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Abstract. Nonlinear dynamics problems can generally be solved only in a numerical way. This prevents from a direct 
application of standard reliability methods. A technique which makes use of iterated response-surface analytical 
approximations of the system performance function was therefore proposed in view of reliability assessment. The limitation 
of this technique was of working in a standard normalized space, so that appropriate space transformations are preliminarly 
required. 

This paper shows how this response-surface iterative scheme can also be used in the original space of the random 
variables, provided a maximum log-likelihood constrained optimization problem is solved. Moreover, asymptotic theory 
also provides a better estimate of the probability of failure of the dynamical system against any assigned limit state. 
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1. Introduction 

A classical problem in nonlinear stochastic mechanics is the calculation of the reliability of the 
system. Standard methods of structural reliability require an analytical form for the limit state 
function which indicates the state of the structure. Any nonlinear dynamics problem is generally 
characterized by the impossibility of obtaining such analytical solutions since numerical methods 
are required in practical applications. 

A new procedure of reliability assessment, capable of working even if the analysis of the 
systems can only be conducted in a numerical way, was presented in previous papers [1, 2]. This 
procedure makes use of a response surface scheme in combination with classical reliability 
methods. Indeed the results obtained by numerical calculations are used to compute an analytical 
form of the relationship between the structural response and the input parameters: generally, it is 
modelled by a second order polynomial as described in Section 2. 

A number of analytical approximation methods were developed for the assessment of the 
probability of failure of a structural system. The basic idea of these methods, which are outlined at 
the beginning of Section 3, was to transform all random variables into standard normal variables. 

In order to transform arbitrary non-normal random vectors with dependent components into 
standard normal random vectors with independent components, Hohenbichler and Rackwitz [3] 
proposed the use of .the Rosenblatt transformation. However this method clearly shows two 
drawbacks. First, in the case of an n-dimensional random vector, it is necessary to use n 
conditional distribution functions, which must either be known beforehand or be computed by 
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numerical differentiation. Second, by such a transformation the structure of the problem is 
completely changed, as it can be seen in the example with dependent exponential random 
variables in [3]. Here a linear boundary is transformed into a non-linear boundary of complicate 
shape. The practical use of this method was therefore limited, and restricted, to examples where 
the conditional distributions were known analytically. An asymptotic method which avoids the 
problem of this transformation is described in Section 3. 

A combined reliability approach, making use of the response surface methodology in 
conjunction with the asymptotic method of Section 3, is eventually presented and some numerical 
examples are illustrated. 

2. Governing Relations of the Response Surface Scheme 

Let the vector {X} denote the random variables in the mechanical system under investigation 
(here and in the following random quantities are distinguished by symbols printed in bold). The 
vector {X} can be partitioned into: 

(X} ~= {{Xo} ~, {Xs) ~} 

where {Xo} is a vector of random variables and {Xs} groups those random variables whose spatial 
or temporal distribution cannot be neglected. Any component Xsi of {Xs} can be written in one of 
the two alternative forms: 

Xs,(t, x, y, z) = Xso i + Xssi(t, x, y, z) 

x A t ,  x, y, z) = Xs  Xssi(t, x, y, z) 

where Xso i is any random central value of Xsi and Xss i denotes the deviations of Xs~ from the 
central value Xso ~. Discretization could lead one to regard Xss ~ as a random vector rather than a 
random field. 

The extended response surface model formulated by the second author [4, 5, 6] is based on 
the relationship 

g({X} [ {Xss}) = FR({Xo}, {Xs~ }, {0}) + e({X~s}) (1) 

where, as usual, FR(. ) is a polynomial with coefficients {0} and the random term e takes into 
account the error due to the lack of fit and the randomness of the variables {Xs~} which do not 
appear explicitly in equation (1). 

The coefficients of the response surface method and the error must be evaluated by a 
regression analysis on the results of numerical structural analyses whose input parameters are 
selected in accordance with experiment design theory [6]. 

