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Abstract. The paper is concerned with a hybrid finite element formulation for the geometrically exact dynamics of 
rods with applications to chaotic motion. The rod theory is developed for in-plane motions using the direct approach 
where the rod is treated as a one-dimensional Cosserat line. Shear deformation is included in the formulation. 
Within the elements, a linear distribution of the kinematical fields is combined with a constant distribution of the 
normal and shear forces. For time integration, the mid-point rule is employed. Various numerical examples of 
chaotic motion of straight and initially curved rods are presented proving the powerfulness and applicability of the 
finite element formulation. 
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1. Introduction 

Since the work of Holmes [4], chaotic motion of beams has attracted the interest of many 
researchers (see, e.g., [5, 7, 8, 10]). In some papers (e.g., [9, 11-13]) the arch has been 
considered too. 

The mentioned papers are based on analytic methods, thus different restrictions in modeling 
the rod must be taken into account in order for the analysis to be achievable at all. Specifically, 
the nonlinearities are restricted only to the dominant terms, only first order modes are con- 
sidered, the load is assumed to have specific forms (sine or cosine functions), and in general 
the equations of the Euler-Bernoulli rod model are considered where the shear deformation is 
neglected. Contrasting the above investigations, this paper is aimed at a numerical approach 
to chaos using the finite element method where, as a first step, the in-plane rod is considered. 
The advantage of such an approach lies in the following facts: 

1. The nonlinearities can be modeled completely due to a geometrically exact description of 
the rod kinematics. 

2. Higher order modes are considered naturally by using a sufficient large number of finite 
elements. 

3. A rod model with first order shear deformation is considered. 
4. The load function and the boundary conditions can be practically arbitrary. 

Nevertheless, it is our believe that both approaches are complementary and should co-exist. 
Analytical methods have the important advantage of allowing general conclusions where the 
problem parameters are not specified a priori, making possible a rigorous understanding of 
different phenomena. 
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Although the geometrically exact rod model is well known in the literature (see, e.g., [1, 
14, 19, 23]), we will rederive the rod equations by means of the direct approach, namely by 
considering the rod as a Cosserat line. The approach has the advantage that the model arises 
as a special case of Cosserat continua which can be generalized to model shells and rods in 
space as well (see Sansour and Bednarczyk [15]). Some remarks concerning the terminology 
'geometrically exact' used in the paper are appropriate. The terminology used means that the 
strain-displacement relations are considered in complete form without any simplifications. A 
rod model can be geometrically exact but take only a linear constitutive relation. In general, 
a finite strain model means more than that; namely, a geometrically exact one where, in 
addition, finite strain nonlinear constitutive equations are employed. Since the constitutive 
relations used in this paper are linear, the term 'geometrically exact' is accordingly more 
appropriate. 

Special attention must be devoted to the finite element formulation in order to avoid ill- 
conditioning and locking phenomena. In this paper a hybrid finite element is developed. The 
term hybrid is due to the fact that the force terms (normal and shear forces) are taken in a mixed 
Hellinger-Reissner type formulation using a Legendre transformation. The finite element is 
characterized by a linear distribution of the kinematical fields and constant force distributions 
over the element. By that, and in spite of the simplicity of the element formulation, we are 
able to formulate very robust elements capable to describe finite rotations. 

Beyond the element formulation, the time integration procedure plays an important rule. 
As a first step, the midpoint rule is used here. It was recently proven that this symplectic 
scheme conserves momentum and moment of momentum (see [22]). The construction and 
application of an energy-momentum method, that is a method which preserves the energy in a 
case of a Hamiltonian system, is left for a future report. In this case the configuration space is 
not a vector space, the mentioned construction is by no means simple and becomes of special 
interest. 

2. The Rod Model 

In the following we derive the equations of the geometrically exact rod model by a direct 
approach. The model is well known in the literature (see, e.g., [14, 19]) where it is usually 
derived by using specific assumptions for the displacement field. Nevertheless, the way we 
are following has the very important advantage that the method is general enough to apply 
to rods in three-dimensional space as well as to shells with arbitrary geometry. In each case 
it is only the Cosserat continuum under consideration which has to be specified. The strain 
tensors remain, by their definition, the same; only their components differ depending on the 
underlined continuum. After the formal derivation we simplify the notation which is more 
appropriate for the special problem considered. 

