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Abstract. An investigation is presented of the response of a three-degree-of-freedom system with quadratic nonlinearities 
and the autoparametric resonances w 3 ~ 2w 2 and w 2 ~ 2~o~ to a harmonic excitation of the third mode, where the ~o,,, are the 
linear natural frequencies of the system. The method of multiple scales is used to determine six first-order nonlinear 
ordinary differential equations that govern the time variation of the amplitudes and phases of the interacting modes. The 
fixed points of these equations are obtained and their stability is determined. For certain parameter values, the fixed points 
are found to lose stability due to Hopf bifurcations and consequently the system exhibits amplitude- and phase-modulated 
motions. Regions where the amplitudes and phases display periodic, quasiperiodic, and chaotic time variations and hence 
regions where the overall system motion is periodically, quasiperiodically, and chaotically modulated are determined. 
Using various numerical simulations, we investigated nonperiodic solutions of the modulation equations using the 
amplitude F of the excitation as a control parameter. As the excitation amplitude F is increased, the fixed points of the 
modulation equations exhibit an instability due to a Hopf bifurcation, leading to limit-cycle solutions of the modulation 
equations. As F is increased further, the limit cycle undergoes a period-doubling bifurcation followed by a secondary Hopf 
bifurcation, resulting in either a two-period quasiperiodic or a phase-locked solution. As F is increased further, there is a 
torus breakdown and the solution of the modulation equations becomes chaotic, resulting in a chaotically modulated 
motion of the system. 

Key words: Autoparametric resonance, torus, chaos, Hopf bifurcation. 

1. Introduction 

Lefschetz [1] described a commercial airplane in which the propellers induced a vibration of order 
one-half in the wings, which in turn induced a subharmonic vibration of order one-fourth in the 
rudder. The oscillations were so violent that the airplane broke up. This motivated us to consider 
the response of a three-degree-of-freedom system with quadratic nonlinearities to a primary 
excitation. The motion of the system is governed by the three coupled second-order nonlinear 
ordinary differential equations 
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OV 
fi~ + o)-~u~ + 2e/xlZi ~ = e - -  Ou~ 

OV 
/i 2 + o)~U 2 + 2e/.t2/) 2 = e - -  

0U 2 

OV 
/~3 + W3U3 + 2e/~3/~3 = e 

ou 3 

where 

(1) 

(2) 

+ e f c o s l ) t ,  (3) 

(4) 

and the w n, a,,, f,  f~, a n d / G  are constants and the dots represent time derivatives. Here, e is a 
small dimensionless parameter used for bookkeeping and can be set equal to one in the final 
solution. We consider the case of simultaneous internal (autoparametric) resonances of the type 

o) 3 ~ 2o) 2 and w 2 = 2w 1. In these equations, we can think of u 3 to represent the motion of the 
propellers, u 2 to represent the motion of the wing, and u 1 to represent the motion of the rudder. 

The responses of nonlinear systems to harmonic excitations often exhibit complicated 
long-time behaviors when their natural frequencies are commensurable [2, 3]; that is, when the 
system has an internal or autoparametric resonance. For example, in 1863 Froude [4] observed 
that a ship whose pitch frequency is twice its roll frequency has undesirable seakeeping 
characteristics. The explanation cannot be found in the linearized equations governing the motion 
of the ship because the yaw, sway, and roll modes are not coupled with the pitch, heave, and 
surge modes. 

Mettler and Weidenhammer [5], Sethna [6[, and Haxton and Barr [7] used the method of 
averaging to analyze primary resonances of systems governed by equations with quadratic 
nonlinearities when one natural frequency is twice another. Nayfeh, Mook, and Marshall [8] used 
the method of multiple scales [9, 10] to analyze a simple system of two coupled oscillators with 
quadratic nonlinearities as a model for the coupled pitch and roll motions of ships. They 
investigated primary resonances of both the first and second modes. When o)2 ~ 2w~ and f~ ~ o) 2, 
where ~) is the excitation frequency, and the % are the linear natural frequencies, they found a 
saturation phenomenon. Moreover, when o)2~2o)1 and f~-o)1,  they showed that there are 
conditions for which stable periodic steady-state motions do not exist. Instead, there exist 
amplitude- and phase-modulated motions in which the energy is continuously exchanged between 
the two modes. 

Later, Yamamoto and co-workers [11, 12] used the method of harmonic balance and 
analog-computer simulations to investigate the forced responses of systems with quadratic and 
cubic nonlinearities to harmonic excitations when one natural frequency is twice another. They 
observed amplitude- and phase-modulated steady-state motions in their analog-computer simula- 
tions when 1 )~  o) 2 and f t  ~ o)~. Nayfeh and Mook [13] used the method of multiple scales to 
analyze the response of a beam to a harmonic excitation. They accounted for a two-to-one 
autoparametric resonance between a lateral mode and a longitudinal mode. Hatwal, Mallik, and 
Ghosh [14] reported analytical and numerical results for the response of two internally resonant 
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coupled oscillators to a harmonic excitation when the excitation frequency ~l is near w~, Their 
results for small amplitudes are equivalent to those of Sethna [6] and Nayfeh et al. [8]. However, 
their numerical results for sufficiently large amplitudes show that periodic responses are unstable 
and give way to periodically modulated motions. Miles [15] used the method of averaging to 
investigate the response of two internally resonant, quadratically coupled oscillators to harmonic 
excitations. He examined the stability of the analytical solutions and investigated the possible 
bifurcations. He presented numerical results that demonstrate chaotically and periodically mod- 
ulated motions when the excitation frequency ~ is near the lower natural frequency ¢o~. Nayfeh 
and Raouf [16, 17] used the method of multiple scales to investigate the response of a circular 
cylindrical shell to a harmonic internal pressure when the natural frequency w 2 of the breathing 
mode is twice the natural frequency w~ of a flexural mode. They also found the saturation 
phenomenon when ~ w 2 and presented numerical results that demonstrate chaotically and 
periodically modulated motions. Nayfeh [18] used the method of multiple scales to analyze the 
pitch and roll motion of a ship subject to a primary-resonant excitation. He found conditions for 
the existence of amplitude- and phase-modulated motions. 

