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Abstract. A theoretical investigation is carried out on the orbital motions of a symmetrical, unbalanced, rigid rotor 
subjected to a constant vertical load and supported on two lubricated journal bearings. In order to determine the 
fluid film forces, the short bearing theory is adopted. 

A method is illustrated that makes it possible to determine the analytical equation of the orbit as an approximated 
solution of the system of non-linear differential equations of motion of the journal axis. A procedure is also described 
for evaluating the stability of the solution found. Diagrams of the curves delimiting, in the working plane of the 
rotor cr-ma, the areas of stability of the various periodic solutions determined are provided. 

Finally, the results obtained are compared and combined with those provided by a direct integration of the 
motion equation made using the Runge-Kutta method. 

Key words: Journal bearings, unbalanced rotor, sub-synchronous orbits. 

Nomenclature 

C = radial clearance 
D = 2R = bearing diameter 
E = mass unbalance eccentricity 
Fx,  F y  = fluid film force components 
fl  = Fi /crW = dimensionless fluid film force components 
L = bearing length 
M = one half rotor mass 
m = M C w z / ~ W  = dimensionless one half rotor mass 
R = bearing radius 
T = 27r = synchronous orbit period 
t = time 
W = load per bearing 
X, Y, Z = coordinates 
z = X / C ;  y -= y /C;  z = Z / L  = dimensionless coordinates 
# = oil dynamic viscosity 
p = E / C  = dimensionless mass unbalance eccentricity 
cr = (#w R L  / W  ) / ( R /  C)2( L / D ) z = modified Sommerfeld number 
7- = cot = dimensionless time 
ff = periodic orbit frequency 
v = ~27r/w = frequency ratio 
w = journal angular velocity 
(.) = dimensionless time derivative 
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1. Introduction 

It is not uncommon in technical practice for a rotor to operate with an unbalance that is 
greater than the residual unbalance. This may occur for a variety of accidental reasons. In 
these conditions, the non-linear nature of the fluid dynamic forces exerted by the oil film 
makes the journal axis of the unbalanced rotor move inside the bearing with a time motion 
that may or may not be periodic according to the values assumed by the three parameters: 
mass, Sommerfeld number, and unbalance (rn, or, p) characterizing the system. 

In the ambit of the periodic motions it is possible to identify values for the above parameters 
that give motions which are synchronous with the unbalancing force, or motions whose period 
is an integer multiple of the period of the above force. 

In the ambit of the non-periodic motions these rotors typically exhibit the "oil whirl 
motion", which is characterized by a frequency component close but not equal to 1/2 the 
forcing frequency, i.e. the rotation frequency [1, 2, 8]. 

Finally, it has recently been shown that chaotic evolutions of the motion of the journal axis 
can occur [9, 11]. 

Although from an analytical point of view all the periodic motions that can be observed 
are represented by stable solutions of the differential equation of the rotor axis motion, in 
technical practice the behaviour of the above mentioned rotor is said to be stable only if its 
axis describes a fairly small orbit that is synchronous with the rotor's rotation velocity. 

On the other hand, the behaviour of the rotor is said to be unstable if its axis describes any 
of the other motions laid out above. This terminology arises from the fact that as the angular 
velocity increases, the rotor of the machine first describes synchronous and small orbits due 
to the unbalance, followed by orbits with an integer multiple period (sub-synchronous whirl) 
or which are aperiodic, and in any case of a size such as to compromise the correct operation 
of the whole system. 

Clearly, therefore, it is very useful for the system designer to know the limit stability curves 
of the synchronous orbit. 

In the present paper a method for searching for the analytical expression of periodic orbits 
is illustrated. This is a general-purpose method in that it makes it possible to identify a periodic 
solution, if one exists, simply by varying one parameter (N) characterizing its periodicity. It 
thus also lends itself for a straightforward numerical implementation. 

Knowing the orbits equation it is also possible to evaluate their stability and thus identify, 
in the operating plane cr-rao-, not only the limit stability curve of the synchronous solution 
but also different areas in each of which the system displays a particular behaviour. 

In order to evaluate the goodness of the results obtained, the motion equations were 
numerically integrated using a Runge-Kutta method that, after an initial transient, provides 
the diagram of the orbit described by the journal. The same method has been used to obtain the 
curves delimiting the areas of aperiodic behaviour that cannot be predicted by the proposed 
analysis. 

