5.63), and that w~ satisfies (5.64), one arrives 
at 

Ok,(z, ~)/0~ = 0, ~z(z, ~) = w2(z) on N, z # z , ,  (5.68) 

with w2 analytic on the deleted neighborhood of z ,  at hand. To see that w2 has 
a removable singularity at z , ,  substitute from (5.65), (5.66) into (5.67) to 
obtain 

lim w2(z) = ( M  + 1) e x p [ - ~ ( z , ,  ~,)]q~(z,)~ A(z,). (5.69) 
z~ z .  

A direct calculation based on (5.67) and involving (5.58), (5.63), (5.62) 
enables one to conclude that w2 satisfies (5.64) on N. Further, since q~(z,) :~ 0, 
(5.69) implies w 2 ( z , ) ~ 0 .  But w ~ ( z , ) = 0  by (5.66), so that w~ and w2 are 
linearly independent on N. 

Thus, there are two linearly independent, analytic solutions of (5.64) in a 
neighborhood of each point on D. Accordingly, either of these two solutions 
can be continued analytically along any path in the simply connected domain 

o) See, for  example ,  C o p s o n  [ 10], Section 10.11. 
~2~ See C o p s o n  [10], Section I0.15. 
~3~ Since w~ is analyt ic  on  N, one has  dW~(z-)/d~ = dw~(z)/dz on N, provided W~(z-) = w~(z) on N. 
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D by the usual circle-chain argument. Moreover, it follows from the 
Monodromy Theorem ~) that these analytic continuations give rise to a 
function that is analytic on the entire domain D. Finally, since the function so 
generated satisfies (5.64) in a neighborhood of a point of  D, it follows from 
the Identity Theorem that this function satisfies the differential equation 
throughout D. 

In view of what preceded, one is assured of  the existence of a non-trivial 
solution w of (5.64) that is analytic on D. Let Do be the subdomain of D on 
which f # 0. Define a complex-valued function ~i~C°~(Do) through 

,q(z, ~) = xw(z) - 2~ e-'~[w'(z) ÷ w(z)~e]/f(z) on Do, q~ = q~(z, ~), (5.70) 

where x is a complex constant, chosen so that a r fails to vanish identically on 
Do. One now infers with the aid of (5.58), (5.63), (5.64), and (5.53) that 

nr~z, ~) = O, ~(z, ~) = h(z), h analytic on Do. (5.71) 

We show next that h has a removable singularity at each zero of f .  To this end, 
let z ,  be a zero of f and N be the neighborhood of  z ,  introduced earlier. Then 

w(z) = aw~(z) + bw2(z) on N. (5.72) 

where a, b are complex constants and wl, w2 are the two linearly independent 
solutions of (5.64) established previously. One confirms readily by recourse to 
(5.72), (5.67), (5.70), and (5.60) that 

h(z) = ½(2xa - ~)w,(z)  - (2~i  - xb)wz(z) on N. (5.73) 

Thus, h admits an analytic continuation onto D. 
Next, we show that h ~ 0 on D. A direct calculation starting from (5.70) 

and making use of (5.60) confirms that h satisfies (5.55). Suppose now that 

there were a zoeD, such that h(zo)=0. Then h'(zo)=0 by (5.55) and 
successive differentiations of  this equation would require the derivatives of h 
of all orders to vanish at Zo. This, in turn, would necessitate h to vanish 
identically on D which is a contradiction ~2). Hence, h :/: 0 on D. 

Let 

hi(x) = Re{h(z)}, h2(x) = Im{h(z)} on D, (5.74) 

t~) See, for example, Knopp [1 I], §25. 
(2) See the remark following (5.70). 
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and define a ~C°~(D) through the path-independent line integral 

tr(x) [h2(~)hl.~(~) - h,(~)hz.,(~)l/[h2t(~) + h22(~)] d¢~ + 6 
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on D, 

(5.75) 

where ~ D  and 

e i~/2=h(~)/]h(~)l on D, ~ = ~ + i ~ 2 ,  ~ [ 0 , 4 ~ ) .  (5.76) 

From (5.74), (5.75), (5.76) follows 

e i~x)/2 = h(z)/]h(z)[ on D, z = x~ + ix2, (5.77) 

which implies 

-2h'(z)/h(z) = tr.z(X ) + io'.l(x ) on D. (5.78) 

Substitution from (5.77), (5.78) and (5.52), (5.53) into (5.55), in view of 
(5.51), eventually leads to 

a.~ = -e~b .~  + e*(6~ cos a + e~ sin tr)ft~ on D. (5.79) 

If 0 is the scalar potential introduced in (5.38), define e~C2(D) through 

09 = ½(0 + a) on D. (5.80) 

Eliminating a between (5.79), (5.80) and using (5.38), (5.39), one verifies that 
~o satisfies (5.29) also in the present circumstances. Moreover, o9~C3(D) 
because m and n are in C~(D). Finally, let Q be defined by (5.30), so that 
Q~C3(D) ~ O+. As seen before, (5.29), (5.30) imply that (5.31) holds, and the 
latter, along with (5.3), enables one to conclude that Q obeys (5.9). The line 
integral (5.21) is thus path-independent and ~ so determined is regular, in 
C~(D), and satisfies (5.1). This completes the proof. 