Hatwal, Mallik, and Ghosh [19] reported experimental data and numerical results that 
demonstrate chaotic motions. Haddow, Barr, and Mook [20] conducted an experiment using a 
two-degree-of-freedom model consisting of two light-weight beams and two concentrated masses 
and observed the saturation phenomenon when f~ ~ w 2 and the nonexistence of periodic steady- 
state motions when 1)~  wj. Using a model similar to that of Haddow et al. [20], Nayfeh and 
Zavodney [21] observed amplitude- and phase-modulated motions when ~ ~ o~ t. Nayfeh et al. 

[22], Nayfeh and Balachandran [23], and Balachandran and Nayfeh [24, 25] performed experimen- 
tal studies on metallic and composite structures with quadratic nonlinearities and a two-to-one 
internal resonance. They observed periodically and chaotically modulated motions when ~ ~ o3~. 

Mook, Marshall, and Nayfeh [26] analyzed the cases of subharmonic and superharmonic 
resonances in the pitch and roll motions of ships. Mook and co-workers [27, 28] used the method 
of multiple scales to investigate the influence of a two-to-one internal resonance on the response 
of a system with quadratic nonlinearities to a combination resonance (i.e., ~ ~ w~ + o3, ) and a 
subharmonic resonance of the higher mode (i.e., ~ ~ 2o32). They applied the results to an arch 
and found that the internal resonance significantly reduces the response. Balachandran and 
Nayfeh [29] experimentally investigated subharmonic and combination resonant excitations of 
internally resonant metallic and composite structures. 

All of the previously mentioned works dealt with a single internal resonance of the 
two-to-one type. Nayfeh and Mook [30] investigated the response of a three-degree-of-freedom 
system with the combination internal resonance o33 ~ w2 + w~. They demonstrated the existence of 
the saturation phenomenon when the higher mode is excited by a primary resonance; that is, 
~ ~ co3. Ibrahim and Barr [31] investigated the response of a fluid-filled circular container resting 
on a vibrating structure with an autoparametric coupling involving the first antisymmetric liquid 
sloshing mode and two orthogonal structural modes. Ibrahim, Woodall, and Heo [32] investigated 
the response of a three-degree-of freedom structure with the internal resonant condition co s 
]o3j +- o~ I. They found that the system achieves a "quasi-steady response" and exhibits an energy 
exchange between the directly excited mode and the two indirectly excited modes. Bux and 
Roberts [33] and Nayfeh, Nayfeh, and Mook [34] theoretically and experimentally investigated the 
primary resonant response of a structure exhibiting an autoparametric combination resonance of 
the additive type. They demonstrated the saturation phenomenon. Ashworth and Barr [35] 
investigated theoretically and experimentally the response of a model of a fuselage and T-tail of an 
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aircraft. The system was idealized as a lumped mass four-degree-of-freedom system having four 
masses and three beams. They considered the resonant case 0)4 = % + 0)~ and f~ = 0)2 + 0)4. 

Sridhar, Mook, and Nayfeh [36] and Hadian and Nayfeh [37] studied the response of a 
circular plate with 0)~ + 20) 2 -~ w 3 (essentially a three-degree-of-freedom problem). When ~ ~ 0)3, 
Hadian and Nayfeh [37] found that the equations describing the amplitudes and phases of the 
interacting modes possess periodic solutions that undergo a period-doubling sequence leading to 
chaos. 

Bux and Roberts [33] and Cartmell and Roberts [38] investigated the response of a structure 
that consists of two beams and one mass. The first beam is a cantilever mounted in the horizontal 
direction and the second beam is vertically mounted at the end of the first but is rotated so that its 
transverse vibrations occur out of plane with respect to the horizontal beam (essentially a 
four-degree-of-freedom structure). Bux and Roberts [33] studied the effect of simultaneous 
combination and two-to-one internal resonances; that is, 0) 2 ~ 0)B + 0)r and % ~2oJ B, where ~ 
and 0)2 are the frequencies of the first and second in-plane bending modes of the first beam, 0)B is 
the frequency of the first out-of-plane bending mode of the second beam, and 0)r is the torsional 
frequency of the mass and the second beam. They found that the large-amplitude motion of the 
directly excited mode can be absorbed by the modes that are excited through the internal 
resonance. Balachandran and Nayfeh [24, 29] experimentally studied the response of a three- 
degree-of-freedom composite structure with two light-weight composite beams and two concen- 
trated masses. The structure possesses the two internal resonances 0), ~ 3% and w 2 ~ 20),, where 
0)i and 0)2 are the frequencies of the first two bending modes and 0), is the frequency of the first 
torsional mode. When the lower bending mode was excited by a primary resonance, they found 
that, for a small excitation amplitude F, the response is periodic consisting of only the excited 
mode. As F exceeded a threshold value, the single-mode response lost stability, giving way to a 
periodic response consisting of the two bending modes. As F exceeded a second threshold value, 
the two-mode response lost stability to a periodic response consisting of the torsional mode as well 
as the two bending modes. Fujino, Pacheco, and Warnitchai [39] investigated experimentally and 
analytically the response of a cable-stayed-beam model having three frequencies in the ratio 1 : 1 : 2 
to a harmonic excitation of the higher mode. They demonstrated the saturation phenomenon. 

lbrahim [40] considered the case when 0)3~20)2 ,  0)2~20)1 , and f ~  0) 1 for a general 
three-degree-of-freedom system. He used the method of multiple scales to determine the 
equations describing the amplitudes and phases of the interacting modes. He determined the fixed 
points and ascertained their stability using the Routh-Hurwitz criterion. He did not identify any 
Hopf bifurcations and consequently did not study any nonperiodic motions. Tadjbakhsh and Wang 
[41] investigated the response of wind-driven cables. They modeled the cable as a three-degree-of 
freedom system with quadratic nonlinearities with the internal resonant conditions w 3 = 20) 2 and 
0)2 ~" 20)1. They considered the case when the second mode is excited (i,e., fZ ~ 0)2) and found that 
the system exhibits both the saturation and jump phenomena. 

