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Abstract. The conditions that give rise to non-periodic motions of a Jeffcott rotor in the presence of non-linear 
elastic restoring forces are examined. It is well known that non-periodic behaviours that characterise the dynamics 
of a rotor are fundamentally a consequence of two aspects: the non-linearity of the hydrodynamic forces in the 
lubricated beatings of the supports and the non-linearity that affects the elastic restoring forces in the shaft of 
the rotor. In the present research the analysis was restricted to the influence of the non-linearity that characterises 
the elastic restoring forces in the shaft, adopting a system that was selected the simplest as possible. This system 
was represented by a Jeffcott rotor with a shaft of mass that was negligible respect to the one of the disk, and 
supported with ball bearings. In order to check in a straightforward manner the non-linearity of the system and to 
confirm the results obtained through theoretical analysis, an investigation was carded out using an experimental 
model consisting of a rotating disk fitted in the middle of a piano wire pulled taut at its ends but leaving the tension 
adjustable. The adopted length/diameter ratio was high enough to assume the wire itself was perfectly flexible 
while its mass was negligible compared to that of the disk. Under such hypotheses the motion of the disk centre can 
be expressed by means of two ordinary, non-linear and coupled differential equations. The conditions that make 
the above motion non-periodic or chaotic were found through numerical integration of the equations of motion. A 
number of numerical trials were carried out using a 4th order Runge-Kutta routine with adaptive stepsize control. 
This procedure made it possible to plot the trajectories of the disk centre and the phase diagrams of the component 
motions, taken along two orthogonal coordinate axes, with their projections of the Poincar6 sections. On the basis 
of the theoretical results obtained, the conditions that give rise to non-periodic motions of the experimental rotor 
were identified. 
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1. Introduction 

It is well known that non-periodic behaviour that affects the dynamics of  a rotor is mainly 

determined both by the non-linear hydrodynamic forces in the lubricated beatings of  the 
supports and the non-linear elastic restoring forces in the shaft of  the rotor itself. Another  

complex behaviour  that is worth mentioning is due to the presence of  clearances in the 

support-system of  the rotor. 
A review of  the studies regarding non-linear effects in rotor dynamics is given in [31]. A 

number  of  the papers that have been mentioned there deal with simple systems like Jeffcott  

rotors. Subharmonic and superharmonic responses in a simple rotor, in presence of  strong non- 

linearity that is due to radial clearances and rub in the bearings, are studied in [8, 15]. In similar 

hypotheses regarding beatings, chaotic responses have been obtained both experimentally and 
theoretically, and are reported in [23]; bifurcation phenomena with reference to a modified 
Jeffcott  rotor is theoretically investigated in [26]. Non-linear spring characteristics relating to 
the inclination o f  the shaft in presence of  small clearance in ball bearings are examined in [3, 
18, 27]. Stability of  circular whirling and chaotic responses in a Jeffcott rotor are investigated 
in [30]. Internal damping in continuous rotor system with non-linear responses is studied in [2, 
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Figure 1. Draft of the Jeffcott rotor. 

19, 25, 29]. A theoretical analysis of the chaotic behaviour, due to the non-linear hydrodynamic 
forces in the lubricated bearings that support an unbalanced rigid rotor, is reported in [28]; a 
related example of theoretical and experimental results is given in [32]. 

The present analysis was restricted to the influence of the non-linearity that characterises 
the elastic restoring forces in the shaft. With this aim a suitable model of rotor was selected, 
the simplest as possible, represented by a Jeffcott rotor with a shaft of mass that was negligible 
respect to the one of the disk and rigidly supported with ball bearings. In order to check in 
a straightforward manner the non-linearity of the system and to confirm the results obtained 
through theoretical analysis, an investigation was carried out using an experimental model 
consisting of a rotating disk D (Figure 1) fitted in the middle of a piano wire F, pulled taut at 
its ends but leaving the tension adjustable. The adopted length/diameter ratio was high enough 
to assume the wire itself as perfectly flexible while its mass was negligible compared to that 
of the disk. 

The system is symmetrical (with respect to the middle plane of the wire) and the rotor is 
driven by a synchronous motor M whose speed is regulated by an inverter. 

The rotor set up as illustrated above has a considerable operating flexibility as it is a 
straightforward task to change some of the parameters that most affect the motion, namely the 
length, the diameter and the tension of the wire. 

As the wire mass is negligible compared to that of the disk, the equations of motion 
of the disk centre in a fixed reference frame are represented by two differential equations 
that are ordinary, non-linear and coupled. By making appropriate simplifications and variable 
substitutions, the equations of motion can be traced back to a pair of coupled Duffing equations. 

