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Abstract. The Cell Mapping method is a robust tool for investigating nonlinear dynamic systems. It is capable 
of finding the attractors and corresponding basins of attraction of a system under investigation. To investigate the 
applicability of the Cell Mapping method to discontinuous systems, a "forced zero-stiffness impact oscillator" is 
chosen as an application. The numerical integration algorithm, the basic element in the Cell Mapping method, is 
adjusted to overcome the discontinuity. Four types of Cell Mapping techniques are applied: Simple Cell Mapping, 
Generalized Cell Mapping, Interpolated Cell Mapping, and Mixed Cell Mapping. The last type is a new modification 
to existing types. Each type of Cell Mapping is briefly explained. The results are compared to the exact solutions. 
The Interpolated Cell Mapping and Mixed Cell Mapping methods are found to produce the most accurate results 
for this case. 

Key words: Discontinuous systems, chaos, basins of attraction, cell mapping. 

1. Introduction 

The long term behavior of a dissipative nonlinear dynamic system loaded by a periodic force 
depends on the system's initial state. This is essential for nonlinear systems. When both 
periodic and chaotic motions are possible for a certain set of system parameters, the initial 
condition of the system even determines whether the system will behave in a regular (periodic) 
or chaotic way. Therefore, when investigating a nonlinear system, knowledge of the attractors 
is not enough. Additional research on the attractors' basins of attraction is required to obtain 
a complete picture of a system's dynamic behavior. 

The attractors and corresponding basins of attraction of a nonlinear system can be found 
with the method of Cell Mapping, which was established by Hsu [2, 3]. This method is based 
on a discretization of the system's state space in so-called cells. We distinguish between 
the Simple Cell Mapping (SCM) method and the Generalized Cell Mapping (GCM) method 
(Hsu [3]). Later, Tongue presented an improved method, the so-called Interpolated Cell 
Mapping (ICM) method. In [6, 7], this method is introduced and compared to the SCM and 
GCM methods. In Section 6, a new modification is introduced, termed Mixed Cell Mapping 
(MCM). 

When applying Cell Mapping methods to discontinuous dynamic systems, some modifica- 
tions need to be made. This is shown on the basis of a "forced zero-stiffness impact oscillator", 
a dynamic system with a discontinuity. This system is discussed in the next section and treated 
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Fig. 1. Mechanical oscillator consisting of two parts, joined by a smooth pin with play, studied by Li et al. [5]. 

by the Cell Mapping methods in the following sections. The obtained results are found to 
match with the exact solutions quite well. 

2. A Forced Zero-Stiffness Impact Oscillator 

The behavior of a simple mechanical oscillator is considered. The system consists of two 
parts: one fixed, having a slot, and one constrained to translate along a straight line, joined 
by a smooth pin with play (Figure 1). The movable part is excited by a periodic force and 
encounters no resistance except inertia until the pin reaches the end of the slot. The impact of 
the pin on the fixed member is inelastic and is modelled by a coefficient of restitution r, with 
0 < r < 1. The system is governed by the following nondimensional differential equation 
and boundary conditions: 

x" = 7 sin(t) for Ix  I< 1, 
x '  --* - r x '  for Ix  I= 1. (1) 

Here, x measures the position of the pin and 7 is the forcing amplitude. 
This system was studied by Li et  al. [5], who showed the existence of periodic solutions 

for certain values of r and 7 by means of analytical techniques. For instance, for r = 0.5 and 
3' = 0.20826 a periodic motion was found with period 27r sec (Figure 2). 

However, we found that chaotic behavior is also possible for the same parameter values. 
Integration of (1) with initial conditions x = x ~ = 0 yields a chaotic trajectory, shown in 
Figure 3a for t = 0 - 500 sec. In Figure 3b, a Poincar6 section is shown of both the periodic 
and chaotic motions. The coordinates of the chaotic trajectory have been plotted at t = 2nTr 
sec, n -- 100, 101, ..., 5000. 

