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Abstract. An experimental study of local and global bifurcations in a driven two-well magneto-mechanical 
oscillator is presented. A detailed picture of the local bifurcation structure of the system is obtained using 
an automated bifurcation data acquisition system. Basins of attractions for the system are obtained using a 
new experimental technique: an ensemble of initial conditions is generated by switching between stochastic and 
deterministic excitation. Using this stochastic interrogation method, we observe the evolution of basins of attraction 
in the nonlinear oscillator as the forcing amplitude is increased, and find evidence for homoclinic bifurcation before 
the onset of chaos. Since the entire transient is collected for each initial condition, the same data can be used to 
obtain pictures of the flow of points in phase space. Using Liouville's Theorem, we obtain damping estimates 
by calculating the contraction of volumes under the action of the Poincar6 map, and show that they are in good 
agreement with the results of more conventional damping estimation methods. Finally, the stochastic interrogation 
data is used to estimate transition probability matrices for finite partitions of the Poincar6 section. Using these 
matrices, the evolution of probability densities can be studied. 
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1. Introduction 

The use of bifurcation diagrams and basins of attraction, which summarize, respectively, the 
local and global stability properties of a system, is now commonplace in nonlinear dynamical 
analysis. Beyond questions of local stability, a central role in the study of instability phenom- 
ena and the onset of chaos is played by the global features of phase space, such as basins 
of attraction, which are associated with the invariant manifolds of unstable orbits. However, 
essentially all efforts to visualize and analyze these features have relied on computer simu- 
lations: virtually nothing has been done in this area experimentally. In this paper, we present 
an experimental technique that can be used to obtain basins of attraction for a wide range of 
physical oscillators. The method is based on the idea of stochastic interrogation: an ensemble 
of initial conditions, which are needed to construct basin images, is generated by switching 
between stochastic and deterministic excitation. 

We apply the technique to a periodically-driven oscillator similar to the well-known two- 
well magneto-elastic oscillator of Moon and Holmes [1, 2]. A detailed picture of the local 
bifurcation structure of the system over a specific path in the parameter space is obtained 
using an automated bifurcation data acquisition system. The evolution of basins of attraction 
along the same path is studied for forcing amplitudes well below the first period doubling. 
The transition from simple to complex basin boundaries is observed as the forcing amplitude 
is increased. Since the entire transient is collected for each initial condition, the same data can 
be used to obtain pictures of the flow of phase space under the action of the Poincar6 map. 
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Dissipation rapidly contracts the phase space, making it possible to obtain an image of the 
complicated unstable manifolds responsible for chaotic transients, even when all of  the steady 
state solutions are periodic. 

As a demonstration of how information can be extracted from stochastic interrogation 
data for practical applications, we obtain damping estimates by calculating the contraction of 
volumes under the action of the Poincar~ map. Using this 'volume logarithmic decrement' 
data together with the dissipative version of Liouville's Theorem, the damping coefficient 
is calculated in each well of the oscillator, and shown to be in excellent agreement with 
coefficients obtained using more conventional methods. This estimate also serves as further 
validation of the basin data. 

A potentially more far-reaching application of the stochastic interrogation technique is to 
nonlinear modelling. Using only the first iterates of the basin data, we obtain transition proba- 
bility matrices for finite partitions of the Poincar~ section. The result is a global, probabilistic 
model of the dynamics, which can be used to study the evolution of probability densities in 
the system. 

The experimental apparatus described here is capable of generating automated bifurcation 
diagrams. A bifurcation diagram is experimentally produced by starting with suitable fixed 
parameter values and waiting until the system reaches a steady state. Data points are collected 
(once per forcing period for periodically driven systems) until the steady-state orbit can be 
determined (current methods limit such measurements to stable solutions only). The parameter 
values are then slightly incremented, and the process is repeated until the parameter range 
of interest is investigated. When high resolution is required, manual control of this process 
can become very time consuming, tedious, and prone to error, especially for mechanical 
systems operating at low frequencies and possessing long transient times. This is why most 
experimental bifurcation diagrams found in the literature have been produced using electronic 
systems, which operate at much higher frequencies [3-5]. 

Basins of attraction are typically studied using initial condition maps which are derived 
from Poincar6 sections (these are usually limited to two-dimensional surfaces of section). The 
global stability of an attractor is determined by the size and shape of its basin of attraction, 
as well as the nature of its basin boundaries. The appearance of fractal basin boundaries can 
greatly change the transient behavior of a system: long chaotic transients can occur after the 
transition to fractal boundaries [6]. These transients can severely hamper the effectiveness of 
systems which need short settling times, such as phase-locked loop circuits, in which 'pull- 
in' times needed to create synchronization become extremely lengthy [7]. The appearance 
of fractal boundaries greatly increases the final state uncertainty, even for very small initial 
condition uncertainty [8, 9]. Finally, fractal boundaries can lead to rapid erosion in the size of 
basins of attraction, severely reducing global stability even when local stability is unchanged 
[10, 11]. 