The variables {Xo} and {Xs~ } are mapped in the standardized space Z where all the variables 
are uncorrelated, and have zero mean and unit variance just in order to have uniformity in the 
experiment design. This can be done by any transformation of classical reliability theory. It 
follows that the performance function in the space Z can be given through the parametrized form: 

G({Z} I{Xss}) = Fn({Z}, {O)) + e({X~s} ) . (2) 

The calculations are strongly simplified when ¢ is assumed nearly constant with {Xss }. 



LOG-LIKELIHOOD MAXIMIZATION 275 

The reader is referred to [2] for the more important aspects met in modelling equation (2). 

3. Reliability Assessment 

The problem of calculating failure probabilities involves in general the computation of multi- 
dimensional integrals with implicitly defined boundaries. Several approximation methods were 
developed to obtain more and more efficient solution methods for this problem. 

The usual formulation of the problem is the following. The given items are a random vector 
{X} = {X 1 . . . .  ,Xn} r, which describes the random influences on a structure and a limit state 
function g(X 1 . . . . .  An) = g({X}), which indicates the state of the structure when the random 
vector {X} has the realization { X } - - { X I , . . .  ,Am} r. If g ({X})>0 ,  the structure is safe, if 
g({X})-< 0, it is unsafe. If f({X}) is the joint probability density function (JPDF) of the random 
vector {X}, the probability of failure P(F), with the failure F =  {{X}; g({X}) -< 0}, is then 

P(F) = fgl ~x~ ~o f({X}){dX} . 

In general, the dimension n is large and the function g({X}) has no simple analytical form. 
The first approximation methods, which were used to calculate this probability P(F), are the 

so called FORM (First Order Reliability Methods) procedures. As shown in [3] every random 
vector {X} with independent components X 1 . . . . .  X n and continuous PDF can be transformed 
into a standard Gaussian vector {U} = ({U 1 . . . . .  U,}) r with independent components. This 
random vector {U} has then the joint PDF: 

f({U})=(27r) n/2exp(-1/2 ~ (U~))=(2zr)n/2exp(-]{U}12/2). 
i = 1  

Here [{ v ) l =  X/(z,"-, (uy)) is the Euclidean norm of the vector (U}. If a failure domain F is given 
in a standard normal space, an approximation for its probability content P(F) was derived by 
simple geometric arguments. First, the point {X °} ~ F with minimal distance to the origin was 
determined, i.e., the point {X °) C F with [{X°}[ = min/x)c F I(x)[. Since g ( ( x ) ) i s  continuous 
and F is defined by F{{X};g({X})<-O}, this point must lie on the limit state surface B =  
{{X}; g({X}) = 0}. Second, at this point a first order Taylor expansion of g({X}) was made and 
then g({X}) is replaced by the linear function gL({X}) obtained by this expansion 

gL((x})--g({X°}) + (vg((x°)))T({x} - ( x ° ) )=  { V g ( { X ° ) ) ) T ( ( x )  - {x°})--0.  

Instead of P(F) then the probability content of the domain F L = { {X}; gL ({X}) -< 0} is calculated. 
This can be done easily, since F L is a half-space and, in the standard normal space, the probability 
content of such a domain is just ~(-13) with 13 the distance of F L to the origin, if F L does not 
contain the origin in its interior. It can be shown that in this case/3 = I{X°}I. 

What can be done in the general case of dependent random variables.'? The Rosenblatt 
transformation for transforming random vectors with dependent components into standard normal 
vectors is applicable only in special cases, as already mentioned in the introduction. 

Three questions in connection with these approximation methods remain open. 
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1. How to calculate approximations, if there is no unique minimal distance point? 
2. What can be said about the quality of these approximations? 
3. Are the transformations into a standard normal space necessary? 