In the following sections, we apply the cell mapping methods to the impact oscillator in 
order to determine all existing solutions as well as their basins of attraction. 
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Fig. 2. Periodic motion in the x, x' plane for r = 0.5, ~/= 0.20826, obtained by Li et al. [5]. 
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3. S i m p l e  Cel l  M a p p i n g  

3.1. METHOD EXPLANATION 

Under the SCM method, a particular region f~ in the state space, called the region of interest, 
is discretized into a finite number of cells, say M, with index 1, ..., M. The remaining part of 
the state space is called the sink cell and has index 0. Each cell represents an indivisible state 
entity. The state of the system is described by a cell index { E {0, ..., M} instead of a state 
vector x = (xl, ..., 3~U), where N is the state space dimension. 

The evolution of a system can be described as a sequence of cells, by inspecting its state 
at discrete equidistant times. Let {(n) denote the cell containing the state of the system at 
t = nT, n = 0, 1, ..., with T the time between two state inspections. The system evolution is 
then governed by 

~(n + 1) = C(~(n)), (2) 

where C : N ~ N is called a Simple Cell Mapping. For periodic systems, T should be chosen 
equal to the system's period to obtain a SCM C which is independent of n. 

We distinguish between cells which are periodic, i.e., cells ~* with cm(~ *) = ~*, for 
some m E N which is called the period of ~*, and cells which are not. These cells are called 
transient cells, and have the chance of being mapped onto a periodic cell, in a finite number 
of steps, or onto the sink cell. By definition, the system will then stay there forever. 

Groups of periodic cells represent the system's recurrent states (attractors, saddles and 
repellors). Although no aperiodic motion can occur because of the finite number of cells, 
chaotic motion can be expected when dealing with periodic groups of relatively long period. 
For more details about the SCM method, see Hsu [2]. 
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F i g .  3 .  (a) Chaotic motion in the x, x '  plane for r = 0.5, 7 = 0.20826. (b) Poincar6 section of periodic (o) and 
chaotic (.) motions. 

3.2. APPLICATION: IMPACT OSCILLATOR 

To apply the SCM method to the impact oscillator, we first have to choose our region of interest 
fL Obviously, for x we have [ x i_< 1. For convenience, we also choose [ x' I< 1. Next, we 
discretize f2 by dividing it into 101 × 101(= 10201) rectangular cells of equal magnitude, 
with index 1,2, ..., 10201. The determination of every cell's image cell is done by the center 
point method: we take the center point of each cell and execute a numerical integration of (1) 
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over one forcing period T = 2rr with this point as initial condition. The image cell is then 
given by the cell which contains the end point of the integrated trajectory. 

When integrating (1), we have to be aware of the discontinuity in the velocity at I x I-= 1. 
We must integrate until I x I= 1, change the velocity x I into - r x ' ,  and continue integrating 
until I x I--- 1 again. To realize this procedure, we use the H6non method (see [1]). Here, the 
H6non method means rearranging (1) in such a way that x becomes the independent variable 
and t the dependent one. We achieve this by writing the equation of motion in (1) as a first 
order system: 

dxl 
- m _  X2 ~ 

dt 
d x 2  
dt - "y sin(t). (3) 

Next, we divide the second equation by the first one and invert the first one: 

dt 1 - (4) 
d x  I x2 

dx2 1 
dxl x2--3' sin(t). 