The theory of homoclinic bifurcation furnishes conditions for the existence of complicated 
invariant sets in the phase space of a dynamical system: in specific applications, necessary 
(but not sufficient) conditions for the onset of chaos are most often obtained by application of 
the Holmes-Melnikov perturbation method [12]. It is well understood that the intricate phase- 
space structures resulting from homoclinic bifurcation do not necessarily give rise to strange 
attractors: however, homoclinic bifurcation is associated with the phenomena of fractal basin 
boundaries, fractal-fractal transitions, chaotic transients, and final state uncertainty, even when 
the possible attractors are all nonchaotic [7-11, 13-17]. It has therefore become one of the 
major goals of researchers to be able to predict the transition from smooth to fractal boundaries. 
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In this paper, we offer experimental images of such basin metamorphoses. Thus, our method 
makes it possible for the first time to experimentally observe homoclinic bifurcations when 
they occur. 

In the next section, the experimental two-well oscillator and the automated data acquisition 
system are described. In Section 3, the local bifurcation structure of the system is obtained 
experimentally for a fixed forcing frequency, using the forcing amplitude as the bifurcation 
parameter. Basins of attraction for the experimental system are presented in Section 4. We 
present evidence for homoclinic bifurcation in a parameter range in which only two period-1 
attractors are apparent in the bifurcation diagram. The evidence consists of a simple-to- 
complex transition in the basin structure, an increase in the transient time, and the formation 
of a set containing what is believed to be the complicated unstable manifold predicted by 
homoclinic bifurcation theory. In Section 5, we show how the basin data can be used to obtain 
damping estimates for the system using Liouville's theorem. In Section 6, global probabilistic 
models for the system are obtained and studied by computing transition probability matrices on 
finite partitions of the Poincar6 section. A final discussion and some conclusions are presented 
in Section 7. 

2. The Experimental Setup 

The mechanical system for which we find experimental bifurcation diagrams and basins of 
attraction is a stiffened beam buckled by two magnets. This system is similar to the magneto- 
elastic oscillator of Moon and Holmes [1, 2]. Moon and Holmes showed that the steady-state 
behavior of this system is in many respects well-modelled by the two-well Duffing equation, 
and used the experimental system to demonstrate the physical existence of strange attractors. 
However, whereas the Moon-Holmes system used a flexible beam, we have added extra 
stiffness in the form of steel bars (each 19.21 c m x  0.52 cm x 1.28 cm) epoxied and bolted 
along the length of the thin steel beam (20.96 cm x 0.07 cm x 1.28 cm), away from the 
clamped end (see Figure 1). The additional constraint is necessary in our case to force the 
system to have effectively one degree of freedom even during transients: our method of 
stochastic interrogation would excite higher modes in a flexible beam making the study of 
basins of attraction more difficult. A 1.75 cm portion of the beam is left uncovered near the 
clamped end to act as a hinge from which we are able to determine position using strain 
gauges. Two rare earth permanent magnets (1.27 cm diameter x 0.32 cm) are placed on the 
base of the frame holding the beam to create the two-well potential. The vertical distance 
between the undeformed beam tip and the magnets is 0.20 cm. 

The rigid mount for the system is attached to an electromagnetic shaker which is controlled 
by the output of a digital-to-analogue (D/A) converter. The signal from the D/A converter first 
passes through a low pass filter set at 20 Hz, to ensure that higher frequencies caused by D/A 
conversion are eliminated, and then is amplified before input to the shaker. The strain at the 
clamp and its time derivative (obtained by analogue differentiation) measure, respectively, the 
position z and velocity dz/dt of the beam. The strain and its time derivative are sent through a 
low pass elliptical filter set at 50 Hz (thus both signals undergo identical phase shifting). Data 
was acquired using 12-bit data acquisition (A/D) boards. The ambient system noise signal 
(output from the filters with the forcing turned off) was found to be on the border of 1 mV 
rms. Since this is below the resolution of the A/D convertors as scaled for the experiments 
(2.44 mV for the least significant bit), the noise floor in our measurements was as low as 
possible with 12-bit digitization. 
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Fig. 1. Schematic of the two-well magneto-mechanical oscillator (see text for dimensions). The constrained 
beam-magnet system is driven by an electromechanical shaker attached to the rigid frame. 

The linear frequency response about the static equilibria of the left and right wells of 
Figure 1 was obtained using low-level random excitation to verify that the system did indeed 
have only one degree of freedom. For both equilibria, only one resonant peak was found 
below 100 Hz: the natural frequencies were found to be 9.14 -4- 0.08 Hz for the fight well and 
9.62 i 0.08 Hz for the left well. Since the next highest peaks in both transfer functions were 
about 30 dB down at approximately 225 Hz, we conclude that the system is indeed acting like 
a single degree of freedom oscillator in the bandwidth of relevance to this study (< 50 Hz). 
By comparison, using elementary theory for bending vibrations of beams, an unconstrained 
beam would be expected to have its second natural frequency at about 60 Hz, given a first 
natural frequency close to those found above. 

Data acquisition was carried out with a workstation-based system, and control programs for 
bifurcation and basin diagrams were written using a library of real-time Fortran subroutines. 
In addition to the A/D and D/A hardware, the data acquisition system uses a clock board which 
can be configured with external jumpers to set up the clock cascades needed to synchronize 
timing and create the burst patterns that trigger sampling at the proper frequencies. This clock- 
based approach to synchronization is natural for the mechanical system studied in this paper, 
since the oscillator under consideration is periodically forced, and hence has a natural 'clock'. 
However, the data acquisition control programs developed for this work are quite general, 
since interrupts can be presented to our hardware as external clock pulses. For example, 
should positiQn-based Poincar6 sections be needed (instead of the stroboscopic sections used 
for this paper), simple external triggering circuitry can supply pulses at the appropriate level 
crossings. 

