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Abstract. A stabilization problem for Burgers' equation is considered. Using linearization, various controllers are 
constructed which minimize certain weighted energy functionals. These controllers produce the desired degree of stability 
for the closed-loop nonlinear system. A numerical scheme for computing the feedback gain functional is developed and 
several numerical experiments are performed to illustrate the theoretical results. 
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1. Introduction 

During the past five years considerable attention has been given to the problem of active control 
of fluid flows (including feedback). This interest is motivated by a number of potential applications 
such as control of flow separation, combustion, fluid-structure interactions and supermaneuverable 
aircraft. The Navier-Stokes equations often play a central role in the modelling and in the 
development of computational algorithms for such applications. For example, the problem of 
using oscillatory motions of a circular cylinder to control the wake and flow separation requires 
that viscosity be included in the model. The development of practical computational algorithms 
for active control design for the Navier-Stokes equations is the long term goal of several current 
research projects. 

We consider this paper as a first step in the development of rigorous and practical 
computational algorithms for control of those nonlinear partial differential equations that describe 
physically interesting problems of this nature. Burgers' equation is 'simple enough' to be used as a 
first case study, yet it also captures many of the important fluid flow characteristics (shocks, 
viscous dissipation, etc.). Therefore, in this paper we concentrate on the problem of computing 
feedback laws for Burgers' equation. We restrict our attention here to bounded input operators. 
The more complex boundary control problem requires different techniques and will be the subject 
of a forthcoming paper, 

Burgers' equation 

o z(t, x) + z(t, x) o 0 2 
05 z(t, x) = z(t, x) (1) 

was introduced by Burgers [3, 4, 5] as a simple model for turbulence, where e > 0 is a viscosity 
coefficient. Since then, many researchers have considered the conservation law 
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a z(t, x) + z(t, x) 0 at z(t ,  x) : o 

and the 'viscosity solution' 

(2) 

z(t, x) = lim z'(t, x) ,  (3) 

where z'(t, x) satisfies equation (1), see [7, 13, 15, 19, 21, 22, 23]. 
Ole~nik [23] proved that for any L~-initial data, there is a unique viscosity solution for 

equation (2) and the solution satisfies the 'entropy condition' 

z(t, x + a ) -  z(t, x) E 
< -- (4) 

a t 

for all t > 0, a > 0, -oc < x < oc and for some constant E > 0. A complete discussion of these 

results may be found in [29]. 
Almost no results exist for the control associated with Burgers' equation. Chert, Wang and 

Weerakoon [6, 32] considered an optimal control problem for equation (2) with - ~  < x < ~. The 
problem was to select an initial function to minimize a specific cost functional J. They obtained 
sufficient conditions for the differentiability of J with respect to the initial function and an explicit 
expression of the entropy solution of (2) in terms of initial data. 

In this paper we consider a control problem for Burgers' equation (1) defined on a finite 
interval. Specifically, we will find several feedback laws stabilizing the nonlinear system (1) with a 
prescribed exponential decay rate. The feedback laws are obtained from the linearized equation. 
Curtain [9] has considered a stabilization problem for certain semilinear evolution equations. 
Using Kielh6fer's stability results for semilinear evolution equations [17], she showed that there 
exists a finite dimensional compensator which produces a stable closed-loop system. These finite 
dimensional compensators are also obtained from the linearized control system. Applying her 
results to Burgers' equation (1) with Dirichlet boundary condition, one can obtain stabilizability 
results for the closed-loop system which are similar to ours. However, in [9], there is a restriction 
on the action of the output operators. The domain of the output operator was required to be a 
certain subspace of L 2 which contains the Sobolev space H~. In this paper we investigate optimal 
feedback laws. 

Well-posedness and stability results for the open-loop system are obtained in Section 2. In 
Section 3, a 'shifted' linear control problem (LQR)~ is introduced. Under appropriate selection of 
input and output operators, (LQR)s is stabilizable and detectable. The feedback control law 
obtained from (LQR),~ produces the desired degree of stability for the closed-loop nonlinear 
system (Theorem 3.9). In Section 4, a numerical scheme for computing the "feedback functional 
gains' is developed and several numerical experiments are performed. 

We shall use standard notation. If (X,[I" IIx) and (Y,N" Ilv) are normed linear spaces, then 
5f(X, Y) will denote the space of all bounded linear operators from X to Y and for any 
A ~ Le(s, Y), IIAll or IlAIl~x.r) will denote the operator norm on the space Le(X, Y). In the 
event that X = Y we denote 5~(X, Y) by Le(X). From time to time we will use II-II without any 
subindex for vector or operator norm. In all such cases the appropriate index for I1" II will be 
understood from the context. For a Hilbert space X. we denote the inner product on X × X by 
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{ " ," } x. Given a linear operator A from X into itself, we denote its domain, spectrum, resolvent 
and adjoint by @(A), o-(A), p(A) and A*, respectively. For real numbers a, b with a < b, 
L P(a, b; X), 1 < p < 0% will be the space of all Lebesgue measurable functions f from (a, b) to X 
such that HfllL,,~o,b~ = ( f ~ [ f ( x ) [ "  dx)  '/p < ~.  The spaces Hk(a, b) and H~(a, b) are the standard 
Sobolev spaces defined by H ~ ( a , b ) = { f C L 2 ( a , b ) ] f ~ J l E L 2 ( a , b ) ,  j = 0 , 1  . . . . .  k} and 
H~(a, b) = { f E  He(a, b)lf~J~(a) =f~J)(b) =0,  j =  0, 1 . . . . .  k -  1}, respectively. The dual space 
H-k(a, b) of k Ho(a, b) is the space of all continuous linear functionals on Ho(a, b) represented by 
the inner product (.,-)Lel,,b~. 

Finally, we note that although Burgers' equation if often used to test computation methods 
developed for fluid flow problems, this equation also can be used as a reasonable mathematical 
model for several other physical problems. We present a physical example that may be found in 
most standard references to motivate the control problem for Burgers' equation. Other examples 
involving traffic flows, supersonic flow about airfoils, acoustic transmission and turbulence in 
hydrodynamic flows can be found in [10] and the references given there. The following example is 
taken almost directly from [10]. 

EXAMPLE (Shock Waves). An impulsively-started piston moving at a constant velocity into a 
tube containing a compressible fluid initially at rest creates compression waves. The compression 
waves will coalesce and form a single shock wave. The one-dimensional unsteady motion of the 
fluid is governed by the continuity equation 

O O O 
as p(t, x) + p(t, x) 7x o(t, x) + v(t, x) ~ p(t, x) = 0 (5) 

and the x-momentum equation 

O v ( t , x ) + v ( t , x )  O (a ) 02 
7t 7x v(t, x) + Ux p(t, x) /o(t, x) = a - -  v(t, x ) ,  (6) 

OX- 

where p is the density, v is the velocity, p is the pressure and a is the 'diffusivity of sound'. If one 
replaces the density by the sound speed, a -- a(t, x) by a(t, x)/a o = (p(t, x)/po) ~ ~/2, where y > 1 is 
the specific heat ratio and the subscript 0 refers to the undisturbed values [20], then equations (5) 
and (6) become 

a a(t, x) + o(t, x) o Z_65 - a at -~x a(t, x) + a(t, x) -~x v(t, x) = 0 (7) 

and 

O v ( t , x ) + v ( t , x )  O 2 O O 2 at ~x v(t, x) + ~ a(t, x) ~x a(t, x) : 6 ~ v(t, x) . (8) 

Here 6 is a function of the undisturbed viscosity, density, specific heat and thermal conductivity of 
the medium. Equations (7) and (8) are simplified by introducing the Riemann invariants, 

r(t, x) - a(t, x) v(t, x) s(t, x) - a(t, x) v(t, x) 
y -  1 + - - ~  ' 7~1-1 2 (9) 
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to give 