The first two problems were solved by the first author [7] using concepts of asymptotic analysis. It 
was shown that for FORM approximations no precise mathematical justification can be given, but 
this can be done for the so-called SORM (Second Order Reliability Methods) procedures. These 
methods are analogous to the FORM's, but, instead of the first order Taylor expansion gL({X}), a 
second order expansion gQ({X}) is made. For the probability content P(FQ) of a region 
F o = {{X}; go( {X} )-<O}, bounded by such a quadratic function, a simple asymptotic approxi- 
mation can be found. Further it can be proved that P(FQ)--~ P(F), if P(F)--* O. The asymptotic 
approximation is 

n - 1  

P(F) ~ ~( - /3 )  I ]  (1 -/3Ki) -'/2 
i = 1  

Here the Ki's are the main curvatures of the surface B = {{X}; g({X})= 0} at the minimal 
distance point {X°}. Further it was outlined that, in the case of several minimal distance points, 
an approximation is obtained by calculating for each point, separately, the approximation in the 
equation above. All these contributions must then be added. 

The last more important question was again answered by the first author in [8]. Here it was 
proved that it is not necessary to transform random vectors into standard normal random vectors 
to be able to calculate asymptotic approximations. The basic idea is to understand the meaning of 
the minimization of the distance to the origin in FORM and SORM. If we look at the Gaussian 
PDF f ( (U}) ,  we get for its logarithm 

In(f({U})) = - n / 2  ln(21r) - I(u}12/2. 

The minimization of the distance [{U}] corresponds to the maximization of the logarithm of the 
PDF. In mathematical statistics this function is called the log-likelihood. Therefore the probabilis- 
tic meaning of this is the maximization of the log-likelihood. When this is clear, asymptotic 
approximations can be derived also for non-normal random vectors with a PDF f({X}) and 
log-likelihood I({X})= ln(f({X})). The point {X*} is calculated for which: 

I ( { X * } )  = max I ( { X } ) .  
{X)EF 

Then at this point a suitable expansion of the log-likelihood is made. We get as approximation (see 

[81): 

/({x*}) (3) 
P ( F )  IV/({X*})l (ldet[H*ll) " 

Here the matrix [H*({X*})] has the form 

[I4" 1 = [PI[HI[P] ~ - {v}{v} r 

with: 
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(1) {v} : the normal to the surface. 

(2) [P] = [I,,]- {u}{u}r([l , ,]  being the n-dimensional unity matrix) 

I(Vl((X*)))l 
(3) [HI = (/zj({x*}) I{Vg({X*})}l g,#({X*}))  i, j = l . . . . .  n 

the Hessian of I({X}) in local coordinates. 

An important advantage of the method of log-likelihood approximation is the fact that it can be 
used also for dependent random variables, if only the joint PDF f({X}) and its log-likelihood 
I({X}) = ln(f({X})) are known. In this case we calculate the point of maximum likelihood, then 
the first and second derivatives of the likelihood function at this point are computed and inserted 
into the approximation equation. Here no conditional distribution function, as needed in the 
Rosenblatt transformation, must be computed. Further we can calculate directly from the 
log-likelihood function in the original space importance and sensitivity factors (see [9]). 

4. Available Extensions for the Log-Likelihood Maximization Approach 

4.1. Importance o f  the Random Variables 

At the maximum log-likelihood point {X*} the gradient of this function gives information about 
the importance of the components, in a way similar to the a-factors in the case of standard normal 
random variables. The probability of failure P(F) satisfies in first approximation the relation (see 
Breitung [8]): 

OP(F)/OX i ~ (OI( {X*} ) /OXi)P(F)  . 

This relation gives the relative importance of the various components, if standardized. This gives 
for the relative importance 

(OI({X*})/OX~ O * /OX, . (4) 

In the case of independent Xi's, one has in particular 

OI( { X* I ) / OX i = Oli(X*, ) / OX, 

l i being the log-likelihood function of the marginal PDF of X~. 

