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Abstract. The response of a single-machine quasi-infinite busbar system to the simultaneous occurrence of principal 
parametric resonance and subharmonic resonance of order one-half is investigated. By numerical simulations we show the 
existence of oscillatory solutions (limit cycles), period-doubling bifurcations, chaos, and unbounded motions (loss of 
synchronism). The method of multiple scales is used to derive a second-order analytical solution that predicts (a) the onset 
of period-doubling bifurcations, which is a precursor to chaos and unbounded motions (loss of synchronism), and (b) 
saddle-node bifurcations, which may be precursors to loss of synchronism. 
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1. Introduction 

In power-system dynamics it is often desirable to concentrate on a single machine. For con- 
venience, the rest of the system is considered to be an infinite busbar whose voltage and frequency 
are constant. An interesting and more realistic concept is that of a quasi-infinite busbar introduced 
by Tamura et at. [t]. In a quasi-inifinite busbar the voltage and phase of the busbar are 
time-varying. Tamura et al. formulated the single-machine quasi-infinite busbar system (SMQIBS) 
as a Mathieu equation. In an earlier paper, Hamdan and Nayfeh [2] reformulated the problem and 
included quadratic and cubic nonlinearities. The method of multiple scales [3, 4] was used to 
obtain a first-order closed-form approximate solution of the resulting nonlinear differential 
equation. They studied the simultaneous effect of a principal parametric resonance and a 
subharmonic resonance of order one-half. In such a case, the frequency Ft of the periodic 
variations in the magnitude and the phase of the quasi-infinite busbar is nearly equal to twice the 
linear undampled natural frequency % of the system (i.e., ~1 ~ 2%). They showed the coexistence 
of stable and unstable oscillatory solutions and the existence of a subcritical instability. They 
found that the solution exhibits pitchfork and cyclic-fold bifurcations. 

In this paper, we use numerical simulations and perturbation analyses to investigate the 
behavior of the system near the simultaneous occurrence of a principal parametric resonance and 
a subharmonic resonance of order one-half. Numerical simulations are used to show that the 
combined effect of these resonances leads to complicated dynamics. As the excitation frequency is 
varied, we demonstrate that the response undergoes a sequence of period-doubling bifurcations 
culminating in chaos, after which the solution becomes unbounded. The effect of varying the 
voltage and frequency of the quasi-infinite busbar is studied by forming a bifurcation diagram in a 
two parameter space, indicating where saddle-node instabilities, period-doubling bifurcations, and 
loss of synchronism occur. The effect of a variation in either the voltage or the phase of the 
quasi-infinite busbar on the basins of attraction is also studied. Similar studies were conducted by 
Grebogi, Ott, and Yorke [5], Nayfeh and Sanchez [6], and Soliman and Thompson [7] for other 
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systems. Using numerical simulations alone to locate the regions of complex behavior requires a 
lot of time and effort. So it is of interest to develop approximate solutions that will reduce the 
computational time and effort. First, we investigated the use of the first-order perturbation 
solution of Hamdan and Nayfeh [2]. We found that this expansion predicts fairly accurately the 
period-one motions and their bifurcations into period-two motions for small excitation amplitudes. 
However, as the excitation amplitude increases, we found that the first-order perturbation solution 
becomes less accurate. Therefore, we use the method of multiple scales to determine a second- 
order approximate solution that improves on the accuracy of the solution given by Hamdan and 
Nayfeh [2], and whose loss of stability agrees fairly well with the onset of period-doubling 
bifurcations, which is a precursor to chaos and loss of synchronism. 

2 .  F o r m u l a t i o n  

The equation of motion for the rotor of the machine shown in Figure 1 can be written as [8] 

2H d20 + D dO VGV8 sin(O - 08) 
o~ R d t----7 ~ = P m -  X--~- (1) 

where 

V B = VBO -~- VB1 c o s ( a t  + Cv), (2) 

08 = 080 -~- 081 COS(SIt + qSo). (3) 

Here, 0 is the rotor angle measured with respect to a synchronously rotating reference frame 
moving with the constant angular velocity WR, H is the inertia constant of the machine, D is the 
damping coefficient, and Pm is the mechanical power input to the machine. The sinusoidal term in 
equation (1) corresponds to the electrical power output of the machine, V c is the voltage of the 
machine, X o is the transient reactance of the machine, V B is the voltage of the busbar, and 0 B is 
the phase of the busbar. The parameters H, mR, D, Pm, Vc, XG, VBO, VB1, OBO, OB1, ~'~' •v' (])0 are 
assumed to be constant. Equation (1) is often called the swing equation. For an infinite busbar, 
V81 = 0 and OB1 = O, whereas for a quasi-infinite busbar [1], either Vs~ or 0 m or both are different 
from zero. 