2. Analysis 

The system in question is made up of a rigid, symmetrical, unbalanced rotor with a mass of 
2 M  subjected to a constant radial load of 2W applied in its middle plane and supported on 
two equal lubricated journal bearings. 
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Figure 1. Notations for the journal bearing pair. 

ll: 

The rotor's symmetry about the middle plane makes it possible to consider only one of the 
parts into which the system is divided by this plane (Figure 1). 

By making use of the dimensionless quantities listed in the nomenclature, the plane motion 
equation of the journal axis can be written in the following form: 

mY~ - f x ( x , y ,  5c,~/) - mpcos ' r  = 0 

1 
mij - f y ( x , y ,  Jc,~/) - mp sinT + -- = 0. (1) 

cr 

The non-linear term that appears in (1) is made up of the fluid dynamic force components 
whose analytical expression, under the short bearing hypothesis, is given by [6] 

{ f x }  [ ( x - 2 ~ 1 ) 2 + ( y + 2 ~ ' ) 2 1 1 / 2 f y  = ~ -__ x ~--y~ 

{ 3xV(x ,y ,c~)  - sin(c~)G(x,y,c~) - 2cos(c~)F(x,y,c~) } 
x 3yV(x ,y ,c~)  +cos(c~)G(x,y,c~) - 2sin(c~)F(x,y,c~) " (2) 

The expression of the functions G, V, F and oz is given in the Appendix. 
The solution x(r) ,  y (r)  of the system of differential equations (1) makes up the orbit 

described by the journal axis. 

3. Determination of the Analytical Expression of the Orbit 

The analytical determination of the orbit described by the journal axis is performed by 
searching for an approximated solution of the system of non-linear equations (l) in the form: 

k 

 0+z   cos 0 0 
i = l  

k 

i=1 
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where making N = 1 clearly determines the synchronous solution (T = 27r), for N # 1 it 
determines the solution with a period NT. 

Since the fluid dynamic forces must have the same periodic character along the orbit 
defined by (3) the Fourier series development can be adopted for them [7, 10]: 

k 

fx(~-) = fzo+ ~-~fxeicos ( N  i) + fxsisin ( N  i ) 
i=1 

k 

fv(T) = fuo+ ~-~fyeicos ( N  i) + fysiSin ( N  i ) . (4) 
i=1 

Substituting (3) and (4) into the motion equation (1) gives 

k 

i=1 

k 2 

+ fyo + ~ ci cos i + fysi sin i + mp sin 7- - - = 0. (5) 
i=1 (7 

Grouping the terms in sine and cosine of the same argument, equation (5) can be put in the 
form: 

k 

i=1 

k 

i= I  

where a is used to indicate the vector of the 4k + 2 unknowns: 

a = (ZO, Zci, Zsi ,  YO, Y¢i ,Ysi);  i = 1 ... k. 

By making the 4k + 2 coefficients of equation (6) separately equal to zero gives the system 
of algebraic equations: 

2NTr 

Ax0 = fx0 - 2NTr f~ dr  = 0 
0 

Axci = fccci + m xci + Stop 

2NTr 
1 

- fx cos i d~- + m Xci + Stop = 0 NTr 
0 
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2NTr 

Axsi = fxsi + m Xsi = fx  sin i dT + m x~i -- 0 

0 

2N~ 
1 1 f 1 

Avo = . :f,o - J ..f~' d m -  - = 0 
2NTr C7 0- 

0 

2Nv 

Ayci : fyci + m Yci : 1V~r fy  cos i dT + m Yci : 0 

o 

A y s i  = f y s i  + m Ysi + Stop 

2N~r 

- fy sin i d~" + m Y~i + S m p  = 0 

0 

with i : l . . . k  and S :  { 0  i f i # N ,  
1 if i : N.  (7) 

The solution of the system of equations (7) obtained with the Newton-Raphson method 
provides the coefficients of the analytical expression of the approximated orbit. 

4. Analysis of  the Stability of the Periodic Solutions 

In order to investigate its stability the periodic solution (x* (T), y* (~-)) is disturbed: 

~(T) = y*(~) + ~y(T). (s) 

Substituting (8) into the motion equation (1), gives 

.~(~* + ~ )  - fx(x* + ~x,y* + ~y,~* + ~ , ~ *  + ~y) - .~p cos(~-) : 0 

1 
m(~)* + 5~)) - fy(X* + 5x, y* + @, :~* + 5:~, Y* + @) - m p  sin(T) + - = 0. (9) 

¢ 

Expanding the fluid dynamic forces in (9) into Taylor series around x*, y* gives the variation 
equation: 