4.2. Several Maximum Likel ihood Points 

If there are k points {X}I . . . . .  {X}k on the boundary of the failure domain, where the 
log-likelihood function has a maximum with respect to F, we have to distinguish between local and 
global maxima. The asymptotic theory says that only global maxima are of importance asymp- 
totically, but, since we are never in the infinite local maxima case, their contributions should be 
retained for two reasons. First they give an idea of the structure of the limit state function and 
second, due to uncertainties in the parameter estimation process, it may happen that local maxima 
become global and vice versa for small changes in the parameter values. Therefore, when the 
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log-likelihood has local maxima in k points { X } I , . . . ,  {X}k, an approximation for P(F) is given 
by 

k 

P(F) -~ (27r) ~ -~J2 ~ (f({X},)/l(Vl({X},)}l~(idet([H((X}t)])l) 
l - 1  

with 

H({X}t ) = [P],[H({X},)[PI,] r -  {v},(v}~ 

[P] = [In]- (v}t{v}~ 

{v} , = I(vt( ( x }  t) } l- l  (vl( {x }  ,} ) 

[H({X},)] = (l,j({X},) - (l(vz({x},)}l/Ivg((x},)l)g,,((x),)) i, j : 1 , . . . ,  n .  

4.3. Asymptotic Approximation Methods for Crossing Rates of Random Processes 

The asymptotic method which has been described can also be applied to calculate surface 
integrals. Such results can be used to achieve approximations for the crossing rates of stochastic 
vector processes. Let {X(t)} = { X l ( t  ) . . . .  ,Xn(t)} T be a given stationary vector process with 
continuously differentiable sample paths. If the surface B in R n is given, the expected number of 
crossings of this process through B during one time unit is given by: 

E(B ) = fB E(l{v( {Y} )} r {X'(t)}l; {X(t)} = {Y} )f(x(t)}( {Y} ) ds({y}). 

Here: {v({y})} is the normal to the surface B at {y}, {X'(t)} ={X' l ( t ) , . . .  ,X'n(t)} r is the 
derivative process, E(z; y = y) denotes the conditional expectation of the random variable z under 
the condition y = y, f~x¢,)}((Y}) is the PDF of the random vector (X(t)} at {y}, ds((y}) denotes 
the integration surface differential. 

For this integral, asymptotic approximations are derived in [10]. Such approximations can be 
calculated also for nonstationary processes. The univariate case is treated in [11] and the 
multivariate in [12]. 

5.  T h e  M e t h o d  

Consider equation (2) written in the central region of all the variables in order to identify th e  

actual location of G(.) in the {Z} space. In this case standardization is a shift of the origin and a 
change of scale, but existing correlations are not removed. A linear polynomial form is 
preliminarly selected in order to model the response surface. An appropriate fractional replicate 
of a factorial design centered at the origin of the space Z defines the experiment plan [1]. This first 
response surface application (where the contribution of the quantities X~s is neglected) leads to the 

following results: 
- an estimation of the design point 0 {Z(1)} and of the maximum likelihood point {Z~I)} for the 

linear model; 
- t h e  coefficients of the linear approximation GL(z). 

The sensitivity factors of each variable Zj can be estimated from the gradient of the log-likelihood 
function at the point {Z~I~} (see equation (4)). No substantial error is generally introduced by 
considering the random variables with low sensitivity factors as fixed and equal to their means in 
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the further calculations. A better estimation is then pursued by a sequence of repeated response 
surface applications. Each of them consists of several deterministic structural analyses for different 
input data. They form an experiment design conceived both to fit the second-order polynomial 
response surface and to incorporate the terms X,s. At the i-th step, the resulting approximation 
for the response function is 

G~)({V( i , I} )  = FR({V(i)} , {•( i )})  -[- ~.(i)({Xss}) (5) 

where 

{v, , )}  = { z }  - { z L } .  (6) 

By equation (6), the origin of the Vspace is shifted along the vector from the origin of the Z space 
0 to the relevant design point {Zu_~) ). The convergence to the actual value is pursued by 

appropriately selecting the new origin on this line: this defines (ZI~)}. 
Practical reasons suggest that one should work, rather that in the space {V}, in a particular 

space {W}, obtained from it by rotation. The new first axis W I coincides with the normal to the 
function G(.) = const at the selected point. This iterative procedure stops when the square of the 
difference between the current and previous distances of the design point from the origin is lower 
than a fixed tolerance. At each step one also computes the current estimate of the maximum- 
likelihood {Z~*)} by the algorithm of constrained nonlinear optimization in [3]. 

