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Abstract. After a general review of the methods currently available for the dynamics of constrained multibody 
systems in the context of numerical efficiency and ability to solve the differential equations of motion in singular 
positions, we examine the acceleration based augmented Lagrangian formulations, and propose a new one for 
holonomic and non-holonomic systems that is based on the canonical equations of Hamilton. This new one proves 
to be more stable and accurate that the acceleration based counterpart under repetitive singular positions. The 
proposed algorithms are numerically efficient, can use standard conditionally stable numerical integrators and do 
not fail in singular positions, as the classical formulations do. The reason for the numerical efficiency and better 
behavior under singularities relies on the fact that the leading matrix of the resultant system of ODEs is sparse, 
symmetric, positive definite, and its rank is independent of that of the Jacobian of the constraint equations. The 
latter fact makes the proposed method particularly suitable for singular configurations. 
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1. Review of Current Approaches for Multibody Dynamics 

Computer systems, while increasing tremendously in power in recent years, are so affordable 
nowadays,  that their use have become widely spread in many different fields and for a 
number of applications. The computer kinematic and dynamic analysis of multibody systems 
is increasingly being used in fields such as the automobile industry, aerospace, robotics, 
machinery, biomechanics, etc., and it has been receiving considerable attention recently, 
as seen by the amount  of  literature on muttibody simulation and computer aided analysis 
programs being sold in the market of  engineering software. Nevertheless, there is an increasing 
demand for faster and more reliable simulations that must be based on more efficient and robust 
algorithms for multibody dynamics. 

The dynamic analysis of  multibody systems is a process which is most appropriately 
performed using interactive (rather than batch) type of  analysis. The analyst is interested in 
visualizing a whole set of  successive responses of  the multibody, a simulation of  its behavior 
and operation over all the mechanism workspace and over a certain period of time. In certain 
cases it may be even necessary to introduce the engineer as an additional element in the 
simulation, called "man-in-the-loop", who may act by introducing external forces or control 
over specific degrees of  freedom. In any case, each response over a time step needs to be 
calculated and displayed at the highest speed possible in order to give a picture that will 
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possibly resemble the actual motion of the system in both time and space: the real-time 
behavior. 

While it is important for multibody dynamic simulations to have fast and accurate inter- 
active graphical interfaces, it is essential that the computer software relies on good numerical 
algorithms that will permit a fast and reliable solution of the resulting algebraically constrained 
differential equations of motion. Consequently, it becomes very important that numerical 
efficiency and stability be combined with robustness so that the simulation does not reach 
dead-lock situations due to singularity positions in the multibody motion. 

In recent years, some important advances have been made in the development of new 
formulations for multibody dynamics. Some formulations, stemming mainly from the robotics 
field, have been especially conceived for real-time simulation and are based on the recursive 
computation of some or all of the terms in the equations of motion [1-4]. Some of these 
algorithms are O(N) meaning that the number of floating point arithmetic operations grows 
linearly with the number of degrees of freedom. Others require the solution of a system of 
N linear equations and, therefore, are of order O(N 3) (if Gaussian elimination is used). 
Although it has been demonstrated by Featherstone [3] that the best O(N 3) algorithms are 
faster than the best O(N) algorithms for N < 10, the elegance and attractiveness of the 
O(N) Featherstone's formulation has exerted a strong influence on later developments that 
have generalized these ideas for non-serial (tree-configuration) and closed-loop systems [5-7]. 
A limitation arises when closed-chain multibodies are analyzed, since for these cases special 
provisions must be made to account for the reaction forces between the different loops [6]. 

The second group of methods encompasses those that reduce the equations of motion in 
dependent coordinates to a minimum set of independent ones via a transformation matrix 
obtained from the nullspace of the Jacobian of the constraint equations. Different methods 
of choosing the independent set of coordinates and generating the transformation matrix 
have been proposed [8-14]. The concept of velocity transformations, initially introduced by 
Jerkovsky [ 15], has been subsequently extended into efficient algorithms [ 16-19] that avoid the 
Jacobian factorization, and allow for an efficient and simple way of generating the equations 
of motion in independent coordinates in a way that can be fully parallelized [19]. 

The classical way to generate the equations of motion is to use dependent (or absolute) 
coordinates to generate and solve the equations of motion [14]. These algorithms are based 
on the classical Lagrange's formulation which leads to a set of differential and algebraic 
equations (DAE) of motion with the coordinates and multipliers as unknowns. The solution of 
these equations require special techniques [20] whose merit has not been thoroughly calibrated 
yet for the integration of multibody systems. A way to avoid the DAE is by differentiating 
the constraints. The resulting constraint violations are commonly stabilized using the method 
proposed by Baumgarte [21]. An extension for violation stabilization of holonomic systems 
based on the use of the canonical momenta has been proposed in [22]. 