To carry out a perturbation analysis, we find it convenient to apply the following trans- 
formation: 

0 -  0 8 = 60 + ~/, (4) 

vG 

Fig. 1. Single-machine quasi-infinite busbar system. 
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where 00 is the operating value of 0 around which the variation A0 = 0 - 00 takes place. Thus, it 
can be obtained from equation (1) by setting V~I = OB1 ~- 0 and dO/d t  = d20/dt  2. The result is 

XGPm 
sin(O o - 0~o ) = sin 6 o - VcV8 ° . (5) 

Thus, it follows from equations (3) and (4) that 

n = AO -- OB1 cos(at+ ~b0). (6) 

Substituting equations (4) and (5) into equation (1), expanding sin(60 + 7) in a Taylor series 
around 6 = 30, and retaining terms up to third order, we obtain the following modified swing 
equation: 

CORD drl 2 3 
d2rl + + Krt = a2 rl + a3"q 
dt  2 2 H  dt  

+ FI• cos(a t  + 4)~) + F2n 2 cos(f~t + qSv) + F3n 3 cos(a t  + ~bv) 

+ G 1 cos(a t  + 4~o) + G2 s in(at  + qSo) + G 3 cos(a t  + ~b) ,  (7) 

where 

VaVBo~OR COS 60 1 1 
K =  2 H X c  , a 2 =  ~ K tan 3o , a 3 = ~  K ,  (8) 

VB1 VBI VB1 
F I=-VB--- F 2= 2vB Ktan6 0, F 3 -  6VB0 K, (9) 

~D~I~OB1 VB1 
Gi  = ~20B1'  G2 = 2 H  ' G3 = - VB--oo K t a n  60 . ( 1 0 )  

It is clear from equations (7) and (8) that the linear undamped natural frequency % of the 
machine is given by ~ and that it is zero when cos 30 = 0. The latter case is excluded in the 
following analysis. The influence of the quasi-infinite busbar appears as parametric excitations 
(time-varying coefficients) and external excitations (inhomogeneous terms). The external excita- 
tions in equation (7) can be combined into a single external-excitation term as follows: 

G cos(,at + 4)e) -= G 1 COS(f~t + ~b0) + G 2 sin(12t + 4)o) + G3 cos(Ftt + 4~v). (11) 

A resonance occurs when a small excitation leads to a large response in 7/. The strongest 
parametric resonance takes place when f~ ~ 2w0, which is called principal parametric resonance. 
The strongest external resonance occurs when a ~ w 0, which is called primary resonance. Another 
external resonance occurs when a ~ 2 o )  0, which is called subharmonic resonance of order 
one-half. In this paper, we consider the simultaneous effect of a principal parametric resonance 
and a subharmonic resonance of order one-half. 
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Fig. 2. Numerical simulation: (a)-(c) period-one attractor at f~=26.0rad/sec;  (d)-(f)  period-two attractor at 
[~ = 24.155 rad/sec; (g)-(i)  period-two attractor at f~ = 21.03 rad/sec; ( j ) - ( l )  period-four attractor at Ft = 19.416 rad/sec; 
(m)-(o) chaos at f~ = 19.374 rad/sec; (p) loss of synchronism at f~ = 19.373 rad/sec. For each attractor, the first figure 

shows the phase plane, the second figure shows the FFT, and the third figure shows the Poincar6 section. 
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3. Numerical Simulation 

Equations (1)-(3) were simulated on the digital computer by using fifth- and sixth-order 
Runge-Kutta algorithms. The parameters of the system are listed in Appendix A. We studied the 
effect of varying the frequency f~ of the voltage and phase variations of the quasi-infinite busbar 
near the subharmonic resonance of order one-half; that is, f~ ~ 2co o = 23.2294 rad/sec. In what 
follows, we refer to this frequency f~ as the excitation frequency. The effect of varying the 
excitation frequency 1~ is shown in Figure 2 when VB1 = 0.2 per unit, 0el = 0.2rad, 080 = 0, 
VB0 = 1 per unit, D =0.008 units, w R = 120~r rad./sec., H=2.37S,  X c =0.645 per unit, and 
Pm= 1 per unit. 