To describe the procedure followed during numerical integration, we introduce the follow- 
ing definitions: 

tJ : value of t after j-th integration step 

xJ : calculated value of x = (xl, x2) after j-th integration step 

x~ : calculated value of xi (i = 1,2) after j-th integration step 

h j : applied stepsize in j-th integration step 

We start the numerical integration with system (3). When for some j we have I xJ 1> l, we 
j - I  

switch to system (4) and carry out one integration step with initial condition (tJ- I, x2 ) and 

stepsize xl sgn(x~) J - |  = - x j . In this way, we easily obtain the values of t and x2 at I x l I = 1. 
After multiplying x2 by - r  we continue integrating system (3) until we have I xl l> 1 again. 
However, when xe is small, (4) becomes a set of stiff differential equations, which are hard 
to integrate. For x2 = 0 the system derivatives are even infinitely large. Hence, the H6non 
method cannot be applied for small values of x> 

When x2 is too small, we use a less sophisticated but more robust way to integrate over the 
discontinuity at[ Xl l= 1. When for some j we have ] x{ I> 1 and x~- '  is small, we perform 
a new integration from xJ ~ I-J-~ -J-~ = , * l  ,*:z ) with stepsize h~ = ½h j = ½(tj - t j_ t )  which 

yields a new x i. Next, a new integration is carried out with stepsize h~, with 

{ • h { + h  j / 4  i f  I x {  I< 1, 
h~ = h i _ h i ~ 4  if lz{ I> 1. (5) 

This procedure is repeated until II z{ I -1  I< 10 -3. Since every integration starts from the 
same state, no accumulation of integration errors will appear. 

This stepsize-halving method was used when x2 < 0.05; the H6non method in all other 
cases. Numerical integration was done with a fourth-order Runge-Kutta scheme. Used param- 
eters were: initial stepsize hstart = 10 -2, minimum stepsize hmin = 10 -4 ,  and maximum local 
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Fig. 4. Attractors  and basins o f  attraction obtained by SCM: P - I cells (o) and their transient cells (.); P - 17 
group (*) and its transient cells (white). 

truncation error e = 10 -4. A smaller value of c does not give us better results; we are only 
interested in the cell which contains a trajectory's end point, not in the exact position of this 
point itself. 

3.3. RESULTS 

Figure 4 shows the results of the SCM method applied to the impact oscillator, using the above 
mentioned technique to overcome discontinuities during numerical integration. The periodic 
solution is represented by 5 clustered cells of period 1 (o). The transient cells (.) leading to 
one of these cells together form the basin of attraction of the periodic solution. The chaotic 
solution is represented by 17 cells of period 17 (*), forming one group. This group appears to 
be an attractor because of its huge number of transient cells (the white area in Figure 4). 

To check the correctness of these results, we carried out a complete numerical integration for 
all cell center points. Here, "complete" means that integration was continued until convergence 
was reached (convergence criterion: e = 1 0 - 6 ) ,  with a maximum integration time of 40T 
(807r) seconds. If no convergence was obtained within this time limit, the trajectory was 
considered to be chaotic. 

Figure 5 shows the "exact" results: A periodic solution (o) at (-0.893717, -827896),  its 
basin of attraction (.), and the chaotic attractor, which is produced by the end points of all 
chaotic trajectories. With the exception of the chaotic attractor, the SCM results reasonably 
match with the exact results. 
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Fig. 5. Attractors and basins of attraction obtained by numerical integration: Periodic attractor (o) and its basin of 
attraction (.); chaotic attractor (,) and its basin of attraction (white). 

4, Generalized Cell Mapping 

4. I. METHOD EXPLANATION 

Under the GCM method, as opposed to SCM, a cell is allowed to have more than one image 
cell. Each cell is mapped onto one of its image cells with a fraction of the total probability. If 
M is the number of  cells, the state of the system at t = ~T is described by the ceil probability 
vector p(n)  = {Pl (n)..PM(n)] T, with 

pith) = Prob[system is in cell i at t = nT], n E N. (6) 

The system evolution is then given by the equation 

p (n  + 1) = P p(n) ,  ( 7 )  

where P = (P0) is the transition probability matrix: 

PO = Prob[system is in cell i at t = (n + 1)T I system is in cell j at t = nT]. ( 8 )  

Equation (7) describes a finite, discrete, stationary Markov chain (see e.g., Isaacson and 
Madsen [4]). According to the theory of Markov chains, we can divide the cells into persistent 
and transient cells. A persistent cell i has the property that when the system is in i at a certain 
moment, it will return to i at some time in the future, All persistent cells can be formed into 
several persistent groups (PG's), which are closed. This means that when the syslem enters 
a particular PG, it will stay in there forever and cannot enter any other PG. The PG's of a 
Markov chain, deduced from a dynamical system, correspond to the attractors of that system. 