It is of course well known that the search for non-periodic and chaotic responses in such 
systems can only be conducted by numerically solving the equations of motion by trial and 
error, which is very time consuming. For this reason considerable attention has deservedly 
been paid to a simpler theoretical model with independent equations of motion that do not 
have any of the original cross coupling terms, so as to get useful information regarding the 
present investigation. 

The simplified equations represent a pair of well studied Duffing equations [4-7, 14, 16]. 
In particular Ueda [4-7] determined the intervals where the coefficients make the behaviour 
of the solution non-periodic or chaotic. 

The knowledge of these intervals made it possible to establish, with a restricted number 
of attempts, the values of the parameters and the conditions that determine non-periodic or 
chaotic motions of this system. 

The theoretical investigation indicated that in the presence of the small amounts of damping 
and unbalance that characterise practical operation, the disk motion can be quasi-periodic but 
never chaotic. 
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Figure 2. The flame of reference and the reference tension To. 

The results obtained from the experimental apparatus confirmed this. 

2. The Equations of Motion 

As the wire mass is negligible in comparison to the disk mass m, the equations of motion of 
the disk centre C in a fixed frame Oxyz  (Figure 2), can be written as follows: 

ran + (ae + ~i)ic + aiwy + f~(x,  y) = mew 2 coswt (1) 

mij + (or e + ai)y - aiwx + fy(X, y) = mew 2 sinwt - P 

with 

e 

fx(x,v),fy(x,v) 
m 

P 
co 

o e 

(7 i 

disk eccentricity, 
elastic restoring forces along x and y axes, respectively, 
disk mass, 
disk weight, 
angular speed of the rotor, 
external viscous damping coefficient, 
coefficient of internal damping due to hysteresis. 

A 
d 
E 
L 
L I N  

L T  

A L  

~0 

T 

To 

area of the wire section = (Tr/4)d 2, 
diameter of wire section, 
modulus of elasticity, 
half distance between the supports at the ends of the wire, 
half length of the wire when unstrained, 
half length of the wire under generic tension T, 
= L T  --  L ,  

= (L - LIN)/LIN, 
tension in the wire = E A ( L T  - L IN) /L IN  = To + E A ( A L / L r N )  
~- To + E A ( A L / L ) ,  
reference tension in the wire, corresponding to its horizontal disposition = EAeo, 

In equations (1) the external damping is assumed to be viscous and the internal damping, 
due to the elastic hysteresis of the wire, is approximately considered to be proportional to the 
angular speed of the wire and to its deflection [1]. Because of the small diameter of the wire, 
the structural damping can be said to be negligible. 

In a generic position (x, y) of C, along its plane orbit and under the hypothesis that the 
wire is perfectly flexible, the restoring force f ( x ,  y) can be expressed as a function of the 
tension T in the wire (Figure 3): 

f (x, y) = v / f z  (x, y)2 + fy (x, y)2 = 2T sin 0. (2) 

Assuming the following symbols: 
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Figure 3. Model for evaluating the elastic restoring force. 

the strain in the wire can be calculated by taking into account the following relationship 
(Figure 3): 

L 2 + (x 2 +y2) = L2T = (L + AL) 2 

from which it can be inferred that 

Because of the relation 

LT sin 0 = ~ + y2, 

we can write 

f(x,y) = 

(3) 

(4) 

(5) 

2T sin 0 

2To l+--T-0- ° 1 +  ( L ) +  ( L )  - 1  ~/~1 (:l:]~)2+(y/L)2 (6) 
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Assuming 

2To . a~ _2(eco0; cO2= m L ,  g -  

o- e (7 i 
¢ ~ = ~ ;  ¢ i = - - ;  

tTcr tYcr 

x y 
L '  9 = ~ ,  

with 

- -  = 2( ico0;  ffcr = 
m 

(7) 

(8) 

wo 

Crcr 
~,, ¢i 

natural frequency of the linearized system (about the reference 
horizontal disposition of the wire), 
critical value of the global (internal and external) damping, 
external and internal fractions of the critical damping, 

the equations of motion can be expressed: 

u + 2(~e + ~i)wo~ + 2~icoOco9 + co2 

{ EA [v/1 + ~2 ,~2 1 ] }  
× 1+-~70 + - v ' 1 + g 2 + o 2  

+ 2((~ + ~i)coo~ - 2(icoocoe + co2 

{ E A [ x / I + ~ 2  92 1]} 9 
x 1 + -~-0- ° + - x/1 +u2 + 62 

Finally, by means of 

W 
w t  = 7"; 7 " = - -  

coO 

d~ d~ dt ~ d~' 
dr dt dr co dr w 2 

d~ d~ dt ~ d~ r v 
~ ) r  - -  - -  ; 9 I I  ~ I i 

dr dt dr co dr co2 , 

the equations of motion are given in dimensionless form: 