Although the methods described above are well established (some of them very efficient 
numerically), they can not directly handle redundant constraints. In fact these have to be 
eliminated prior to the dynamic analysis. In addition they all fail to give successful solutions 
when the multibody undergoes a singular position. A partial solution to the problem of singular 
positions was provided in [23] where a method is developed that detects the ill-conditioning of 
the Jacobian matrix so that the integrator can step over it. In [24-25] a regularization method 
is proposed to cope with singularities. The main idea consists in adding to the vanishing and 
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the linearly dependent constraints their third derivatives, and this turns the Jacobian non- 
singular. A staggered stabilization approach was presented by Park and Chiou [26] which 
was later refined by means of an explicit-implicit integration procedure [27]. This method 
integrates two different sets of equations one for the coordinates and another for the Lagrange 
multipliers, and avoids the singular position problem of the equations of motion. A small 
limitation, however, is that it requires the inversion of the mass matrix, which is in general 
semi-positive definite and may not have an inverse in certain instances (in particular when 
redundant dependent coordinates are used). 

Bayo, Garcia de Jalon and Serna proposed a penalty method [28] by which the acceleration, 
velocity and position constraint conditions are added to the equations of motion as a "dynami- 
cal penalty system" to obtain a simple and efficient formulation for the dynamic equations. The 
appeal of this formulation lies in two main points. Firstly, it leads to a reduced set of equations 
in the form y = g(y, t) that can be integrated by standard conditionally stable numerical 
algorithms, without the need of further stabilization techniques to control the violation of the 
constraints during the integration process. Secondly, unlike the classical methods which rely 
on the Jacobian, this penalty formulation leads to matrices that can be inverted even in singular 
positions, and in the presence of redundant (linearly dependent) constraints and coordinates. 
Important theoretical studies of its convergence and stability have been carried out in [29] and 
[30]. The penalty method of [28] has also been successfully extended to real time dynamics 
within the context of fully Cartesian coordinates in [31]. There, it has been shown that the 
penalty method requires the factorization of a symmetric matrix that is dominated by the terms 
in the main diagonal (no pivoting is required), and is strongly banded, feature that makes it 
an order n method, where n is the number of coordinates. In addition, the different steps of 
the algorithm can be parallelized, making this method suitable for very large systems. 

It was also proposed in [28] a more complete and accurate augmentedLagrangian method 
(combination of the penalty formulation and Lagrange's multipliers), which allows for con- 
vergence independently of the penalty values and which yields the constraint forces (Lagrange 
multipliers) as a by-product without having to integrate additional equations. In this paper we 
examine this augmented Lagrangian formulation within the context of singular positions and, 
in addition, propose a new one based on the use of the canonical equations of Hamilton that 
is even more stable and numerically efficient than the previous one. 

2. Preliminaries on the Classical Formulations 

2.1. ACCELERATION BASED LAGRANGE'S MULTIPLIER FORMULATION 

Let us consider a multibody system whose configuration is characterized by n generalized 
coordinates q that are interrelated through the rn holonomic kinematic constraint conditions 

• (q, t) = 0 (l) 

Let L be the system Lagrangian, defined by L = T - V ,  where T and V are the kinetic 
and potential energy, respectively; and let Q be the vector of external and non-conservative 
forces. The Lagrange equations of such a system can be written as [32] 

dt ~ - - ~ q q +  = Q '  (2) 
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which for a general multibody system leads to: 

Mcl + (I)T)t = Q q- Lq - lVIcl, (3) 

where M is the mass matrix, Lq is the partial derivative of the Lagrangian with respect to 
the coordinates, ~ q  is the Jacobian of the constraint equations, Q is the vector of extemal 
and non-conservative forces, and A is the vector that contains the Lagrange's multipliers. 
Equations (1) and (3) constitute a set of n + m mixed differential algebraic equations (DAE) 
of index three [20], with q and A as unknowns. In order to avoid the direct integration of 
DAEs, a double differentiation of the constraints equations may be carried out, which along 
with the Baumgarte's stabilization [21] yields: 

~ q  0 - ( ~ q ( t -  ~ t  - a ~  - b(I' ' 
(4) 

where a and b are the stabilization constants. These equations can now be integrated using 
standard numerical integrators [33] with each function evaluation performed using equation 
(4). 

2.2. LAGRANGE'S MULTIPLIER FORMULATION IN CANONICAL FORM 

The definition of the conjugate or canonical momenta can be taken from classical mechanics 
[32] 

OL 
P -  0~t (5) 

along with the Hamiltonian 

H = pTcl -- L. (6) 

The canonical equations of Hamilton for a constrained system are formulated as 

OH 
q= Tp (7a) 

OH ~T  )~. (7b) 
-15- -  0q  Q +  

In the case of multibody systems the Lagrangian L is defined in terms of q, ~t and t, and rather 
than following a lengthy process to form the Hamiltonian as an explicit function of q, p and 
t, and then differentiate as in (7a), the canonical equations can be directly obtained from (5) 
and (7b). Since the system kinetic energy is a quadratic function of the generalized velocities, 
(5) and (7b) directly lead to the following set of equations in matrix form 

p = M( t  (8a) 

15 = Lq + O - ¢I)T)~. (8b) 
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The combination of (8a-b) and (1) constitutes a system of 2n + m differential and algebraic 
equations (DAE), of index two. Note, that although equations (8a-b) have n more equations 
than (3), 1 ~ can be obtained explicitly from (8b). In addition, index two DAEs are better 
behaved than index three DAEs [20], and therefore the consideration of equations (8a-b) may 
be numerically more advantageous than (3), when using algorithms for the solution of the 
mixed differential algebraic equations. 