0 8 O 2 
0 r(t, x) + (a(t, x) + v(t, x)) ~x r(t, x) 2 0 x  z at - (r(t,  X) l S(f, X)) 

and 

(10) 

0 6 0 2 
0 s(t, x) - (a(t, x) l v(t, x)) ~x s(t, x) 2 0 x  2 Ot - - -  (s(t, x) - r(t, x)) (11) 

Consider the propagation of a disturbance into an initially undisturbed region, s = s o where 
a0 s o = ~ .  This problem is governed by equation (10) and if one applies equation (9), then it 

follows that 

Y + 1 3' 3 
a(t, x) + v(t, x) r(t, x) + 2 = ~ - -  s o , (12) 

and equation (10) becomes 

O r ( t , x ) + ( y + l  ~ ) 0 6 0 2 
Ot ~ r ( t , x ) +  so ~ x r ( t ' x ) -  2 0 ~  2 r ( t , x ) .  (13) 

The change of variables 

z(t, x) = "r + 1 2 ( r ( t , x ) - r 0 ) ,  f = X - a o t  (14) 

leads to Burgers' equation 

~ff 6 0 z 
Ot z(t, f )  + z(t, f )  z(t, f )  --  2 O f  2 z(t, f )  • (15) 

It follows that z(t, f )  = {a(t, f )  + v(t, f)} - {v o + a0} is the excess wavelet velocity (the differ- 
ence between propagation speeds of disturbance in stagnation and nonstagnation conditions) and 
the coordinate f is measured relative to a frame of reference moving with the undisturbed speed of 
sound a o. 

2. Weli-Posedness and Stability of Burgers' Equation 

In this section we consider well-posedness and stability properties of the solution of Burgers' 
equation with Dirichlet boundary condition. These results will be needed in the analysis of our 
control problems in the next section. We first consider an abstract version of this problem and 
then specialize to Burgers' equation. 

Consider an initial value problem 

d 
dt z(t) = ~lz(t) + f(t,  z ( t ) ) ,  Z(to) = Zo, ( t >  to), (16) 
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on a Hilbert space X, where ~/ is the infinitesimal generator of an analytic semigroup S(t) 
satisfying IIs(t)llJ~x~ <_ M d  °', t >_ t o, for some constants M = M(w) -> 1 and ~o ->0. Since S(t) is 
analytic, the fractional powers of ~ = - M + al are well-defined for any a > o) [24, Chapters 1, 2]. 
Also OEp(.N~) and hence .~d~ is invertible for all 0_</x_<l.  Therefore,  the graph norm 
IIztl + II.~/~zll on the domain ~( , f f~)  of . ~  is equivalent to the norm IIzll~ = 11.4~zl[. We denote 
the Hilbert space ~ ( s¢~)  with the norm Hzl] + ]].~zl] or 11 ~ +  ,NI~II by (x , , l l ' t l~ , ) .  

H Y P O T H E S I S  (F)" Let U be an open subset of [t o, ~:) × X .  The function f :  U - + X  satisfies the 
hypothesis (F) if for every (t, z) E U there is a neighborhood V c U and constants L -> 0 . 0  < 0 <- 1 
such that 

Ill(t,. ~1)-f(t._. < ) t l x - <  L(I , ,  - ,.1" + II~', - :_.1t.) (17) 

for all (t~, z,) E V, i = 1, 2, i.e., f i s  locally H61der continuous in t, locally Lipschitzian in z, on U. 

The following local existence theorem appears as Theorem 3.3.3 in [14]. 

T H E O R E M  2.1. Let ~ be as before, l f  f satisfies hypothesis (F),  then for any (t~,, z~)E U C 
R ~ x X .  there exists T--  T(t,,, z,,) > 0 such that equation (16) has a unique (strong) solution z(t) 
on [t~,, t o + T) with initial value z(t~,) = z<,. 

Now consider Burgers' equation with Dirichlet boundary condition on a finite interval [0, l] given 
by 

0 z ( t , x ) = E  z ( t , x ) - z ( t , x ) ~ z ( t , x ) ,  O < x < l ,  t > O ,  
Ot Ox- 

z ( t , O ) = z ( t , l )  0,  z(0, x ) = z , , ( x ) ,  (181 

1 where e = at > 0  and Re is the Reynolds number. In order to place the system (18) into a 
semigroup framework let z(t)(.  ) = z(t , .  ), z~(. ) = z(0, .  ) and H = L2(0, l). Define the operator  
A~ by 

A~,b = e,f"  (19) 

for all d~ ff D ( A  ) = H~(0, l) N HI,(0. l). The system (18) can now be written as the initial value 
problem 

O 
a t z ( t ) =  A z ( t )+ f ( t , z ( t ) ) ,  z(O)=z~,.  ( t > 0 ) ,  (20) 

on the space H, where f(t, z) = - z z '  is defined on the space HI~,(0, l). It is welt-known [14, 24, t3] 
that A~ generates an analytic semigroup S(t) on H. We summarize the basic properties of the 
infinitesimal generator A~ and its semigroup S(t), t >-O, in the following remark. 

R E M A R K  2.2. (i) The spectrum o-(A~) of A~ consists of all eigenvalues ,~,, =-En~-~a/l  z, 
n = 1,2 . . . . .  and for  each eigenvahw a,, the corresponding eigenfunction q5 is given by 
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q),(x)= 2 s i n - T x ,  0 < x < / .  (21) 

(ii) The operator A~ is self-adjoint, i.e., A, = A*~, and the semigroup S(t) can be represented by 
the formula 

S(t)z + e-~#-"2/'~)' (z, q5,) q~, (22) 

for all z ~ H, where 6, 's are defined by equation (21). Moreover, from equation (22) it is easy to 
see that S(t) has the stability property 

[IS(t)[I~(H) _< e -*~"2/F'I' , t>  _ 0 . (23) 

A simple application of Schwartz inequality yields the following first Poincar6 inequality [33, 
p. 1161. 

LEMMA 2.3. For any z ~ Hlo(O, /), 

[[z[] n -< l[[z'l[ H , (24) 

where H = L2(0, l). 

REMARK 2.4. (i) The above lemma provides an equivalent norm Ilzlluo~ = IIz'llL2 on the space 
H~0(0, l). (ii) It is well-known that @( ( -A , )  1/2) = Hi0(0, l) [14, p. 29], [18, p. 326]. 

LEMMA 2.5. For any z E HI(0 , / )  = ~ ( ( - A  )w2), the following inequalities hold: 

(i) IIS(t)z]],~,<- e-V'llz]l•a, ( t~O)  (25) 

(1+/ 1 ~(l+t)) 
(ii) [IS(t)zlln~ < - X/~e - ~  + l e ~t[Iz[IL2,o.,), ( t > 0 ) ,  (26) 

where Y = e ' l r2 / /2 .  

Proof. For any z E H~(0,/),  we know that (-A~)~/2S(t)z = S(t)(-A~)I /2z .  It follows from 
Remark 2.2 that 

l ls( t)zl l .g = IIS(t)zl[~,- + I I ( -A . )~ ' z s ( t ) z l l~  <-Its(t)ll(llzll + l l ( -A.)~ 'Zzl l )  <- e-~'11zll.~, 

Inequality (ii) follows from Remark 2.2, Lemma 2.3 and the estimates 

[[S(t)z][H~<--(1 +/)l](--A~)l/2s(t)z[]t~ = (1 + / ) I I ( - A , )  ~/2 ~ e""'(z, 6,)6,11 
n = I  

[ , ~ n r r e ~ . ' ( z ,  cb, )x f~ n~r I - (1 + t) 5 -  cos T x 
l 

- ( 1 + l  sup -~- : n = l , 2  . . . .  e-"Jlzl] ,  
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and 

rl'a'r e(a,+v)t ] sup - / -  "n = 1,2 . . . .  
t l  1 l 2 

V~e v9 ' O< t -<  2ETr 2 

12 

2~:3"g- 

~Tr " l l " n Tr w h e r e h , , = - e n -  ~ ~ and O, (x) = ~ sin ~-- x, n = l , 2  . . . . .  