For f~ larger than 2~o0, the steady-state solution (attractor) is periodic having the period 
2~r/f~. The phase portrait corresponds to a period-one limit cycle (Figure 2a). This can be verified 
by observing the corresponding power spectrum obtained by using a fast Fourier transform FFT 
(Figure 2b) and Poincard section (Figure 2c) obtained by sampling the data every T = 2~-/f~ sec; 
the FFT consists of frequency components at Ft and its harmonics and the Poincar6 section 
contains only one point. As f~ is decreased, the period-one orbit deforms until ft reaches the 
threshold value 24.155 rad/sec, where the period-one attractor loses stability and gives way to a 
period-two attractor (Figure 2d) with the period 4~/ fL The FFT (Figure 2e) and Poincar6 section 
(Figure 2f) verify the occurrence of a period-doubling bifurcation. The FFT has new frequency 
components at 1~/2, 3~/2, 5f~/2 , . . .  and their harmonics and the Poincar6 section contains two 
points. As f~ is decreased further the amplitude of the subharmonic component increases 
compared with the amplitude of the main harmonic, resulting in a period-two attractor with only 
one loop (Figure 2g). This can be clearly seen in the FFT (Figure 2h), the amplitude of the 
component at 1~ is much smaller than the amplitude of the component at [1/2. In Figure 2d, the 
response consists of two fundamental frequencies f~ and f~/2 and hence the phase plane has a 
"figure eight" shape. However, due to the fact that the amplitude of the subharmonic is very large 
compared with the amplitude of the fundamental harmonic, the response consists of essentially 
one frequency and hence its phase plane consists of only one loop, as evident in Figure 2g. The 
Poincar6 section has two points (Figure 2i). As ~ is decreased further the period-two attractor 
goes through a period-doubling bifurcation at Ft = 19.65 rad/sec. The phase portrait shows an 
attractor consisting of two loops as shown in Figure 2j; the FFT (Figure 2k) shows additional 
peaks at f~/4, 31~/4, and their harmonics and the Poincar6 section (Figure 21) shows four points, 
the period of this attractor is 8zr/~. These period-doubling bifurcations continue as fl is decreased 
further and eventually the solution becomes chaotic at f~ = 19.374 rad/sec (Figure 2m). The FFT 
of the chaotic attractor (Figure 2n) has a broadband power spectrum and the Poincar6 section 
(Figure 2o) shows a strange attractor. The corresponding Liapunov exponents are 0.138, 0.0, 
-0.771 and the Liapunov dimension is D~=2.18. We note that the sum of the Liapunov 
exponents is -0.633, which is approximately equal to -2/x =-0 .636,  as it should. As ~ is 
decreased even further (f~= 19.373rad/sec), the sequence of bifurcations culminates in an 
unbounded motion (Figure 2p) (i.e., loss of synchronism). 

To investigate the influence of varying the parameters on the system's response, we studied 
local bifurcations of the solutions of equations (1)-(3) in the two parameter space corresponding 
to the frequency ~ and amplitude VB1 of the voltage of the quasi-infinite busbar (Figure 3). The 
region on the left side of the bifurcation diagram corresponds to the combined primary and 
fundamental parametric resonant response. Below the curve $1, a small limit-cycle attractor 
having the period T = 2~-/fl exists; below the curve P~, a large limit-cycle attractor having the 
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Fig. 3. Bifurcation diagram. 

period T exists; below both curves S 1 and P1, both small and large limit-cycle attractors coexist; 
and above curves S 1 and J1, the response of the system is unbounded, which corresponds to loss of 
synchronism of the machine. If a parameter is varied across S 1 in the direction of the arrow, the 
small attractor loses stability through a saddle-node bifurcation. The system response will either 
go unbounded for values of V~I > C~ (i.e., the intersection of curves -/1 and SI) or jump to the 
large attractor for values of VB1 < C 1. The large attractor will go through a sequence of 
period-doubling bifurcations, culminating in a chaotic attractor, if any of the parameters is varied 
across P~ in the direction of the arrow. If a parameter is varied across J~, the chaotic attractor 
either goes unbounded if Vel > C l or jumps to the small attractor if V~I < C 1. 

The region on the right corresponds to the simultaneous effect of principal parametric 
resonances and subharmonic resonances of order one-half. For brevity, we will refer to the 
resulting response as the subharmonic response. Subharmonic responses corresponding to limit- 
cycle attractors having the period 2 T exist between the curves P2 and P3. To the right of curve P3 
and to the left of curve P4, limit-cycle attractors having the period T exist. These period-one 
attractors are essentially the particular solutions of the linearized probem. In the region below 
both curves P2 and P4, both period-one and period-two attractors coexist. Above both curves J2 
and P4, the response of the system is unbounded. 