In order to avoid the mixed differential and algebraic equations, the system Lagrangian is 
modified in [22] and [34] to include the kinematic velocity constraints as 

L* = L + ~To-,  (9) 

where or are the new Lagrange multipliers. The new Hamiltonian is H = pT~ t -- L* and the 
application of (3) and (5b) leads to 

Pnew = M i 1 + ~T a (10a) 

~)new = Lq + Q + ~Ta (10b) 

that along with 

~, + 7~I , = + q / t  + ~I,t + 7,I , = 0 (1I) 

constitutes a set of 2 n + m  ordinary differential equations (ODE), with p, q and a as unknowns. 
The real constant 7 provides asymptotic stability of the stabilization scheme. It can be very 
easily verified by differentiation of (10a) and substitution in (10b) that o- = A. 

It is worth mentioning that only the following n + rn equations need be solved at each time 
step in the numerical implementation of the algorithm: 

• q 0 (r = - - ~ t - - ' 7  ~ " 

The numerical simulations of [34] show that since only the first time derivative of the con- 
straints is used, the integration of this equations is more efficient and more stable, than the 
acceleration based counterparts. 

2.3. REDUCTION TO AN INDEPENDENT SET OF COORDINATES 

The other widely accepted group of methods for multibody dynamics is based on the use 
of a transformation matrix R that will reduce the equations of motion to a minimum set of 
coordinates. The matrix R is obtained from the concept of the nullspace of the Jacobian, 
and allows one to express equation (3) in terms of an independent set of coordinates. The 
procedure starts by differentiating the constraint equations ,I,(q) = 0, that for simplification 
purposes we assume are sclerenomous, to obtain 

~q¢l  = O. (13) 

It may be seen from equation (13) that/1 belongs to the nullspace of the Jacobian ~q .  The 
dimension of the nullspace is equal to f ,  where f is the number of degrees of freedom of 
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Fig. I. Slider-crank mechanism. 

the multibody system. We can always express ~1 as a linear combination of the vectors of a 
nullspace's basis, in the form 

ct = R~, (14) 

where R is an n × f matrix whose columns constitute a basis of the nullspace, and z are 
the f independent velocities. Since R constitutes a basis of the nullspace of the Jacobian, 
it satisfies the relationship ff~qR = 0. The matrix R may be obtained from the Jacobian by 
projection methods using Gauss factorization [8], the singular value decomposition [9] or the 
QR method [10]. It can also be obtained more efficiently by velocity transformations [15-19]. 
The substitution of (14) into (3) and premultiplication by R T yields: 

RTM R ~ -- RT(Q + Lq - IVI~l) - RTM R i (15) 

from which ~ can be calculated. An extension of this method within the setting of canonical 
equations has been proposed in [35], where the same leading matrix is obtained. 

2.4. WHY THE CLASSICAL FORMULATIONS FAIL IN SINGULAR POSITIONS 

As mentioned before, a singular position is encountered when the multibody reaches a config- 
uration in which there is a sudden change in the number of degrees of freedom. For instance, 
a slider-crank mechanism as the one shown in Figure 1, reaches a singular position when 
the two links are in vertical position. In that configuration, both links are coincident and the 
mechanism has not one but two degrees of freedom. These two degrees of freedom corre- 
spond to the two possible motions (bifurcations) that the mechanism can undergo, and which 
are illustrated in Figure 2. Figure 2a shows the first possible motion that corresponds to a 
slider-crank mechanism, Figure 2b, shows the second motion corresponding to a rotating bar 
(in fact two coincident rotating bars). As may be seen, a singular position implies a bifurcation 
point, in which the mechanism can, at least theoretically, undergo different paths. 

The existence of a singular position with both, the classical Lagrange's multipliers approach 
and the reduction to a set of independent coordinates, is invariably detected when the Jaco- 
bian matrix of the constraints becomes rank deficient. These formulations are based on the 
decomposition of the Jacobian and since its rank suddenly falls at a singular position, the 
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Fig. 2. a. Slider-crank mechanism motion, b. Rotating bar motion. 

decomposition fails and therefore no solution can be found. The simulation then crashes not 
because of the physics of the problem, but because of the inability of the dynamic formulation 
to overcome the sudden change in the rank of the Jacobian. 

Equations (4) and (12) are the key equations for the solution of the dynamics using the 
Lagrange's multipliers method. Assuming that all the constraints are independent, that is if 
ra = n - f ,  the rank of the leading matrices in those equations is n + ra. Since the Jacobian 
becomes rank deficient in singular positions, this matrix becomes singular. This means that the 
accelerations (or velocities) may not be computed unless special care is taken to eliminate (or 
regularize), at that particular position of the multibody system, all the vanishing constraints. 
Otherwise, the dynamic simulation crashes at this point. Equation (15) is the alternate key 
equation for the independent coordinate method. Again, when a singular position is reached 
special provisions have to be made for the computation of the matrix R. 

If a singular position is not exactly reached, the leading matrix of both classical methods 
will not be strictly singular, but near singular, with a very high condition number. If this 
situation is not correctly tracked, the integration and round-off errors will be amplified and 
the resulting solutions may be totally erroneous. 