Iterations toward the maximum likelihood point could also be pursued. In this case, however, 
the only convergence on the distance from the origin could be no longer satisfactory. Moreover, 
the dependency of the maximum log-likelihood point on the derivatives of the function G may 
result in a very slow convergence. 

A final refinement consists of a response surface with its center at the maximum likelihood 
point. A distortion of the experiment plan along the first axis (so that all the experiments 
contribute to the definition of G(-)= 0 [1]) was not tested in this case, since it may alter the 
derivatives which play a basic role in the evaluation of the maximum likelihood point. 

Then, using equation (3), an asymptotic approximation for the probability content of the 
failure domain is derived. 

6. Examples 

The maximum-likelihood response-surface algorithm proposed in this paper for the reliability 
assessment of strongly non-linear mechanical systems is applied in this section to: (1) the classical 
reinforced-concrete cross section static problem in seven random variables, already discussed in 
[1]; and (2) a hysteretic oscillator under white-noise excitation, with uncertain system parameters. 

6. i. Static Application 

In [1] a vector {X} of mutually uncorrelated Gaussian random variables is introduced. Its seven 
components are: X~ = sectional bending moment; X z = distance of the reinforcement from the 
compressed end; X 3 = steel yielding stress; X 4 = reinforcement area; X 5 ---factor of the stress 
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strain concrete relation; X6 = cross section width and X 7 = maximum compressive strength of the 
concrete. The safety domain for a pure bending case can be written: 

2 2 

g ( { X ) )  = X , ,X 3X  4 X s X 3 X 4  -- X 1 > 0 .  ( 7 )  
- X 6 X  7 

This problem is studied in the present example for the probabilistic definition of the components 
of {X} given in Table I. 

The chi-square and Weibull distributions are introduced in order to point out the capability of 
the proposed procedure to manage these distributions in an analytical way without any numerical 
transformation procedure. Each variable is replaced by its standardized form: 

Z i = (Xi  -- E[Xi]) /(Var[Xi])  1/2 

where, as usual, E[ ] denotes the mean value and Var[ ] the variance. 
For this static example the relative performance function is known analytically and therefore 

the maximum likelihood point can be found exactly by the algorithm of [13]. Its coordinates in the 
Z-space are given in the first row of Table II. 

The application of the approach proposed in this paper starts with a linear response surface 
approximation of equation (7). 

TABLE I. 
Probabilistic definition of the random variables of the example concerning the static 
application. The variable X: is described by its transformation X ~ = ( 0 . 3 1 5 8 -  

X2)0.100(m) 

Symbol Distribution type Mean value Standard deviation 

X 1 Gaussian 0.01 MNm 0.003 MNm 

X; Chi-square with 0 m 1 m 

5 degrees of 
freedom 

X 3 Weibull 363.78 MPa 35.39 MPa 
X 4 Gaussian 2,26 10 -a m 2 1.13 10 -s m e 

X 5 Gaussian 0,5 0.05 
X 6 Gaussian 0,12 m 0.006 m 
X 7 Weibull 39.24 MPa 5.82 MPa 

TABLE II. 
Maximum likelihood point in the Z-space for the static example. The first row gives the exact solution; the following rows 
provide the iteration process of the iterative approach proposed in the paper, lo. is the optimal value of the likelihood 
function; P~ is the failure probability estimate obtained by equation (3) 

Iteration lot ' Z1 Z2 Z3 Z4 Z 5 Z 6 Z 7 E Pr 10~ 

Exact 
solution -11.171 2.133 -0.341 -3.548 -0.591 0.020 -0.010 0.273 2.847 

(2.828) 