If P4 is crossed from left to right the period-one attractor loses stability and jumps to the 
subharmonic response, yielding a period-two attractor. Also when P3 is crossed from right to left, 
the period-one attractor loses stability and jumps to the subharmonic response, yielding a 
period-two attractor. If P3 is crossed from left to right, the subharmonic response loses stability 
and jumps to the period-one attractor. The subharmonic response goes through a sequence of 
period-doubling bifurcations leading to chaos when/°2 is crossed from right to left. If J2 is crossed 
from right to left, the chaotic attractor loses stability; it jumps to the period-one attractor for 
values of V~ < C2, where C 2 is the intersection of curves J2 and P4, and goes unbounded for 
values of V m > C 2. 

Of major importance is the dependence of bounded and unbounded motions on the initial 
conditions. Hence, we studied the basins of attraction of bounded and unbounded motions for 
different values of VB1 and 081. We investigated the region - 1  -< 0 -< 3.5 and -25  -< t) -< 15 with a 
grid of 400 x 450 initial conditions. For each set of initial conditions, we integrated equations 
(1)-(3) by using fifth- and sixth-order Runge-Kutta algorithms for at least 20 cycles, sometimes 
100 or 400 cycles. If the solution became unbounded, we marked the corresponding point by a 
black dot; otherwise, we marked it by a white dot. By changing one of the system parameters, we 
observed the metamorphoses that the basins of attraction undergo. Figure 4 shows a series of 
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Fig. 4 (continued). 

metamorphoses that the system undergoes as Vej is varied for f~ = 19.375rad/sec and 081 = 
0.2tad. We note that, at 1)= 19.375, all the values of V m considered correspond to bounded 
motions in Figure 3, whereas Figure 4 shows that unbounded motions could exist at these values. 
The reason for this is that Figure 3 corresponds to local bifurcations, whereas Figure 4 
corresponds to global bifurcations. Thus, it is clear that the response of a system to a small 
disturbance may be bounded, but its response to a large disturbance may be unbounded, owing to 
the entanglement of the stable and unstable manifolds of the saddle points. At VB1 = 0.2 (Figure 
4a) the basln of attraction of bounded motions seems fractal in nature. Fingers of unbounded 
regions penetrate the basin of bounded motions. The fractal nature of this basin indicates 
sensitivity to initial conditions present at this voltage. As V m is decreased the fingers begin to 
subside; however, even for V m = 0.0 (Figure 4e) the basin of attraction of bounded motions is still 
corrupted by regions of unbounded motions, this is due to the effect of 081. 

Figure 5 shows the metamorphoses that the basins of attraction undergo as 0B~ is varied with 
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Fig. 5 (continued). 

VBI =0.0 .  As OB1 is decreased, the fingers of unbounded motions decrease and eventually 
disappear at 0 m = 0.13 (Figure 5g). Values of 08, < 0.13 correspond to smooth basin boundaries. 
Eventually, at 0 m = 0.0 the system will have basin boundaries defined by the separatrices of the 
free damped oscillations of the system. 

4. Perturbation Analysis 

To predict the onset of the period-doubling bifurcations, which are precursors to chaos and loss of 
synchronism, and the saddle-node bifurcations, which are precursors to loss of synchronism, we 
use the method of multiple scales [3, 4] to determine a second-order approximate expression for 
the period-two solutions for the case ft  ~ 26o 0. The perturbation solution is expected to be valid in 

a small region around the operating point 00. We demonstrate how a second-order analytical 
approximate solution can be used to predict the onset of precursors to complex dynamics and 
instability. 

Hamdan and Nayfeh [2] used a first-order expansion, where the nonlinearities and damping 

terms were ordered to counter  the effect of resonances due to the quasi-infinite busbar. Thus, the 
nonlinear, damping, and excitation terms were ordered so that their effects occur at the same 
order. Their  solution becomes less accurate as the excitation amplitude increases because of its 
inability to account for the linear frequency shift caused by the excitation. In this paper,  we extend 
their analysis to second order,  thereby accounting for the linear frequency shift due to the 
excitation. To accomplish this, we introduce a small dimensionless parameter  e that is used as a 
bookkeeping device, which will be set equal to unity in the final analysis. If ~ = 0(e), then we let 
wRD/2H = 0(e), F I = 0(e), G = 0(e), and we assume that VB1 = 0(e) and 081 = 0(e). Quantitative- 
ly, this implies that 