2(i 1 ~, ,+ 2(re + ffi) ~2'+ ........ 9 +  
" 7" 7" 7 

{(1-EA--T-o-o) ( --T-o-o} e x .1+gz2+92)-1/2+ EA  ~ = ~cos~- 

9 tt + 2((e + (i) ~, 2(i fi + 1 
- - 7  ;~ 

{ (  EA)( l+~t2+92)_I /2+E_~o } e x 1 - To 9 = ~ s i n r -  - -  

_-- _e w 2 c o s w t  
L 

_ _ e co2 sinwt 9 
L L 

(9) 

9 

(10) 

(11) 

representing a system of two differential equations that are ordinary, non-linear and coupled. 
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3. The Approximate Equations of Motion 

Under the hypothesis that the displacements x and y are, in any case, negligible with respect 
to the half length L of the wire and thus such as to allow the assumption that the dimensionless 
coordinates u and v are smaller than 1, in equations (11) it can be assumed that 

(1 ÷ ~2 ÷ Q2)-1/2 ~ 1 -- ~ (*22 + ~2). (12) 

This gives, with the further assumption 1 - EA/To ~- -EA/To:  

{~2 
" + 2(~e + ~i) ~2' + 2~i ~ + # (~2 ÷ ~2)~ = e 

T 7 g c o s  
(13) 

~ , , + 2 ( ¢ e + ~ i ) ~ ,  2 £ i g +  # e g 
w2L 

It should be observed that in equations (13) the dimensionless coefficient # of the non-linear 
terms in u and v is given by 

E A  
> = 277o (14) 

and that, for fixed values of E and A (i.e. a piano-wire of fixed diameter is assumed), the value 
of # depends on the reference tension To. 

Keeping constant the values of all the other parameters, the system behaviour is thus 
affected by the amount of tension To. In particular, it is non-linear for small values of To and 
practically linear when To is high. 

Putting 

equations (13) can be rewritten: 

u " +  2(~e-I-£i) , 2~i u3 1 ) 
u + - - v +  + ( 7" 7, ~ @V 2 U - -  

\ / 

- -  - -  Zt + V3 -Jr- q -  u 2 
7, 7" - ~  V - -  

and assuming 

(15) 

e 
COS T 

r L (16) 
v/-ff e sinr v/P 9 
7, L r co2L 

Bo v/fi g 1 E ~  g 1 E~o P 
7, - 7,3 V JoL  - 27,3 To 

e 1 E/EA e 
B 1 -  r L r L 

he = 2~e . hi 2~i 
7, 7" 

we can finally write the form { 1 
o 

v" + ( h e + h i ) v ' - h ~ u + v  3+ ~ + u  2 v = B l s i n r - B o .  

(17) 

(is) 
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By examining equations (18) it can be deduced that the equations of motion for the disk 
centre - with the approximations (12) - can finally be written as a pair of coupled Duffing 
equations. 

From equations (17) it can be inferred that the values of B1 and B0, with the other conditions 
remaining the same, are proportional to v/-fi and that, in particular, the value of B1 increases 
with the product v ~  e/L.  

Finally, according to (7) and (14), and assuming that all other conditions are kept constant, 
we can conclude that when To decreases the system not only becomes less linear, but also 
more damped, in the sense that the values of # and of the fie and ffi ratios increase. 

4. Non-Periodic Motions of the Disk Center 

The theoretical search for non-periodic solutions of the set of equations like (18) through 
analytical approaches is quite involved (e.g., see in [22] the treatment of secondary resonances 
in Multi-Degree-of-Freedom systems with analytical methods) or not possible, and can be 
sometimes carried out provided that some stiff approximations are introduced. Thus we go 
on with the theoretical analysis of the rotor system by numerically solving the equations (18) 
with trial and error techniques involving the parameters r, B0, B1, ~e and ~i. 

In order to reduce the number of attempts needed to determine non-periodic motions of 
the disk centre, we proceeded as follows. 

Taking equations (18) once again into examination, it can be observed that, if the coupling 
terms are neglected, the same equations become 

1 u3 
u" + (he + hi)u' + -~ u + = B1 c o s t  (19) 

1 
v" + (he + hi)v ~ + ~ v + v 3 : B1 sin~- - B0 (20) 

and further, when r >> 1: 

u" + (he + hi)u ~ + u 3 = B1 c o s t  (21) 

v" + (he + hi)v ~ + v 3 = B1 sin'r - B0. (22) 

Equations (21) and (22) represent a pair of well-studied Duffing's equations, for which 
the values of the parameters hi, he, Bo, B1, that give non-periodic solutions were determined 
using a trial and error procedure [4-7]. Some outstanding results regarding equations similar 
to (19-22) are reported in [9, 10, 14, 16, 17, 24]. 