R E M A R K  2.6. The inequality (26) holds for every z E H = L2(0, l), since the semigroup S(t) is 
analytic. 

We now have the well-posedness and stability properties of Burgers'  equation (8) on the 
space H~(0, l). The following theorem follows from an application of Theorem 5.1.1 in [14]. 

T H E O R E M  2.7. For any given fi with 0 < fi < y = eTr2/l 2, there is a p = p(l, e, fi) > 0 such that for 
any initial data zo@ H~(O, l), with [[z0[[n~_ < ~, there is a unique solution z ( t )= z(t, 0; zo)C 
H~(O, l) o f  equation (18). Moreover, the solution satisfies the inequality 

IIz(t, O; Zo)tlu, ~ <- 2e-~'ItzolIn?, (t >-o) (27) 

and p = p(l, e, fi ) > 0 can be chosen to satisfy 

v l(v - /3)  
O< p < + I)(Iv  - f i  + 2V2V2V'-2  e " (28) 

Proof. Note that 0 is an equilibrium point for the system (20) and @(( -A~)  '/2) = H¢~. If the 
nonlinear term f ( z )  = - z z '  satisfies the hypothesis (F) with index/x = ~ then, by Theorem 2.1 we 
have a unique local solution z(t, 0; z0) on the space H~. It is easy to see that I I f ( z , )  - f (z2) l lL= -< 
([[ZI[IHI-~I[z2[IH~,)I[zI--Z2[[t t l  0 for all ZI, z-,~H~, uniformly in t > 0 .  Hence,  f satisfies the 
hypothesis (F). 

For the global existence and uniqueness of the solution z(t, 0; z0) E H~ let z o be any initial 
data in H~ with [[Z0[[H?, --< e,, where p = p(l, e, fi) satisfies the condition (28). It follows that 

{ 1 + l  Ii ~ 1 e_lV /3)~ds+_(l_+_/)Tr ~ 1 
p ~ j  ~ l ( y _ f l ) ) < ~ ,  (29) 

-~ "~ , where F is the Gamma function and F (½)=  since J., ~ e -(v-z, '  d s -  ~ r ~ ) s i n ~ -  

~/-~. If [[z0Hn~ -< ~ then by the local existence property there is a unique solution z(t, O; zo) ~ H '  
- ' 0 

satisfying the inequality I[z(t, 0; z0)]In, ~ < p on an interval [0, tl) for some t I > 0, where t, is chosen 
as large as possible. If t~ is finite, then we must have ttz(tt)tIn, ' >_p. Note that on the interval 
[0, 

[I f(z(t))l[ L'- = II- z(t)z'(t)llL~- <- (llz(t)lIH~) 2 <- p2 (30) 

where ' =  ~dx. Lemma 2.5, Remark 2.6 together with inequalities (29), (30) yield 
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lI4~&,:, = llW,h + l)” stt, - sVt4s)) d41,/l 

II set, - M44)ll HA ds 

Therefore, the unique global solution z(t, 0; z,,) exists and if (I.z~(]~:, 5 5, then I]z(t, 0; zo)JIHh < p 
for all t E [0, m). 

Finally, we will derive the stability result (27). Let w(t) = sup{ ]]z(s)((,Ae@‘:O 5 s 5 t}. It 
follows that 

REMARK 2.8. Rankin [26] considered well-posedness questions for a certain type of semi-linear 
evolution where the nonlinear terms are in divergence form. According to his results, we can see 
that equation (18) has a unique (strong) solution for initial data in LP(O, /Y), p Z- 4. To get this 
result, he used the analyticity of the semigroup S(t) and the fact that the differential operator 2 on 
H,!,(O, E) can be represented by 

v% $ = (-A,)“‘B (31) 

for some bounded operator B E Z(H), where H = L”(0, i), In general, it is not true that 
-\r & = (- A,)“‘. This result could be used to analyze the stability property of the solution of 
Burgers’ equation with initial data in L’(O, I), p 24. 
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3. Linear Control Problem 

As we noted in Section 2, the open-loop (no control) solution of Burgers' equation (18) decays 
exponentially in the topology of the energy space H~)(0, l) (see Theorem 2.7). However, the decay 
rate depends on the viscosity e > 0. We now explore the possibility of obtaining an exponential 
decay rate independent of viscosity by feedback laws. 

The basic model is governed by an abstract system of the form 

d 
d t Z ( t ) = A z ( t ) + B u ( t ) '  z ( O ) = z  o ~ H ,  y ( t ) = C z ( t ) ,  t>-O, (32) 

where H, U and Y are Hilbert spaces, u(. ) E L2(0, ~; U), y(" ) ~ L2(0, ~; Y), and A is the 
infinitesimal generator of an analytic semigroup S(t) on a Hilbert space H. Assume that 
B E 5G(U, H) ,  C E ~T(H, Y)  and A is self-adjoint with compact resolvent. Solutions of the system 
(32) are taken to be in mild form, i.e., 

z(t)  = S( t )z  o + S(t - s )Bu(s)  ds , 
) 

f' 
V(t) = CS( t )z  o + C S(t - s )Bu(s)  ds 

(33) 

t e o .  (34) 

We first consider the performance index 

J ( u )  = , I [ y ( t ) [ l ~ , +  Rl[u(t)l[~;} dr, (35) 

where y(t) is gwen by equation (34), and R > 0. The linear quadratic regulator problem is: 

(LQR) Find u(" ) E L 2(0, ~; U)  minimizing the cost functional J given by equation (35) subject 
to the system (33)-(34). 

The existence of an admissible control u such that J(u) < ~ and the exponential stability of the 
closed-loop system depend on the following two hypotheses. 

(H1). The system (32) is stabilizable in the sense that there is a feedback operator K ~ ~ ( H ,  U ) 
such that the closed loop semigroup Sx(t  ) E ~F(H) given by 

I' 
Sl<(t)z = S(Oz  + ) S(t - s )BKSK(s)z  ds (36) 

for all t--> 0 and z @ H decays exponentially. 
(H2). The system (32) is detectable in the sense that there exists an operator F ~ 5~(Y, H )  such 

that the output injection semigroup SF(t ) ~ .~F(H) given by 

f 
t 

SF(t)Z = S( t )z  + SF(t -- s )FCS(s )z  ds 
) 

(37) 

for all t --- 0 and z E H decays exponentially. 

R E M A R K  3.1, [25, pp. 134-135] (i) If (H1) is satisfied, then for any z o ¢ H ,  there is an 
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admissible control u=0 ( • ) ~ L-~(0, ~; U)  such that J(Uzo ) < ~. (ii) Let (H2) be satisfied. Then for 
any z0 E H and u(- ) E L2(0, ~; U) with J(u) < ~, z(t) defined by equation (33) is in L2(0, w; H) .  

Now we state the following fundamental results for the (LQR)  problem, see [2, 11]. 

T H E O R E M  3.2. I f  hypotheses (H1) and (H2 ) are satisfied, then there is a unique optimal control 
ti(- ) E L2(0, oc; U) for the linear quadratic regulator (LQR) problem and ~(. ) is given by the 
feedback law 

( t ( t )=-R-1B*Hz. ( t ) ,  t>-O, (38) 

where £(t) is the corresponding optimal trajectory. The operator H E ~ ( H )  is the unique nonnega- 
rive self-adjoint solution of the algebraic Riccati equation 

A*Hz + I IAz  - IIBR-1B*IIz + C*Cz = 0 (39) 

for every z ~ ~(A) .  Moreover, the closed-loop semigroup Sn(t ) E 5E(H) generated by the operator 
A - BR-  ~B'11 decays exponentially. 