FI=eL, F2=ef2, F 3 = ~ L ,  a n d G = e g .  
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2 72 3 cos(at + `bo) + 2stxil + O~orl = a 2 q- a3~ + efl"q 

+ e f : ~  2 cos(at + `b~)+ ef3~ 3 cos(at + 'b~)+ sg  cos(at + 'be), (12) 

where/x = o)RD/4H. 
We seek a uniform solution of equation (12) in the form 

~(t; s ) =  c~,(T o, T1, T2)+ 82~2(T0, T 1, T2)+ s3~s(T o, T,, T 2 ) + . . . ,  (13) 

where T O = t is a fast scale, characterizing motions occurring at the frequencies fl and Wo, and 
T~ = et  and T 2 = e2t are slow scales, characterizing the modulation of the amplitude and phase 
with damping, nonlinearities, and resonances due to the quasi-infinite busbar. In terms of these 
time scales, the time derivatives become 

d 
dt  = Do + eD1 + 62D2 -k . . .  (14) 

6 2 
dt  ~ = D 2 + 2aDoD 1 + e2(2DoD2 + D~) + . . .  (15) 

where D,, = O/OT~. To express the nearness of a to 2%, we introduce the detuning parameter o- 
defined according to 

, 1 a ;  (16) ~o;= a + ~ .  

This detuning is different from that used by Hamdan and Nayfeh [2]. It has the advantage of 
allowing larger deviations of a from 2%. Substituting equations (13)-(16) into equation (12) and 
equating coefficients of like powers of e, we obtain 

2 1 
Do~ 1 + -~ f~zr h (17) 

1 
Do~ h + ~ n2~2 (18) 

2 1 
D0~E + ~ ~2-V3 

2/x(Divl + Do'02) q-2a._vl*)2 + a3,~ q- fl V2 c°s(aTo + `b,) q- f2"t~21 cos(aro  + G ) .  (19) 

= g c o s ( a t  + 'be) 

= -2/xDor/1-  2 D o D l r l l -  °-rh + a2~21 +f1~1 c°s(aTo + 'by) 

= -0"772 -2DAD1 ~72 - (D~ + 2DoD2)rh 

The solution of equation (17) can be expressed in either the form 

{1 1 711 ~" a (T1 ,  T2) cos  ~ a T  0 + ]3(T1, r 2 )  - 2]A] c o s ( f t T  0 + (be),  (20) 

or the form 

•1 = A ( T 1 ,  T~) el/:(iar°) + A ( T ~ ,  T2)e -~/2(iar° + Ae  iav°+ A e  -roT° , (21) 
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where A is the complex conjugate of A and 

A -  2g . . 
3~2 e '~e 

Comparing equations (20) and (21) shows that 

1 A = ~ ae i~ . 

Substituting equation (21) into equation (18) leads to 

1 
= [ - i ~ ( D 1 A  + 2a~AA Do.t./22 _}_ 411-TJ2 L /~A) - cA + 

9 

1 ] + -~ L-Ae iG e 1/2(iar°} + [-2i/.tf~A - era + a2A2]e mr° 

- • 1 

+ [2aeAA + 

[ 1 ] 
+ a2 A2 + ~ fiAe ~4~ e 2iar° + c c  , 

(22) 

(23) 

where cc 

(terms that render the expansion nonuniform for large t) in equation (24), we have 

- i 1 1 D 1 A  - i111xA - o-A + A F e  i% = O, 

where 

1 
FeiGe = 2ozzA + 2 fa eiG . 

Hence, the solution of equation (24) can be written as 

4 [azA 2 _ (2i/xf~ + o-)A]e iar° A Fei((3/2)aTo+4aee) 
r h -  3112 -- 2112 

F 
4 - -  1 

+ ~-~ az(AA + AA) + ~ f [Ae  i4~v 

4 [a2A 2 + 1 • ] 15~2 _ "~ f~Ae'~'vje~'ar° + cc .  