- - - , ~ - 5 7 )  = o mS~ \ 05 ) , ~ x  \ Oy J,SY \ O~) ) ,  

mS~- I/oS"~ (OS"xl (OS.~ (OS.~ @ = 0. (10) 
\ 85 ) ,  6x - \ Oy ) ,  6y - \ 8~ 1,  6:~ - \ &) 1,  

The partial derivatives appearing in equation (10) are periodic quantities with a period N T  
equal to that of the solution x*, y* and can thus be developed in a Fourier series. 

i : 1  
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Oq ] = Bpq° + E Bpqcl cos i + Bpq,i sin i = -Bpq 
* i=1 

with p = x , y  and q = x , y .  (11) 

Equations (10), after the substitution (11), are Hill's equations. The instability threshold of 
the solution x*, y* with a period N T  is searched for as the instability threshold of the trivial 
solution of the variational equation. At the threshold the above equation admit a periodic 
solution with a period 2NT [4] which has an approximated expression of the type: 

5x(r) = 6Xo+ ~ S x c i c o s  i +Sx~isin i = S x  
i=1 

@(r) = @o+~6yeiCOS ~-~i  +@~isin ~ i  =Sy.  
i = l  

(12) 

Substituting the approximated solution (12) into the variational equation (10), after inserting 
(11), gives the residual expression: 

(Sey = m6"--y'y + Ky#Sx + Kyy6y + Byj-X + Byygy. (13) 

Applying the harmonic balance method [3, 5] to the system of equations (13) gives the system 
of 4L + 2 algebraic equations: 

5A~o(Sa) = 

2N(2~) 

f ex dr = 0 
0 

2N(27r) 

6excos ~ i  d r = 0  

0 

5A~si(Sa) = 

2N(2rr) 

6exsin ~-~i  d r = 0  
0 

2N(27r) 

6Ay0(Sa) = f & v d r = 0  
0 

5Ayci(Sa) = 

2u(2~) 

&yCOS ~-~i  d r = 0  

0 

5Aysi(Sa) = 

2N(2~r) / ( ' )  &ysin ~-~ i  d r = 0  
0 

(14) 
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Figure 2. Stability map for p = 0.2. 

with i = l . . . L  

in the 4L + 2 unknowns: 

5a = (Sxo, 5x~i, 5Xsi, 5yo, 5yci, 5y~i); i = 1 . . .  L 

it is possible to check that the system o f4L+  2 equations (14) is uncoupled into two subsystems: 
one for the 2L + 2 unknowns: 5xo, 5yo, 5xci, 5Xsi, 5yci, 5ysi with i even, the other for the 
remaining 2L unknowns 5xci, 5x~i, 5y~i, 5ysi with i odd. For the system equations (14) to 
give non-trivial solutions, one of the two determinants of the odd or even coefficients has to 
be equal to zero. 

Since it is always the odd determinant that is nullified, the described method makes it 
possible to identify the curves marking the boundary between two periodic stable solutions: 
one with a period N T  and the other with a period 2NT.  

The single terms of the determinant of the matrix 2L x 2L of the coefficients of the 
odd subsystem of (14) have been determined by making recourse to a symbolic computing 
program that made it possible to perform the defined integrals and to group the coefficients of 
the single unknowns in a straightforward way. 

For a given unbalance value the illustrated procedure makes it possible to draw limit 
stability curves of periodic solutions as the locus of the values a and mcr that nullify the 
determinant of the system of equations (14). 

5. Results  

By applying the method proposed over the whole normal operating range of the journal 
bearings, the maps shown in Figures 2 and 3, referring to dimensionless unbalance values of 
0.2 and 0.3, were obtained. In the Fourier series (4), (11) and (12), k and L are equal to 4. 
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Figure 3. Stability map for p = 0,3. 

In the plane •r-mo" the areas of different dynamic behaviour of the rotor have been 
identified. The lower area is that of the so-called "stable operation". For values of o- and m e  
falling within this area, the unbalance makes the journal describe an orbit that is synchronous 
with the rotation velocity and small in size. To the top this area borders with that of the "half 
frequency whirl" inside which the journal motion is still a periodic motion but is characterized 
by a sub-synchronous component with a frequency v equal exactly to 1/2. 

Inside the above area there extends another area within which the rotor displays a series of 
behaviours including both the periodic type with sub-synchronous fundamental frequencies in 
the order of 1/4, 1/8, 1/16 and so on, and the non-periodic type. In this area it is also possible 
to encounter chaotic behaviours. The boundary of this area has nevertheless been obtained 
with the proposed method as, in any case, it is the limit between two periodic solutions, one 
with a fundamental 1/2, the other with a fundamental 1/4. 