As far as the above is concerned, it must be observed that the motion described by 
equation (21) shows chaotic evolutions for rather high values of the parameter B1 [5] that 
correspond, in respect of (16), to high values of the product v ~  elL,  i.e. high values of the 
coefficient of non-linearity # and/or of the rotor static unbalance "e". It must be pointed out 
that these conditions do not take place in the practical case of rotors that are supported on 
roller bearings, which generally exhibit small values of non-linearity and residual unbalances 
(after balancing procedures). 

Vice versa, the motion described with 

h = h e + h i = 0 . 0 5 ;  B 0 = 0 . 0 4 5 ;  

h = h e + h i = 0 . 0 5 ;  B o = 0 . 0 3 ;  

equation (22), becomes chaotic for 

B1 = 0.16 (23) 

B1 = 0.16 (24) 
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and the value of/31 in (23) and (24) is quite small. 
Starting numerical trials with the values in (23) and the approximate equations in (18), it 

was possible to determine - with a limited number of attempts - the values of the parameters 
r, fie, ~i, B0, B1, that make the motions described by these equations non-periodic. 

Many sets of trials were carried out; in each one the values of ~e, ffi and r, were kept 
constant while varying the values of/3o and B1 in the ranges: 

0.02 <_ Bo _< 0.08; 0.02 < B1 <_ 0.24. (25) 

In the above corresponding intervals, the values of B0 and B1 were taken in steps of 0.01 
and 0.02, respectively; 84 numerical integrations were performed for each set of trials and, 
because there were adopted nine different sets of fie ffi and r, the theoretical investigation 
needed 756 integrations in all. 

For each integration of the equations of motion (18) the kind of solution was inferred 
mainly by examining the orbits of the disk centre. 

It is worth pointing out that where non-periodic solutions of equations (18) were detected, 
some further checks were made by integrating the equations (11), with different values of 
#: these checks made it possible to infer that even in chaotic conditions equations (18) give 
results that do not essentially differ from those obtained with the exact equations (11). 

5. Results of the Theoretical Investigation 

As an example of the theoretical investigation carried out, Figures 4a-c show the results of 
three sets of trials, referring to the following values of the parameters hi, he and r, respectively: 

Figure 4a: r = 3.5; 

Figure 4b: r = 3.5; 

Figure 4c: r = 3.5; 

2(~/r = he = 0.05; 

2¢~/r = he = 0; 

2{e/r = he = 0.005; 

2~i/r = hi = 0 

2~i/r -- hi = 0.05 

2~i/r -- h i = 0.005. 

A number of points have been fixed in the B1/30 coordinate plane (Figures 4a-c) and a 
suitable graphic symbol indicates for each point the relative kind of motion that was described 
by the disk centre as a result of the numerical integration. 

The results of the theoretical investigation can be summarized as follows: 

(I) In the absence of internal damping (hi = 0), with quite high values of external damping 
(he = 0.05) and with the values oft ,  13o and 131 considered her ez the motion of the rotor, as 
described by equations (18), is quasi-periodic (Figure 4a ). 

The solution of equations (18) is chaotic for values of Bo and B1 that are not very different 
from the ones that make the solution of Duffing's equation (22) chaotic. 

As an example of a chaotic solution, Figure 5 illustrates some diagrams referring to the 
following parameter values: 

r = 3 . 5 ;  he=0.05; h i = 0 ;  B0=0.045;  B1=0.179.  (26) 

This figure shows: 

(a), (b): the diagrams U(T) and v(7-), with 12765 < 7- < 12915 rad, corresponding to about 
20 cycles of driving force, after the initial 2000 cycles, such as to extinguish the 
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Figure 4. Different types of motion obtained as numerical solutions of the equations (18), varying/31 and/3o, with 
r = 3.5 and three different combinations of internal and external damping: (a) h = 0.05, hi = 0.0; (b) h = 0,05, 
hi = 0.05; (c) h = 0.01, hi = 0.005. Symbols: o: synchronous orbit with period Ts = 27r/w; x: periodic 
orbit with period T = 2 % ;  *: periodic orbit with period T = 4Ts; :~: periodic orbit with period T = 8T~, (i): 
synchronous orbit after a chaotic transient behaviour; ©: quasi-periodic orbit, • :  chaotic behaviour. 
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Figure 5. Results of numerical integration of the equations (18) with r = 3.5, he = 0.05, hi = 0, Bo = 0.045, and 
t31 = 0.179: (a) u motion versus T; (b) v motion versus ~-; (c) orbits in the uu j phase plane; (d) orbits in the vv' 
phase plane; (e) Poincar6 section projected onto the uu'  phase plane; (13 Poincar6 section projected onto the vv'  
phase plane; (g) RMS amplitude spectrum of the u(r)  motion; (h) RMS amplitude spectrum of the v(7-) motion. 
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Figure 6. Bifurcation diagrams obtained varying r and projecting Poincar6 sections onto: (a) u axis; (b) v axis. 
Symbols : / :  solutions with set S1 of initial conditions; - :  solutions with set $2 of initial conditions; I: solutions 
with set $3 of initial conditions. 