It is important at this stage to emphasize the difference between a singular Jacobian and a 
singular position. While a singular position always implies a singular Jacobian, the converse 
is not always true. A Jacobian can become singular when redundant constraints are present, 
a dead-lock position is reached, or, when the coordinate partitioning between dependent and 
independent coordinates is not made properly or has not been updated for a while. Contrary 
to the case of a singular position, these singularities can be easily avoided and the simulation 
may proceed smoothly. The difference between singular Jacobian and singular positions can 
be better understood by partitioning the columns of the Jacobian ~I)q into two submatrices 
ff~qd and CI, q *, corresponding to the dependent and independent coordinates, respectively. 
This partition is made so that ,I,q d has full row rank. When CI, q a is rank-deficient but ,I,q has 

full row rank the singularity is easily avoidable since the full rank of ,I,q d can be recovered 
by a new suitable choice of independent coordinates. However, at a singular position CI, q 
looses rank all of a sudden, and the singularity may only be avoided by eliminating the non- 
active constraints. As pointed out in [25] if these non-active constraints are eliminated in the 
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neighborhood of the singular configurations the corresponding constraint forces become zero 
and this may result in a fast deviation of the simulation from the constrained behavior. 

3. Acceleration Based Augmented Lagrangian Formulation 

3.1. DESCRIPTION OF THE METHOD 

For the sake of completeness and in order to facilitate the understanding of the methods 
proposed in sections 4 and 6, we present in this section the augmented Lagrangian method 
introduced in [28]. Later we will address its behavior in singular positions. Given a multibody 
system with holonomic constraint equations of the form given in (1), which represent a set of 
nonlinear algebraic equations in the coordinates and the time variable. The penalty-augmented 
Lagrangian formulation proposed in [28] is derived by adding to the Lagrangian two terms: a 
fictitious potential 

V* -~. E 20:k ~.)~c ~ cI~Tot ~'-~21I~ (16) 
k 

and a fictitious kinematic energy term 

1 (d~k '~  2 1 
T* = ~ ~ak \ - - - ~  j =-- ~T a 4.  

k 
(17) 

A set of Rayleigh's dissipative forces is also added to the system 

&bk _ -2or f~ # ~,, (18) Gk = -2ak  cok #k dt - 

where ak are large positive real values (penalty numbers), and wk and/zk represent the natural 
frequency and the damping ratio of the dynamic penalty system (mass, dashpot and spring) 
corresponding to the constraint Ok -- 0. Matrices or, f~ and # are m × m diagonal matrices 
that contain the values of the penalty numbers, the natural frequencies and the damping ratios 
of the penalty systems assigned to each constraint condition. If the same values are used for 
each constraint these matrices become identity matrices multiplied by the respective penalty 
numbers. Note that in equations (16) through (18) we have used both index as well as matrix 
notation, hoping that this will lead to a better understanding of the physical significance of 
the different terms. In the following discussion we will only use the matrix form in order to 
be consistent with the notation used so far in the paper. 

The differentiation of the new Lagrangian leads to 

OL* _ Lq n t- (~O~ ~ -- cI)~O~ ~-~2~I) (19) 
Oq 

OL* ~7£a ~ (20) 
0Cl - M ¢ I +  

(21) 
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"' T = ~,~, which can be easily verified, has been used. L is the Lagrangian where the relation q~q 
corresponding to the system without constraints. 

The work done by the fictitious Rayleigh forces is 

6WR = --2(~5~)Tot ~2 # ~ = --2~SqT~Ta f~ # ~. (22) 

Therefore the final expression obtained by the application of the Lagrange's equations (3) is 

Mcl + (I)Ta ( ~  + 2f~#(b + f~2(I)) + (I)qTA * = Q + Lq - M/t, (23) 

where A* are the new Lagrange multipliers of the modified system. Note that the second term 
in the LHS of equation (23) represents the projection in the direction of the coordinates q of 
all the internal forces that are.generated by. the penalty system when the constraints (b, ~) and 
~) are violated. Introducing ,I~ - (I)q~ + ~q¢l q- ~t  the final result is obtained 

= Q + Lq - l~I~l - ~Ta ('~qCl + ~t + 2q~#'b + f~2~) .  (24) 

This equation may be viewed as the "generic penalty method" [28] to which the Lagrange's 
multipliers are added. As clearly shown in [28] this augmented Lagrangian formulation allows 
the analyst to choose from a wide range of penalty values that assure convergence and avoid 
numerical ill-conditioning. As we will see later, the solution provided by this method is not 
sensitive to the value taken by the penalty factor, and therefore, equation (24) represents and 
elegant and attractive way of avoiding the problems customarily attributed to the penalty 
formulations. 

It is important to note that there is a very important difference between equation (24) 
and the classical dynamic algorithms represented by (4) and (15). As we indicated before, 
the leading matrices of the latter equations become singular in singular positions. However, 
although the mass matrix M is in general positive semi-definite, it is always strictly positive 
definite in the nullspace of the Jacobian matrix. Therefore, a look at equation (24) reveals that 
its leading matrix (M + ~qTct~q) is always positive definite, which means that it can always 
be factorized, even in singular positions and/or with linearly dependent constraints. In practice, 
the augmented Lagrangian formulation is superior to the generic penalty method since the 
former allows for smaller values of the penalty parameter, hence, for a better conditioning of 
the leading matrix. 