Substituting equations (21) and (27) into equation (19) yields 

2 1 2 
Do~ 3 -}- ~ ~~2~3 = - i 1 1 D 2 A  - D 1 A  - 2 t zD1A 

8a z 3n 2 [- (20,11+ + %A2X]  2AA ~2 FeiGe 

+ ~-8a2[2a2A2A+2a2AAA+I-~  f~A(Ae  ~ + Ae-~*o)] 

+ 6 % A A X  + 3a3A2 ~ Af~F e~(Ge_%3 + f2A(-~ei+ ~ +Ae  i%) + N S T  + cc . 
4fl 2 

(24) 

stands for the complex conjugate of the preceding terms. Eliminating the secular terms 

(25) 

(26) 

(27) 

(28) 
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It follows from equation (25) that 

and 

io- - -  i 
D , A :  - (  t x + -~ )A  + -~ AFe io,e (29) 

D~A = IIX a 2iixo- F a - o -2 ] 2iix . 
f~ + F2 ]A + ~--  X r e  '¢- (30) 

Eliminating the secular terms from equation (28) and using equations (25) and (30), we obtain 

- -  1 6 a ~ \  - -  _if~D2 A + [ 2  __ F2-~.~2 o-2 °e2AFl)2 e'% + (6ce3 + --~-5-)AA 

i¢ / 4°!2 fl e i ( G e - G ) ] A  + (Ae ie'~ + A e -  ~ ) ~ - - ~  + k )  - F~ 

( 40°~22 ~ A2A 8°z2 
+ 3 % +  3fl 2 / +~5 (2 i i x f~+O- )A-A=0 .  (31) 

Using the method of reconstitution [9], we form the derivative of A with respect to t by 
substituting equations (25) and (31) into equation (14), putting e = 1, and obtaining 

if~(A + IzeA) + fie A -- 4 a e A 2 A  - A [ ' e  idbe = O,  (32) 

where the overdot indicates the derivative with respect to t, 

and 

2 % g F  sin(q~ee __ (J~e) q- Ffl sin(q~ee -- ~bv) (33) /"be = IX 31)5 ~ , 

F 2 - o  "2 ( 2g ]2(6oe 16oe~ 
Cr e z Or -- IX2 q_ ~2 \ 3~2 ]  \ 3 + ~ / f ~ ~  

4%f~ 
+ ~ 4 g  (f2 + f~2 / cos(q~-  4~) 

2 ~ g r  COS(4ee -- &e) + Ffl 
3fP 7fir cos(¢~ - ¢~), 

10a~ 3 
(9/e = 3a---- ~ -1- ~ O~3, (35) 

f'eiG = FeiGe _ 16c~2g 9f~4 (2iixf/+ o-)e i4'e . (36) 

Expressing A i n  the polar form(23) and separating real and imaginary parts in equation (32), 
we obtain 

f~(d + Ixe a) -- af" sin y = 0 (37) 

-- ~Qa~ q- o'ea - O~ea 3 - a F  cos 'y • 0 ,  (38) 
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where 

Therefore, to the second approximation 

1 ] 4g 
= a cos ~ (at  + 3~ - 3,) - y6~ cos(at  + 4~) 

32/xg 16o-g cos(at  + 4~e) + ~ sin(at + G )  - 9a----r- 

" . 32a2g 2 
2a-~ cos(f~t + ~ -- 7) cos[2(at + ~b~)] 
3a  2 135a 6 

2a) 16g 2 afi cos[3 1 y ) ] +  (a2+ ) 

2%ag [3 1 1 8flg cos(G - he) + COS a t  + G + (6e -- 3,) 3a  4 ~ 2 

8 f i g  cos(2ftt + ~b~ + ~b~) 
+ 4 - ~ a  

Consequently, 

1 ] 4g 
a0 = %1 cos(at  + 40) + a cos ~ (at  + &e - ~)  - ~ - ~  cos(at  + he) 

32/xg 16~rg cos(at + q~e) - - -  + ~ 5 -  sin(at + 6e) 9a4 

2a2ag I3 1 ] 
+ ~ - d ;  cos ~ a t +  4e+  ~ (&e-3,)  

2a2 1692~ all cos[3 1 3 ' ) ]+ (a2+ 
4a  2 ~ a t  q- q~v + ~ (q~e -- -~-  9a4 ] 

32a2g 2 
8fig cos(~b~ - qS) a6 cos[2(at + ~)1 
3(I. 4 135 

+4~-~Sf*g cos(2at  + 4'~ + 4'~) + . . . .  