The objective of this work is to study the behavior of a three-degree-of-freedom system with 
quadratic nonlinearities in the restoring and/or inertial force terms. The case of internal resonant 
conditions 0)3 ~" 2°)2 and We ~ 20) 1 is considered. Our goal is to study the long-time behavior of the 
system. The method of multiple time scales is used to obtain the equations that govern the 
amplitudes and phases. The bifurcations of the fixed points of these equations include Hopf 
bifurcations. Using various numerical simulations, we show that these equations possess compli- 
cated solutions, such as periodic, two-period quasiperiodic, and chaotic solutions. The phase- 
locking phenomenon is also demonstrated. 
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2. Method of Solution: Multiple Scales 

We seek a first-order uniform expansion of the solution of equations (1)-(4) in the form 

u,,(t; e) = u,,o(T,,, T,) + eu,,~(T o, T,) + - - -  (5a) 

where To = t is a fast scale associated with changes occurring at the frequencies 12 and to ,  and 
T~ = at is a slow scale associated with the modulations of the amplitudes and phases due to the 
nonlinearities, damping, and resonances. The first- and second-order time derivatives transform as 

d d 2 
dt D° + ~DI + ' and dt 2 - D ~ + 2 e D o D  I+ • (5b) 

where D,, = O/OT,. Substituting equations (5) into equations (1)-(4) and equating coefficients of 
like powers of e, one obtains 

Order e°: 

3 

D~u~  + w~ul~ ~ = 0 ,  (6) 

Dau:o + to~u_~ 0 = 0 ,  (7) 

"~ 2 
Do1431 , + o)3lQo = O. (8) 

-2DoD~u.~ - 2~XlDoU~o + 3a~u2m + 2aeu~.u2o 

+ %U~o + 2aaUloU3, , + %u~o + a,,,u2,u3,,. (9) 

D~u21 + w~u21 = -2D~,D,u:o - 21~:Dou> + %u2m + 2ee3ul~u~o 

+ 3c%u~0 + 2olTu20u30 + ~slt~0 + O/10ltl01130 , (10 )  

D~u:.~ + to~u3~ = -2DoDLus~ ~ 21a.3Dou3o + %u~0 + 2asul.u3, 

+ ol7u~, , + 2asue,u~,, + 3c~,tz~,, + oq,u,ou:. + f cos f~T,,. ( 11 ) 

The general solutions of equations (6)-(8) can be expressed in the form 

u,,,, = A , , (T I )  exp(i% To) + cc (12) 

for n = 1, 2, and 3. where cc denotes the complex conjugate of the preceding terms, and the A,, 
are to be determined through the elimination of secular and small-divisor terms from the 
next-order equations. In this paper, we analyze the case w 3 = 2~2, w 2 = 2w~. and f / =  w 3. 

Substituting equations (12) into equations (9)-(11) and recalling the resonances being 
studied, we obtain 

Order e: 

O~u,, + O)~UlI = 
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Doubt  + ~o'-lu,~ = - 2 i w , ( A ' ~  + tx~A,  )e  ~ ' r °  + 2a2A2A ~e '(~2 ~Or(' + cc + N S T  , (13) 

" "~ . r \ iw .  T 0 - - 2  2&OlT 0 - 
D ~ u ~  + w~u,1 = - 2 t % ( A  2 + l~2A2)e ~ + a 2 A l e  + 2 a T A 3 A , e  '~°3-'°~-)r° + cc + N S T  , 

(14) 

, _2  2io~.ro + f f ~ T  0 + + N S T ,  (15) Dou31 + m3u31 = -2i0~3(A 3 + i z3m3)e  t°'3T° + av~lee - cos cc 

where  the overbar  indicates the complex  conjugate ,  the pr ime indicates differentiat ion with 

respect  to TI ,  and NST stands for terms that  do not  p roduce  secular or  small-divisor terms. To  

describe quant i ta t ively the nearness  of  the resonances ,  we in t roduce the detuning pa ramete r s  o', 

o-2, and % according to 

~o z = 2 %  + e%,  o03 = 2 o )  2 + go'3, fl  = o) 3 + e~r . (16) 

Subst i tut ing equat ions  (16) into equat ions  (13 ) - (15 )  and eliminating the secular terms f rom Ull , 

u2~, and u3~ , one  obtains 

- 2 i % ( A ;  + / ~ I A  1) + 2oe2A2AI ei%T~ = O,  (17) 

- 2 i w 2 ( A "  + I~zA2) + azA~e  -'~'2T' + 2 a T A 3 A 2  e''~3r' = O,  

. 1 feinT,  -2 ioJ3(A;  + / a , 3 A 3 )  + a7A~,e 'cr3T1 "~ ~ ~-" O . 

