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Abstract. The chattering of machine tools, the squealing noise generated by tram wheels in narrow curves and the noise of 
band saws are examples of physical processes in which elastic structures exhibit self-sustained stick-slip vibrations. The 
nonlinear contact forces are often due to dry friction. Periodic, multiperiodic, and chaotic motions can occur, depending on 
the parameters. 

Because the governing equations of motion are non-integrable, solutions can only be determined by numerical 
integration methods. The numerical investigations of continuous structures requires the modal approach to reduce the 
number of degrees of freedom. 

As an example, a beam system has been investigated numerically and experimentally in this paper. The nonlinear 
motion of a point of the continuous structure has been measured by a specially developed laser vibrometer. 

The friction characteristic has been measured directly and identified from a measured time series by means of a modal 
state observer. The correlation dimension, which represents a lower bound of the fractal dimension, has been calculated 
using the correlation integral method from a measured time series of the beam system. 

Key words: Stick-slip vibrations, laser vibrometer, modal state observer, correlation dimension. 

1. Introduction 

Over the last few decades many publications have appeared on the subject of nonlinear dynamics. 
Engineering problems in which chaotic motions were found by numerical integration and/or by 
experiment have been described by several authors. Moon and Shaw [1] analyzed a vibrating 
beam with nonlinear boundary conditions. Hendriks [2] and Springer and Ullrich [3] investigated 
the motion of a needle in a matrix printer. Szczygielski [4] considered the motion of a rotor 
touching a wall. Kaas-Petersen and True [5] treated the lateral motion of a railway bogie. Grabec 
[6] introduced a model for the chaotic chattering of a machine-tool. Pfeiffer [7] revealed chaotic 
motions in rattling gear drives. 

An important problem in the field of mechanical engineering is dry or Coulomb friction, 
because it appears in two different phenomena in nature: 

• As a resistance against the beginning of a motion from equilibrium (stick mode). The 
friction force is thus a constraining force. 

• As a resistance against an existing motion (slip mode), in which the friction force is an 
applied force. 

In an oscillatory motion both phenomena take place successively, resulting in a stick-slip motion. 
When dry friction is modeled in terms of a friction characteristic, where the kinetic friction 
coefficient is smaller than the static coefficient, self-sustained oscillations may also occur, cf. 
Magnus [8], Marui and Kato [9], Miyamoto [10] and Den Hartog [11]. During the stick mode 
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Fig. 1, Canti lever excited by a dry friction force. 

some degrees of freedom are constrained, and hence these systems assume the character of a 
variable structure, where the number of state coordinates changes with time, cf. [7], [12]. In the 
case of dry friction the transition between the different modes is not smooth and is separated by a 
surface in the state space, cf. Utkin [13]. Due to the non-smooth character of the equations, 
chaotic motions can occur, as well as periodic and multiperiodic solutions. Some other papers 
addressing the dry friction problem have been published by Pratt and Williams [14], Dowell and 
Schwartz [15], Ferri and Dowell [16] and Shaw [17]. 

The aim of our research was to study continuous structures under the excitation of dry friction 
forces. Numerical investigations with a plate and a beam have shown that, due to the non-smooth 
equations of motion, the investigation of the long-term behaviour needs large amounts of CPU 
time. Therefore the first task was to develop effective numerical, analytical and experimental tools 
to handle these complex systems. 

In order to study the behaviour of self-sustained vibrations induced by dry friction, the beam 
system shown in Figure 1 has been investigated both numerically and experimentally. From this 
simple system one can learn how continuous structures behave under the action of dry friction 
forces. The aim is to develop a mathematical model for this system and to verify the model 
assumptions by means of an experiment. In the case of an experimentally obtained irregular 
motion it is necessary to determine the fractal dimension of the chaotic attractor, in order to 
obtain a hint about the dimension of an appropriate mathematical model. 