(39) 

2a2% cos(at + ~e - Y) 
3a  z 

(40) 

(42) 

3 
O'ea - aea - [ 'a  cos Y = O. (43) 

It follows from equations (42) and (43) that the fixed points can be either trivial (i.e., a = 0) or 
nontrivial (i.e., a ¢ 0). When a = 0 it follows from equations (5) and (41) that the variations in the 

a P ,  ea - [ 'a  sin , /= 0, 

The periodic solutions of equation (12) correspond to the fixed points of equations (37)-(39); 
that is, d =/3 = 0. Hence equations (37)-(39) become 

(41) 
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Fig. 6. Frequency-response curve when V~I = OB1 = 0.2: numerical simulation ( - - - ) ;  per turbat ion results ( _ _ _  

rotor angle of the machine are given by 

4 g  32/xg 
AO : OB1 C O S ( a t - l -  (])0) -- ~ c o s ( a t +  (~e) A7 9 ~ -  sin(f~t + qh) 

32nag 2 8f 1 g 
16crg cos(at  + 4e) + - -  c°s(~bv --  q~e) 
9 ~  4 9 ~  6 3 a  4 

32a2g2 8fig cos(2at  + q5 e + ~bv) + 135 f~6 cos[2(f~t + 0he) ] + ~ . . . .  (44) 

When a ¢ 0, one can eliminate y from equations (42) and (43) to obtain the frequency-response 
equation 

1[ w :] a - = - -  cry+ -~2/x , (45) 
O/e 

which relates the amplitude of the response to the frequency and amplitude of the excitation. The, 
2/, can be calculated from either equation (42) or equation (43). Substituting these values into 
equation (40), one can calculate the maximum value of ~q. A typical variation of this maximum 
with the excitation frequency is shown in Figure 6. 

5. Comparison of Perturbation Solution with Numerical Simulations 

To analyze the accuracy of the closed-form analytical solution, we compare it with numerical 
simulations of equations (1)-(3). For a given a ,  we calculate a from equation (45) and then 
calculate 2/from equations (42) and (43). Substituting the values of a and 2/into equations (40), 
we determine ~/and ~. A typical long-time history of the response and its phase portrait are shown 
in Figures 7a and 7b for ~ = 26rad/sec. Figures 7a and 7b show that there is good agreement 
between the results of the numerical simulation and the perturbation solution. To form an overall 
comparison, we plot in Figure 6 the maximum values of 7/obtained from the perturbation solution 
(frequency-response curve) and the numerical simulation. Again we have good agreement. 
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Fig. 7. Comparison of the results of the perturbation solution with those obtained by numerical simulation: (a) 
time-history and (b)phase-plane comparison of perturbation ( - - - )  and numerical ( _ _ )  solutions for 12 = 26.0 rad/sec. 

6. Stability of Period-One and Period-Two Solutions 

To determine the stability of the periodic solutions predicted by the perturbation analysis, we use 
Floquet theory [10]. We introduce a small disturbance ~(t) to obtain 

¢/(t) = r/(t) + so(t). (46) 

Thus, a given periodic solution ~/(t) is stable if ~(t) decays with time and it is unstable if ~(t) grows 
with time. Substituting equation (46) into equation (7) and linearizing the result, we obtain the 
variational equation 

o~RD d~: 
d2-f + + [ K  - 2a2~7 - 3 a 3 ~  2 - F 1 cos ( f t t  + qSv)] ~ = 0 (47)  
dt 2 2 H  dt 

which is a linear-differential equation with periodic coefficients having the period T = 4~-tf~ when 
W(t) is given by equation (40) and a # 0 and the period T -- 2 ~ / f ~  when ~(t) is given by equation 
(40) and a = 0. Using Floquet theory, we calculate two linearly independent solutions of equation 
(47) by using the initial conditions (a) ~1(0)= 1 and ~ t ( 0 ) =  0 and (b) ~z (0 )=  0 and ~:a(0)= 1. 
Then, we form the Monodromy matrix 

[ ~ 1 ( T )  ~ 1 ( T )  ] 
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whose eigenvalues yield the Floquet multipliers A s and A s. The long-time behavior of ~(t) and 
hence the stability of the periodic solution ~7(t) depends on the magnitudes of the Floquet 
multipliers. If both of them lie inside the unit circle in the complex plane, ~(t) decays to zero with 
time and ~7(t) is stable. If one of these multipliers lies outside the unit circle, ~:(t) grows with time 
and hence ~:(t) is unstable. Starting with system parameters corresponding to a stable solution and 
varying one of these parameters, such as f~ or V~I or 0m, one finds that, for the single-degree-of- 
freedom system being studied, A can leave the unit circle along the real axis through either + 1 or 
- 1 .  If A leaves the unit circle through + 1, then at bifurcation, equation (47) possesses a periodic 
solution of period T, indicating that the new solution has the period T. Because ~7(t) is 
asymmetric, the bifurcation will lead to a jump; that is, the bifurcation is a cyclic-fold or 
saddle-node bifurcation and the instability is called a tangent instability. If A leaves the unit circle 
through -1 ,  then at bifurcation, equation (47) possesses a periodic solution having the period 2T, 
indicating that the resulting solution is periodic having the period 2T; signalling a period-doubling 
bifurcation. 