R E M A R K  3.3. The algebraic Riccati equation (39) can be defined for all z E H, since the right 
hand side of the equation 

I IAz = - A * I I z  + HBR-~B*IIz - C*Cz (40) 

is well-defined for all z E H and @(A) is densely embedded in H. Hence,  we can extend the left 
hand side of equation (40) to z E H continuously. 

We now consider the control problem for Burgers' equation. Define the operator A e, as in 
Section 2, by A,4, = eqS" for all ~b E @(A,)  = H2(0, l) fq H~(0, l). For the control input operator 
B and the observation output operator C we consider the Hilbert spaces H = L2(0, l), U = R and 
Y = R k. Assume that B ~ 5¢(U, H )  and C E Lg(W, Y) are defined by 

Bu = b( . )u  and Cz = (~(xl) . . . . .  z(xk)) ,  (41) 

where b( .  ) E H,  u E U, and 2 i ~ (0, l), 1 -< i <- k, ~(xi) are defined by 

i2i+6 
gYi) = ~-~ J~,-~ z ( x )dx .  (42) 

In equation (42), 6 > 0  is chosen so that ( x i -  6, ~?i + 6 ) C ( 0 ,  l) for all 1 - - - i - k .  Consider the 
following linear control problem. 

(LQR)~ Find if(. ) E L2(O, ~; U) minimizing the weighted performance index 

J(u) = ~o (lly(t)ll~ + Rl[u(t)ll2" u• e2" td t ,  ( a > 0 )  (43) 



subject to the governing equations 

d 
dt z(t) = A , z ( t )  + Bu( t ) ,  z(0) = z,, 
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(44) 

y ( t ) = C z ( t ) ,  t>-O. (45) 

where A , ,  B, C are as above and R > 0 .  

R E M A R K  3.4. (i) Equation (44) corresponds to the system 

c) 02 
o ~ Z ( t ' x ) = e  Ox ~_ z ( t , x ) + b ( x ) u ( t ) ,  t > O ,  O < x < l ,  

v(t, O) = v(t, 1) = O, 

v(0, x) = v,,(x). (46) 

(ii) For each i, 1 -< i - k, z(xi) given by equation (42) represents an average value of z(x) over 
a small neighborhood of Yi. We can regard each Y~, 1 -< i -< k, as the location of an output to be 
controlled. 

(iii) The weight function e 2'~t in the definition (43) of the cost functional J will play an important 
role in the exponential decay rate (see Theorems 3.8 and 3.9). However, it also gives rise to the 
question of existence of an admissible control u(. ) such that J(u) < oo. 

For the control problem (LQR) , ,  we introduce an 'a-shifted' control system [12]. Let 
~(t) = z(t)e ~', h(t) -- u(t)e ~t and )3(0 = y(t)e ~'. We then have a modified linear control problem 

(LQR)~ Find {t E LZ(0, oo; U) minimizing the cost functional 

{llAt)l[ .+ R[[u(t)l]b} dt 
) 

(47) 

subject to 

d 
dt 2(t) = (A, + aI)2( t )  + Bfi( t) ,  2(0)= z o, ~( t )= C2(t) ,  t>-O. (48) 

The solutions for the system (48) again are taken as mild solutions. If we solve the problem 
(LQR)~ and apply 

ff~(t) = e ~'t~(t) (t>-O) (49) 

to the original control system (44)-(45), then the resulting optimal trajectory zT (t) will satisfy the 
inequality 

II  (t)ll. Me  'llzoll., (5O) 

where M-> 1 is a constant and a > 0 is the desired degree of stability. 
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R E M A R K  3.5. A discussion of the 'a-shifted' problem for finite dimensional systems appears in 
[1]. Anderson and Moore established that, for finite dimensional systems, the control problem 
(LQR) ,  is 'equivalent' to (LQR)s in the following sense: 

(i) The minimum value of J defined by equation (43) is the same as the minimum value of ) 
given by equation (47). (ii) If t~(t) = g( i ( t ) )  is the optimal control for (LQR)s for some function g, 
then fi(t) = e ~'g(z(t)e ~') is the optimal control for (LQR)~ and conversely. 

R E M A R K  3.6. (i) From Remark 2.2, the spectrum cr(A~ + ~1) of the infinitesimal generator 
A~ + a I  consists of all eigenvalues A .. . .  n = 1, 2 , . . . ,  given by A~,, = c~ - En27r2/12 and for each n, 

n = 1,2 . . . . .  the eigenfunction 4~,, corresponding to A~., is given by 4~,,(x)= V~7 sin ~ x .  
(ii) We are interested in the stabilization problem for the system (46) with small viscosity 
• = ~-~ > 0, i.e., high Reynolds number. Let % = %". If o~ > a0, then there is at least one positive 
eigenvalue A~,~ = a - @ .  Moreover, if a > % and 0 < y -< e, then the first eigenvalue c~ - ~ of 
A~ + c~I satisfies ~ -  ~ > c~--'~-" > 0  and hence Ar + a I  will have at least one positive 
eigenvalue for all 0 < 3' <- e. This will become important when we apply feedback laws computed 
from low Reynolds number to investigate the closed-loop response of the nonlinear Burgers' 
equation for high Reynolds numbers (see Example 3 in Section 4). 

Let c~ > % = ~ be given and let 

E n  7r 
n ~ = m a x  n @ N : A , ~ = ~ ,  12 ->0 . (51) 

Since A, is self-adjoint (see Remark 2.2) and the set { 4 ~ . , ' n = 1 , 2 , . . . }  is a basis for 
H = L2(0, l), we can identify z E H with the sequence {(z, qS~.,)},~N. Assume that b,, E U and 
c E Y satisfy 

B u = ( ( b , , u ) } n E  N and C z =  ~ c.(z,~b~..) (52)  
n = l  

with  Z=lllb,,ll  < o~ and ~2=lllC~]l~ < ~, see [25, pp. 137-1431. 
The following lemma is an application of stabilizability and detectability results given by 

Pritchard and Salamon [25, Section 4.2]. 

LEMMA 3.7. For each n = 1,2 . . . . .  n~, 

X~.~ { i / : i =  1 , 2 , . .  n - l }  

let 

(53) 

Then the following statements hold. 
(a) b,  = ( b( .  ), 49~,n ) # 0 for  all n = 1, 2 . . . .  , n~, if and only if the system (48) is stabilizable 

in H. 
(b) I f  8 > 0 satisfies 6 < 2@~, then for each n = 1, 2 . . . .  , n~, there exists at least one ,2,, 

1 <~ i <- k, such that 2~ ~ X~,, if and only if the system (48) is detectable through C E £g(H, Y) .  

Proof. (a) From Remark 3.6, we know that the spectrum ~r(A~ + a I )  of A~ + a I  consists of all 
eigenvalues h,, n = a - en27r2/l 2. Thus, for all n --> n~ + 1, we know that ha, . < 0. Let H,, be the 
linear span of eigenfunctions 4~,~ . . . . .  4~.,~o. The dimension of H,  is n~ and hence the system 
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(48) is stabilizable if and only if the projection of (48) onto H,, is controllable, or equivalently, if 

and only if b,, = ( b ( ' ) ,  4~,.,) ¢ 0  for all n, n = 1,2 . . . . .  n . 
To prove (b), let c,, = (c,,j . . . . .  c,,k), n = 1, 2 . . . . .  c,,k), n = 1.2 . . . . .  be defined by equa- 

tion (32). We have that 

~ l l  n Tr.f i n Tr 6 (54) 
c,i = nTr--~ sin T sin - f -  

for 1 -< i -< k. By duality, the system (48) is detectable through C E 5F(H, Y) if and only if c,, # 0 

for all n = l, 2 . . . . .  n~. Hence,  (b) holds. • 

We now return to the original control problem (LQR)~ . The following theorem is the main 
result for our control problem (LQR)~ . 