2. Numerical Investigation of the Beam System 

The vibrating parts in engineering systems are usually continuous structures. If the deformations 
are small and the material behaves elastically, the continuous part of the structure can be treated 
as a linear system. The nonlinear friction force F R acts at the tip of the beam system, as shown in 
Figure 1. The system is governed by the partial differential equation (PDE), equation (1) 

12FN I~oA 13FR(v,) 
w,~¢¢~ + - - ~  [w ~ - 6 ( ~ -  1)w.¢] + ~ -  w , , -  E1 ~ ( ~ -  1). (1) 
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Where s e := x / l  denotes the dimensional length coordinate of the beam, F N is the normal force, E1 

is the bending stiffness, p is the density, A the cross-section, (*), denotes the partial derivative 

with respect to time or space, and v r = w, , (~  = 1 ) - v  0 is the relative velocity, where v0 is a 
constant belt velocity. The 8-distribution allows us to take account of the discrete forces. In the 
following sections, the normal force F N has been neglected, because experiments show that its 
influence is small. 

Equation (1) can be reduced to a set of first-order systems of ordinary differential equations 
(ODEs) by the modal approach 

W( ~, l) = ~ d)i( ~)qi(t) . (2)  
i = 1  

With the modal coordinates q~, which are arranged in the state vector x r = [ q t ,  ql,  q2, 

q'2 . . . . .  q2,,, q'2,,] the equation of motion read in nondimensional state space notation is 

} X 2 j - I  = X2j  ' 

, ~ ~ Fn(v~) , j  = l(1)n , (3) 
x,_ i = - 2 D i A j x 2 ~ -  A~x2j_ 1 + A~ FR s , 

with x~ being the state variables, D~ the modal damping factors, Aj = % / %  the scaling factors, and 
n the number of state variables. The friction force 

FR(v, ) = - fi(v~)F~,, sgn(v~) (4) 

is scaled by the friction force FRs = FR(v~ = - v . )  at the equ i l ibr ium pos i t ion .  In vector notation, 
equation (3) has the following structure 

x '  = A x  + r ( x )  , (5) 

with the linear system matrix A, and the vector r(x)  of the friction forces, which depends 
nonlinearly on the state vector x. 

The functions ~b; can be chosen as any set of orthogonal functions. Here, the first two (real) 
eigenfunctions of the bending motion, equation (6), have been taken into account. 

cos(k~) + cosh(k,) 
~(~:) = sin(ki) + sinh(ki) [sin(ki~:) - sinh(kisC)] - [c°s(kit'e) - cosh(ki~:)]. (6) 

These are shown in Figure 2. The eigenvalues are k 1 = 1.875 and k~ = 4.694. The eigenfunctions of 
the beam system have also been measured, and the modal parameters have been fitted through a 
m o d a l  analysis .  Furthermore, the modal damping factors Dj can only be determined by this 
method. The damping factors are D~ =0.00015 and D, =0.00085. A more detailed report 
addressing this problem is given in [20] and [21]. 

A typical question in engineering practice is: how many mode shapes have to be taken into 
account in order to obtain sufficient accuracy. In the context of linear systems, this question can 
be answered by frequency domain analysis. As we will see in Section 3, this method is not 
practicable in the case of nonlinear systems, because a nonlinear system does not necessarily 
vibrate at frequencies close to its natural  frequencies. In order to determine how many mode 
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Fig. 2. The first two bending modes shapes of the unloaded (F N = 0) beam system (- measured,  - - -  calculated). 

shapes have to be taken into account in the numerical studies, the limit cycle has been calculated, 
for different numbers of mode shapes. The results can be seen in Figure 3. With only one mode 
shape the system behaves like a system with a single degree of freedom. As the number of mode 
shapes increases, the limit cycle converges to its characteristic shape. In order to save CPU time, 
only t w o  mode shapes have been used in the following numerical investigations. 

Another task which has to be addressed is the determination of the friction force between the 
steel cantilever and the polyurethane belt. The friction characteristic /2 has therefore been 
measured with a specially developed device, see Figure 4. The results of the measurements are 
also given in Figure 4. The broad band of fluctuation in the measurements is caused by the change 
of the friction coefficient along the length of the belt and by the dynamics of the measuring device 
itself, cf. [19]. An alternative way to determine the friction characteristic will be explained in 
Section 5. 