Experimental bifurcation diagrams are obtained in a straightforward manner, although cur- 
rent methods limit us to stable solution branches. The control algorithm outputs a sinusoidal 
forcing signal with amplitude V, waits a predetermined number of forcing periods for tran- 
sients to dissipate, and then collects data, again for a predetermined number of periods. The 
bifurcation parameters are then incremented and the cycle is repeated until the parameter path 
of interest has been traversed. (For this study, we took the forcing amplitude as our sole bifur- 
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cation parameter, and the zero-phase stroboscopically-sampled position x of the oscillator as 
the measure of response amplitude.) The control program has the ability to change direction 
in the parameter space at a given point. This feature allows branches which have been reached 
by jumps (as described in the next section) to be explored fully. Thus, given sufficient run 
time, multiple, coexisting solution branches can be traced out, and hysteretic phenomena can 
be studied. 

Bifurcation and basin diagrams are conceptually complementary: bifurcation diagrams use 
steady-state data to explore essentially local phase space phenomena (global phenomena are 
only hinted at indirectly); by contrast, basin diagrams use transient data to visualize global 
phase space structures. This complementarity is reflected in the required control strategy, and 
necessarily makes collecting basin data a bit more complex, since an ensemble of transients 
is required, as opposed to a single steady-state. 

The state of our system is given by (x, 0) C l~ 2 X S 1 where x = (z, :~) and the phase 
0 - wt mod 27r for a given driving frequency w. As with the bifurcation diagrams, we take 
the Poincar6 section E °0 to be 

r y 0  ___ I 0 = 00}. (1) 

The dynamics is then completely determined by the action of the period-1 Poincar6 map 
q~T : E °° ~ E °°, where T = 27r/w. Typically, basins of attraction are represented by 
two dimensional images in which the initial conditions in each basin are coded with an 
identifying color. When numerically generating a basin image (or 'initial condition map'), 
one discretizes the desired region into finely spaced grid of initial conditions. Then the 
trajectory of each initial condition is simulated until it has converged to an attractor. In most 
physical experiments, however, it is very difficult to specify initial data in this manner. Our 
control program overcomes this problem by using an interval of random excitation to generate 
a random initial condition x0 before switching to deterministic forcing. The transient data (i.e. 
the image of x0 under repeated application of qST) needed to discern the asymptotic behavior 
is collected as soon as the output of the deterministic forcing begins. By repeating this cycle 
a large number of times, we are able to fill out a portion of the initial condition space near 
the attractors. Postprocessing of the ensemble of orbits is then done to correlate the initial 
conditions with the appropriate attractor. 

3. Bifurcation Structure of the System 

The bifurcation structure of the two-well oscillator for a fixed forcing frequency of 11.009 Hz 
is shown in Figure 2. It was desired to find a frequency at which the system had a simple basin 
structure for low forcing amplitudes: preliminary testing with our basin and bifurcation codes 
indicated that such a situation occurred above 10 Hz (nearer to the natural frequencies, more 
solutions coexist even at relatively low forcing levels). Two initial branches of solutions were 
obtained by starting with one initial condition on the left (negative) attractor and one started 
on the right (positive) attractor, corresponding to small amplitude periodic orbits in each well 
(left and right are defined by Figure 1, and the sign is given by the vertical scale of Figure 2). 
For these runs, the amplitude V of the sinusoidal voltage input to the shaker ranged from 0.1 
to 1.5 V and back down to 0.1 V, with a step size of 4.88 mV (2 least significant bits). For all 
the data presented here, 400 periods of data were discarded as transients, and a subsequent 200 
samples of the position z as measured by the strain gauge were collected in the zero-phase 
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Fig. 2. Experimental bifurcation structure for the system with driving frequency w = 11.009 Hz. Solution branches 
are marked with 'P-n'  for period-n orbits, and 'C'  for chaotic orbits. 

stroboscopic Poincar6 section E0. Typical runs took about 8-16 hours (depending on step 
size) to scan up and down the entire parameter range. 

Certain features of the diagram can only be found by backtracking (such as the P-2b 
branch starting with a period-2 saddle-node bifurcation at above 1 V, which we found by 
backtracking out of the chaotic region). Additional runs were conducted over the ranges of 
0.6 to 1.0 V for the negative well and 0.8 V to 1.23 V for the positive well in order to fill out 
the period-4 branch P-4a and the chaotically-modulated period-4 branch C4 (again, both runs 
included backtracking). Lowering the voltage step size to the minimum possible with our setup 
(2.44 mV, or 1 least significant bit) did not change the information in the diagram, although 
in one case it changed the way in which jumping occurred between the different branches. No 
other solution branches were found with this procedure, although other disconnected branches 
may exist: in fact, in the next section we describe a period-3 solution with a very small basin 
that was found during the basin experiments. If other disconnected branches exist, they too 
most likely have small basins of attraction. 

The left period-1 branch P- la  starts at low forcing, and continues with increasing V to 
0.881 V, whereupon a period-doubling bifurcation occurs and the branch P-2a is created. 
P-2a ends at V = 0.974 V, and the response jumps to the period-4 branch P-4a (all transitions 
mentioned here are accurate to 2.44 mV, i.e. 1 least significant bit). Continuing to increase 
V leads to the end of P-4a at V = 1.047 V, and the response jumps to the right (positive) 
period-1 branch P-lb. Backtracking on the branch P-4a shows that the branch ends at V = 
0.881 V after period doubling, and the response returns to P-la. To the limit of experimental 
resolution, the end of the P-4a branch coincides with the beginning of P-2a. 