T H E O R E M  3.8. Let a > a, be given. Suppose that b(.  ) E H = L2(0, l), ~ > O, .fi, 1 <- i <- k, 
satisfy the conditions (a) and (b) o f  Lemma 3.7. Then there is a unique optimal control 
t7 .... C L2(0, zc; R) for  the problem (LQR) , ,  such that 

lT~,.~(t)=-R 'B*II .... Z,,.~(t), t>-O, (55) 

where £ ~(t) is the corresponding optimal trajectory and H~.~ E ~ ( H )  is the unique nonnegative 

self-adjoint operator satisfying the algebraic Riccati equation 

( A  + a l ) * I I  .... = + l l  .... (A~ + a I ) z -  H .... BR ~B*II .... z + C * C z = O  (56) 

1 for  every z ~ @ ( A ~ ) = H 2 ( O, l) (~ H o( O, l ). Moreover, the closed loop semigroup Sll, ~ ( t ) E ~ (  H ) 
satisfies the following stability property 

II s,,o.o Me -'° (57) 

for  some constants M = M(~,  E) >- 1 and ~o = w(a,  e) > O. 

Proof. By Lemma 3.7, we know that the a-shifted control system (48) satisfies all hypotheses 
(H1) and (H2) (with z(t) ,  y(t) ,  u(t), A ,  S(t) and J replaced by 2(0,  ) ( t ) ,  fi(t), A , + aI ,  S(t) and ),  
respectively). Hence,  by Theorem 3.2, there is a unique optimal control ~(t) for (LQR),~ and the 
corresponding closed-loop semigroup S(t) decays exponentially, i.e., 

/~/e ,or [l*(t)[I.,.,.,_< t_>o (58) 

for some constants M = 21~/(o~, ~) >~ 1 and oJ = w(a,  e) > 0. Moreover,  t~(t) is given by 

/f(t) = - - R  I~*H,~,~ ~(t) (59) 

where [( t)  is the resulting optimal trajectory for the a-shifted system (48) and H..~ is the unique 
nonnegative self-adjoint solution of equation (56). Since the semigroup S(t) is generated by 
A~ + a l -  BR ~B*[I . . . .  the infinitesimal generator of the closed-loop semigroup S n o ( t  ) for the 
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original system (44) is A ~ -  BR-1B*II~,,. Hence, Sn~,(t ) = S(t)e -~' and, by the relation (58), 
Sn~. (t) satisfies the inequality (57) with M =/f/ .  Moreover, the optimal control ~.,.(t) for (LQR)~ 
is given by the formula (55), since t / , ,  (t) = t~(t) e- o, = _ R - ~B * 11 ~,. ~(t) e- ~' = - R - ~B * II ~., ~?.,, (t), 
where ~?.,,(t)= ~.(t)e ~' is the corresponding optimal trajectory for the original system (44). This 
completes the proof. • 

The optimal control t~o,,(. ) C L2(0, ~; R) obtained in Theorem 3.8 is given by the feedback law 
(55). Note that ~,,,(t) depends on a and E. Define the feedback operator K~,, ~ ~(H,  U) by 

K a ,  ~ : - R -  1B  * l ]  ,~ . (60) 

Then the optimal control u~,~(t), t >-O, is given by 

a~.,(t) = K~.~i~,~(t) (61) 

and the infinitesimal generator for the closed-loop semigroup Sn~.,(t ) is 

A, + BK,,, = A - BR ~B*F[~., . (62) 

Recall that H = L2(0, l) and U = R. Thus, the Riesz Representation Theorem (see, e.g., [8, 
p. 13]) implies that there is a unique feedback gain function k~.,(. ) ~ L2(O, l) such that 

K,,,z = f~ k~,,(s)z(s) ds (63) 

for all z @ L2(0, l). 

THEO R EM 3.9. Let a > a o be given. Suppose that b(. ) E H = L 2(O, l), 6 > 0 and ~ ,  1 <- i <- k, 
satisfy the conditions (a) and (b) of Lemma 3.7. If  k~,,(. ) E H is the linear feedback gain function 
defined by the formula (63), then there exist constants p = to(a, e) > 0 and M = M(o~, e) >- 1 such 
that for any initial data zo(. ) E H~(O, l), with IIz011,,  - ~ ,  the controlled Burgers' equation 

O_ z(t, x) = ~ - -  z ( t , x ) -  z(t, x) 0 Ot 8x 2 ~x z(t, x) + b(x) k~,,(s)z(t, s) ds 

z(t, O) = z(t, l) = 0 ,  

z(0, x) = Zo(X ) @ Hlo(O, l) (64) 

has a unique (strong) solution and the solution z(t). )= z(t, .) satisfies the following stability 
property 

II z(t)ll.0,-< 2Me-" ' l }Zo( ' ) l l .~ .  

Proof. Let the operators A, ,  B, C and K~,, 

(65) 

be given by equations (19), (41) and (60). Define 
the nonlinear function f :  H10(0, l)--> L2(0, l) by 
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f (z)  = BK~,~z - zz '  (66) 

where ' =  ~ .  Then, the map f satisfies the hypothesis (F) in Section 2, since for any z~, 
HI,(0, 0. 

I1 f(z, ) - f ( z  2)11 c2{,,.,) <- (H BK~.. II s~(H} + I1 Z, ][ H,', + II Z~ I1.~,)tl z, - z_~ I1.{,,. (67) 

Note that the operator BK..~ is bounded on the state space H = L2(O. l). Thus. by Theorem 2.1. 
we have a unique local (strong) solution of equation (64). 

Let SK~. (t), t-> 0. be the analytic semigroup on H generated by the operator A + BK .... . 
Theorem 3.8 implies that S~2. (t) satisfies the inequality 

IlQ, (Ozl[. (- M~e (68) 

for all z E H and for some constants M = .$/(c~, {) _> 1 and to = to(c~, e) > 0. If a </3 < a + to, 
then there is a constant M~ = M , ( a ,  ~,/3) -> 1 such that 

I[&. (t)zll.,,, <- M,~e-~'rlztl.,,, (69) 

1 
II&. Q e  't1 11,, (7o) 

V , - .  It is easy to see that for all z E H,t,. Let M = m a x { M .  M.}  and choose p > 0  with 0 <  p < 2~M - 

p M  ~-~ e ds < ~ . (71) 

Consequently,  arguments similar to those in the proof of Theorem 2.7 together with inequalities 
(69)-(70)  and the expression 

£ Z(t)= SK, (t)z o+ S~ ( t - s ) g ( z ( s ) ) d s ,  (72) 

imply that the unique global solution z ( t ) ( . ) =  z(t, .  ) for the controlled Burgers' equation (64) 
exists and satisfies the inequality (65), where g(z(t))= - z ( t ) z ' ( t ) .  • 

4. Approximation and Numerical Results 

In Section 3, we considered a linear quadratic regulator (LQR)~ to obtain a desired degree of 
stability for the solution of the closed-loop Burgers' equation. In this section we consider an 
approximation scheme for (LQR)~ and give some numerical results. 

We first introduce an abstract approximation scheme for the problem (LQR)  based on the 
results of Banks, Kunish [2] and Ito [16] and then apply the scheme to obtain the optimal control 
f f ~ ( .  ) C L2(O, ~; R). Throughout this section we assume that R = 1, the identity operator on the 
control space U. 

We formulate a sequence of approximate regulator problems and present a convergence 
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result for the corresponding Riccati operators. Throughout this section, we use superscript N in 
the designation of subspaces, operators and matrices in the N-th approximating system and 
control problem, like [t N, A N, B N, etc. Hence the superscript N indicates the order of approxi- 
mation. 