The measured mean values have been approximated by an exponential law, equation (7) 

C1 

with the constants c 1 = - 0 . 0 2  m/s and c 2 = - 0 . 2 5  s/re. This friction law has been used for the 
numerical studies. 
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Fig. 4. Measurement device for the friction force and measured friction characteristic fi :=/?~//~, (o = mean values). 

3. B i f u r c a t i o n  B e h a v i o u r  o f  the  B e a m  S y s t e m  

In order to obtain an overview of the system's behaviour, the bifurcations with respect to the 
normal force F N and the belt velocity v 0 have been investigated numerically. To reveal the overall 
response of the beam system it is sufficient to examine the motion of the continuous structure at 
one point, because the amplitudes at other positions are only weigh ted  by the mode shapes. 

The control, or bifurcation parameter, F N, has been plotted in Figure 5 against the amplitude 
w e, at vanishing velocity, w e := w ( x  = l)/x w(x = l ) =  0. This point can be understand as a 
Poincar6 section at w = 0. The transition from the sticking mode to the slipping mode occurs when 
the friction force equals the restoring force. This is only valid under static conditions. The 
transition amplitude w A can be calculated from equation (8). 

1 . 4 "  

1.2 WA ~ ~ _..~P-"~, 

:a0' 4o' .... 5o' 6o' 80' oo' . toe 
.F.,,,,.[N 

Fig. 5. Numerically generated bifurcation diagram for the normal force with a belt velocity of v. = 60 mm/s. 
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FN 13 
W A ( F  N, V0) = ~ (/z 0 --/Z(V0) ) . (8) 

The reader can easily see that the amplitude w A depends linearly on the normal force. More 
complicated motions can occur in the dynamic case, as shown in Figure 5. Period-one solutions are 
interrupted by multiperiodic solutions. The bifurcation scheme does not fit the usual bifurcation 
scenarios, such as period doubling cascades or intermittancy. 

Figure 6 shows the bifurcation behaviour with respect to the belt velocity. The static 
amplitude w A depends on the friction characteristic, referring to equation (8). A magnification of 
the domain from v0 = ( 6 0 . . .  90)mm/s  shows the strange bifurcation behaviour. As seen in 
Figure 7, a magnification of the region of v 0 = ( 9 6 . . .  112) mm/s  shows period-one, period-four, 
and irregular-looking motions, as well as other multiperiodic motions. If we wish to make further 
statements about the bifurcation behaviour we need to take account of sophisticated tools, like 
bi furcat ion  theory.  This has been done for a two-mass system in [22]. 
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Fig, 7. Magnification with a period-one, a period-four, and an irregular motion. 

4. Comparison with Experimental Data 

The ODEs (3) have been solved with the program language ACSL and a Runge-Kutta-Fehlberg 
scheme of the fifth order, In order to verify the model assumptions, measurements have been 
carried out with an experimental test set-up, cf. Figure 8. The motion of the tip of the cantilever 
has been measured by a specially developed laser interferometer, This non-contact measurement 
device allows one to observe the deflection of the tip with a high precision. This turned to be out 
necessary, in order to reveal the nonlinear character of the motion of the beam system, e.g. the 
'flat top' of the phase plots. Figure 9 shows the phase plots of the tip of the beam, measured by the 
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Fig. 8. Test set-up with the beam system and the laser vibrometer. 

laser vibrometer. From the plots the reader can see that an increasing belt velocity leads to more 
'harmonic' motions, and that an increase of the normal force leads to longer sticking regions and 
higher harmonics show up: see also the Fourier spectra in Figure 10. This diagram also shows that 
the main limit cycle frequency is about 40 Hz, but the first two natural frequencies are at 80 Hz 
and 510 Hz, which means that the natural frequencies do not show up in the Fourier spectra for 
the nonlinear system. This means that, due to the friction forces, the motion takes place at a lower 
frequency than the first natural bending frequency. But the characteristic shape of the limit of 
cycle also requires the second bending model to be taken into account. 