The branch P- lb  continues with increasing V to 1.218 V where the response jumps to 
the chaotically modulated period-4 branch C4. By backtracking at this point, the end of C4, 
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Fig. 3. Poincar6 sections for a typical chaotically-modulated period-4 attractor in region C4 of Figure 2. The phases 
of the sections are 2 n ~ r / 5  where n = 0 to 4 (read left to right, top to bottom). 

at V = 1.200 V, is found. In lieu of backtracking, further increases in the voltage along C4 
lead to the sha W transition to the strongly chaotic solutions of Ca at V = 1.232 V. A final 
chaotic-chaotic transition occurs at V = 1.289 V. Backtracking out of the chaotic region, the 
response falls on the period-4 branch P-4b, which reverse period-doubles at V = 1.174 V 
becoming P-2b. Continuing to decrease V leads to the end of P-2b at 0.978 V. 

Figures 3 and 4 display Poincar6 sections of typical chaotic motions in regions C4 and Cb. 
Correlation dimension estimates [18] were computed using 104-point zero-phase Poincar6 
sections. For the chaotically-modulated period-4 attractor of Figure 3, de = 2.08 ± 0.03 over 
a rather small scaling rage of 3.3 : 1. The more strongly chaotic attractor of Figure 4 has 
dc = 2.68 :k 0.02 over a much larger scaling range of over 200 : 1. (The small scaling range 
for the period-4 chaotic attractor is a consequence of the highly nonuniform distribution of its 
points in phase space.) Following dimension theory [19], one can conclude that the number of 
phase space dimensions needed to model the observed chaotic dynamics lies between de and 
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Fig. 4. Poincar6 sections for a typical chaotic attractor in region Cb of Figure 2. The phases of the sections are as 
in Figure 3. 

next greatest integer to 2dc ÷ 1, that is between 3 and 7. Taking into account that the driving 
phase supplies one state space dimension, this is consistent with (i.e., it does not contradict) 
the claim in Section 2 that the oscillator essentially has one degree of freedom. Of course, 
dimension estimates as employed here only furnish information on steady-state motions. 

Possibly the most surprising thing about the bifurcation diagram is the large number of 
jumps between branches and the fact that, though period doubling sequences are observed, 
the classic period-doubling approach to chaos does not occur. (Our experience to date with 
various electromechanical systems suggests that this is the norm.) Indeed, the strongly chaotic 
responses for V > 1.232 V occur suddenly, not after an obvious, well-defined, bifurcation 
sequence. Certainly, one needs to be careful when interpreting these jumps in behavior. 
Experimental noise and discretization error can cause branch jumping before a solution 
branch has lost stability if the basin of attraction is too small in some direction. However, in 
our experiments, we accounted for this possibility by scanning forward and backward over 
the parameter range of interest multiple times in each run, and by lowering our bifurcation 
parameter step size until the results stabilized. Thus, experimental data acquisition parameters 
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are not believed to be the primary cause of the jumps which remain in Figure 2. In at least one 
case (the beginning of P-2b at V = 0.978 V), we suspect that the branch starts suddenly from a 
period-2 saddle-node bifurcation (based on the shape of the branches at that point). However, 
in general, it is believed that global information concerning the arrangement of coexisting 
solution branches in phase space is required in order to understand the jump phenomena, 
sudden branch annihilations, and chaotic-chaotic transitions seen in the bifurcation diagram. A 
reasonable hypothesis is that some type of crisis [20], in which an attractor collides with another 
attractor or its basin boundaries, are responsible for at least some of these sharp transitions. 
To sort this out one would have to correlate the bifurcation results with experimental basin 
measurements: we leave such an analysis for future work, however a method which could be 
used to do such studies experimentally is described below. 

4. Basins of Attraction and Evidence of Homoclinic Bifurcation 

Experimental basins of attraction for the two-well oscillator are presented for 4 runs carried out 
at a forcing frequency of 11.009 Hz with forcing amplitudes ranging from 0.098 V to 0.498 V. 
This corresponds to a portion of the simplest part of the bifurcation diagram (Figure 2), in which 
only two attracting period-1 orbits are apparent. The basin images were each generated in 
runs consisting of 104 stochastic interrogation cycles (i.e. with 104 different initial conditions). 
Each cycle started with the time equivalent of 40 periods of stochastic excitation by digitally- 
generated, uniformly-distributed pseudorandom noise which was passed through a 20 Hz 
low-pass filter before being sent to the shaker amplifier. Each run took about 35 hours to 
complete. The locations of the two period-1 attractors were identified from the data sets. The 
orbit for each initial condition was then examined to determine its limiting behavior. For 
definiteness, convergence was defined as having the last iterate in the 50-iterate sample fall 
within 10 least significant bits (i.e., 24.4 mV) of one of the attractors: points not falling within 
this neighborhood were labeled 'nonconvergent'. In this way, each initial condition and its 
subsequent trajectory was identified as belonging to one of the period-1 basins of attraction, 
or in a set of nonconverging points. 