In equation (24) the Lagrange's multipliers A* play the role of correcting terms. In the 
limit the constraint conditions are satisfied, thus A = A* and equations (4) and (24) become 
equivalent except for round off errors induced by the penalty parameter and finite machine 
precision. By comparing those two equations one can infer that 

+ a ( ~  + 2f~/*'~ + f~2@). (25) A A* 

We are seeking the solution of (24) without having to use the algebraic constraint equations 
(1). This requires that the correct values of A* be known so that they can be inserted in (24). 
Since those values are not known in advance we need to set up an iterative process that 
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calculates the unknown multipliers A*. The iteration is easily established by taking advantage 
of equation (25) 

/~*i+l = Ai* + a ( ~  + 2f~#~ + 122~) i = 0, 1,2, ... (26) 

with A~ = 0 for the first iteration. Equation (26) physically represents the introduction at 
iteration i + 1 of forces that tend to compensate the fact that the addition of all the constraint 
terms are not exactly zero. It turns out that with the augmented Lagrangian formulation, the 
penalty numbers do not need to be very large (thus leading to a better numerical conditioning) 
since the resulting error in the constraint equations will be eliminated by the Lagrange's terms 
during the iteration procedure. Also note that the "generic penalty" [28] method corresponds 
to the augmented Lagrangian formulation in which the iteration process is only carried out 
o n c e .  

The matrix formulation of (24), including the iterative process defined in (26), is given by 
the following expression: 

i = 0, 1,2, (27) 

where the subscript i represents the iteration number, and M ~1o = Q+Lq  - ]VI/t for the 
initial iteration. Equation (27) may be used to iterate until I1~1 (i+I) - ~1 (1) I[ < e, where e is a 
user-specified tolerance. 

The main advantage of using equation (27) is that the penalty terms are in fact used as an 
intermediate tool in order to compute the Lagrange's multipliers for which no new equations 
are integrated: only n equations are solved in the integration process. Therefore, the value of 
the penalty factor a does not affect the solution, but only the convergence rate. Experience 
shows that when the constraints are scaled to unity, penalty factors ranging from l0 s to 107 
give a good convergence rate, and only 2 to 4 iterations are required to converge to the machine 
precision, in double precision arithmetic. 

Note that the added cost of using equation (27) to refine the solution and obtain the 
Lagrange multipliers is fairly small, since its leading matrix remains constant during the 
iteration process needed for a function evaluation. Therefore, at each iteration step only the 
computation of the independent term and a forward and a backward substitutions are required. 
The numerical implementation of the algorithm using standard integrators [33], available in 
commercial mathematical libraries, is rather simple and may be described as follows 

ALGORITHM ALF1 
Given q and/t at time step l, 

1. Use (27) iteratively to solve for ~, with M q0 = Q + Lq - 1QI~ 1 for the initial iteration. 
At the end of each iteration use (26) to calculate the Lagrange multipliers ),*, if desired 

2. Call the numerical integration subroutine (n.i.s) to compute q and/t at time step I + 1. 
3. Upon convergence of the n.i.s update the time variable and go to step 1. 

We have used this algorithm very successfully in multibody dynamics simulation and has 
turned out to be very efficient and accurate. However, we have noticed that under repetitive 
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singular conditions this algorithm may lead to unstable behavior (see examples below) due to 
the accumulation of small violations of the constraints during the integration process. This lead 
us to propose a more robust augmented Lagrangian method based on the canonical equations 
of Hamilton that is presented in the next section. 

4. Augmented Lagrangian Formulation in Canonical Form 

4.1. BASIC AUGMENTED LAGRANGIAN FORMULATION IN CANONICAL FORM 

Let us consider equation (9) as the starting point to build a modified Lagrangian that will not 
only contain the Lagrange multipliers o- but also the penalty terms of the previous section. 
Accordingly: 

(28) 

In the limit when the constraint conditions are satisfied, the penalty terms vanish and a = a*. 
Similar to the Lagrange's formulation o'* = A* and after the augmented Lagrangian iteration 
when the constraints are satisfied to machine precision # = A. The differentiation of L* with 
respect to ~1 leads to the following new canonical momenta in matrix form 

OL* _ Mcl + (i)qTa(~ + (i)qTa., (29) 
P - - 0 ~ -  

where we have eliminated the subindex 'new' of (10a) for practical convenience. The modified 
Hamiltonian can be written as H* = pT~ 1 -- L* and the use of (7), including the Rayleigh 
forces of (18), leads to 

(30a) 

" T *  (30b) 

Equations (30a-b) constitute a set of 2n first order ordinary differential equations. However, 
lb is given in explicit form, and therefore only n algebraic equations need be solved at each 
function evaluation for the numerical implementation of the algorithm. 

Our numerical simulations have shown that equations (30) tend to be numerically stiff due 
to all the penalty terms concentrated in the RHS of (30b). This numerical stiffness limits the 
possible choices of numerical integrators. Standard ODE integrators [33] that are based on 
conditionally stable predictor-corrector multi-step formulae, lead to an increased number of 
function evaluations. We propose in the next section a modification of (30) that circumvents 
this problem. 

4.2. MODIFIED AUGMENTED LAGRANGIAN FORMULATION IN CANONICAL FORM 

The canonical equation (30a) may be also written as 

W p = M~I + ~qTa~' + ~ q a  , (31) 
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which indicates that the canonical momenta is stabilized through the addition of penalty 
terms that are proportional to the violation of the velocity constraint equations. It is important 
to realize that if equation (31) is differentiated and substituted into the acceleration based 
augmented Lagrangian equation (24) the result is precisely the additional canonical equation 
(30b), which lead us to see that the canonical equations originate from the acceleration based 
equations by the mere canonical transformation indicated in (31). 