starting transient; 
(c), (d): the phase diagrams u ' (u)  and v ' (v) ,  relating to the same cycles; 
(e), (f): the projections of the Poincar6 section onto the phase planes uu  ~ and vv  ~ that are 

relative to 2000 cycles of the driving force, recorded after the initial 2000 cycles; 
(g), (h): the RMS amplitude spectra of the u(7) and v(7) motions. 

The diagrams in Figure 5 make it possible to infer: 

(1) from 5a and 5b the non-periodic behaviour of u(7-) and v(v); 

(2) from 5c and 5d the apparent chaotic nature of the same motions; 

(3) from 5e and 5fthe difference between the two projections of the Poincar~ section onto the 
respective phase planes; in particular the projection of the Poincar6 section in the phase 
plane vv ~, depicted in Figure 5f, appear with a fractal structure, while the projection onto 
the phase plane uu '  exhibits a different shape; 

(4) from 5g and 5h the presence of a broad band with irregular fluctuations of frequency 
components, as a further indication of the chaotic behaviour. 

Two bifurcation diagrams, referring to the u(r) and v (T) motions, are reported in Figures 6a 
and 6b, respectively. 

In these diagrams the U(T) and v(-r) solutions of (18), taken stroboscopically as projections 
of the Poincar6 section onto the u and v axes, respectively, are reported varying r in the 
interval 0.5 < r < 10, at a step equal to 0.25. For each value oft ,  the diagrams report together 
the solutions obtained starting the numerical integration with three different sets of initial 
conditions. An adequate number of points (200 in the case of non-periodic behaviour) was 
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recorded after the first 2000 cycles, for each integration. The three sets of initial conditions 
that were adopted are 

Sl :  ~ (0 )  = 0 v(o)  = 0 ~'(0)  = 0 ¢ ( 0 )  = 0 

$2: u(O) = 0 v(O) = 0 u'(o) = 0.3 v'(O) = - 0 . 3  

s3:  ~ (0 )  = - 0 . 1  ~(0)  = 0.1 ~'(0)  = - 3 . 0  ¢ ( 0 )  = o. 

It must be pointed out that the values of h = hi + he, Bo and  B1 ,  in equations (18 ) ,  (19)  

and (20), vary with r, according to (17) and (26) in respect of the following relationships: 

h(r) --- 0 .05 .3 .5 / r ;  t3o(r) = 0.045. (3.5/r)3; t31 = 0.179-3.5/r .  (27) 

With the $3 set of initial conditions, the motion is synchronous for all the values of r 
fixed in the range 0.5 _< r _< 10, with the exception of r = 8.5 that makes the solution 
quasi-periodic. 

The other two sets S1 and $2 give in turn, for each fixed value o f r  in the range 0.5 < r < 
2.75, the same synchronous solutions obtained with $3. 

For r = 3, the motion obtained with S1, is subharmonic with 2T8 period; the solution 
obtained with $2 is still synchronous and coinciding with the response given by the $3 set. 

In almost all the interval 3.25 _< r _< 7.75, both S1 and $2 determine the same following 
solutions, that are different from the synchronous motions relating to $3: 

- subharmonic, with period T = 4Ts, with r = 3.25; 
- chaotic, for r = 3.5; 
- subharmonic, with period T = 8T8, for r = 3.75; 
- chaotic, for r = 4, with the points of the v (-r) diagram gathering densely on two segments; 
- subharmonic, with period T = 2Ts, for r = 4.5; 
- synchronous, for r = 4.75; 
- subharmonic, with period T = 3Ts, with r in the interval 5 < r < 5.5; 

- quasi-periodic, in the range 5.75 < r < 7.75. 
On the contrary, the responses obtained with S1 and $2 are distinct when r = 4.25: the 

Poincar6 sections are made of 2 points when the set S 1 is adopted, and 4 points with the set 
$2. 

With the r values fixed in the range 8 < r < 10, S1 gives synchronous responses that are 
different from the synchronous solutions determined in this zone with $3. 