(18) 

(i9) 

Express ing  the A .  in the polar  form 

~ / ~ 1 0 ) 2  a l  ei[31 A, &ll  " 002 " 
A 1 - % , _ = --ce2 a , e  '~2 , and A 3 = --a7 a3 e'o3 (20) 

and separat ing equat ions  (17 ) - (19 )  into real and imaginary parts  yields the modula t ion  equat ions  

a I = - ~ j a ~  + a la  2 sin 7l 

a" = -la,2a2 - a2i sin Y~ + a2a3 sin 72 

3 -/~3a3 - Fa~ sm 72 + F sin Y3 

a l ~  = - a l a 2  cos  71 

a2/3 2 = -a21 cos Ta - a2a3 cos Y2 

t __ 2 
a3/3 3 - - F a  2 cos 72 - F cos 73, 

where  

3/i =/32 - 2~1 + °'2T1 , "/2 =/3_~ - 2/32 + o..~T, , 

(21) 

(22) 

(23) 

(24) 

(25) 

(26) 

Y3 = ~TI  - / 3 3 ,  (27) 
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F = 0)~o/~/20) ,w3oe ' - , ,  F : f o e T / 4 % 0 )  3 . (28) 

Equations (21)-(27)  constitute a sixth-order dimensional system for the six state variables a t, 

a2, a 3, y:, %, and ~ and the eight control parameters ix l ,  tx 2, tx 3, o-, o- 2, o-~, F, and F. In what 
follows, we study solutions of these equations using the amplitude F of the excitation and the 

detuning cr of the primary resonance (essentially the frequency of the excitation) as control 

parameters.  
Solving equations (27) for the/3,, yields 

1 1 1 
~ , , = o - r , - z ~ ,  3 , : 5 ( , * + o : ~ ) T : - ~ V e - 5 ~ ,  

1 1 
/3, = ~ (o. + 2% + o.3)T~ - ~ (23/, + Yz + "/3) • (29) 

Substituting equations (29) into equations (20), using equations (16), and substituting the result 

into equations (5a) and (12), we obtain to the first approximation 

[1 ] 
ul ~ a~ a~ cos ~ ( f ~ t -  23q - ~ - `/~). (30) 

u~ ~ - -  a~ cos ( a t -  ~ - %) (31) 

20) 2 
u 3 ~ - -  a~ cos(l~t - Y3) , (32) 

O/7 

where the a,, and y,, are given by equations (21)-(27).  

3 .  P e r i o d i c  M o t i o n s  

It follows from equations (30)-(32)  that constant a,, and y~ correspond to periodic responses, 

which in turn correspond to the fixed points or constant solutions of equations (21)-(27) ,  It 
follows from equations (29) that 

, 1 , 1 

Hence,  the fixed points or constant solutions of equations (21)-(27)  are given by 

- t x : a  r + a j a  e sin Yl = 0 

- I . t 2ae  - a~ sin -/~ + a2a 3 sin "/2 = 0 

- ix3a3 - Fa22 sin "/2 + F sin 3(~ = 0 

l.,la 1 = - a l a :  cos "/1 

u~a~ = - a ~  cos Yt - a2a3 cos 3/2 

(33) 

(34) 

(35) 

(36) 

(37) 

(38) 
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ora 3 = - F a  2, cos "Y2 - F cos % .  (39)  

T h e r e  a r e  t h r e e  poss ib i l i t ies :  (a)  a 1 -~ 0,  a 2 = 0,  a n d  a 3 # 0; (b)  a 1 = 0,  a 2 ~ 0, a n d  a 3 ¢ 0; a n d  (c) 

a I ~ 0 ,  a 2 ¢ 0 ,  a n d  a 3 ¢ 0 .  

Case (a). 
I n  this  case ,  a~ = a 2 = 0 a n d  

F 
= (40)  a3 ] 

a n d  h e n c e  u t = b/2 = 0 a n d  

2 ¢.O-~ 
U 3 ~ ~ a 3 c o s ( l ) t  - 3'3) (41)  

0/7 

w h i c h  is e s sen t i a l ly  t h e  l i n e a r  s o l u t i o n .  

Case ( b ). 
I n  this  case ,  a~ = 0, 

2,1,2 (42) 
a 3 = ( / . t ~ +  v ? )  

a n d  

x211/2 
Fa~ = - ( / x 2 / x  3 - ~rv~) +-- [ F  - ( /z3v 2 + o-/x2) 1 • (43)  

H e n c e ,  

U x ~ 0 ,  
2. [1 ] 

U 2 ~ a 2 cOS ( f i t  - - 3'3) (44)  ~, 5 ~'2 

a n d  

2¢0~ 
u 3 = " a 3 cos(~qt - 3'3)" (45)  

Ot 7 

Case (c). 
I n  th is  case ,  

= 2 \ 1 / 2  ( 4 6 )  

V-2 
a l  = - X a  + - X2 

(47)  

( # ~  + ¢ ) a  3 = F 2 - (48) 

w h e r e  
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XI = [ l~ , lx2-  v,u, + ~ (txdx~ + o-u,)] (49)  
3+o--  - 

2 

A': = ( /x~ + v~)a~ a2 F 2 

and the response is given by equations (30)-(32). 

(50) 

4. Stability of the Fixed Points 

To analyze the stability of the fixed points of equations (21)-(27), we let 

~--wlw" (Pl  - tq l )e  A ,  = - -  (P2 tqz) e '~ l '  and A~ = --= (P3 - iq~) e ' ' 7 '  _ _  - . i v  I T 1 ~ i  - -  . - . • W ~  • . 

- ( 5 1 )  

where the p,, and q, are real and the u,, are defined in equations (33). Substituting equations (51) 
into equations (17)-(19) and separating real and imaginary parts, one obtains 

Pl + # l P l  + vlql + p l q 2  -- P:ql = 0 (52) 

ql + # l q l -  u l P I -  PlP2 -- qlq2 = 0 (53) 

P; + ~ P 2  + ~q~ + 2p~qt + P:q3 -- P3q2 = 0 (54) 

q~ + ~2q2 -- ~P2 --P~ + q~ -- P2P3 -- q2q3 = 0 (55) 

P; + ~3P3 + ~q3 + 2FP2qz = 0 (56) 

q ; +  ~3q3 - ~P3 - F ( p ~ -  q ~ ) -  F = 0 .  (57) 

In this case, the state variables are Pm and qm' m = 1, 2 and 3, and the control parameters are F, 
F, and ~,,, and ~,,, m = 1, 2, and 3. We note that these equations are invariant under the 
transformations 

Pl '--~ - P l ,  ql --~ - q I ,  P2--+ P~, q2--* q2, P.~--~ P3, q3--~ q3 

Pl---~ ql " q~---~ --PJ, P2---" --Pz, q2"--~ --q2, P3---~ P3, q3---~ q3 

Pl---" - -qf ,  qJ--* Pl ,  P2---~ --P2. q2 ---~ --q2, P3---~ P3, q3---" q3 . 