When a cell is not persistent, it is transient by definition. For finite Markov chains, the 
system will leave the transient cells with probability one and will settle on one of the PG's. 
The transient eels can be divided into single- and multiple-domicile cells. Starting in a single- 
domicile cell, the system will lead to a particular PG with probability one; hence these cells 
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Fig. 6. Results obtained by GCM: Persistent groups (o), single domicile cells leading to the periodic (.) and the 
chaotic (white) attractor, and multiple domicile cells (*). 

form the basins of attraction of the PG's. Starting in a multiple-domicile cell, the system 
can lead to several PG's with corresponding probabilities, the sum of which of course equals 
one. The multiple domicile cells form the separatrices, the boundaries between the basins of 
attraction. 

4.2. APPLICATION: IMPACT OSCILLATOR 

To apply the GCM method to the impact oscillator, we take the same region of interest ~ as 
under SCM and again divide it into 10201 cells. To approximate the transition probabilities 
we use the sampling method: For each cell j ,  9 uniformly distributed sampling points are 
chosen, including the center point. For each sampling point, a numerical integration is carried 
out over one forcing period T = 27r. The transition probability p~j corresponding to a certain 
image cell i is simply determined by the fraction of end points lying in i. For the numerical 
integration, we again use the technique described in the previous section. 

4.3. RESULTS 

Figures 6 and 7 show the results of the GCM method applied to the impact oscillator. Two 
persistent groups are obtained: one consisting of 3 cells, corresponding to the periodic solution, 
and one consisting of 1324 cells, corresponding to the chaotic solution. In Figure 6 these groups 
have been plotted (o), together with the multiple domicile cells (*) and the basin of attraction 
of the periodic solution (.). The basin of attraction of the chaotic solution consists of all other 
cells (left blank in Figure 6). 

Further, for each cell of each PG the limiting probability was determined, which is the 
probability of the system being in that cell at t = ~ ,  under the condition that the system 
entered the corresponding PG. For the chaotic solution, we expressed this probability in the 
mean value MV which equals 1/1324 (Figure 7). Cells denoted by o have a limiting probability 
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Fig. 7. Probabi l i s t ic  p roper t i es  o f  pers i s ten t  g roups  and mul t ip le  domic i le  cells,  ob ta ined  by G C M :  M D  cells  

leading to the periodic (×) and the chaotic (+) attractor with probability p > 0.5. Persistent cells having a 
limiting probability p -- f * MV (Mean Value), with f > 1.5(o), 0.5 _< f _< 1.5(,), and J" < 0.5(.). 

of f* MV, with f > 1.5. For cells denoted by • and., we have f E [0.5, 1.5] and f G [0.0, 0.5] 
respectively. The three cells corresponding to the periodic solution, denoted by o, , ,  and. ,  
have a limiting probability of 0.52, 0.39, and 0.09 respectively. 

Finally, to obtain a better picture of the basins of attraction, the multiple domicile cells 
were divided in two groups: cells leading to the periodic solution with probability p > 0.5 
(x )  and cells leading to the chaotic solution with probability p > 0.5 (+)  (Figure 7). 

When we compare these results with the "exact" ones (Figure 5), we see that the basins of 
attraction are found to be slightly more accurate than with SCM (when we add the MD cells 
that lead to a particular attractor with probability p > 0.5). The large persistent group gives a 
good picture of the chaotic attractor, especially when the limiting probability distribution of 
this group is taken into account. 