In Figure 5, two-color basin plots for the four runs are shown. In the plots, each initial 
state x0 is color-coded according to which periodic orbit q~(x0) is attracted as n increases. 
The basin structure clearly undergoes a metamorphosis from simple to complex boundaries as 
V increases, as evidenced by the increased mixing of colored regions. One suspects that this 
is, in fact, a transition to fractal basin boundaries, but the resolution of the experiment is not 
sufficient to unequivocally say this. In principle, one should be able to use the data to estimate 
the fractal dimensions of the basin boundaries, following [9]. Difficulties associated with the 
nonuniform distribution of initial conditions and inadequate statistics have, at the time of this 
writing, hindered successful calculation of this quantity. 

More compelling evidence of homoclinic bifurcation can be obtained by exploiting the 
fact that the stochastic interrogation data allows one to construct images showing the flow of 
points in the phase space. The basin boundary consists of the stable manifold to a saddle-type 
orbit: however, sequences of points on the Poincar6 section tend to be repelled from this stable 
manifold. Instead, dissipation in the map tends to push orbits towards the global unstable 
manifold of the saddle-type orbit. A good example of this is in Figure 5(a): a thin ridge of 
increased density is visible in the center of the figure at a nominal 45 ° angle with the horizontal, 
suggesting the location of an unstable manifold emanating from an unstable periodic orbit near 
(z, 2) = (0, 0). During the deterministic excitation phase of the interrogation cycle, one can 
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Fig. 5. Experimental basins of attraction with w = 11.009 Hz: (a) V = 0.098 V; (b) V = 0.198 V; (c) V = 0.298 V; 
(d) V = 0.498 V. Each image consists of 104 initial conditions. For all cases, red (resp. white) marks initial 
conditions which asymptotically approach the fight (resp. left) period-1 attractor. 

hope to see the approximate location of the unstable manifold near the saddle because of the 
increased density of points along it, provided the residence time near the saddle is sufficiently 
long. This situation can be expected to arise precisely when a homoclinic bifurcation occurs: 
trajectories starting near the saddle will be reinjected there over several forcing periods because 
of the intersections between the saddle's stable and unstable manifolds. 

In Figure 6, the entire ensemble of initial data is shown, along with its image under the 
action of qSr after 3, 6, and 9 iterates. The variation in point density in the initial conditions (the 
0th iterate in each figure) reflects the invariant probability density achieved at the end of the 
random excitation phase of the interrogation cycle, and hence in each case it is approximately 
the same. For the lowest forcing level, V = 0.098 V the phase space is contracted smoothly 
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Fig. 6. The flow of solutions on the Poincar6 section: (a) V = 0.098 V; (b) V = 0.198 V; (c) V = 0.298 V; (d) V = 
0.498 V, For each value of the forcing, the image of the ensemble of initial conditions (S), under the nth-iterate of 
the Poincar6 map (~b,} (S)) is shown for n = 0, 3, 6, and 9 (read left to right, top to bottom)• As in Figure 5, w = 
11.009 Hz. 

in to  r o u g h l y  c i r c u l a r  n e i g h b o r h o o d s  w h i c h  c o l l a p s e  d o w n  onto the  po in t  a t t rac tors  as the  

n u m b e r  o f  i t e ra tes  inc reases .  In  this  case ,  a l l  t r a j ec to r i es  s tar t ing nea r  the  pe r iod-1  s a d d l e  a re  

r a p i d l y  s w e p t  t o w a r d s  the  pe r iod -1  a t t rac tors :  hence ,  the  uns t ab le  m a n i f o l d  nea r  the  s a d d l e  is 

e s s e n t i a l l y  i nv i s ib l e  a f te r  3 fo rc ing  per iods .  
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At higher forcing levels, however, the flow collapses onto a complicated structure in 
the phase space: we believe that this structure contains the highly folded unstable manifold 
that one expects to arise near a homoclinic bifurcation. Although such folding is likely to 
occur before the global bifurcation, it is only af ter  the global bifurcation that many orbits with 
initial conditions near the saddle-type period-1 repeatedly return: hence this structure becomes  
visible (Figures 6(b-d)).  At the highest forcing levels (Figures 6(c-d)),  the orbits linger long 



A Stochastic Interrogation Method 225 

e'- .  

Z 

8000 

7000 

6000 

5000 

4000 

3000 

2000 

I000 

i 

0 

0 

X 

+ 

X 

0 

+ X 

0 I 

0 5 

o X 
÷ 

X 

4- 

O 

Forcing Amplitude 
o 0.098 V 
+ 0.298 V 
x 0.498 V 

X 

x 

x 

X 

x 

X 

4- X 

x 
+ X 

X X 
÷ X l 

* +  X X x x  

O o + ÷  ~ ~ ,~ ~ ~ ~ l X l X X X 
I v v - -  

- -  m ...... . . . .  • . . . .  x 7 • A & I I I t I ~ ~ ! ~ ~ t . . . .  

10 15 20 25 30 35 40 45 50 

Period 

Fig. 7. The number of points remaining outside of a neighborhood of the attractors as a function of the number 
of iterates (or forcing periods). The neighborhood used for the plots had a radius of 150 least significant bits, or 
0.366 V. 

enough so that phase space contraction makes the structure look locally very much like a 
1-dimensional manifold for several forcing periods, thus revealing the approximate image of 
the unstable manifold (at least in a region far enough away from the attractors). Note that the 
unstable manifold can be seen in the flow precisely when the basins begin to lose their simple 
boundaries (i.e., at V = 0.198 V, corresponding to Figures 5(b) and 6(b)). 