However, we can achieve a better stabilization of the canonical momenta if we add to the 
RHS of (31) two additional penalty terms: one term proportional to the constraint violation 
and the other to its integral. Accordingly we define a new momenta p as 

p = M~l + ~qTa (~ + 2 /~ f~  + f~2 (I)dT - -  G I ) q  O" . (32) 

By expanding the term ~, equation (32) becomes: 

= - ~d~- - ~ q a .  (33a) 

The differentiation of (33a) and substitution into (24) leads to the second set of modified 
canonical equations 

( /,' 15 = Q + Lq + ~ T a  ~ 2 ~ / t ~  + 122 ~d'r , ,~qa  , (33b) 
o 

which along with (33a) constitute a set of 2n first order ordinary differential equations in the 
unknowns p, q and a*. Again only n algebraic equations need be solved at each function 
evaluation for the numerical implementation of the algorithm. A very important point is that, 
contrary to equations (30a-b), equations (33a-b) do not become stiff, and all our numerical 
experiments show that they even provide more numerical accuracy and better constraint 
stabilization than the acceleration based formulation of equation (24). 

In fact we can compare this set of equations with the n second order ordinary differential 
equations resulting from the acceleration based formulation of (24). While both formulations 
require the triangularization of the same leading matrix for each function evaluation, there 
is a serious advantages in the use of (33a-b) as compared to (24): the kinematic constraint 
conditions are differentiated only once with the canonical procedure (twice in the acceleration 
based formulation) and this will lead to lesser violations of the constraints. We will see in the 
numerical simulations of Section 6, how this factor becomes detrimental for the acceleration 
based formulation under repetitive singular positions, whereas the canonical approach leads 
to a much better performance. 

Note again, that the multipliers a* do not need to be solved for explicitly. Following the 
same procedure as that used with the acceleration based augmented Lagrangian formulation, 
the a* may be obtained in an iterative manner as: 

(, * = * ~ d ' r  , i = 0 , 1 , 2 , . . .  ( 3 4 )  ai+ l a i + + 2 # f ~  + f~2 
i+l 

with a~ = 0 for the first iteration. Equation (33a) including the iterative process of (34) 
becomes 
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i = o ,  1 , 2 ,  ... ( 3 5 )  

with M ~1o = P for the first iteration. Equation (35) shows that the velocity calculation at 
each function evaluation is refined so that the weighted summation of the constraint equations 
(34) are satisfied to machine precision. After the velocity calculation equation (33b) may be 
used to evaluate the derivative of the canonical momenta. 

The algorithm may be presented as 

ALGORITHM ALF2 
Given p and q at time step 1. 

1. Use (35) iteratively to solve for/1, with M / 1 o  = P for the first iteration. At the end of 
each iteration use (34) to calculate the Lagrange multipliers o-* 

2. Use (33b) to compute 15 explicitly (no solution of equations involved). 
3. Call the numerical integration subroutine to compute p and q at time step I + 1. 
4. Upon convergence of the n.i.s. 

• If desired, use a differentiation scheme to obtain A --- 6- 
• Update the time variable and go to step 1. 

This algorithm is as efficient numerically as ALF1 but much more stable under repetitive 
singular positions. 

5. Canonical Augmented Lagrangian Formulation for Non-Holonomic Systems 

The modified augmented Lagrangian formulation described above may also be extended to 
non-holonomic systems with constraints of the form 

(~t, q,t) = 0. (36) 

The acceleration based augmented Lagrangian formulation for this type of constraints is: 

@qTA*. (37) 

In order to obtain the canonical counterparts we follow a procedure similar to that used for 
the holonomic case, and establish the following canonical transformation: 

which indicates that a better stabilization of the canonical momenta may be achieved by 
considering one penalty term proportional to the constraint violation and other to its integral. 
The differentiation of (38a) and posterior substitution into (37) leads to the second set of 
canonical equations 

( ) .T .  o0 o 0 = Q + Lq + ~Tot ¢b + fl ,bdr + (385) 

which along with (38a) constitute a set of 2n first order ordinary differential equations in the 
unknowns p, q and a*. Again only n equations need be solved at each function evaluation. 
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Typically, non-holonomic constraint conditions for multibody systems take the following 
form 

= A ( q , t )  ~l + B ( q , t )  (39) 

and consequently the application of (38a-b) leads to 

( M + A T o t A )  i : t = p - A T o t  ( B +  fl f j@dT)  - A T a  * (40a) 

( )-o,  1 5 = Q + L q - k - ~ k T o t  ~ + fl O dT + (40b) 

and 

" * (  ,fl ) ai+ l = a  i + 4 +  ¢dT , i = 0 , 1 , 2 , . . .  (41) 
i+1 

with a~ = 0 for the first iteration. 

6. Numerical Examples 

6.1. A SIMPLE EXAMPLE 

To better understand the application of the augmented Lagrangian formulation in singular and 
non-singular positions, let us consider the slider-crank mechanism shown in Figure 1. Both 
links are of  length l = lm, with a uniformly distributed mass o f m  = 1 Kg. We take as position 
coordinates q, the x and y coordinates of the crank end, and the x coordinate of the slider, 
thus qT ___ {Xl, Yl, x2}. We consider the gravity force, with a value g = 9.81 m/s 2 acting in 
the negative Y axis direction. 