Let H N, N = 1, 2 . . . . .  be a sequence of finite dimensional linear subspaces of H and 
pN:H----~HN be the canonical orthogonal projections. Assume that sX(t) is a sequence of 
C o -  semigroups on  I-I N with infinitesimal generators AxG ~(HX).  Consider the family of 
regulator problems: 

N N (LQR) N Minimize J (z o, u) over u E L 2(O, ~; U) subject to the control system 

zN(t)= N N f '  S (t)z 0 + sN(t-- s)BNu(s) ds ,  
) (73) 

yN(t) = CNzN(t), (74) 

where zN(o) = Z u =- PNz 0 and 

N N  J (z0, u )=  {IIyN(t)[[ 2 + Ilu(t)[IL) dt.  (75) 

R E M A R K  4.1. If for each N ( A  N, B N) is stabilizable and (A N, C N) is detectable, then Theorem 
3.2 yields a unique optimal control fiN(t) for the finite dimensional problem (LQR) N given by 

fiN(t ) N , N N N = - ( B  ) [I Sll(t)Zo , (76) 

where sU(t) is the C0-semigrou p on  H N generated by A N - BN(BN)*II N and FIN ~ ~ ( H  N) is the 
unique nonnegative self-adjoint solution of 

(AN)*n N + n N A  u -- IUBN(BN)*II N + ( c N ) * c  u = O.  (77) 

In general, it is not clear t h a t  ( A  N, B N) is stabilizable even if the original system (A, B) is 
stabilizable. Similarly, it is not clear that the detectability property of (A, C) is preserved under 
the finite dimensional projections. Another question to consider is the convergence of approxi- 
mates [I N and fiN(t) to the infinite dimensional solutions II and fi(t), respectively. In order to 
address these issues we let sN(t) = e ANt, t >--0 and make the following assumptions: 
(A1): For each z ~ H, sN(t)pNz --~ S(t)Z and sN(t)*]gNz-'-~ S(t)*z, where the convergences are 

uniform in t on bounded subsets of [0, ~). 
(A2): (i) For each u E U, BNu--~ Bu and for each z E H, (BN)*pNz----> B*Z. 

(ii) For each z E H, c N p N z  --'-) Cz and for each y E Y, ( c N ) * y  -''-~ C*y .  

(A3): (i) The family of systems (A N, B N) is uniformly stabilizable, i.e., there exists a sequence of 
operators K u ~ 2e(H N, U) such that supllKXll < ~ and 

Ile(AU+aNKN)tPNII~(~I) <~ Ml e-'°lt , / ~ 0 ,  

for some positive constants M~ -> 1 and w 1 > 0 which are independent of N. 
(ii) The family of pairs (A N, C N) is uniformly detectable, i.e., there exists a sequence of 
operators F N ~ ~(Y,  H N) such that suPllFNII < ~ and 



BURGERS EQUATION 251 

[]e(A'~+~"(U),pUl[~( m ~ M2 e 0"2' t<--O, 

for some c o n s t a n t s  M 2 ~ 1 and w~ > 0 which are independent of N. 

R E M A R K  4.2. (i) The condition (A3)(ii) is a relaxation of the coercivity assumption in [2] (see 
also [16, p. 3]). (ii) Suppose that B N = IpNB and C N= CP u. Then (A2) holds, since it follows 
from (A1) that PNZ--~Z for all z ~ H .  

By simple modification of results from [16, Theorem 2.1] and [2, Theorem 2.2], we have the 
following fundamental  convergence results. 

T H E O R E M  4.3. Let (A,  B)  be stabilizable and (A,  C) be detectable. I f  (A1) - (A3)  are satisfied, 
then for each N the finite dimensional algebraic Riccati Equation ((77) admits a unique nonnegative 

self-adjoint solution FIN such that sup{[]FIX[[:~m~.): N = 1,2 . . . .  } < ~ and 

IInpNz --> Hz (78) 

for every z ~ H. Moreover, there exist positive constants M 3 >- 1 and co 3 (independent of  N)  such 

that 

]]e';V~-nN(8'~"W~'PNH:j.(n, <_ M3e -'°~' , t >- O. (79) 

It is helpful to introduce a sesquilinear form a~ (. ,. ) : V × V--* C defined by 

a ~ ( z , w ) =  , e z ' ( x ) ~ ' ( x ) d x ,  z, w E V ,  (80) 

where V= H~)(0, 1). It is easy to see that the sesquilinear form a~(" ,. ) is V-coercive [33, p. 274], 
i.e., 

Ia~(z, w)I <_ ellZ[Ivl[WI[ v , (continuity), (81) 

~ea~(z,  z ) +  yllz[[~-> eHZHv, (Gfirding's inequality), (82) 

for all z, w E V and ~, -> e > 0. Furthermore,  it follows from the bounds (81) and (82) that there 
exists a unique operator A~ E ~(V, V*) such that 

a ~ ( z , w ) = ( - A ~ z , w )  and a ~ ( z , w ) = ( - A ~ * w , z )  (83) 

for all z, w ~ V (see, e.g., [33, pp. 271-275]). 
Turning next to specific approximations for (LQR)~ we divide the unit interval [0, 1] into 

i =0 ,  1, N. For each i, 1 <- i<- N, let N + 1 equal subintervals to get [x~, x~,~], x ; -  N ~ ,  - - . ,  
hU(x) denote the linear spline basis function defined by 

[ (N  + l )(x - xi_,)  , xi_, <- x <- xi 

h'7(x) = ~ - ( N  + 1)(x - xi+ 1 ) ,  x i <- x ~ xi+ 1 (84) 
[ 0 ,  otherwise. 
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If H N denotes the N-dimensional finite element space given by 

HN= z ih i (x) :z~ER,  i = l , 2 , . . . , N  , (85) 
i = l  

then each H x is a finite dimensional (real) subspaces satisfying H N C V, N = 1, 2 , . . . .  Moreover, 
it is well-known [28], [16, p. 15] that the family of H N satisfies the following approximation 
condition: 

(APP) For each z @ V, there exists an element z N ~ H rv such that 

IIz - zUllv <- e(N), where e(N)-+ ~. 

Let P:H-+  H N be the canonical orthogonal projection onto H N, The approximation property 
(APP) implies that PNz-+ z as N--~% for z E H. For the finite dimensional regulator problem 
(LQR)~ we choose 

B N = pNB and C N = CP N . (86) 

Conditions (A2)(i), (ii) will follow from Remark 4.2. 
A representation A N of A, on H u can be obtained by using the restriction of the sesquilinear 

form a~(. , .  ) to H N × H u. The representation A N of A~ satisfies 

a~(z, w) = (--ANz, W) and a~(z, w)=- ( - ( A ~ ) * w ,  z) (87) 

for all z, 2 E H N. Equation (87) follows from the fact that H u is a real Hilbert space. We know 
also that A N = (A~) , since A~ = A,.  

REMARK 4.4. Since Ht¢ C H it is easy to see that for any A C o'(AX), YteA <-- - y  --< - e .  

Let SN(t) be the C0-semigrou p generated by A N. Then the conditions (A1)(i), (ii) follow from the 
results of Banks and Kunish [2, Lemma 3.2]. Note that SN(t) = (SN(t)) *. For the condition (A3)(i) 
we need a certain preservation of  exponential stabilizability under approximation ((POES) in [2]). 
The following result is taken from [2, Lemma 3.3]. 

THEOREM 4.5. Let (A , ,  B) be (exponentially) stabilizable. I f  the approximation condition 
(APP) holds, then the approximations defined through equations (86)-(87) satisfy the condition 
(A3)(i), i.e., the family of  pairs (A N, B N) is uniformly stabilizable. 

By the dual of the arguments used in Theorem 4.5 we can see that the condition (A3) (ii) holds 
under the assumption that (A~, C) is detectable. We summarize our discussion up to this point in 
the following theorem. 