5. Interpolated Cell Mapping  

5 . 1 .  M E T H O D  E X P L A N A T I O N  

The ICM method was introduced by Tongue [6] as an improvement on SCM, taking only 
slightly more CPU-time. Just as in SCM, a numerical integration is carried out over one 
forcing point for a huge number of initial states. These states should no longer be seen as cell 
center points but as interpolation points. The system evolution is no longer described by a 
sequence of cells but by ordinary state coordinates. When the state of the system at t = nT 
is given by X n  = (Xn,Xtn), the state at t = (n + 1)T is obtained by a bilinear interpolation 
of xn between the image points of the four gridpoints surrounding xn. For an arbitrary initial 
state, a complete trajectory can be constructed in this way. For a more detailed explanation of 
the ICM method, we refer to Tongue [6]. 
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5.2. APPLICATION: IMPACT OSCILLATOR 

To apply the ICM method to the impact oscillator, we need a grid of points distributed over [2. 
Since every state in f2 must have four surrounding grid points, the grid points must lie on the 
boundary of ~2 as well. Therefore, we cannot use the center points of the cells used under SCM, 
since these do not lie on the boundary offL Hence, we have to perform an additional numerical 
integration for a completely new grid, given by (ih 1, j h2), i, j = - 50, .., 50, h I = h2 = 0.02. 
Further, we have to take a smaller value for the maximum local truncation error e, since now 
we are interested in the exact position of the image point of each grid point. Here, we take 

= 10 -6. 

Because of the discontinuity in (1), we deal with an additional difficulty. Since the interpo- 
lation only gives a good approximation of reality when the end points of the four trajectories 
are not too far apart, it can only be applied when all four trajectories undergo an equal number 
of impacts. When this is not the case, an ordinary numerical integration should be carried out 
instead of the bilinear interpolation. Of course, all integrations have to be executed with the 
modified integration procedure, given in Section 3, to overcome the discontinuities. 

5.3. RESULTS 

Figure 8 shows the results of applying the modified ICM method to the impact oscillator. 
We find the periodic solution at ( -0 .894982,-0.828017)  (o) and its basin of attraction (.). 
Further, we find a periodic solution at ( -0 .762251,-0.806073)  (+),  which appears to be 
a saddle solution. We can see this from its basin of attractin (x) ,  which is formed by 39 
initial states, all lying on the separatrix. This separatrix separates the basins of attraction 
of the two attractors. Trajectories that do not show convergence (e = 10 -3) within 40 
interpolation/integration steps are assumed to end up on the chaotic attractor (see Figure 8). 
Its basin of attraction is of course given by the initial states of these trajectories (the white 
area in Figure 8). 

When we compare these results with the "exact" ones, we see that the periodic solution is 
found almost exactly, just as is its basin of attraction. The chaotic attractor also matches with 
the one obtained by numerical integration very well. Additionally, the determination of the 
saddle solution is an important result, specially when one is interested in bifurcation research, 
in which saddle solutions play an important role. 

6. Mixed Cell Mapping 

6.1. METHOD EXPLANATION 

One of the variations on ICM is given by the Multiple Mapping (MM) method, introduced 
by Tongue [8]. Under MM, the regular map over one forcing period is replaced by several 
maps, each covering a small time interval. For instance, under Bi-Mapping two maps are 
applied to obtain an image point. The first map covers 0 < t < T/2. The second map covers 
T/2  < t < T. 

The idea behind this variation on ICM is the expectation that a shorter interpolation interval 
will improve the accuracy of the trajectory determination (Tongue [8]). However, this does 
not need to be true, In fact, halving the interpolation interval makes only sense for states that 
are being interpolated between trajectories that have diverged in some way at t = T/2. 
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Fig .  8, Results  obta ined by ICM: Stable periodic solution (o) and its basin of attraction (.);  saddle solution ( + )  
and its stable manifold  ( x ) ;  chaotic  attractor (.). 