Figure 11 shows a comparison of the measured and simulated phase plots and amplitude 
spectrum of the cantilever at different belt velocities. The phase-plane plots show that the tip of 
the cantilever vibrates in a stable limit cycle. Many simulations and measurements show that the 
results coincides within a wide parameter range. Figure 12 shows part of the v 0, F N parameter 
space. The areas with period-one solution are marked by dashed boundaries. No self-sustained 
vibrations take place in the hatched regions. The measured data points have the same behaviour 
are marked by dots in this figure. 

The experimental investigations showed that the dry friction dominated the resulting motion. 
Due to the unavoidable fluctuation of the friction force no stable two- or four-periodic solutions 
have been obtained, as in the numerical investigations. At some parameter combinations of v 0 and 
F N irregular motions have also been measured. The question of how these complex types of 
motion can be handled will be addressed in Section 6. 

It should be mentioned that the fluctuation of the friction forces has not been modelled in the 
analysis; otherwise a mixing between stochastic and deterministic forces will occur. 
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5. Identification of  the Friction Characteristic 

The direct measurement  of the friction characteristic shows that the friction force is influenced by 
the dynamics of the measuring device itself. In order to obtain the real friction force acting at the 

contact point during the experiment,  an identification of the friction force from a measured time 

series has been carried out, based on equation (3). Following an idea of Mueller [23] we can 
identify the friction force from a measured time series by means of an extended state observer. A 
linear system equation (9) can be associated with equation (5) 

d" = zi.~ + bFR(~-), (9) 
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with a stepwise constant friction force Fn(r ), with F~( r )=  0. The block diagram of the state 
observer is shown in Figure 13. Introduction of an extended state vector ~?r = [21,2~, 23, 24, FR], 
allows the observer of the beam system to be described by the vector equation (10) 

~ '  = - V e e e  ] X e  + 0 e ~ ( r ) ,  ~?~(0) = i , ,0,  

AB 

(m) 

where A B denotes the extended observer matrix of the beam system, 
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with the  first two e igenfunc t ions  &~.: of  the b e a m  system,  ~e is the  o u t p u t  vec to r ,  I} e is the  vec to r  

which ampl i f ies  the  e r r o r  e = u 5 -  ~ ,  ie0 are  the  ini t ial  cond i t ions ,  and  ~ ( r )  is the  m e a s u r e d  t ime 

ser ies  f rom the b e a m  system.  The  c o m p o n e n t s  of  1) e have been  d e t e r m i n e d  by a po le  a s s ignment .  
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Fig. 13. Block diagram of the modal state observer. 

The  described state observer  allows one to identify the real friction force acting at the contact 

point ,  cf. Figure 14. With the relative velocity v r = w(l) = v0, the friction characteristic ti can also 

be obtained,  cf. Figure 14. 

6. Characteristic Values of the Time Series 

The comparison of measured and calculated data for the beam system show good agreement  in the 
case of a regular motion.  If one considers a measured irregular t ime series z(z) := ~(~-) of the 

beam system, two questions arise: 
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• Which part of the signal can be described by deterministic equations and which part is noise 
from the environment? 

• How large is the minimum dimension of the state space in which the chaotic attractor can 
be embedded? 

These two questions can be answered by the correlation integral, C(r), developed by Grassberger 
and Procaccia [24]. Before applying the correlation method one has to produce more than one 
state coordinate, which is possible with a reconstructed pseudo-state space due to Packard [25]. 
The pseudo-state space vectors, z/, are constructed from the time series with the time delay method 

r t o T~ 
z j = [ w ( t o + j A t ) + ( k - 1 ) T s ]  k = l ( 1 ) m B ,  j = l ( 1 ) N - - ~ t - - ( m B - - l ) - - ~  (12) 

' A t '  

where T s denotes the time delay, m B the embedding dimension, N the number of sampled data 
points, t o is the starting time, and At is the time step between two sampled data points. By 
applying this' procedure, metric properties, like the shape of the time series, get lost, but the 
topologic properties, like the dimension, will not change, cf. Figure 15. The correlation integral, 
C(r), can be evaluated from the following equation 

C(r) = lim N -  X h(r -  Ilz  - z lf) (13 )  
)=1 "= 

i~'i 
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where z~,/denotes the measured vectors of the pseudo-state space, h is the Heavyside unit step 
function, N is the number of sampled points, and r is the radius of a hypersphere.  

