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Abstract. The quadrature method (QM) has been used in structural analysis only in recent years. In this study, QM is 
applied to flexural vibration analysis of a geometrically nonlinear beam. The numerical results by QM agree with the 
results by the finite element method. It is believed that this is the first attempt to solve a nonlinear dynamic problem by the 
quadrature method. 
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area of beam cross section. 
amplitude of first mode. 
modulus of elasticity. 
energy functional over the period T. 
centroidal moment of inertia of beam cross section. 
kinetic energy. 
length of beam. 
linear operator. 
mass per unit length. 
dynamic axial force. 
radius of gyration of beam cross section. 
period. 
time. 
strain energy. 
axial displacement of beam. 
discrete nonlinear normal mode. 
nonlinear normal mode. 
weighting coefficient. 
instantaneous lateral deflection function of x and t. 
beam axial position coordinate. 
dimensionless beam axial position coordinate. 
strain in the x-direction. 
curvature. 
fundamental nonlinear frequency. 
fundamental dimensionless nonlinear frequency. 
fundamental linear frequency. 
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Introduction 

Beams oscillating with a large amplitude are nonlinear systems and the small deflection theory is 
no longer applicable in this case. Considerable research effort has been devoted to solving 
nonlinear oscillating beam problems. An extensive literature survey was given by Nayfeh and 
Mook [1] and a comparative evaluation was recently presented by Singh et al. [2]. The procedures 
used include analytical, perturbation, and finite element methods. In the present study, the 
quadrature method is used to solve the free vibration problem of a geometrically nonlinear beam. 
The method of differential quadrature was introduced by Bellman and Casti [3]. Mingle [4] also 
applied this idea to the nonlinear diffusion problem, while Civan and Sliepcevich solved transport 
process problems by this technique [51 and extended it to include integrals [6]. In structural 
engineering, Bert et al. (see [7] and seven of its references) solved a variety of problems involving 
linear and nonlinear static situations and several linear dynamic problems. It is believed that the 
present study is the first attempt to solve a nonlinear dynamic problem by the quadrature method. 

Formulation 

Consider a beam oscillating with a large amplitude on immovable supports. It is assumed that 
plane sections remain plane and normal to the deflected middle surface and that the stress-strain 
law is linear. The nonlinear strain-displacement and curvature-displacement relations of the beam 
can be described as: 

= o x  + o x /  , Kx - o x  2 . (:) 

Upon neglect of the axial inertia force, the dynamic axial force N can be written in the form: 

N(x, t) = EA -~x + 2 \ Ox / J" (2) 

Assuming that the ends are axially immovable, i.e., u(o, t)= u(L, t )=  0, then 

N(x, t)= N(t)= ~ \ Ox / dx . (3) 

It is evident that the axial force is independent of x and thus depends only on time. 
With the above assumptions and considerations, the strain energy U and the kinetic energy K 

for a beam can be written in the form: 

foc 2 ~ foL N 2 1 El(  O~w ~ 1 
U= ~ \ ax 2/ dx + ~ - ~  

l f ~  (Owl  2 
K =  ~ m \  Ot / dx .  

dx,  (4) 

(5) 

Assume that: 

w(x, t) = av(x) cos ~ot. (6) 
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The quantity v(x) is the so-called nonlinear normal mode. 
Define the energy functional H as the Lagrangian functional: 

, f0 T H = -~ ( K -  U ) d t .  (7) 

Hence: 

£ £ [ d "v ]  3a4 EA [ f ? ( d v l 2  ]2 H(o,a)=a20)2 L a 2 L " 2 
~ - -  mv2(x) d x -  --~ E1 -d~x2 dx 16 4L k d x /  dx . 

By Hamilton's principle, let 6oH(v, a) = 0 to obtain the equation of motion: 

(8) 

E1 d4v 3 [ E A a  2 fo L ( d t ~ 2  d ]d2v  2 
d x  4 4 k 2L \ ~ x /  xj dx--- ~ -0 )  my = 0. (9) 

Let: 

( (De)2 = 0)2 mL4 2 I 
E1 ' r A '  

X 

Then equation (9) can be rewritten in dimensionless form: 

d4u 3 [ l a Z f o l ( d v ) 2  ] d2v 
d~ 4 4 2 77 ~ d~: ~ - ( w * ) 2 v = 0 .  (10) 

The Quadrature Method 

The quadrature method approximates the partial derivative of a function with respect to a space 
variable at a given discrete point as a weighted linear sum of the function values at all discrete 
points. The integral can also be approximated by the quadrature method [6]. 

A quadrature approximation at the ith discrete point is given by: 

N 

L { f ( x ) )  i = ~ W~jf(x~), i = 1, 2 . . . .  , N .  (11) 
j = l  

Here L { } is a linear operator applied to a function f(x),  where x is the independent variable 
and x~ (where j = 1, 2 , . . . ,  N) are the sample points obtained by dividing the x-variable into N 
discrete values; f(xj)  are the function values at these points; and Wi~ are the weights attached to 
these function values. 