(58) 

(59) 

(60) 

Substituting equations (51) into equations (12) and using equations (16) and (33), we find that to 
the first approximation 
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b/l~ Z 

u ~ - -  p 2 c o s  ~ t  " a2 ~ + q2 sin ~ ~)t (62) 

20),~ 
u3 ~ --" [Ps cos(at)  + q3 sin(at)] (63) 

OL 7 

where the Pi and q, are given by equations (52)-(57). 
The stability of a particular fixed point with respect to perturbations proportional to exp( )t T~) 

depends on the real parts of the roots of the characteristic equation 

A + #I + q2 vl -- P2 - q i  P1 0 0 

- v  1 - p :  Z + # 1 -  q :  - P l  - q l  0 0 

2qi 2p~ A + #2 + q3 v 2 -  P3 - q 2  P2 

- 2 P l  2ql - ~  - P 3  A + # 2 -  q3 - P 2  - q 2  

0 0 2Fq: 2FP2 A + #3 ~ 
0 0 -2Fp2 2Fq2 -~3 ~ + ~3 

= 0 .  (64) 

Thus, a fixed point given by equations (46)-(48) is asymptotically stable if and only if the real 
parts of all the roots of equation (64) are negative. 

To study the stability of the fixed points corresponding to Case (a), we let Pz = P2 = q~ = q2 = 

0 in equation (64) and obtain the eigenvalues 

A = #I +-iv1, - # 3  +-iv3, - # 2  +- ~ - u;_ . (65) 

Hence, the fixed points corresponding to Case (a) are asymptotically stable if and only if 

a~ < #~ + v~ (66) 

where a~ = p,] + q2 n . 

To study the stability of the fixed points corresponding to Case (b), we let Pl = ql = 0 m 
equation (64) and obtain the two roots 

A = - # l  m - u~ (67) 

and four roots governed by the characteristic equation 

A + # 2 +  q3 ~ - P3 -q2  P2 
- ~ - P 3  A + # 2  - -  q3 -P2 -q2  

2Fq2 2Fp2 A + #3 
-2Fp2 2Fq2 - ~ A + #3 

= 0 .  (68) 

Again, the fixed points in this case are asymptotically stable if and only if the real parts of all the 
eigenvalues in equations (67) and (68) are negative. 
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To show the effect of  varying the detunings and the excitation amplitude on the fixed points for 
Cases (a), (b), and (c), we let F = 0 . 6 2 5 ,  #1 = P-2 = 0.5, and /z,~ = 0.1. In all of  the figures, 
cont inuous  lines represent stable solutions (sinks), dotted lines represent unstable solutions with 
positive real eigenvalues (saddles), and dashed lines represent unstable solutions with a complex 

conjugate  pair of  eigenvalues having a positive real part (unstable foci). 

In Figure 1, we show the effect of  varying the excitation amplitude F on the response 
amplitudes aM (Figure la),  a 2 (Figure lb) ,  and a t (Figure lc). Here,  we set cr = cr~ = 0 . 5  and 
cr 3 = 0.0. The solution corresponding to Case (b) exists when F > F I ~ 0.275 (Figures lb and lc). 
When F~ < F <  F 2 ~ 0 . 2 8 4 ,  Case (b) is double-valued,  with the small solution (saddle) being 
unstable with a positive real eigenvalue and the large solution (sink) being stable (Figure lb). We 
note  that at F~ there is a fold or saddle-node bifurcation whereas at F, there is a reverse pitchfork 

bifurcation. The solution corresponding to Case (c) exists when F > F 3 ~ (11.323. When 0 < F < F~, 
only the solution corresponding to Case (a) exists and is stable (Figures lb and lc).  Hence ,  the 
response in this case is periodic consisting of  the third mode  only. When F~ < F < F , ,  three 

a 1 

1 . 5  

1 . 0  

0 .5  

0 

0 

I I I 

/ 
/ 

f 
f 

H . B .  / f  

I I 
F 3 F 4 

0 . 4 5  0 .9  

F 
(a) 

I 
1 / 

/ 
/ 

i 
F s 

1 . 3 5  1 •8 

1 . 6  

1 . 2  

a 2 o .8  

0 . 4  

- 0  

: H . B .  

; - " i  .......... ~ ......... ~ ........ 

F1F3"2 F4 F5 

0 .4  0 .8  1 .2  1 .6 '  

F 
(b) 

2 . 2 5  • 

a 3 1 . 5 ,  

0 . 7 5  

I I 

J 
/ 

. "  f 
f 

. ,  , /  
f 

• j 
o- f 

f H . S .  

~\ . -  f \ ; . "  
..>:/ 

/ 
I 

F1 F 4 
F 3 
0 .4  

Fig. 1. Force-response curves: (a) first mode, (b) second mode. and (c) third mode. (. . .)  Unstable with a positive real 
eigenvalue, (---) unstable with a pair of complex conjugate eigenvalues lying in the right half plane, and (__) stable. Here, 

0-=0.5, o- 2 =0.5, o- 3 =0.0, #~ =0.5, ~,2 = 0.5, #~ =0 .1 ,  and F=0.625. 