The value of C(r) is the probability that two points lie within a hypersphere of radius r. It is 

therefore  a measure of the spatial correlation of the points in the pseudo-state space. The slope in 
the median domain of the C(r) diagram on a double logarithmic scale is an estimate of the 

correlation dimension, D c, of the chaotic attractor with 

2x log C(r, me)  
D e =  lim (14) 

, , R ~  A log r 

The correlation dimension, D c, is a lower bound of the fractal dimension, D e < D c, which gives a 
measure of the number of the 'active' pairs of state variables of the motion of the attractor, [26]. 
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The calculation of D(- using the correlation integral is more efficient than a direct calculation of D F 

using a 'box counting' algorithm. The procedure is straightforward and is based only on re-write 

and counting operations; i.e., it does not depend on the rate and duration of the signal sampling. 
Numerical experience shows that the minimum of sampled data has to be about N = 15 000. If one 
increases the embedding dimension, rag, the correlation dimension will rise to a constant value. In 

the case of the beam system D c ~ 5.1 gives a result, cf. Figure 16, which means that, in the chaotic 

case, more than ten independent state variables are active on the attractor and a description with 

two modes only, with stationary friction characteristic, is not sufficient to describe the irregular 

motion. In the regular case a correlation dimension of D c = 2.3 gives a result which means that a 
four-dimensional state space is quite sufficient to describe the motion. More detailed information 
concerning these problems is given in [27]. 
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7. Concluding Remarks 

Stick-slip vibrations are friction-induced, self-sustained oscillations. They occur in many engineer- 
ing systems as well as in everyday life. In the case of a continuous beam system, the limit cycle 
behavior, obtained numerically, has been compared with measured data. It turned out to that the 
regular motion can be well described by a model with two bending mode shapes and a stationary 
friction characteristic. 

If a system comprises a linear part and nonlinearities it is easier to identify the nonlinearities 
from a measured time series by means of a modal state observer, rather than to measure it in a 
separate experiment. 

The behaviour of the correlation integral has allowed us to obtain the correlation dimension 
for a chaotic motion of the beam system. This scalar quantity gives an estimate of the dimension 
of the attractor, and it thus contains information about the order of the system, required in an 
adequate mathematical model. But in practice it is only a hint for the minimum number of state 
coordinates. It does not tell the engineer how large a number of mode shapes has to be taken into 
account, in the case of a continuous system. 

Acknowledgements 

This research has been performed at the University of Hannover, Germany, under the supervision 
of Prof. Dr.-Ing. K. Popp and has been financed by the Volkswagen foundation under the contract 
No. 1/63177. I acknowledge this support with gratitude and I would also like to thank former 
students Thomas Pfingsten, Thorsten Schade, Wolfgang Schleef, Andreas Harms, Stefan Viola, 
Hermann Herbers and Hans G. Jacob who have contributed to this research by their project 

work. 

References 

1. Moon, F. C. and Shaw, S. W., 'Chaotic vibrations of a beam with non-linear boundary conditions', International 
Journal of Non-Linear Mechanics 18, 1983, 465-477. 

2. Hendriks, F., 'Bounce and chaotic motion in impact print hammers', IBM Journal of Research and Development 27, 
1983, 24-31. 

3. Springer, H. and Ullrich, M., 'Dynamics of dot-matrix printers', Proceedings of 1UTAM Symposium on Nonlinear 
Dynamics in Engineering Systems, University of Stuttgart, FRG, Aug. 21-25, 1990, Springer, Berlin, 297-304. 

4. Szczygielski, W. M., 'Dynamisches Verhalten eines schnell drehenden Rotors bei Anstreifvorgfingen', Ziirich, ETH, 
Dissertation , No 8094, 1986. 

5. Kaas-Petersen, Chr. and True, H., 'Periodic, biperiodic and chaotic dynamical behavior of railway vehicles', 
Proceedings' 9th lAVSD-Symposium, Linkoping, 1985, 208-221. 

6. Grabec, 1., 'Explanation of random vibrations in cutting on grounds of deterministic chaos', Robotics & Computer- 
Integrated Manufacturing 4, 1988, /29-134. 