It has been possible to check that by proceeding from the boundary into the area in question, 
the system reaches the non-periodic behaviour, through a number of bifurcations, and in some 
cases becomes chaotic. 

In the case where p = 0.3, in the upper part of the map two other areas can be identified. 
One area inside which the journal has an almost periodic motion characterized by a large 
frequency component close but not equal to 0.5 which in the literature is generally indicated 
as "oil whirl", and another area inside which motion is once again synchronous. The journal 
"recovers synchronism" by describing synchronous orbits, but this time they are large in size. 
In the explored range, for p = 0.2, synchronism recovery and oil whirl are not observed as 
the area of the half frequency whirl is very large. As they represent the passage from periodic 
to non-periodic solutions, the curves delimiting the area of the oil whirl cannot be determined 
using the above illustrated method. They have been obtained point by point, by integrating 
the equations of motion with a fourth order Runge-Kutta method and analyzing the results. 
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Figure 4. Journal orbits and their FFT for p = 0.3 and operating conditions corresponding to the point indicated 
on the map. 

To g ive  an example  o f  the above ment ioned behaviours,  Figure 4 shows  the trajectories 
described by the journal axis for operating condit ions corresponding to the points indicated 
on the map. A longs ide  the trajectories in the z - y  plane are s h o w n  the FFTs performed on the 
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Figure 5. Journal orbits and their attractors in the phase plane (y-~)) for p = 0.3 and operating conditions 
corresponding to the points indicated on the map. 

component along the y axis of the motion which make it possible to obtain an unequivocal 
definition of the motion. 

Other examples of trajectories are provided in Figure 5. In this case, we have chosen 
operating conditions contained in the area of motions with a fundamental less than 1/2. 
Alongside the trajectories in the z - y  plane are shown the attractors in the phase plane (y@). 
The attractors refer to 2500joumal revolutions after a sufficient number of initial revs needed 
for the transient to be extinguished, whereas the orbits refer to a few dozen revolutions after 
the initial revs. An analysis of the results shows that, in case A the motion is periodic with 
a fundamental frequency of 1/8, while in case B the motion can be said to be non-periodic 
because of the shape of the attractor; and finally, in case C the motion is chaotic, as is clearly 
indicated by the attractor's characteristic structure. 

6. Conclusions 

A method has been described for determining the operating maps of rigid, symmetrical and 
unbalanced rotors on lubricated journal bearings. In these maps, for each pair of modified 
Sommerfeld number and stability parameter values, it is possible to identify the type of orbit 
and the relative frequencies that the journal axis describes inside the bearing. Naturally, for 
the system to operate correctly, the rotor must describe a synchronous and small orbit, and so 
the conditions falling in that lower area of the maps must be achieved in the design phase. 
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The upper areas each bound different behaviours that the non-linear system displays. These 
behaviours must be avoided as they are characterized by large orbits that are not synchronous 
but, rather, have a more large harmonic content that can cause dangerous vibrations in the 
whole system. The curves, obtained using the proposed methods, have been tested at several 
points. The curve delimiting the area of synchronous orbits is very accurate whereas the one 
delimiting the area of the various sub-synchronous orbits is of less precision. 

This inaccuracy, which does not affect the quality of the results, is due to the approximation 
inherent to the method and may be reduced even if this entails a greater computing overhead. 

In the above conditions, the size of the orbits and their harmonic content are such as to 
require a greater number of terms in the series developments used if improved accuracy is to 
be attained. In particular, the curve for the case with an unbalance of 0.2 delimits an area that 
is much larger than the one indicated by the tests performed. The corresponding curve for 
the case with an unbalance of 0.3 is more accurate as the uncertainty is limited to the area in 
which it joints the oil whirl curve. 

Appendix 

2 ( 2  y c o s ( a ) -  z s in (a ) )  
G ( x , y , a )  = (1 - x 2 - y2)1/2 + tan-1 ~ _ -x  2 - - ) ~ 1 - ~  

x cos(a)  + y sin(a) 
F ( z , y , a )  = 1 - (xcos(a)  + ys in(a))  2 

2 + (ycos(a)  - x s i n ( a ) ) G ( x , y , a )  
V ( x ,  y, a) = 1 - x 2 - y2 

a = tan-1 Y + 2:b 
x - 2/) 
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