On the other hand, when the set $2 is adopted in the same interval of r, quasi-periodic 
solutions are determined, with the exception of the synchronous motions obtained with r = 
9.25 and 9.5, that coincide with the ones given respectively by S 1. The quasi-periodic response 
obtained with r -- 8.5 is the same obtained when the set $3 is adopted. 

A suitable number of chaotic orbits of the disk centre, in the uv coordinate plane, obtained 
after the first 2000 revolutions of the system, have been plotted in sequential groups of three 
in Figure 7. This figure also reports and numbers the points that correspond to the projection 
of the Poincar6 section onto the uv coordinate plane. 

Finally, Figure 8 shows the Lyapunov exponents (computed as indicated in [12]) relative 
to the same motion. 

(2) I f  the prevailing damping is the one that corresponds to the elastic hysteresis o f  the 
shaft material (he = O, hi = 0.05), for  the same values already given in (1) to the remaining 
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parameters r, t3o and B1, the motion of the rotor is aIways periodic and generally synchronous 
(see Figure 4b). 

(3) In the presence of damping actions that are relatively small, but of either type (exter- 
nal or internal), the disk centre motion is generally periodic and at most quasi-periodic, for 
limited ranges of the parameter values, but it is never chaotic (Figure 4c). 
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As an example of the quasi-periodic motions that occur in these conditions, Figure 9 reports 
the diagrams obtained for the following parameter values: 

r = 2.16; he = 0.0015; hi =0.002;  Bo = 0,029; t31 = 0.02. (28) 

The above diagrams have been collected in Figure 9 with the same layout of Figure 5. 
In Figure 10 the orbits of the disk centre and the related projection of the Poincar6 section 

onto the same coordinate plane have been plotted. 

6. The Experimental Model 

The experimental model corresponds to the schematic drawing in Figure 1. 
The brass disk D is clamped to the piano wire by means of the element S (see Figure 11); 

this clamp, made of two equal parts (that are symmetrical along an axial plane and are also 
made of brass) is axially drilled with a bore that is slightly less than the wire diameter; it has 
a cylindrical shape that ends in a truncated cone at either end and is clamped onto the wire by 
means of two steel screws V. 

Both sides of the disk rim have a separate ring that is clamped onto the disk itself by means 
of a securing screw. 

In order to obtain a fixed value for disk unbalance, each ring presents four holes with a 
6.5 m m  diameter: adjusting the relative angular position of the two rings, it is possible to give 
a prefixed value to the mass centre nominal eccentricity e in the interval: 0.0 < e < 1.1 mm. 

The disk mass, complete with rings, clamping element and the relative screws, is 0.4 kg. 
Figure 12 shows an illustration of one of the two supports at the ends of the rotor. 
The wire clamping at each ball bearing in the relative rotor support is obtained once again 

by means of a clamping element S consisting of two pieces. 
Once the wire is clamped by means of the screw V, it becomes integral with the bush b 

that rotates with the inner ring of the axial ball bearing. 
It is now possible to give the wire a fixed tension T, by rotating the hand ring nut M of each 

of the two supports: by rotating the ring nut (Figure 12) the bush b slides inside the bearing 
internal ring and gives the wire the assigned axial load. 

The actual tension T is greater than the reference tension To that would affect the wire in 
static conditions with no disk weight. The measurement of the static deflection due to the disk 
weight was adopted to check the tensions T and To. 

The rotor is driven by an asynchronous motor that is powered at an adjustable frequency 
by means of an inverter. 

Figure 13 shows a photograph of the experimental apparatus. 
The high flexibility of the wire during operation means that the orbits described by the disk 

centre can be observed directly and recorded with a video camera-based system. The orbits 
were further identified using tWO capacitive transducers fitted in orthogonal mutual mountings 
at the end of the wire, near one of the supports. In this zone the size of the orbits is small 
enough for the operation of the type of transducer chosen. 

In this connection, it must be observed that the orbits described by the various sections of 
the wire are similar if the wire is assumed to be perfectly flexible and to have a negligible 
mass. 

In order to record the orbits with the highest possible accuracy, a small aluminium disk 
10 mm in diameter, 5 mm long and with a mass of 8 • 10 -4 kg, was fitted on the wire in the 
measuring plane. 
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Figure 11. The disk with its clamp and the rings for adjusting the unbalance. 

The capacitive transducers were connected to a DISA converter; the output analogic signals 
from the converter were sent to a data acquisition board (Bakker Electronics mod.490) and 
the digital signals were recorded and processed with a PC. 

The signals can be filtered and derived by means of known numerical algorithms. 
In order to obtain the Poincar6 sections, a pulse signal, obtained from an electromagnetic 

transducer facing a disc integral with the rotor and provided with a reference mark shaped as 
a sharp edge, is recorded together with the signals from the capacitive transducers. 