THEOREM 4.6. Let (A~ + czI, B) be stabilizable and (A~ + ~I, C) be detectable. I f  A~, B N, C x 
are defined as in equations (4.14) and (4.15), then 

IIN~pNz---~ll~.~Z , Z ~ H , (88) 
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and 

sN(t)pNz---+ S ( t ) z  , z ~ H , (89)  

where the convergence is uniform in t on bounded subsets of [0, o~) and pU is the orthogonal 
projection onto H N. Here II~.¢ satisfies the Riccati equation 

N ,  U f l ~ ( A ~  (A~+ ~I ) fI .... + , + ~IN) _ IIN,~BN(B,V).II~' + (C;~'),CN = 0. (9o) 

REMARK 4.7. Note that S(t) = 3'(t)e -°' and S'V(t) = S~'(t)e -~' where S(t), SN(t), S(t) and SX(t) 
are semigroups generated by A, ,  A~', A~ + c~I and A'~'+ a l ,  respectively• 

Next, consider the matrix representations of operators on the space H u. Let the approximate 
solution zN(t, X) of z(t, X) o n  H u be given by 

N 

= z , ( )h~(x)  (91) 
i = l  

for some zJ ( t )CR,  i= 1 . . . . .  N. Equations (86) and (87) yield the finite dimensional ODE 
system 

[G,,j] d {zS(t)} ---- [A'~I(zN(t)) + [/~Ulu(t), (92) 

where {zN(t)} = [zN(t) . . . . .  zN(t)]', 

[G"~I--I(h~,h~)IN~N 

1 
6(N + 1) 

[A~] = e ( N +  l) 

-4 1 
1 4 
0 1 

0 
0 

- -  - - 2  

1 
0 

0 
_0 

1 
- 2  
1 

0 
1 
4 

0 0 
1 0 
- 2  1 
• . . . . 

• . . " . , 

0 
0 
1 

1 
0 

1 
0 

4 
1 

° . • 

• ° 

• ° 

- 2  
1 

1 
4_ 

0 
0 
0 

1 
- 2  

N , : N  

N × N 

(93) 

(94) 

and 

[~"1 = [<b, h~,>, <b, h~> . . . . .  <b, h~>] T, (95) 

where (b, h~} = J'~ b(x)h~'(x)dx, 1<-j <-N, Since [GN] is invertible we may multiply both sides 
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of (92) by [G N] ~ to obtain 

d 
dt  {zN(t)}=[A~]{zN(t)} +[BN]u(t) '  {zN(O)}={Z~}' (96) 

where 

[A N] = [GNI-'[.4NI, [B N] = [GU]-~[/? N] (97) 

N N T and {z N} hi), = , . . ,  (zo, hu)]  
Next, we consider the representation [C u] of the operator C on H N. It is easy to see that 

C N" HN--* R k has the matrix representation 

[C N] -N - = [hi(xi)lk×N, (98) 

~ N  - ~ .  f 2 t ~ - ~  hN(x) dx, l<i<k ,  I<j<N. where h j(xi) ~ ~,-a 
Finally, the finite dimensional Riccati equation (90) yields the corresponding feedback gain 

operator K~,, given by 

N N , N [ K ~ , , ] = - [ B  ] [ I io . , ] .  (99) 

Therefore, the closed loop system (96) can be represented by 

d B N N N t , . d--t {zN(t)} = jAN + K. , . I{z  ( )} {zN(0)} = {Z~} ( oo) 

Now, we discuss an algorithm for finding the unique nonnegative self-adjoint Riccati solution 
for equation (90). We employ the Potter's method [27] to obtain I1N The first step in Potter's 
method is to form 2N x 2N matrix 

[AN+alN] * [cN]*[C N] ] 
[MNI = [BNI[BN], _[AU + alUlj.  (101) 

Next, find all eigenvalues and eigenvectors of M N and form the matrix 

where the columns of [Z N] are the eigenvectors of [M s] corresponding to the eigenvalues with 
positive real part. When eigenvalues occur in complex conjugate pairs, so do the eigenvectors. In 
this case, the real and imaginary part of the eigenvector each forms a column of [ZN]. Finally, the 

N N N - 1  
= [Q1][Q~] • solution to the Riccati equation (90) is given by the formula [I14,,] 

REMARK 4.8. From the numerical results we found that the Riccati solution operators II~,, 
become unbounded when the viscosity • > 0 goes to 0 for fixed a > 0. Also, when a goes to 
infinity with • fixed, the same phenomenon has been observed. 

Finally, the finite dimensional approximation for the controlled nonlinear Burgers' equation (64) 
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is given by 

d N N N t d. {zN(t)} = (JAi l  + [~ ][K°.,J){z ( )} + f ~ ( { ~ " ( t ) } ) ,  { .<(0)}  = {<~} ,  (103)  

where JAil ,  [B N] a r e  defined as in equation (97), and 

f ~ ' ( { J ( t ) } )  = [ G x ]  - 

1 

' [N( {£" ( t ) } ) ,  

~ , ( t ) ~ ( t )  + (~'(t)) ~ 
_ ( z ~ ' ( t ) )  2 ~ ,,, - ( z ,  ( t ) ) ( z 2 ( t ) ) +  ( z ~ ( t ) ) ( z ~ ( t ) )  + ( ~ ( t ) )  e 

x " ~,' X N (t))(z~(t))  + (Zu(t))- -- (ZN_e(t))(ZN_l(t)) + (ZN_ I - ( z , , _ ~ ( t ) ) -  ~ 
- ( z~ ' , _ , ( t ) ) :  ~ N - (ZN_ 1 (t))(ZN(t)) 

where [G N] is defined by equation (93), To solve the nonlinear ODE system (103) we use a 4-th 
order Runge-Kutta method [30]. 

For numerical examples, the length I for space domain, the Reynolds number, Re, the initial 
function z0(. ) ~ H~(0, 1) and the control input function b(- ) ~ L2(0, 1) will be chosen as 1, 60, 
sin 7rx and e", respectively. Thus, the closed-loop equation is given by 

a z ( t , x )  1 a ~- fL - -  = - -  z ( t ,  x ) -  z ( t ,  x )  o e~ at 60 ax e -~x z(t ,  x) + , k . , (s)z(t ,  s) ds 

z(~, o )  = z ( t ,  1) = o 

z (O,x )  = sin ~ x ,  (104) 

where the feedback gain function k~.,(. )C  L2(O, 1) will be determined by the desired degree 
c~ > 0 of stability and the action of output operator C. 

The 'robustness' of the feedback controller exhibited, for example, in Figure 2, will be 
discussed in Example 3. For this particular example, Reynolds numbers 60, 80, 100 and 120 are 
chosen. 

REMARK 4.9. (i) From the numerical experiments, we found that if Reynolds number is less 
than 60, then the diffusion phenomena dominate convection phenomena. In this case, the 
formation of a steep gradient due to convection term - z ( t ,  x ) ~ z ( t ,  x) of the open-loop solution, 
i.e., k~ , , ( . )=-O in equation (104), is not clear. For Reynolds number greater than 60, the 
open-loop solution creates a 'sharp' gradient in finite time, (see Figures 1, 10, 12 and 14). The 
solution dies out eventually because of the diffusion term ~ ~ z(t,  x). (ii) The control input 
function b(x) = e x is defined for all x E [0, 1]. Thus, the feedback control acts on the whole domain 
[0, 1]. However, one can choose any LLfunction b ( - ) E  L2(0, 1) satisfying the stabilizability 
condition in Lemma 3.7. In fact, b ( x ) =  e x satisfies the stabilizability condition for any desired 
degree of stability a > 0, since the coefficients b n, n = 1, 2 . . . . .  representing input function b ( - )  
are not zero, i.e. b,, = ( b ( . ) ,  sin rrx)L,_lo.1 , = .fore * sin rrx d x # 0  for all ,1 = 1, 2 . . . . .  (see Lemma 
3.7). (iii) The initial function zo(x ) = sin rrx is chosen for our numerical experiments. Other 
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Fig. 1. Open loop (N = 32, Re = 60, z0(x) = sin ~'x). 
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Fig. 2. Gain function k~,+(.) (c~ =0.3,  C(z)=(E(0.3), E(0.5), 
S(0.75))). 

ii / ...... ..... ; 