While at these forcing levels all (except, as explained shortly, for a very small number) of 
the points eventually approach the period-1 attractors, trajectories starting near the unstable 
manifold local to the saddle take a long time to escape. In Figure 7, the number of points that 
remain outside of a specified neighborhood of the period-1 attractors is plotted as a function 
of the number of iterates (forcing periods). All points rapidly enter the neighborhoods in the 
smooth basin case, but after the loss of smoothness of the basin boundaries (coinciding with 
the appearance of the unstable manifold structure in the flow data), the number of points 
staying outside of the neighborhoods at any fixed period rapidly increases. 

The homoclinic bifurcation responsible for the metamorphosis in Figures 5 and 6 can be 
visualized directly by overlaying the basin images with forward iterates of the initial data 
ensemble. Let S be the ensemble of initial conditions: the image of S under the nth-iterate 
of the Poincar6 map is then ¢~(S) .  In Figure 8, initial data in the right basin is shown in 
red, and ¢~(S)  is plotted in white, for specific values of n (the iterate used in each plot was 
chosen to best show the location of the unstable manifold): In Figure 8(a), the approximate 
location of the unstable manifold is shown by the increased density of white points in ¢~(S)  
along the diagonal which emanate from the unstable periodic orbit near (x, ~) = (0, O) 
and continue as the boundary of the mass of points accumulating near the period-1 orbits 
at (x,~c) = (1 .787,-0 .099)  and ( - 1 , 5 5 6 , - 0 . 1 3 4 1 ) .  In this figure, there is no obvious 
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Fig. 8. Overlay plot of the basin data and ~b)(S). The initial data in the right basin is shown in red, and qS~(S) 
is plotted in white (the iterate n used in each plot was chosen to best show the location of the unstable manifold). 
(a) V = 0.098, n = 1; (b) V = 0.198, n = 3; (c) V = 0.298, n = 3; (d) V = 0.498, n = 6. 

intersection between the iterated set and the basin boundary. In Figure 8(b), however  q~, (S) 
appears to touch the basin boundary (in the left basin), and, at the same time, more internal 
structure becomes visible in the iterated set. At the higher forcing levels, the crossing is 
unambiguous (Figures 8(c, d)). 

All o f  this data together leads to the conclusion that a homoclinic bifurcation eccurs near 
V = 0.198 V. In addition, these results are consistent with the hypothesis that Figure 5 shows 
a fractal transition in the basin boundaries. Chaotic transients result from the trapping of  
trajectories near the global unstable manifold but away from the attractors (as quantified in 
Figure 7); however, as a practical manner, it is difficult to recognize such behavior  by looking 
at t ime series unless the transients are unusually long. Even in our worst case, over 94% of  
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the initial conditions converge to the attractor within 50 forcing periods: in the 4--5 seconds 
typically available, an observer could easily fail to recognize the system as possessing chaotic 
transients. Thus, the stochastic interrogation approach to collecting ensembles of data allows 
this behavior to be seen much closer to the homoclinic tangency. 

The number of points classified as nonconvergent after 50 forcing periods was 0, 0, 49 
and 593 for V equal to 0.098, 0.198, 0.298, and 0.498, respectively. Examination of the 
nonconvergent points in the last case revealed a single-well period-3 orbit with a very small 
basin: only about 74 points, or less than 1% of the initial data, fell within the period-3 basin. 
The initial conditions in this period-3 basin were vei-y close to the unstable manifold of 
Figure 6(d), a result consistent with the observations of Grebogi et al. in their discussion of 
accessible boundary orbits. 

5. Global Damping Estimates Using LiouviUe's Theorem 

As a simple example of how stochastic interrogation data can be used to characterize the 
physical properties of a system, we apply Liouville's theorem to the flow of Figure 6(a) and 
obtain damping estimates. 

Liouville's theorem [21], which relates the divergence of the vector field of a system to the 
rate of contraction of volume elements, is given by: 

dVd~ : f V .  fd# 
v 

(2) 

where v is the volume of a region of phase space, and f is the governing vector field. We 
assume, as would be the case for the two-well Duffing oscillator with linear damping, that the 
system equations have the form: 

k = y  

{1 = - 2 @  - g(x)  + F cos f~t (3) 

where ~ is the critical damping ratio, and the relative driving frequency f2 = co/co0 for a given 
natural frequency coo (time has been rescaled by coo for convenience). The divergence of the 
time-dependent vector field f (the right hand side of equation (3)) is then easily found to be 

V .  f = - 2 ¢ ,  (4) 
al l :  

which is a constant. Thus, equation (2) becomes 

d v  
= (5)  

which yields 

V 
In - -  = - 2 ¢ ( t  - to). (6) 

v0 

Since the basin data evolves under the action of Cr, it is natural to take t - t0 = T and 
define the volume logarithmic decrement 6v as 

V 
6v = In - -  = -2¢T. .  (7) 

N0 
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Table 1. Comparison of critical damping ratios estimated using 
the volume logarithmic decrement on the forced system, with 
the standard amplitude logarithmic decrement estimate for free 
vibrations. 