Therefore, we introduce a combination of MM and ICM, termed Mixed Cell Mapping 
(MCM). Under MCM, a regular ICM is used unless we deal with one of the following 
situations: (a) The interpolation trajectories have diverged at t = T/2 with respect to the 
original grid; (b) The interpolation trajectories enclose a concave area at t = T. In both cases 
we use MM (Bi-Mapping) to obtain the next image point. 

6.2. A P P L I C A T I O N :  IMPACT O S C I L L A T O R  

We applied the MCM method to the impact oscillator, using the same grid and criteria as 
under ICM. Further, divergence of interpolation trajectories was defined to take place when 
d > i, with 

a=g 

Here, hi and di (i = 1,2, 3) represent the distances between four interpolation trajectories 
at t = 0 and t = T/2 respectively, as is shown in Figure 9. For an N-dimensional system 
(N > 2), the divergence can be generalized by including the distances between the trajectory 
with the smallest coordinates in the reference situation and the 2 N - 1 other interpolation 
trajectories at t = 0 and t = T/2. 

Since for each grid point we had to perform a numerical integration for t = 0 to t = T 
and one for t = T/2 to t = T, the amount of CPU-time for the integration part was enlarged 
with a factor 1.5 with respect to ICM. However, due to the use of two maps instead of one (in 
many cases), the situation of four trajectories crossing the discontinuity an unequal number 
of times was encountered only half as often as under ICM. So, we obtained a (slightly) more 
accurate result than under ICM for even a smaller (CPU-)price. 
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Fig. 9. Definition of state space divergence. 
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Fig. 10. Results obtained by MCM: Stable periodic solution (o) and its basin of attraction (.); saddle solution (+) 
and its stable manifold (x); chaotic attractor (.). 

6.3. RESULTS 

Figure 10 shows the results of  the MCM method applied to the impact oscillator. We find 
the periodic solution at ( - 0 , 8 9 5 8 1 6 ,  - 0 . 8 2 8 1 6 7 )  (o) and its basin of  attraction (,). Just as 

under ICM, we find the saddle solution, at ( - 0 . 7 6 2 9 0 8 , - 0 . 8 0 6 2 3 6 )  (+) ,  and its basin of  
attraction ( x ). In the same way as under ICM, the chaotic attractor and its basin of  attraction 

are determined (see Figure 10). 
When we compare  these results with those obtained by ICM, we hardly see any difference. 

This is because under  ICM use has been made of  integration instead of  interpolation many 
times, which improves of  course the accuracy of  the results. But, compared to ICM, an obvious 

gain in CPU-t ime has been achieved. 
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Table 1. Computational aspects 

Method CPU(s) Storage (Kb) 

SCM 27 252 
GCM 277 9404 
ICM 572 600 
MCM 524 1552 
EXACT 2061 400 

To conclude this comparison of cell mapping methods, the required CPU-times of the 
applied methods are given in Table I, together with the storage requirements. The simulations 
were done on a Silicon Graphics 4D30 workstation. 

7. Conclusion 

A modification has been added to the existing cell mapping techniques, termed Mixed Cell 
Mapping (MCM). MCM is a combination of ICM and MM (Multiple Mapping), producing 
more accurate results at the cost of more CPU-time. When applying MCM to discontinuous 
systems, even a gain in CPU-time may be achieved. 

It has been shown that cell mapping techniques can be applied to discontinuous dynamic 
systems. For that purpose, some ad-hoc modifications need to be made in the numerical 
integration part. To apply the ICM and MCM methods, one needs to replace the interpolation 
by integration when the trajectories starting from the interpolation points do not cross the 
discontinuity an equal number of times. 

For the special case of the impact oscillator, the MCM and ICM methods produced the best 
results. However, because of the extra integration steps, even more CPU-time was required 
than under GCM. Application of the GCM method is recommended when one is particularly 
interested in probabilistic properties of the system one is investigating. 
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