The 3 x 3 mass matrix corresponding to these variables is 

, [40 ] 
M - = ~  0 4  

1 0  

This mechanism has one degree of freedom only, and therefore there are two geometrical 
constraints that correspond to the constant distance conditions (the reader is referred to [37] 
for a general use of the fully-Cartesian coordinates) 

1 2 2 } (x l  + yl  - 1) 

When the crank forms an angle of 7r/2 radians with the horizontal, the coupler is coincident 
with the crank and the crank axis is also coincident with the slider. In this position the 
mechanism has two instantaneous degrees of freedom, since it can undergo either the motion 
of a slider-crank or the motion of two superimposed rotating bars. Let us now apply the 
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Table I. Convergence rate with 
o~ = 104 

Iteration # Error 

1 6.5792 10 -4 

2 4.3705 10 -~ 

3 2.9206 1 --12 

4 1.6107 10 -14 

algorithm ALF1 for the instantaneous solution of the accelerations, for both a nonsingular 
position and a singular position. 

Nonsingular Position. Consider the mechanism in an initial position in which the crank forms 
an angle of 7r/4 with the horizontal and in which the slider has a velocity 5:2 = - 2  m/s. The 
exact acceleration has been computed first with the classical Lagrange's multiplier method of 
equation (4). Then, the accelerations have been calculated with the algorithm ALF1, using 
equation (27) iteratively, with a value ce = 104. Table I shows the norm of the difference 
between the exact acceleration and the one obtained with ALF1. 

Table I also shows that the convergence rate of the iterative algorithm is considerably fast. 
This rate agrees with that predicted analytically in [36]. A higher penalty value gives a faster 
convergence rate but a lower precision. For instance, a value of c~ = 107 yields an error of the 
order of 10-12 in one iteration, however, further iterations are unable to improve the solution, 
since some precision is lost in floating point arithmetic operations between numbers with 
exponents of significantly different values. 

Singular Position. Now, consider the crank in a vertical position, forming and angle of 7r/2 
radians with the horizontal. As we did in the nonsingular case, we take again a slider velocity 
value :~2 = - 2  m/s. Since the mechanism is in a singularposition with 2 instantaneous degrees 
of freedom, we also have to specify the horizontal velocity of the crank end. It can be easily 
shown that, theoretically, the crank end can have any velocity value 5:1 = v. However, the 
slider-crank motion must satisfy the condition xl = x2/2 over all its motion, and therefore 
the velocity dh = - 1  seems the obvious choice. Note that in this example the choice for the 
crank-end velocity is being made explicitly, but during a dynamic simulation the numerical 
integrator will provide the value of the crank-end velocity. Since the integrator assumes a 
continuous variation of the variables, this condition will be automatically guaranteed. 

In this case, the exact acceleration value cannot be computed with equation (4) because the 
leading matrix is singular. However, the application of equation (27) with a value of ~ = 104 
leads to 

_ -  - 

o } 
(2(10) 4 + 9.81) 

0 



224 E. Bayo and A. Avello 

which can be inverted and leads to the solution (0, -1.000473825436242729, 0). After 3 
iterations, the result is (0, - 1 ,  0), accurate to 14 digits. 

This simple example clearly and simply illustrates that the penalty-augmented Lagrang- 
ian formulation works in singular positions, when the classical formulations, such as the 
Lagrange's multipliers method or the reduction to independent coordinates, fail. Also note 
that the condition number of the leading matrix increases at the same rate as the penalty 
parameter. 

6.2. DYNAMIC SIMULATION OF THE SLIDER-CRANK MECHANISM 

Let us consider again the same slider-crank mechanism of Section 6.1, in an initial position 
such that the crank forms an angle of 7r/4 radians with the X axis and that the slider's velocity 
is 5:2 = - 4  rrds. 

We perform a dynamic simulation by integrating the equations of motion for a total of 10 
seconds, using a conditionally stable variable step and order integrator based on predictor- 
corrector multistep formulae [33]. We set the error tolerance to 10 -5 and choose as penalty 
parameters c~ = 107, [2 -= 10 and # = 1. During the simulation, the mechanism goes through 
the singular position I l times, following a periodical response. 

First, the simulation was carried out with the acceleration based algorithm ALF1. Figure 3 
shows the X acceleration of the crank-end over the time period of 10 seconds. Figure 4 shows 
the value of the Lagrange multiplier )q, corresponding to the constant distance constraint 
condition between the crank axis and the crank end. Finally, Figure 5 shows the time history 
of the total energy, which should be kept constant, since the system is conservative. A very 
interesting point can be noted in Figures 3, 4 and 5. The value of the acceleration of the 
crank-end and A1 present spikes around t = 9.25 s and, at the same time, the energy presents 
a sudden discontinuity. The cause of this phenomenon is a small violation of the constraints 
around the singular position, due to the combination of the errors produced by the numerical 
integration routine and by the round-off errors produced by augmented Lagrangian procedure. 
These errors are more critical in the acceleration based algorithm ALF1 because the constraint 
equations are differentiated twice. 