The pulse signal thus obtained can be phased with the disk unbalance. 

7. Expe r imen ta l  Results  

The experimental system was set up  in the following way: 

L = 0 . 3 m ,  d = l . 2 m m ,  m = 0 . 4 k g .  (29) 
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Figure 12. The support system at the ends of the wire. 

Figure 13. The experimental apparatus. 

For the system thus arranged the damping was experimentally measured by recording the 
free oscillations z(t) and y(t) excited by an initial displacement, for w = 0 and some values 
of the reference tension To. 

The most evident results of this part of the experimental investigation can be reported as 
follows: 
(a) The free oscillations z(t) and y(t) of the disk centre, in addition to the fundamental fre- 

quency, show harmonics whose frequencies are not exactly multiples of the fundamental 
one; 
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(b) the free oscillations x( t )  and y( t )  of the disk centre exhibit beat phenomena that are not 
always related to the coupling phenomena of the above motions; this is more evident when 
the free oscillation is excited giving an initial displacement in the horizontal direction x; 

(c) in these events the beats seem to be generated by the presence, in the x motion, of 
harmonics with frequencies that are higher than the fundamental one, but not exactly 
multiples of it; 

(d) the mean ~ values, indicated as ffmed and computed with the formulae referred to the 
viscous damping hypotheses 

1 In al'---!-/ 
¢~ = 27rk ak+l,i 

ffmed = 1 ~ --  i ( 30 )  

with aj,i = width of the j-th displacement of the oscillation detected for computing the 
ffi value; k = number of the cycles adopted for computing the i-th logarithmic decrement 
and the ¢i ratio; n = number of the ffi values computed in order to determine ffmed, tumed 
out to be very small and of the order of 10 -3 . 

(e) in particular, ffmea = 2.5- 10 -3 was measured for the horizontal motion with a prevailing 
horizontal initial displacement, and ffrnea = 1.5" 10 -3 was obtained for the vertical motion 
excited by a prevailing vertical initial displacement. 

Many tests were carried out on the experimental system, varying the angular speed w, with 
different assigned values of the reference tension To and of the disk unbalance. In none of 
these tests were chaotic motions of the disk observed, as inferred from the theoretical results 
referred to low damping values. 

On the other hand, quasi-periodic motions were observed with relatively small disk unbal- 
ances, and giving To several different values: this result also agrees with the theoretical results. 

As an example, Figure 14 illustrates the diagrams relating to the following test conditions: 

To = 170N; e = 0.5 mm; w = 115.2rad/s. (31) 

It must be observed that, according to (17), the values given in (29) and (31) correspond to 
the following values of Bo, B1, w0 and r: 

r = 2.16; B0 = 0.029; B1 = 0.02; w0 = 53.3rad/s. (32) 

Because of the equality between the values of B0, B1 and r in (32) and the corresponding 
ones that appear in (28), the comparison between the theoretical diagrams of Figure 9 and 
the experimental plots in Figure 14 is significant, at least from a qualitative point of view, 
since the experimental values of he and hi, which are not expressed in (32), are of the same 
magnitude as those that appear in (28), in accordance with the comments in the beginning of 
this paragraph. 

In order to enable a simple comparison of the theoretical results in Figure 9 and the 
experimental ones in Figure 14, dimensional axes x, y, t, ~?, ~) have been reported in Figure 9 
together with the corresponding dimensionless axes u, v, r ,  u t and v'. 

The conversion factors can be easily obtained from equations (8) and (15): 

x / L  = y/L = ~ l v ~  

= = r ld-  = 
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Taking into account the following values that have been fixed for the experimental rotor: 

= 0 . 3 m ;  x/-fi= E 2 ~  0--26.177; r =  L 2.16 

the conversion factors can be deduced: 

u / z  = 40.4 m-l ;  u'/~ = v'/f] = 0.351 sm -1. 

Taking into account these scale factors and the calibration factor of the transducers, the 
diagrams that correspond in Figures 9 and 14 have been plotted on the same scale, in order to 
facilitate the relative comparison. 

From the comparison between the homologous diagrams in the above figures, it can be 
pointed out that the experimental results are in good agreement with the theoretical ones, 
confirming the quasi-periodic nature of the disk centre motion, even if z(t) and y(t) motions 
exhibit higher amplitudes than the corresponding theoretical ones. 