1 
(linear) -11.058 2.080 -0.094 -3.368 -0.845 0.055 -0.027 0.226 - - 
2 -11.193 2.130 -0.325 -3.561 -0.588 . . . .  0.027 2.831 
3 -11.185 2.128 -0.328 -3.558 -0.591 . . . .  0.024 2.844 
4 -11,184 2.129 -0.328 -3.557 -0.591 . . . .  0.022 2.845 

- -0.021 2.842 5 -11.184 2.130 -0.329 -3.556 -0.591 - - 
Final -11.180 2.132 -0.341 -3.554 -0.590 . . . .  0.015 2.825 
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It provides a first approximation {Z~t~} for the maximum likelihood point {Z*} (Table II, 
second row) and the following importance factors (from Equation (4) written in {Z~*j)}): 2.080; 
0.573; -1.656; -0.845; 0.055; -0.027; -0.079. Since the ratio between the highest factor and the 
absolute value of the last three ones is greater than 20, the variables Zs, Z 6 and Z 7 will be 
incorporated in the error term from the second step on. These steps work with a quadratic 
response surface in the space of the variables Z~, Z2, Z3 and Z 4. 

The iteration process moves the center of the experiment plan for the response surface 
analysis, from the previous point Q(j) to the point Q~j+~) along the direction of the design point 
{Z~(~j)}. Its distance from the origin is increased with respect to the one of Q(j),  of just 1/2 of the 
difference of the distances of {Z~j~} and QIj). This corresponds to global distances from the origin 
which are 1/2, 1/1.34, 1/1.14 times {Z~('j)}, respectively, for j =  1, 2 and 3. The last (Sth) 

0 iteration is centered exactly at {Z(4~}, and the experiment plan is not "squashed". The 
coordinates of {Z~41} are {2.909, 0.600, -2.197, -0.931} with error at -0.03 and coincides with 

Z 0 * the ones of { (5)). A final step makes use of the experiment plan centered at {Zs}, i.e., the 
achieved maximum likelihood point. 

The results of the iteration process are given in Table II. Comparison with the values in the 
first row shows that the optimal value of the likelihood function and the coordinates of the 
maximum log-likelihood point tend toward the exact ones as the iteration proceeds. The values in 
the last but one row corresponds to the convergence in the design point. The final step makes use 
of an experiment design centered at {Z/*)}. The probabilities estimates depend on the point 
{ZI~)} but also on the current approximation for the performance function G({Z}). For this 
reason any comparison must be done with both the actual value of the probability of failure 
P ( F )  ~- PF (= 2.847 10 4) and its better estimate (2.828). Both values were computed in the actual 
point {Z*}, but the first estimate makes use of the actual shape of the performance function while 
the latter value adopts a response surface approximation with experiment design centered at 
{Z*}, Table II shows a very satisfactory accuracy of the iterative procedure in assessing the actual 
probability of failure together with a good convergence to its better estimate. In this sense this first 
example fully validates the method proposed in this paper. 

6.2. Dynamic  Applicat ion 

Consider the hysteretic oscillator governed by the equation [6]: 

/ l = y  

- -  -  o0u - 2 ,o0y - (1 - , 7 ) . d , z  + w ( t )  

= fi - c,/llz] r - c2zlli ] [z[ (r-l) 

where to o is the circular frequency, ~" is the damping ratio, 0 is the ratio between the post and the 
pre-yielding stiffness and c~ and c 2 are parameters of the hysteretic equation, r is a further 
parameter that is assumed equal to 1 in the following. The excitation w(t) is a white noise of 
power spectral density G 0. Let the performance function be assigned in the form 

K - (1 /2)[ (Var[u] /0 .2)  ~/~- + Cov[zt~]/0.5] -> 0 

where Cov[zti] provides a measure of the dissipated energy rate. 
Let the parameters 4, O, c~ and c~ be of a random nature. The oscillator becomes a 
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T A B L E  III. 
Probabilistic definition of the random variables of the example concerning the dynamic application. 
The  variables ~ and "q are described by their t ransformations ~ = 0.011~' + 0.05 and 11 = 0.01511' + 0.05, 
respectively 

Symbol Distribution Mean  value Standard dev. Correl. 