7. Pfeiffer, E., "Seltsame Attraktoren in Zahnradgetrieben',  lngenieur-Archiv 58, 1988. 
8. Magnus, K., Schwingungen, Teubner, Stutlgart, 1961. 
9. Marui, E. and Kato, S., "Forced vibration of a base-exited single-degree-of-freedom system with Coulomb friction', 

Transaction ASME, Journal of Dynamical Systems, Measurement and Control 106, 1984, 280-285. 
10. Miyamoto, M., 'Effect of dry friction in link suspension on forced vibration of two-axle car', Quarterly Reports 14, 

1973, 99-103. 
11. Den Hartog, 1. P., 'Forced vibrations with continued Coulomb and viscous friction', Transaction ASME APM-53 9, 

1931, 107-115. 



STRUCTURES INDUCED BY DRY FRICTION 345 

12. Popp, K. and Stelter, P., 'Stick-up vibrations and chaos', Philosophical Transactions of the Royal SocieO', London 
A332, 1990, 89-105. 

13. Utkin. V. I., Sliding Modes and Their Application in ¼triable Structure Systems, English Translation Moscow: MIR 
Publication, 1978. 

14. Pratt, T. K. and Williams, R., 'Non-linear analysis of stick/slip motion', Journal c4f Sound and Vibration 74, 1981, 
531-542. 

15. Dowell, E. H. and Schwartz, H. B., 'Forced response of an cantilever beam with a dry friction damper attached. 1. 
Theory', Journal of Sound and Vibration 91, 1983. 255-267. 

1(~. Ferri. A. A. and Dowell. E. H., "The behavior of a linear, damped modal system with a non-linear spring-mass dry 
friction damper system attached, II', Jourtu~l of Sound and Vibration 101, 1985, 55-74. 

17. Shaw, S. W., 'Forced vibrations of a beam with one-sided amplitude constraint: theory and experiment', Journal of 
Sound attd Vibration 99, 1985, 199-212. 

18. Popp, K. and Stelter, P., "Nonlinear oscillations of structures induced by dry friction', Proceedings ~/' IUTAM 
Symposium on Nonlinear Dynamics in Engineering Systems. University of Stuttgart, FRG. Aug. 21-25. 199(L 
Springer, Berlin, 233-24t). 

19. Stelter. P, and Popp. K., 'Chaotic behaviour of structures excited by dry friction forces', Proceedings ~" Workshop oft 
Rolling Noise Generation, Berlin ted. M. Heckl), 1989, 102-111. 

20. Stelter, P., 'Reibungserregte Schwingungen eines Kragbalkens', ZAMM 71, 1991, 75-78. 
21. Stelter, P.. "Nichtlineare Schwingungen reibungserregter Strukturen', VDI Fortschrittsherichte, Reihe 11 Schwingung- 

stechnik 137. 1990. 
22. Stelter, P. and Sextro, W., 'Bifurcations in dynamical systems with dry friction', Proceedings 0{' Bifurcations and 

Chaos, Wurzburg, Aug. 2i)-24, 1990, Birkhauscr, Basel, 3 t l -3 t5 .  
23. Mueller, P. C.. 'Indirect measurement of nonlinear effects by state observers', Proceedings of IUTAM Symposizim ott 

Notllinear Dynamics in Engineering Systems, University of Stuttgart, FRG. Aug. 21~25. 199(I, Springer, Berlin, 
205-215. 

24. Grassberger. P. and Procaccia, 1., "Measuring the strangeness of strange attractors', Physica 9D, 1983, 189-2(t8. 
25. Packard, N. H,, Crutcbfield, J. P., Farmer, J. D,, and Shaw, R. S.. 'Geometry of time series'. Physical Review Letters 

45, 1980, 712 716, 
26. Leven, R. W., Koch, B.-P., and Pompe, B., (Tmos in dissipativen Systemen, Akademie-Verlag, Berlin, 1989. 
27. Stelter, P. and Pfiugsten, T., 'Calculation of the fractal dimension via the correlation integral', Chaos, Solito~ts and 

Fractals Al~plications in Science attd Engineering, Pergamon Press, New York, 1991. 