0 I I 
F 5 

0 0 .8  1 .2  1.6 

F 
(e l  

f 



396 T . A .  NAYFEH ET AL. 

solutions exist: a solution corresponding to Case (a), which is stable: a solution corresponding to 
Case (b), which is stable; and a solution corresponding to Case (b), which is unstable with a 
positive real eigenvalue (saddle) (Figures lb and lc). Here, the response is periodic consisting of 
either the third mode only or the second and third modes. When F 2 < F < F3, there are two 
possible solutions: a solution corresponding to Case (a), which is unstable with a positive real 
eigenvalue, and a solution corresponding to Case (b), which is stable (Figures la and lc). Here, 
the response is periodic consisting of the second and third modes. When F~ < F < F 4 ~ 0.528, 
three possible solutions exist: a solution corresponding to Case (a), which is unstable with a 
positive real eigenvalue; a solution corresponding to Case (b), which is stable; and a solution 
corresponding to Case (c), which is stable. In this case, the response is periodic consisting of either 
the second and third modes or all three modes. When F 4 < F <  F 5 ~ 1.444, three possible 
solutions exist: a solution corresponding to Case (a), which is unstable with a positive real 
eigenvalue (saddle); a solution corresponding to Case (b), which is stable (sink); and a solution 
corresponding to Case (c), which is unstable (unstable focus) with the real part of a pair of 
complex conjugate eigenvalues being positive. Here, the response of the three-degree-of-freedom 
system is either a periodic motion consisting of the second and third modes or an amplitude- and 
phase-modulated motion consisting of all three modes. We note that at F 4 there is a Hopf 
bifurcation. When F > Fs, there are three possible solutions: a solution corresponding to Case (a), 
which is unstable with a positive real eigenvalue (saddle); a solution corresponding to Case (b), 
which is also unstable with a positive real eigenvalue (saddle); and a solution corresponding to 
Case (c), which is unstable (focus) with the real part of a pair of complex conjugate eigenvalues 
being positive. Here, the response is an amplitude- and phase-modulated motion consisting of all 
three modes. 

In many nonlinear systems the response depends on the sweep direction. As we sweep the 
excitation amplitude up from F = 0, we begin with the solution corresponding to Case (a), which is 
stable. Hence, the response is periodic and consists of only the third mode. The amplitude a 3 of 
the third mode, the directly excited mode, increases linearly with F until F reaches the critical 
value 4 -  When F is increased beyond F 2 (Figure lb), the fixed-point solution corresponding to 
Case (a) becomes unstable with a positive real eigenvalue. Hence, the response jumps up to the 
solution corresponding to Case (b), which is stable. Here the response is a two-mode periodic 
response with the second and third modes present. As F is increased further, the amplitude a 3 of 
the excited mode remains constant (saturates), independent of F (Figure lc), and is given by 
equation (42). As F is increased beyond Fs, Case (b) becomes unstable with a positive real 
eigenvalue, and the response jumps to the solution corresponding to Case (c), where a fixed point 
of the modulation equations is unstable with the real part of a pair of complex conjugate 
eigenvalues being positive. Here, the response is an amplitude- and phase-modulated motion 
consisting of all three modes. 

As we sweep F down from say F > 2.5, at first the solution corresponds to Case (c), where a 
fixed point of the modulation equations is unstable with a pair of complex conjugate eigenvalues 
lying in the right-half of the complex plane, and the response is an amplitude- and phase- 
modulated motion. As F is decreased, the response remains an amplitude- and phase-modulated 
motion until F reaches the critical value F 4. As F is decreased below the Hopf bifurcation point 
F4, the solution corresponding to Case (c) becomes stable, and hence the response becomes 
periodic consisting of all three modes. The response of the overall system remains periodic 
consisting of all three modes until F is decreased below F 3 where the solution corresponding to 
Case (c) ceases and the response latches onto the solution corresponding to Case (b). Hence, the 
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response is periodic consisting of the second and third modes. As F is decreased below F~ the 
solution corresponding to Case (b) ceases (Figures lb and lc),  and the response jumps down to 
the solution corresponding to Case (a), which is periodic consisting of the third mode only. The 
overhang region between F 1 and F 2 corresponds to a subcritical instability. In this interval, the 
response may correspond to either Case (a) or Case (b), depending on the initial conditions. 

In Figure 2, we show variations of the amplitudes a r (Figure 2a), a 2 (Figure 2b), and a:~ 
(Figures 2c, 3) with o-. Here, we set F = 0 . 5 ,  o- z = 0 . 5 ,  and o- 3 =0 .0 .  When o - < o  - ( ~ ) ~ - 0 . 9 0 9  or 
o- > o -~ ~.1 = 0.909, only solution a is possible and it is stable (Figures 2b and 2c). The response in 
this case is periodic consisting of the third mode only (essentially a linear response). Solution b 
exists when o- is between o -~) and o-~"( When o -~l~ < cr < o - ~ ~  ~ - 0 . 7 8 2  o r  0 . 7 8 1  ~ ~r ~7~ < o- < 

o -~1°), Case (b) is double-valued: the smaller solution is unstable with a real eigenvalue being 
positive and the larger solution is stable (Figure 2b). The values o - ~  and o -~r°~ correspond to 
saddle-node bifurcations, whereas cr ~~) and cr (7~ correspond to reverse pitchfork bifurcations. 
When o -~I~ < cr < cr~2)~ - 0 . 8 5 8  or 0.902 ~ ~9~ < ~r < ~ 0 ~ ,  there are two possible solutions: a 
solution corresponding to Case (a), which is stable, and a solution corresponding to Case (b), 
which is also stable (Figure 3). Here the response is periodic consisting of either the third mode 
only or the second and third modes. The values cr ¢2~ and ~r ~')~ correspond to branch bifurcations. 
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When 0-(2) < o-< 0 -(3) or 0.844 ~ 0-(s, < 0- < 0-(9~, there are three possible solutions: a fixed-point 