Fig. 3. Closed loop (feedback by kl~,+ ( . ) ) .  
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Fig, 4. Gain function k~, ,( .  ) (o = 0.6, C(z) = (Z(0.3), 2(0.5),  
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Fig, 5. Closed loop (feedback by k~,+(- )). 
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Fig. 6. Gain function k~,+ (a = 0.3, C = 1). 
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Fig. 7. Closed Loop (feedback by k~,~(. )). 
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Fig. 9. Closed loop (feedback by k~•~(, )). 
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Fig. 10. Open Loop (N = 32. Re = 80, z,,(x)= sin rrx). 
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Fig. 11. Closed loop ( R e = 8 0 ,  feedback by k],o(-)), 
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Fig. 12. Open loop (N  = 32, Re = 100, z,,(x) - sin ~rx). 
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Fig. 13. Closed loop (Re = 100, feedback by k ~ (  • )). 
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Fig. 14. Open loop (N = 64, Re = 120, zo(x ) = sin ~-x). 
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Fig. 15. Closed loop (N = 64, Re = 120, feedback by k~ ( • )). 



typical H~-functions such as the 'hat function' defined by 
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J 2 x ,  x E [ 0 ,  ½] Z~(X) ( 105) 
- 2 x + 2 ,  x E [ ~ ,  1] 

were used for initial data. However, we found that the solution of Burgers' equation (104) with 
initial data zo(x) given by equation (105) is similar to the solution with initial data z~(x) = sin 7rx. 

To illustrate the trajectories of open-loop and closed-loop solutions, the order N of 
approximation is chosen as N = 32 for both cases, and the corresponding trajectories from time 
t = 0.0 to t = 1.0 will be shown. The convergence of the feedback gain functions k ( .  ) E L2(0, 1 ) 
will be illustrated by selecting values of N = 8, 16, 32, 64 and 128. 

EXAMPLE 1 (Bounded Input/Output). The observation operator C E ~-CF(L2(0, 1), R 3) for this 
example is given by 

C(z) = (E(0.3), E(0.5), E(0.75)), (106) 

where £(2) is the average value of z(. ) E L2(0, 1) in a small neighborhood of 2, x = 0.3, 0.5, 0.75, 
fx+~ z(s)ds.  Here, 6 > 0 is chosen so small that each and defined by equation (42), z7(2)= ~ j~ 

open interval ( 2 - 6 ,  £ + 6) is contained in the whole domain (0, 1). The desired degree a of 
stability is chosen to be 0.3 and 0.6 for Figures 3 and 5, respectively. For both cases, 
n~ = max{n E N ' a -  ~n-~r-->0} = 1 and hence the set X,.  1 defined in Lemma 3.7 is empty. 
Thus, all assumption in Theorem 3.9 are satisfied. 

The feedback gain functions k . , ( -  ) are shown in Figures 2 and 4. From these plots, it is easy 
to see that control action depends on the location of the points 2,. This phenomenon is natural, 
since the optimal control is obtained to minimize the cost functional J defined by equation (47) 

whose first term II~(t)ll~. I l c ~ ( t ) l l ~  ~ :" - " = -- Y~=alz(xi)l-, where 2i = 0.3, 0.5 and 0.75 for i = 1, 2 and 3, 
respectively. The corresponding closed-loop trajectories are shown in Figure 3 (for ~ = 0.3) and 
Figure 5 (for ~ = 0.6), From Figures 3 and 5, we can see how the controllers contribute to 
stabilization of the steep gradient as well as the solution itself. 

EXAMPLE 2 (Identity Output Operator). For this example, we take the identity operator I on 
L~-(0, 1) for the output operator C. In this case, the output space Y is L2(0, 1). The convergence 
of gain functions and corresponding closed-loop trajectories for ~ = 0.3 and 0.6 is shown in 
Figures 6-7 and 8-9, respectively. Since the observation operator is the identity, this example 
gives information about the maximal control action. We note the following observation concerning 
the convergence rate of gain function. Theoretically, the rate is O(~ )  [16, p. 15]. But, in this 
example, the rate seems to be faster than O(~) ,  (see Figures 2 and 4). Another observation is 
concerned with the location of maximal control action. The location moves to the left portion of 
domain as the degree of stability ~ > 0 increases. In other words, we should put more action on 
the front part of domain to get a higher exponential decay rate a > 0. (See also Figures 2 and 4). 

EXAMPLE 3 (Robustness). In this example we show the robustness of the feedback controller 
given in Figure 2. The feedback controller is obtained from the control system with Re = 60, 

= 0.3, b(x) = e x and the output operator C defined by equation (106). 
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Figures 1, 10, 12 and 14 show open-loop trajectories for Reynolds numbers 60, 80, 100 and 
120, respectively. The corresponding closed-loop trajectories are shown in Figures 3, 11, 13 and 
15. The order N of approximation is chosen as N =  32 for Re = 60, 80, 100 and N = 64 for 
Re = 120. From these examples, it is easy to see that the feedback controller obtained for Re = 60 
stabilizes the steep gradient of the solution for Burgers' equation with various Reynolds numbers. 
However, we see that the sharp gradient is relaxed slowly as the Reynolds number increases, (see 
Figures 3, 11, 13 and 15). Recall that Theorem 3.9 implies that the closed-loop solution z(t) of the 
nonlinear system (64) satisfies the stability property 

IIz(t)ll.5 2Me- 'llzo(" )ll.?, . (107) 

Although the exponential decay rate a is independent of Reynolds number, the constant 
M = M(a,  Re) depends strongly on the Reynolds number. 

5. Conclusion 

In this paper, we considered a feedback control problem for a nonlinear Burgers' equation. The 
method consists of linearization of the nonlinear equation. We used the linear quadratic regulator 
(LQR) problem to find optimal feedback gains. It was also proved that, under appropriate 
selection of the input and the output functions, the LQR problem for the linearized problem is 
detectable and stabilizable. We then analyzed a 'shifted quadratic cost' to construct gains which 
produce a fixed decay rate. In particular, we proved that the closed-loop system satisfies the 
inequality 

[Iz(t. O; zo)ll   

where a > 0 does not depend on the Reynolds number, but M(e) does (see Theorem 3.9). 
We also developed a numerical scheme for computing the feedback gain functions. Several 

numerical experiments were performed and the following observations were made: 
(1) The gain functions depend strongly on output map. For example, if the output operator C 

is given by 

C(z)---(~(0.3), ~(0.5), ~(0.75)), 

then the gain function has sharp peaks at the locations 0.3, 0.5 and 0.75 (see Figures 2 and 4). 
(2) The closed-loop nonlinear system is stabilized (as predicted) by linear feedback laws. 

Moreover, the steep gradients (for e ~--0) are smoothed by feedback. 
(3) To test the 'robustness' of the feedback control law, one experiment was performed. We 

obtained the functional gain kl~.~( • ) from the control system at the Reynolds number, Re = 60, 
and applied it to the closed-loop system 

0 z ( t , x ) -  1 02 fo 1 - -  - -  z ( t , x ) - z ( t , x )  0 e x 1 at Re Ox 2 ~x z(t, x) + k~,E(s)z(t, s) ds (lO8) 

at Re = 80, 100 and 120. The closed-loop responses are shown in Figures 11, 13 and 15. Although 
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the pe r fo rmance  was decreased,  the system (108) was still stabilized and smoothed .  These  results 

p rov ided  some insight into the possibility of  using linear feedback laws for  nonl inear  distr ibuted 

p a r a m e t e r  systems. 

In closing, we note  that  considerable  physical insight can be gained f rom the numerical  results 

p resen ted  above.  For  example,  the shape of  the opt imal  functional  gains (Figures 2, 4, 6, 8) 

provides  in format ion  about  the spatial location of  sensors and actuators .  Note  that  the m a x i m u m  

absolute  value of  the funct ional  gain moves  to the left as the desired damping  rate c~ > 0  is 

increased.  One  can conclude that  "state' sensors should be physically located near  the place where  

this absolute  value is maximized.  
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