In order to illustrate the construction of a regular deformation generating a 
given left strain-tensor field for which p = q = 0 on D, let D = {x [ x~ > 0} and 
suppose 

[a,a] = l/x~ on D. (5.81) 
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Evidently, GeC~(D) ,  G e S  +, and (5.2) gives 

°1 [V~a] = 1/xt on D. (5.82) 

Further, (5.3), (5.4) now yield 

m l = n ~ = 0 ,  m 2 = n 2 = - l / x  ~ p = q = r = O  on D. (5.83) 

Thus, (5.5), (5.7) hold. One confirms that the scalar potentials given by 

0 = 0 ,  ~ = - - L O g X l  on D (5.84) 

satisfy (5.38) in the present circumstances and (5.39), (5.51), (5.52), (5.58) 
lead to 

f ( z ) = - l ,  ~(z,~)=-Log[(z+z-)/2], g(z ) - -0  on D. (5.85) 

A nontrivial analytic solution of  (5.64) in this case is supplied by w(z) = 1 on 
D. Choosing x = i in (5.70), one finds that 

h(z) = 2i on D, (5.86) 

and (5.75), (5.80), (5.84), (5.30) give 

Q ~  = e~ on D. (5.87) 

Finally taking ( ~ ,  ~2)= (1, 0) in (5.21), one arrives at 

fi~(x) =x2,  fi2(x) = --LOgXl on D. (5.88) 
f 

Theorems 4.1 and 4.2 may be used to infer that every regular deformation 
fi'(x) ~ _+~'(x) + d on D (d constant) giving rise to the left strain-tensor field 
(5.81) admits the representation 

~'~(x) = + x / x ,  ~ + (x~ - /¢ )~  + d~ 
(5.89) 

33~(x) = +Log{[x2 - k + x/x~ + (x2 - k)2l/x,} + d: on O, 

with k and tl constant. 
For the purpose of  relating the foregoing existence theorems to the unique- 

ness theorems of  the previous section, let G be a tensor field that satisfies the 
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hypotheses of  Theorem 5.2, so that there is a regular deformation 33 e Ca(D) 
obeying (5.1). If Q is the tensor field introduced in (5.8), and ~ ,  a, b are the 

functions defined through (4.5), one confirms by means of (5.3), (5.12), (5.31) 

that 

G = e,/~Q~Q~;.n~ on D, (5.90) 

which, in conjunction with (5.31), (5.12), (5.15), is found to yield 

a2-k-b2=p2ff-q 2, a = - r ,  b 2 = A  2 on D, (5.91) 

with p, q, r, A given by (5.4) and (5.5). It is clear from (5.90) that the zeros 
of 7 and n coincide. Thus, one draws with the aid of (4.5) that n = 0 on D is 
equivalent to 

F~a.a = 33~.aa = 0 on D, (5.92) 

whence ~ is harmonic on D. Also, because of (5.91), the fields a and b vanish 
jointly if and only if the same is true of p and q. Further, one can show that 
G, a, b obey (4.41) if and only if G satisfies (5.7) for both choices of sign. 
Accordingly, i f p  2 + q2 ¢ 0 and A has at most isolated zeros on D, there is a 
second deformation ~'(x) ~ +~(x)  + d on D (d constant) that gives rise to the 
left strain-tensor field at hand if and only if (5.7) holds for both sign 
alternatives, o) 

Note that Theorem 5.2 does not cover the possibility that p, q satisfy (5.5), 
(5.7) and have common zeros, but fail to vanish identically on D. One can 
show that if p 2 +  q2 have joint isolated zeros, the functions c and s defined in 
(5.22) have removable singularities at these zeros. Moreover, c and s may be 

used to construct the desired deformation by following the procedure adopted 
for the case in which p2 + q2 ¢ 0 on D. 

Finally, we remark that the results obtained in this section stand in marked 
contrast to their counterparts for plane deformations generating a given right 
strain-tensor field: in the latter case, the compatibility conditions require 
merely the vanishing of  a single scalar field. 
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