solution corresponding to Case (a), which is stable; a solution corresponding to Case (b), which is 
stable; and a solution corresponding to Case (c), which is unstable with the real part of a pair of 
complex conjugate eigenvalues being positive (Figure 3). Here, the response can be periodic 
consisting of the third mode only, or periodic consisting of the second and third modes, or an 
amplitude- and phase-modulated motion consisting of all three modes. When o-¢3)< o-< 0-(4) = 
-0.571 or -0.474 = o -+5~ < 0- < 0-<6) ~_ 0.473, there are three possible solutions: a solution corre- 
sponding to Case (a), which is unstable with a real eigenvalue being positive; a solution 
corresponding to Case (b), which is stable; and a solution corresponding to Case (c), which is 
unstable with the real part of a pair of complex conjungate eigenvalues being positive (Figure 2c 
and 3a). Hence, the response consists of either a periodic solution consisting of the second and 
third modes or an amplitude- and phase-modulated motion consisting of all three modes. When 
o-(4~< o-< 0-(5~ or o-(6>< o-< 0-(7) three solutions exist: a solution corresponding to Case (a), 

which is unstable with a real eigenvalue being positive; a solution corresponding to Case (b), 
which is stable; and a solution corresponding to Case (c), which is stable (Figures 2 and 3). In this 
case, the response is periodic consisting of either the second and third modes or all three modes. 
When 0-(7) < 0- < 0-(8), three stable solutions exist: a solution corresponding to Case (a); a solution 
corresponding to Case (b); and a solution corresponding to Case (c). Hence in this case, the 
response is periodic consisting of the third mode only, the second and third modes only, or all 
three modes. We note that there are Hopf bifurcations a t  0 "(4), 0 "(5), 0 -(6), and cr(~( 

As we slowly sweep o- upwards from ~ = -1 .5 ,  at first the solution corresponds to Case (a) 
(a I = a 2 = 0) (Figures 2b, 2c, 3b), and the response is periodic consisting of the third mode only. 
It remains stable until cr reaches the critical value ~r (3~. As cr is increased beyond o "(3), the solution 
corresponding to Case (a) loses stability with one real eigenvalue becoming positive, and the 
response jumps to that corresponding to either Case (b) or Case (c). In the first case, a I remains 
zero, a 3 decreases slightly, and a 2 jumps up from zero to a large value. As or is increased further, 
the response stays locked onto the solution corresponding to Case (b), which is periodic and 
consists of the second and third modes, until or reaches the critical value o -(~°~ where the solution 
for Case (b) ceases (Figures 5, 6, 8). As ~r is increased beyond ~(10), the response jumps down to 
the solution corresponding to Case (a). If at o- = o -(3~ the response jumps to that corresponding to 
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Case (c), it becomes an amplitude- and phase-modulated motion consisting of all three modes. It 
remains aperiodic (it may even become chaotic) until ~r exceeds cr ~4~, where the fixed points of the 
modulation equations undergo a reverse Hopf bifurcation, and the response becomes periodic 
consisting of all three modes. As o- is increased beyond ~r c~), the fixed points undergo a Hopf 
bifurcation and the response becomes an amplitude- and phase-modulated motion. As cr is 
increased beyond ~r 16~, the fixed points undergo another reverse Hopf bifurcation and the response 
becomes periodic again and remains so until cr reaches ~r ~ .  When cr exceeds o -~ ,  the fixed points 
undergo another Hopf bifurcation and again the response becomes an amplitude- and phase- 
modulated motion. As cr is increased beyond o-e)( solution c ceases and the response jumps to the 
solution corresponding to either Case (b) or Case (a). 

As we slowly sweep cr down from cr = 1.5, the response is periodic corresponding to Case (a). 
It remains stable until o- is decreased below o -~7), where the corresponding fixed point loses 
stability with a real eigenvalue becoming positive, and the response jumps to either a periodic 
motion consisting of the second and third modes, corresponding to Case (b), or a periodic motion 
consisting of all three modes, corresponding to Case (c). In the first case, the response remains 
stable until o- is decreased below o -~,  where a 2 jumps down to zero whereas a3 jumps down to the 
solution corresponding to Case (a). If at cr = o ~7), the response jumps to the solution correspond- 
ing to Case (c), it will be periodic consisting of all three modes. As cr is decreased further the 
response will remain until o, reaches the value ~r ~'~, where the fixed points exhibit a loss of stability 
due to a Hopf bifurcation and the response becomes an amplitude- and phase-modulated motion 
consisting of all three modes. As cr is decreased below c¢ 5~, the fixed points undergo a reverse 
Hopf bifurcation and the response becomes periodic again. The response remains periodic until cr 
is decreased below cr ~4~, where the fixed points undergo a Hopf bifurcation, and the response 
becomes an amplitude- and phase-modulated motion consisting of all three modes. The response 
remains modulated until cr is decreased below cr ~2~ where the solution for Case (c) ceases and the 
response jumps to that corresponding to either Case (a) or Case (b). 

6. Modulated Motions 

As discussed in Sections 3 and 5, the fixed points of the modulation equations (21)-(27) or 
(52)-(57) correspond to periodic solutions of (1)-(3).  Moreover, for some excitation and system 
parameters, the fixed-point solutions of the modulation equations may undergo Hopf bifurcations. 
Near these Hopf bifurcations, the modulation equations possess limit-cycle solutions, which 
correspond to either two-period quasiperiodic or phase-locked solutions of (1)-(3),  depending on 
whether the frequency of the limit cycle is commensurate or incommensurate with ~ .  To locate 
these limit cycles, we use the shooting method described by Aprille and Trick [42]. To determine 
the stability of these limit cycles and the bifurcations that they may undergo, we use Floquet 
theory [13]. Once these limit-cycle solutions of equations (52)-(57) lose stability and are no 
longer periodic, we resort to the use of Poincar6 sections and fast Fourier transforms (FFT) to 
discern the nature of the ensuing bifurcations. In this study, we observed that for some excitation 
and system parameters the Pi and qi become two-period quasiperiodic (i.e., motion on a T -~ torus). 
The two-period quasiperiodic solution of the modulation equations becomes synchronous (fre- 
quency locked) in which the ratio of its two basic frequencies is an integer. As F is increased 
further, there is a torus breakdown [43], leading to a chaotic solution of the modulation equations, 
and hence the motion becomes chaotically modulated. 
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6.1. Limit Cycles of the Modulation Equations 

As discussed in Section 4, at the point F = F 4 in Figure 1 there is a Hopf bifurcation. Near this 
bifurcation, the modulation equations possess limit-cycle solutions. Using the aforementioned 
algorithms, we calculated some of these limit cycles and investigated their bifurcations. 