Applying Floquet theory to the analytically predicted periodic solution (40), we calculated the 
bifurcation curves along which the periodic solution loses stability. The results are compared with 
the numerically calculated curves in Figure 8. The analytical solution (% x)  predicts the loss of 
stability of the period-one solution through a saddle-node bifurcation very accurately, as can be 
seen in Figure 8 (curves P3 and 174). Moreover, the analytical solution (+)  predicts fairly well the 
occurrence of period-doubling bifurcations leading to chaos, as can be seen in Figure 8 (curve P2). 

7. Conclusions 

We have demonstrated by numerical simulation the existence of complex dynamics in a single- 
machine quasi-infinite busbar system due to the simultaneous occurrence of a principal parametric 
resonance and a subharmonic resonance of order one-half. By decreasing the frequency of 
excitation we have shown that oscillatory solutions (limit cycles) lose their stability through a 
series of  period-doubling bifurcations, leading to chaos and unbounded motions (loss of synchron- 
ism). We formulated a second-order approximate solution that improves on the accuracy of the 

° "  I 

0, l  

0.0 'l 1'3 1'5 17 2 

q 

Fig. 8. Comparison of saddle-node and period-doubling bifurcations predicted by the perturbation solution with those 
obtained by numerical simulation. 
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so lu t ion  given by  H a m d a n  and  Nayfeh  [2]. O u r  so lu t ion  accounts  for  the  l inear  f r equency  shift  

caused  by the  exc i ta t ion .  T h e  loss of  s tabi l i ty  of  the  s e c o n d - o r d e r  so lu t ion ,  which is a p r e c u r s o r  to 

chaos  and  u n b o u n d e d  mot ions ,  agrees  fa i r ly  well  with the  numer i ca l  s imula t ions .  
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Appendix A 

T h e  p a r a m e t e r s  of  the  mach ine  have  been  t a k e n  f rom T a b l e  D3 of  A p p e n d i x  D of  the  t e x t b o o k  of  

A n d e r s o n  and F o u a d  [8]. T h e y  are  

R a t e d  M V A  = 160, R a t e d  P F  = 0.85, R a t e d  K V =  15, 

w R = 120~- r a d . / s e c . ,  X~ = 0.245, H = 2.37 S, P m =  1 pe r  uni t .  

T h e  res t  of  the  p a r a m e t e r s  of  the  S M Q I B S  are  

Xline = 0.4 p e r  uni t ,  VB0 = l p e r u n i t ,  V,~ = 0.2 p e r  uni t ,  

080 = 0, 0B1 = 0.2 t ad ,  D = 0.008 units  

X c = X,n e + X~ = 0.645 pe r  u n i t .  

References 

1. Tamura, Y., Yorino, N., Mori, H., and Iwamoto, S., 'On the possibility of parametric resonance in power systems - a 
new concept of power system stability', Proceedings PSCC, 1984, 1894-1898. 

2. Hamdan, A. M. A. and Nayfeh, A. H., 'The effect of nonlinearities on the response of a single-machine-quasi-infinite- 
busbar system', IEEE Transactions on Power Systems PWRS-4, 1989, 843-849. 

3. Nayfeh, A. H., Introduction to Perturbation Techniques, Wiley-Interscience, New York, 1981. 
4. Nayfeh, A. H., Perturbation Methods, Wiley-Interscience, New York, 1973. 
5. Grebogi, C., Ott, E., and Yorke, J., 'Metamorphoses of basin boundaries in non-linear dynamics systems', Physical 

Review Letters 56, 1986, 1011-1014. 
6. Nayfeh, A. H. and Sanchez, N. E., 'Bifurcations in a forced softening During oscillator', International Journal of 

Non-Linear Mechanics 24, 1989, 483-497. 
7. Soliman, F. M. and Thompson, J. M. T., 'Integrity measures quantifying the erosion of smooth and fractal basins of 

attraction', Journal of Sound and Vibration 135, 1989, 453--474. 
8. Anderson, P. M. and Fouad, A. A., Power System Control and Stability, Iowa State University Press, Ames, IA, 1977. 
9. Nayfeh, A. H., 'Perturbation methods in nonlinear dynamics', Nonlinear Dynamics Aspects of Particle Accelerators, 

Lecture Notes in Physics No, 247, Springer-Verlag, New York, 1986, 238-314. 
10. Nayfeh, A. H. and Mook, D. T., Nonlinear Oscillations, Wiley-Interseience, New York, 1979, 