{' Chi-square with 0.0 1.0 - 
5 d.o.f. 

~1' Chi-square with 0.0 1.0 - 
5 d.o.f. 

c~ Joint extreme 1.25 0.25 0.75 

e 2 value distribution 
K Gaussian 0.1 0.05 - 

sq.in sq.in 
G O Gaussian 5.11 rad.s~ 0.205 rad.s~ - 

"disordered" system, i.e., a system with uncertain parameters. The properties of such parameters 
are stated in Table III. 

The correlated extreme distribution [14] was selected to describe the joint probability density 
function (JPDF) of c I and e 2. The proposed procedure, in fact, just requires the analytical or 
numerical knowledge of the first and second derivatives of the joint log-likelihood function. 
Therefore, there is no need for numerical transformations and/or for numerical calculations of 
conditional densities which may offer numerical difficulties. In a more general case the JPDF of 
non-normal dependent variables will be obtained by inversion of the characteristic function but 
the procedure will be still applicable. 

The standardized variables are, as usual, 

X i - E [ X i ]  

Z i -- ( W a r i X i ] ) l / 2  • 

Note that {-> 0.0345 and ~q -> 0.0268. 
Within the response surface scheme, experiments are planned according to the experiment 

design theory [6]. For each set of variable values the nonlinear dynamic analysis is repeated and 
the response surface is built to fit the results in terms of the performance function G({Z}). For the 
first linear interpolation a single white noise realization is considered. In the subsequent nonlinear 
approximations, some realizations are used according to the blocking theory [6]. The governing 
equation becomes then a standard deterministic differential equation which is integrated numeri- 
cally. The response variance Var[u], as well as Cov[zfi], are estimated over a period of 100 s after 
a time interval of 10/(2~'~o) necessary to make negligible the effect of the initial conditions. 

The results of the reliability analysis procedure proposed in this paper are summarized in Table 
IV. The error term e is due to the stochastic variability of the excitation. 

7. Conclusions 

This paper presents a reliability analysis procedure which can be used for linear and nonlinear 
systems under static and dynamic actions. The procedure is obtained by the conjunction of an 
asymptotic approach, to the reliability calculation, and a response surface scheme, able to cover 
any stochastic finite element problem. 
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T A B L E  IV. 

Max imum likelihood point estimates {Zi~i~} and probability approximations for the dynamic example.  The first step 
consider a linear response surface, The experiment design for the 4 step is centered at {Z~}( = {-1.248.  -0 .286 ,  0.476, 
-0.09(I,  -1 .137 ,  -1 .860}.  The last step adopts an experiment  design centered at s Z* 

Iteration I , ,  Zj Z~ Z~ Za Z,  Z~, e P~. I ( I  4 

1 

(linear) -9 .230  -(I.997 1.026 1.302 1.262 - 1.226 1.534 
2 -10 .056 - I . 1 6 9  -().745 0.136 0.(175 - 1 . I 6 2  2.179 1.394 6.254 
3 -9 .793  - [.U35 -0 .782  -0.011 -(I.148 -1.181 1.845 - 1,842 6.314 
4 -9 .992  - 1.031 -0 .779  -0.001 - 0 .  167 1.237 1.875 - 1.88tl 5.473 
Final 10.023 - 1.070 -{I.837 -0 .204  -0 .323  - 1.190 2.022 - 1.808 5. 171 

The advantage of the proposed procedure, when compared with existing methods in 
reliability analysis, is that it just requires that the first and second derivatives of the joint 
log-likelihood function are known in an analytical or numerical way. Neither numerical trans- 
formations or numerical calculations of conditional densities are required and so most of the 
numerical difficulties are avoided. 
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Appendix: Approximation Formula for the Probability of Failure 

The approximation formula for the probability of failure P(F) derived in [8] by the first author has 
the form 

P(F) = (2~r) p' ' ) '2 f ({X*}) / [~l[  

with 

J, : {vt({x*})} T[c({x*} ) ]{v t ( {x*} )} .  