Forcing Forcing 
frequency amplitude 

(nz) (V) right well left well 

11.009 0.098 0.022 4- 0.003 0.020 4- 0.004 
11.009 0.198 0.022 -4- 0.003 0.021 -4- 0.004 

9.105 0.098 0.024 4- 0.005 0.02 4- 0.01 
9.404 0.098 0.024 4- 0.003 0.002 4- 0.004 

free vibration 0.023 4- 0.001 0.021 4- 0.001 

Rearranging equation (7) gives the following relationship between the critical damping ratio 
( and 5o: 

- 4  7r 6v 
= (8)  

In elementary vibration theory, the equivalent formula relating the amplitude logarithmic 
decrement 6~ [22] to the critical damping ratio is 

( -  27r '  (9) 

where the change in amplitude is defined as taking place over one period of free vibration. 
Definitions (8) and (9) are both used to estimate the damping coefficient. Figure 9(a) 

shows a semi-log plot of basin 'volume' (area) versus forcing period of each cycle for the 
right (positive) attractor of the system with parameters as in Figures 5(a), 6(a) and 8(a). The 
area of the region occupied by the ensemble of points in the fight basin of Figure 5(a) was 
estimated at each period by multiplying the standard deviations in the x and dx/d t  directions. 
This is not a very good area estimate initially, but becomes quite good as the points cluster 
around the attractor, and yields a nice scaling region until the points are all contracted into the 
noise of the measurements (after about 40-45 periods). The slope of the fitted line is an estimate 
of 5v. Similarly, Figure 9(b) shows a semi-log plot of vibration amplitude versus number of 
periods for a free vibration about the right potential well. The slope of the fitted line in this case 
is the amplitude logarithmic decrement 6x. The resulting damping coefficient estimates for 
this and other trials are shown in Table 1. We remark that study of the amplitude logarithmic 
decrement data produced from the free vibration time series showed that the damping for the 
system is approximately piecewise linear, depending on the size of the oscillation. Therefore, 
to compare damping estimates from the two methods, only free oscillations comparable in 
amplitude to those used to find 6,, from the basin data were used to estimate 6x. With this in 
mind, the damping estimates based on Liouville's Theorem and the volume decrement are in 
very close agreement with those obtained using the more conventional method. 
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Fig. 9. Comparison of volume logarithmic decrement data (a) for the forced system to amplitude logarithmic 
decrement data (b) for free vibrations. Both data sets are for the right attractor with co = 11.009 Hz and V = 
0.098 V. The slope of the fitted line gives 6v for the top plot and 6~ for the bottom plot. See Table 1. 

6. Nonlinear Probabilistic Modelling 

We now demonstrate how the stochastic interrogation data can be used to construct transition 
probability matrices for finite partitions of the phase space. These matrices allow the evolution 
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of probability densities to be studied [23, 24]. In general, quantities such as the entropy of 
the Poincar6 map, the invariant distribution for the system, and basins of attraction, can be 
estimated. A detailed study of such experimentally-determined probabilistic models will be 
presented elsewhere: for this paper, we limit ourselves to describing perhaps the simplest 
construction of such transition probability matrices, and showing their effect on a uniform 
initial density of states. We remark that the experimental approach taken here is similar to the 
generalized cell mapping numerical method developed by Hsu [25], with perhaps the main 
practical difference being that the data used to define Pji is not uniformly distributed in our 
case. 

To compute the transition probability matrices, we partition the phase space of our system 
into M 2 boxes using an M x M grid. Let Bi be the ith box, and Ni the number of data points 
contained in it (subscripts range from 1 to M2). The conditional probability that a point in Bi 
goes to Bj on the next iterate is 

#(Bi) ' (10) 

where # is the counting measure. Thus, for a given partition, the probability density p~, which 
gives the probability that the state of the system lies in Bi at iterate n, can be used to determine 
the probability that the state of the system will lie in Bj at iterate n + 1 by 

p j ~ + i = p  n (11) jiPi 

where summation is implied by the repeated indices. Pji is a transition probability matrix for 
the system: note that it depends not only on the system parameters, but also on the partition. 

Equation (lO) was used to estimate Pji directly using only the Oth and 1st iterates of the 
stochastic interrogation data (i.e., from S and ¢~(S)). As one might expect, the statistics 
in the boxes near the outer edges of S become very poor, and thus the model should not 
be expected to be very accurate for states in the outer boxes. However, one does expect 
the asymptotic behavior of the system to be reasonably well approximated, to the level of 
precision dictated by the partition size, since all data is eventually attracted into the interior of 
S where the transition probabilities can be computed with reasonably large amounts of data. 
As a practical matter, care must be taken to choose a partition carefully so that each box has 
nonzero measure initially. To avoid this problem for the results presented here, we found it 
convenient to pick our grid to cover an area slightly smaller that the entire set S: an 'overflow' 
cell was then defined to be the rest of the Poincar6 section outside of the gridded area. The cell 
so constructed provides a well-defined transition probability for any points that either start 
outside of, or temporarily leave, the gridded region. 

Figures 10 and 11 show the results of applying Pji to an initial uniform density on a 
30 x 30 grid (i.e., p0 = 1/900 for 1 < i _< 900). Both figures show the evolution of 
the 'course-grained' probability density after l, 2, 3, 4 and 70 iterates of the Poincar6 map 
obtained by repeated application of Pji. The density at 70 iterates is a good approximation 
to the asymptotic (or 'invariant') density for the system which satisfies p~+l = p~ = p, 
(i.e., from equation (11), p* is an eigenvector of Pji). Densities are plotted as surfaces above 
the zero-phase Poincar6 section, with x shown as the horizontal coordinate in all of the 
plots: each node in the plots is located at the center of the boxes used to construct the model. 
Figure 10 corresponds to the simple basin data of Figures 5(a), 6(a) and 8(a), whereas Figure 11 
corresponds to complicated basin data of Figures 5(d), 6(d), and 8(d). 