The simulation was repeated, this time using the algorithm ALF2, with the same error 
tolerance and values for the penalty parameters. This time, the values of A1 and the crank-end 
acceleration, illustrated in Figures 6 and 7, no longer show the spikes resulting from ALF1. 
In addition, the total energy, shown in Figure 8, does not show the sudden discontinuity that 
results in Figure 5. 

The accumulation of integration errors that lead to small constraint violations in the 
neighborhood of the singular position is the cause for the sudden peaks and jumps in the 
constraint forces and accelerations produced by ALF1. These can be removed by tighter error 
tolerances in the integrator. The better results obtained under the same conditions with ALF2 
are due to its better constraint stabilization properties. 

6.3. AN ASSEMBLY OF TWO FOUR-BAR LINKAGES 

Figure 9 shows the initial position of a one degree-of-freedom assembly of two four-bar 
linkages. This mechanism constitutes a particularly critical example, because when it reaches 
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the horizontal position the number of degrees of freedom increases instantaneously from 1 to 3. 
To define the position of the system, we use the 6 position variables (xl, y], x2, Y2, x3, Y3). 
All the links are of length 1 = 1 m and have a uniformly distributed mass m = 1 Kg. The 
gravity force acts in the negative Y direction, with a value 9 = 9.81 m/s 2. At t = 0 the initial 
velocity is kl = 1. We integrate the motion for 10 seconds, using the same integrator and 
tolerance as before, and the values c~ = l0 7, ~ = 10 and # = 1 for the penalty parameters. 

The analysis was carried out twice, first with the algorithm ALF1 and then with the 
algorithm ALF2. The results obtained with ALF1 are displayed in Figures 10 and 11, which 
show the time variation of the coordinate xl and the Lagrange multiplier A], corresponding to 
a constant distance constraint between point 1 and the fixed end of the leftmost link. Figures 
12 and 13 show the variation of the same variables, obtained this time with the algorithm 
ALF2. As may be seen, the solution with ALF1 becomes unstable after 3.3 seconds, while 
ALF2 gives congruent results. 

The reason for the failure of ALF1 and the success of ALF2 are found again in the better 
stability properties of ALF2 with respect to constraint violations (it even yields a successfull 
integration when just the generic penalty formulation is used with no augmented lagrangian 
iteration). The way ALF1 may be improved, if it is to be used in repetitive singular positions, 
is by setting tighter error tolerances and rising the value of the parameter f2. However, this will 
introduce numerical stiffness in the problem and therefore will increase the computational 
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effort. In this example, the value of ~ = 20 solves the problem satisfactorily at the cost of a 
lengthier integration. 

7. Conclusions 

In this paper we have concisely reviewed the state of the art in multibody dynamic simulation. 
We have also revisited the acceleration based augmented Lagrangian formulation in the context 
of singular positions (ALF1) and proposed a new one based on the canonical equations 
of Hamilton (ALF2) for both holonomic and non-holonomic systems. Both formulations, 
ALF1 and ALF2, successfully solve the simulation problem in singular positions, however 
the canonical formulation ALF2 proves to be more accurate and robust than ALF1 under 
repetitive singular configurations. 

The advantages of the proposed method can be summarized as follows: 

• The method is very simple to implement and can use standard off the shelf conditionally 
stable numerical integrators such as those available in commercial mathematical libraries. 

• The fact that the leading matrix of the equations of motion is always positive definite, 
symmetric and sparse, allows for a very efficient solution of the equations without the 
use of pivoting. This applies even in the presence of redundant (linearly dependent) 
constraints and coordinates, and most importantly in singular positions. 

• Both the generic penalty and augmented Lagrangian methods do not require special pro- 
visions such as, detection, elimination of constraints or regularization, near the singular 
position. The integration goes through the singularity in a procession manner with no 
need for additional changes. 

• The Lagrange multipliers (reaction forces at the constraints) are obtained without having 
to integrate additional equations. 

• The leading matrix is strongly banded, feature that in principle makes it an order n 
method, where n is the number of dependent coordinates. Therefore it may become a 
very efficient formulation for those systems with a large number of multibodies, although 
this assertion needs to be corroborated by further research. 

• The acceleration based formulation ALF1 shows numerical inestabilities under repetitive 
singular positions that are due to the accumulation of round-off and constraint errors. 
These can be circumvented with tighter tolerances and increased values in the frequency 
of the dynamical penalty system at the expense of additional computational cost. 

• The canonically based method ALF2 is more robust and has not shown pathological 
behavior in any of our simulations (even when we used it in the generic penalty way). 
These authors do not know of any other algorithm that can simulate the motion of a 
multibody undergoing repetitive singular positions as ALF2 does. 

As a final remark, one must keep in mind that the actual behavior of multibody systems 
around singular positions is physically uncertain, due to the uncertainty in the manufacturing 
tolerances. It is, therefore, unlikely that the behavior of the systems simulated with the 
algorithms presented in this paper may be experimentally reproduced. However, the usefulness 
of the algorithms and numerical results presented herein is twofold. Firstly, they provide an 



230 E. Bayo and A. Avello 

efficient and reliable tool for multibody dynamics, which avoids the program crashing that 
occurs with the classical formulations. Secondly, these algorithms become useful for the study 
of the different alternative motions that a multibody system may undergo in the neighborhood 
of a singular position, when one or several geometrical parameters are slightly varied to 
simulate manufacturing errors. 
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