The matrix 

[C( {X*} )] = (cof[ O-'l({X*}) 
ox, h~ OXi aX/ i, ] = 1 . . . . .  n 

is the matrix of the cofactors of the matrix 

[H({X*} ) ]=[  02I({X*})OX iaX/ A I a2g({X*}) ] 0 X  i OXj 

and 

i , j = l  . . . . .  n 

a, = I{v ( {x*}  )}l/l{vg( {x*} )}l . 
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For a non-singular matrix [H({X*})] there is the relation 

[C({X*})] = det([H(  {X*}  )])[H( {X*}  )] -1 

i.e., the co-factor matrix is the inverse multiplied by the determinant. 
This gives the factor J1 another form 

Jl = det([H({X*} )]){17/((X*})} r[H({X* })] - l { V l ( { X * }  )}.  

If the dimension of the space is large, it is useful to have a method for calculating the factor J1 
directly from the first and second derivatives without matrix inversion. Such a method is described 
in the following. 

If we make a rotation of the coordinates in such a way that the unit vector 
] { 7 1 ( { X * } ) } l - l { V l ( { X * } ) }  becomes the direction of the n-th coordinate axis, in this new 
coordinate system the gradient {VI({X*})} has the form {7/({X*})}=({O . . . . .  O , -  
I{V/({X*})}[}) r, i.e., only the n-th component is non-zero. Therefore in the quadratic form J1 all 
terms vanish except one term. We get in this coordinate system 

j, = [{v[({x*})}[2.co. 

with C, ,  the cofactor of the element (O21( {X*} ) /OX] -A~(OZg({X*} ) ) / (OX2) )  in the matrix 
[H({X*})].  But this cofactor is by definition the determinant of the matrix [/4({X*})] which is an 
(n - 1) × (n - 1) matrix obtained from [H({X*})] by deleting the last row and column, i.e., 

(o2t({x*}) o'-g({x*))) 
[ /4((X*}) l = \ -~-O--~j A~ OX i OX i / i, j = 1 . . . .  , n  - 1. 

This determinant is non-positive, i.e., in the regular case negative, since it is the Hessian of the 
log-likelihood in local coordinates at the maximum likelihood point on the surface g ( { X } ) =  O. 

If we now add to this matrix an n-th row and column with zeroes everywhere and - 1  at the 
n-th component,  we get an n x n matrix: 

which has the same determinant as the matrix - [H({X*})] .  But this matrix can be written as the 
sum of two n x n matrices: 

where [0],_ 1 denotes the (n -1) -d imens iona l  zero matrix. It can be shown then, using the 
projection matrix [P] = [1,] - {e,){e,} v, with {e,} = { 0 , . . . ,  0, 1) r, which projects a vector into 
the subspace spanned by the first n - 1 unit axes, that 

[%.,,1 
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We have therefore 

I --Idet([/)((X*})])[ 
= Idet([H'({X*})])[ 

/ T 
= [ d e t ( [ P I [ H ( { X * } ) I [ P ]  T -  {e~}{e,,s )1. 

But this result is coordinate invariant; this means that in another coordinate system we replace the 
vector {e,,} by the unit vector I{vt({x*}))l and 

[P] = [I,,l - ]{Vl({x*})}f-2{Vl({X*})}{Vl({X*})}  r .  

This gives finally the following form for the approximation: 

P(F)  = (2rr) ~" llez / ( {X*} )  
I {V/({X*})} Ildet([PlIH( { X * } ] [ P ]  r - {v} {v} ,,z 

with {v} = IVl({X*})] l {v l ( {X*})} .  The advantage of this representation of the approximation 
formula is that here no matrix inversion is required. 
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