A Stochastic Interrogation Method 231 

Fig. I0. Evolution of an initially uniform probability density on a 30 × 30 partition of the Poincar6 section. The 
transition probability matrix for the partition, Pj~, was constructed using S and ¢~(S) from the V = 0.098 V data 
(Figures 5(a), 6(a), and 8(a)). The plots show the density after 1, 2, 3, 4, and 70 iterates of Pjl, with the last plot 
showing the approximate invariant density. The period-1 orbits are fixed points located near the local maxima of 
the invariant density. 

In the simple basin case of  Figure 10, after 4 iterates the density is split into two pieces 
localized about the attractors, and asymptotically approaches a density in which all of  the 
probability mass is confined to two small regions. The period-1 fixed points of  the Poincar6 
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Fig. 11. Same as Figure 10, except the transition probability matrix for the partition was constructed using the V 
= 0.498 V data (Figures 5(d), 6(d), and 8(d)). 

map are located near the peak in each region. In fact, at the grid resolution of the model, 
these 'local maximum likelihood' points give a best estimate of the fixed-point location. The 
relative height of each peak in the asymptotic density indicates the relative area of each basin 
of attraction (limited, of course, to the portion of the Poincar6 section for which data was 
collected). Thus, from Figure 10, one expects the basins to be close to the same size, a fact 
confirmed by Figure 5(a). The location of the unstable manifold of the saddle-type period-1 
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orbit is clearly visible in densities corresponding to iterates 2 and 3, thus demonstrating that 
global features of the system can be studied using the transition probability models. 

The complex basin case of Figure 11 shows some marked differences with Figure 10. 
The greater asymmetry of the global structure of the phase space for this Poincar6 sections 
is readily apparent, even after only the first iterate. This asymmetry continues through to the 
asymptotic density, which shows that the right basin is roughly twice the size of the left, a fact 
which, again, is born out by Figure 5(d). Figures 10 and 11 can be thought of as representing an 
observer's knowledge of the state of the system, starting from a condition of total uncertainty. 
Thus, Figure 11 demonstrates the way in which homoclinic bifurcation and chaotic transients 
lead to greater short-term uncertainty in the state of a system: unlike the density of Figure 10, 
the density of Figure 11 takes significantly longer to become localized near the attractors. 

7. Discussion and Conclusions 

The stochastic interrogation method described here generates data sets which allow for the 
experimental visualization and analysis of global features in the phase space of nonlinear 
oscillators. We have demonstrated the usefulness of this approach by applying it to the study 
of a driven, two-well nonlinear magneto-mechanical oscillator. The resulting data yielded 
images of basins of attraction for the system, visualization of the flow of initial states on the 
Poincar6 section, and an estimate of the linear damping coefficient using a novel approach 
based on Liouville's Theorem. 

By combining the basins of attraction with the flow images, we obtained experimental 
evidence of homoclinic bifurcation well before the onset of chaos. As part of this evidence, 
a simple-to-complex ('fractal') transition in the basin boundaries was shown to coincide 
with the appearance of a complicated structure believed to contain the unstable manifold 
of a saddle-type orbit. This is a significant improvement in experimental technique, since, 
previously, theoretical criteria for homoclinic bifurcation (such as supplied by the Holmes- 
Melnikov method) could only be checked by locating regions in the parameter space where 
chaotic attractors exist. Since homoclinic bifurcation is only a necessary condition for the 
existence of a chaotic attractor, such studies are typically only able to put loose, one-sided 
bounds on the theoretical prediction (see, for example, [26]). In principle, our method can 
check the prediction directly and precisely. Admittedly, for low bandwidth systems, checking 
a Melnikov curve at more than a few points will be difficult, given the time-consuming nature 
of the data acquisition task. It is possible, however, that greater sophistication in statistical 
analysis could lead to accurate predictions with significantly less data. (It should also be 
pointed out that, of the 35 hours typically needed to collect the basin data, approximately 
1/3 was computational overhead required by the specific combination of software, clocks and 
A/D hardware used for these experiments. This points to an obvious bottleneck which could 
be improved by better design of the data acquisition system.) 

Without question, data collected by stochastic interrogation contains a wealth of dynamical 
information that the results presented here have barely begun to tap. The estimation of 
the damping coefficients using Liouville's Theorem and the volume logarithmic decrement 
promises to be a useful technique because it should be capable of yielding results far away 
from the equilibria: it is actually a global technique, since there is no assumption of 'small 
vibrations' in its definition. The main limitation as applied here was the crude volume estimate 
employed to generate Figure 9. Beyond the determination of basic physical parameters, the 
stochastic interrogation data contains the information required to construct nonlinear models 
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of the system. We have used the data to construct transition probability matrices for finite 
partitions of the phase space, and showed how these matrices allow the evolution of probability 
densities to be studied. Using only the first few iterates of the data, we were able to obtain 
significant information concerning the global structure and asymptotic behavior of the system. 
Current efforts aim at constructing noisy deterministic models using the interrogation data. 
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