In particular, it can be inferred that: 
- the phase diagrams k(z) and 9(y) obtained from the experiments are not so different 

from the theoretical ones; 
- taking into account the unavoidable dispersion of the experimentally obtained Poincar6 

sections, the projections onto the phase planes zk and yy confirm the quasi-periodicity 
of the theoretically obtained motions; 

- the comparison between the theoretical power spectra and the experimental ones points 
out that a 1/2 order harmonic component, with power that is greater than the fundamental, 
appears in both the theoretically obtained and the experimentally observed motions. 

In Figure 15 the experimental trajectories described by the disk centre have been reported 
in z, y coordinates together with the related projection of the Poincar~ section: these plots can 
be compared with the corresponding ones in Figure 7. 

8 .  C o n c l u s i o n s  

The conditions that make the motion of a rotor fitted with ball bearings either non-periodic or 
chaotic in the presence of non-linear elastic forces have been examined. 
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The rotor is made of a thin disk and the system presents an axis of rotation that is horizontal 
and symmetrical along a plane that is normal to the axis of rotation, taken in the middle of the 
wire shaft. 

The differential equations relative to the disk centre motion of the Jeffcott rotor thus 
arranged are ordinary, non-linear and coupled. 

The research included both a theoretical and an experimental investigation. 
The theoretical investigation of the non-periodic rotor motions was carried out using a 

number of numerical trials and integrating the equations of motion with a 4th order Runge-  
Kutta routine with adaptive stepsize control. 

The results of the theoretical investigation can be summarized as follows: 
(1) With no internal damping (hi = 0) and relatively high values of the external damping 

(he = 0.05) the motion of the rotor is often quasi-periodic (Figure 4a), for the values of 
r, B0 and BI that have been selected for the present analysis. 
For values of B0 and t3a that are not so different from those that make the solution of 
Duffing's equation (22) chaotic, the rotor motion described by (18), is chaotic. 

(2) If the prevailing damping is the one that is due to the elastic hysteresis of the shaft 
material (he = 0, hi = 0.05) the system shows only periodic, and generally synchronous 
behaviours (see Figure 4b), varying r, B0 and B1 in the same intervals of values selected 
in (1), respectively. 

(3) For damping values that are fairly small, but of either external and internal origin, the 
disk centre motion is generally periodic, achieving at most a quasi-periodic character for 
a limited number of different values assigned to the parameters, but never a chaotic one 
(see Figure 4c). 

The results obtained in a large number of experimental tests and the agreement with the 
theoretical data point out that the small damping values that affect the real system make it 
impossible to obtain chaotic disk motions by varying the reference tension To and the rotor 
unbalance. 

On the other hand, it was possible to obtain quasi-periodic evolutions for several assigned 
values of the tension To and with relatively small values of the disk unbalance: this result also 
substantially agrees with the theoretical expectations. 

Symbols 

A 
Bo, BI 
d 

E 
f 
f(x,y) 
L (x, y), fu (x, y) 
h 
he 
hi 
L 
L I N  
L T  
AL 
m 
P 
7" 

section area of the wire 
coefficients in the Duffing equation 
diameter of the wire 
disk eccentricity 
modulus of elasticity 
frequency 
---- ~ + f~ = 2T sinO: elastic restoring force due to the wire 
elastic restoring forces along x and y axes, respectively 
2¢/r 
2¢~/r 
2~i/r 
half distance between the supports at the ends of the wire 
half length of the wire when unstrained 
half length of the wire under generic tension T 
= LT  - L  
disk mass 
disk weight 
¢.0/030 
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T 

To 
T 
T~ 
Z/,, V 

~", ~" 
U ,  V 

"/L ! , V I 

~j/I, v l l  

X,y  
Co 

O" 

O*cr 

O" e 

.7_ 

¢ 
G 

co 

coO 

tension in the wire = EA(LT  - L:N) /LIN = To + E A ( A L / L I N )  
To + E A ( A L / L )  

reference tension in the wire, corresponding to its horizontal disposition = EAeo 
period of the solutions of the equations of motion 
= 27r/co: period of driving rotation 
dimensionless coordinates of C: u = x/L;  v = y / L  
d~/d~-, d~)/dT 
d25/dr 2, dZ~/dr z 
(v~/r)~, (v~/r)~ 
du/d'r, dv/dT 
d2 u / dr 2, dv / dT 
coordinates of the disk centre in a fixed reference 
= (L - L IN) /LIN  
coefficient of non-linear terms = EA/2TO 
viscous damping coefficient 
critical value of the viscous damping coefficient = 2 V / ~ - ~ / L  
external viscous damping coefficient 
internal viscous damping coefficient due to hysteresis 
cot 
a/a.  ratio 
ere/a= ratio 
ai/Oer ratio 
angular speed of the rotor 
natural frequency of the linearized system (about the reference disposition assumed with 
the wire horizontally taut between the supports). 
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