As F is increased past F 4, we first obtain a period-one solution. In Figure 4, we show a typical 
period-one limit-cycle solution obtained when F = 0.530. In Figures 4a, b, and c, we show three 
projections of the limit cycle. For this system we see that a period-one solution consists basically 
of a single loop in space, in this case a six-dimensional space. The Poincar6 section consists of a 
single point. The cross-section for this construction is the hyperplane ql = -0.667pl + 0.560. The 
FFT of p~ is shown in Figure 4d; it consists of a single basic frequency and its harmonics. In all 
cases presented in this section, the time record used to calculate the FFT corresponds to 9,000 
one-sided intersections with the Poincar6 cross-section. 

As F is increased further this limit-cycle solution remains stable until F is nearly equal to 
0.531, where one of the Floquet multipliers leaves the unit circle through -1 .  Hence, the solution 
is expected to undergo a period-doubling bifurcation. In Figure 5, we show a typical period- 
doubled limit cycle obtained when F = 0.533, In Figures 5a, b, and c, we show three projections of 
the limit cycle. The double loops indicate a period-doubled limit cycle. The Poincar6 section 
contains two distinct points, confirming the period-doubling of the limit cycle. In Figure 5d, we 
show the FFT of the period-two solution. When this FFT is compared to that of the period-one 
solution in Figure 4d, we can see that there are distinct peaks midway between the previous peaks. 

6.2. Quasiperiodic Solutions 

The period-doubled solution remains stable until F reaches approximately 0.5366 where a 
complex-conjugate pair of Floquet multipliers crosses the unit circle. When this occurs the 
solution is no longer periodic; instead it becomes quasiperiodie. This type of bifurcation is 
sometimes referred to as a secondary Hopf or Niemark bifurcation. 

In Figures 6-8, we show a typical two-period quasiperiodic solution (i.e., motion on a T 2 
torus) obtained when F = 0.537. In Figure 6, we show three projections of motion on a torus. 
Unlike the trajectories of the previous limit-cycle solutions, the trajectory in this case does not 
close. When these projections are viewed in real time, they appear as tumbling versions of the 
limit cycles. In Figure 7a, we show the FFF of this solution. At a first glance it appears to have a 
broadband character, which is characteristic of a chaotic motion. However, when a portion is 
expanded (Figure 7b), we see that it consists of discrete peaks. These peaks are located at values 
which are combinations of the two basic frequencies of the quasiperiodic motion. In Figure 8, we 
show a one-sided Poincar~ section of this solution. The cross-section chosen for this construction is 
the plane ql = -0.667Pl + 0.560. This hyperplane is transverse to the trajectory generated by the 
system of modulation equations. Here, the section consists of closed loops, which indicate the 
presence of two basic frequencies; that is, the solution is two-period quasiperiodic. There are two 
loops because the chosen section cuts the torus at two locations. 

The two-period quasiperiodic motion breaks down as F is increased past F-= 0.53719. The 
motion then becomes synchronous with the ratio of the two basic frequencies becoming an 
integer. In Figures 9-11, we show a typical frequency-locked solution when F = 0.5372. The phase 
space (Figure 9) closely resembles that of the quasiperiodic solution. However, when it is viewed 
in real time in the phase space, the orbit no longer tumbles. The peaks in the FFT of Figure 10 are 
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shifted to the right, indicating a shift in at least one of  the basic frequencies.  The  difference 
be tween  the quasiper iodic  and f requency- locked  solutions is most  apparent  in the Poincard 

sections. In Figure 11, the Poincard section contains a loosely spaced finite n u m b e r  of  points.  The  

sect ion for the quasiperiodic solution (Figure 8) consists of  densely packed points which lie on a 
closed curve.  
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The frequency-locked solution remains stable until F~0 .539  where it becomes chaotic. In 
Figures 12-14, we show a typical chaotic solution. A portion of the phase space (Figure 12) is 
almost completely filled up. The FFT (Figure 13) of Pl shows an obvious broadband structure. 
The Poincar~ section (Figure 14) consists of points that do not repeat and do not have a definite 
structure. We attempted to confirm the chaotic nature of this attractor by calculating the 
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Fig. 11. A projection of the Poincar6 section of a typical synchronous  solution onto the P3 - - P 2  plane when F = 0.5372: 
there are 9000 points in this section. 

Lyapunov exponents and hence its Lyapunov dimension. However, this attractor is close to the 
value of F at which bifurcation from the frequency-locked solution to the chaotic solution took 
place. Consequently, we were unable to discern the change in the sign of one of the exponents 
from negative to positive because three of the exponents are very small. 
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7. Concluding Remarks 

We study the response of a general three-degree-of-freedom system with the internal resonant 
conditions w 3 -~ 2w 2 ~ 4w a to a primary resonant excitation of the third mode. The method of 
multiple time scales is used to obtain the amplitude- and phase-modulation equations. We 
determine the fixed-point solutions of these equations and their stability. These fixed points 
undergo Hopf bifurcations and hence the modulation equations possess limit-cycle solutions near 
these bifurcations. The limit-cycle solutions undergo a period-doubling bifurcation. Then, the 
resulting limit cycle undergoes a secondary Hopf bifurcation, resulting in a two-period 
quasiperiodic solution, which becomes phase-locked and then eventually breaks down into chaos. 

Due to the internal resonance, excitation of the third mode (propellers) can induce large 
responses in the second (wing) and first (rudder) modes. Thus, the present analysis qualitatively 
explains the transfer of energy from the propellers to the wing and the rudder, which may be 
responsible for the breakup of the airplane described by Lefschetz [1]. 
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