In order for one to determine the weighting coefficients Wij , equation (11) must be exact for 
all polynomials of degree less than or equal to ( N -  1). A general term in such a polynomial or 
test function is then given by: 

L ( x )  = x 1 ,  k = 1, 2,  . . . ,  N . (12) 
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Then equation (11) leads to: 

L(xk-1}i= E WijX~ -1 , 
j~l 

i, k = 1 , 2 , . . . , N .  (13) 

If the linear operator represents an nth derivative, then the left hand side of equation (13) 
can be replaced as follows: 

L{x~-l}; = ( k -  1 ) ( k -  2) . . . . .  ( k -  n)xl k-'~ 1 )  i, k = 1 , 2 , . . . ,  N .  (14) 

If the linear operator represents an ruth integral, then the left hand side of equation (13) can 
be replaced as follows: 

L{xk-~}i  = x}k+m-1)/[k(k + 1)(k + 2) . . . . .  (k + m -  1)1 , i, k = 1 , 2 , . . . ,  N .  (15) 

The equation (13) represents N sets of N linear algebraic equations for the determination of 
the weighting coefficients W~j. It is noted that the sets have a unique solution for the weighting 
coefficients W~j, since the matrix of element x~ ~ represents a Vandermonde matrix which always 
has an inverse as described by Hamming [8]. The weighting coefficients are then used in equation 
(13) to express the derivatives or integrals of a function at a discrete point in terms of all the 
discrete function values. It is emphasized that the quadrature must be of higher order than the 
order of any partial derivatives and integrals, i.e., N > n and N > m. 

Application to a Nonlinear Vibrating Beam 

There are four linear operators contained in equation (10), namely: 

d d 2 d 4 fxo 
El  = d x '  L 2 -  dx 2 '  L3 = dx ---7' L4 = Jo dx .  

The weighting coefficients Aij, B#, Dij , and Gq are associated with L1, L2, L3, and L 4 
respectively. 

Applying the quadrature method to equation (10), one obtains: 

N a2 [  j~_ ( ~  Vs)(~_ 1 Vk)] (s~l Vs ) E Diyj  + 3 arj A Ajk Bis - (~*)2V i = 0 
j : l  g 7  r , - 1  -~=1 r, 

i = 3 , 4 , . . . ,  N -  2. (16) 

For a simply supported beam, the deflection and moment are zero at the ends. The boundary 
conditions can be written as: 

v(0) = v,¢¢(0) = v(1) = v,~¢(1) = 0,  (17) 

where ( ),re denotes d2( ) /d~ 2. In terms of quadrature: 
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N N 

V 1 = 0 ,  E B2jVj = O, E B(N-1)yj =0 ,  VN=O.  
/=i j= l  

(18) 

For a clamped beam, the deflection and slope are zero at each boundary. Thus: 

v(O) = v,e(O) = v(1) = v t(1 ) = 0 .  (19) 

Applying differential quadrature yields: 

N N 

V 1 = O, 2 A z y j  = O, E A (N- I ) y j  = O, V N = O. 
j= l  j= l  

(2o) 

To solve the nonlinear eigenvalue problem, an iterative scheme is used [9]. First, set the 
amplitude a equal to zero and solve the resulting linear eigenvalue problem. The linear 
eigenvalues and eigenvectors are then used to obtain nonlinear coefficients. Solve the eigenvalue 
problem again to obtain nonlinear eigenvalues and eigenvectors and repeat the process. It does 
not take too many times to get convergence of eigenvalues and eigenvectors. 

Results 

The numerical results are obtained by taking N = 7. All the calculations are conducted on IBM 
3081 K (main frame). The results of nonlinear frequencies for both simply supported and clamped 
beams along with Mei's finite element results [10] are listed in Table I. Amplitude-frequency 
curves are plotted in Figure 1. 

Notice that the results for the clamped case agree better than that for the simply supported 
case. The reason is that the beam deforms less in the clamped case, so that the beam is closer to 
linear oscillation. 

TABLE I. 
Numerical results for the ratio of the nonlinear fre- 
quency to the linear frequency (w/~%) as a function of 
the dimensionless amplitude 

Simply Supported Beam Clamped Beam 

a/r QM FEM QM FEM 

0.1 1.0010 1.0009 1.0003 1.0003 
0.2 1.0043 1.0037 1.0011 1.0012 
0.4 1.0170 1.0148 1.0044 1.0048 
0.6 1.0384 1.0339 1.0100 1.0107 
0.8 1.0673 1.0578 1.0178 1.0190 
1.0 1.1030 1.0889 1.0278 1.0295 
1.5 1.2045 1.1902 1.0628 1.0650 
2.0 1.3170 1.3022 1.1119 1.1127 
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Fig. 1. Dimensionless amplitude-frequency curves of a geometrically nonlinear beam. 

Conclusion 

It is concluded that the quadrature method is very convenient to use. It requires less computation- 
al effort than the finite element method. For a beam problem, it only takes 2 seconds of CPU 
time, and the results obtained by the quadrature method agree with that by the finite element 
method especially in the clamped case. 
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