Let B E 7~ 3, where T~ denotes the real numbers, be a one-dimensional manifold defining 
a body understood as a one-dimensional continuum. A motion of B is a map, go(t), t E TO., 
parametrized by the time t according to ~o(t) : B -+ 7~ 3, go(t)B = /3t. In the sense of a 
reference configuration we identify go0 = go (t = to) with the identity map. For X E /3 and 
x E /3t we have x(t) = ~p(X, t). Let further s be coordinate charts in/3, which we choose 
to be attached to the body and at the same time take to be the arc length. The covariant base 
vectors of the tangent spaces at either configuration are given by 

G = cOX/Os, g = Ox/Os. (1) 
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Accordingly, the Riemannian metric is G = G • G = 1 and 9 -- g • g in each configuration 
respectively, where scalar products of vectors are denoted by a dot. Further, we consider a 
Cartesian frame denoted by el. In the whole paper Latin indices take the values 1, 2, 3. We 
assume that the plane where the deformation takes place is spanned by the vectors el and e2. 
Accordingly G.  e3 = 0. The normal vector to the tangent space of the rod, N, is given by the 
relation N = G x e3. Altogether, the representation holds 

G = - sin c~el -4- cos c~e2, N = cos c~el + sin cee2. (2) 

o~, a function of s, determines the angle closed between el and N. It defines together with the 
initial boundary conditions the reference configuration. 

The deformation gradient, the gradient of the map qo, is defined as the tensor product of 
the two vectors according to 

F = g ® G. (3) 

It maps the tangent space of B at the reference configuration to that at the actual configuration. 
Note that F is one-dimensional by the fact that the tangent spaces themselves are one- 
dimensional. 

The understanding that B is a Cosserat line is connected with the fact that we attach to 
B two independent fields; a displacement and a rotational field. The first has been already 
introduced by means of the map % Explicitly we define the displacement field according to 

u = x - X. (4) 

By denoting partial derivatives by a comma we obtain with (1) and (4) 

g = G + u , s  

and with (3) 

F = ( G + u , s )  N G .  

We now consider the rotation field R E 

(5) 

(6) 

SO(3) where SO(3) is the group of orthogonal 
tensors with positive determinant. Since we are considering in-plane rotations, the direction 
of the rotation vector is fixed to e3. The only open parameter is its absolute value which we 
denote by w. In this case the rotation tensor has the closed form representation 

R = cosw(el ® el + e2 ® e2) - since(el ® e2 - e2 ® el) + e3 ® e3. (7) 

Since RTR = 1, the product RTR,s is skew symmetric. We denote the corresponding axial 
vector by k. 

Having established the one-dimensional deformation gradient and introduced the rotation 
tensor relevant to our problem, we are now in a situation to derive the strain measures 
by applying the direct method of a Cosserat line. The method has been successfully used 
to derive geometrically exact shell models (see [15]). The strain measures of the Cosserat 
continuum are: The first Cosserat deformation tensor (the stretch tensor) 

U := RTF (8) 

and the second Cosserat strain tensor (the curvature tensor) 

K : =  - k  ® G. (9) 
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Due to the fact that the Cosserat continuum is assumed to be one-dimensional and restricted 
to in-plane deformations, only the following components of u, U, K are different from zero 

u = ulel + u2e2 (10) 

U = U11G® G +  U13G ® N (11) 

K = ~e3 ® G. (12) 

Note that the decomposition of the displacement vector u is naturally carried out with respect 
to a Cartesian franae. Contrasting this, the strain tensor U, K is defined with respect to 
the natural orthonormal frame given by the set (G, e3, N) allowing for a natural and direct 
physical interpretation. The validity of the above decompositions is verified by straightforward 
calculations which we omit. Explicitly we get using (6-12): 

U l l  = c o s ~  + c o s ( ~  -~- o3)Ul, s + sin(a + w)u2,s (13) 

U13 : - -  sinw - sin(o~ + co)ul,s + cos(o~ + w)u2,s (14) 

= 6a,s. (15) 

Note that shear deformation is included in this model and is not set to zero. 
It is these strain-displacement relations that motivate the terminology 'geometrically exact 

description' since the whole geometric nonlinearity is taken into account. Analytical methods 
as applied to structural dynamics and which can be found in the literature cited in the intro- 
duction are based on simplified versions of these strain-displacement relations, the derivation 
of which can be carried out by applying severe restrictions and assumptions concerning the 
admissible deformations. 

3. The Dynamical Formulation 

We assume now the existence of an internal energy function per unit length depending 
quadratically on the strain measures U, K. Accordingly, the force and moment tensors are 
given by 

a¢ 
n = (16) 

0U ' 

o¢ 
m -  OK" (17) 

Using the same decompositions as in (11), (12) we obtain 

n = n l l G  ® G + r~13G ® N, (18) 

m = me3 ® G. (19) 

Explicitly we define ~b such that the linear relations hold 

n11 = E A ( U 1 1  - 1), (20) 
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hi3 = GAUl3, (21) 

m = EIK. (22) 

The interpretations are of course valid that E is Young's modulus, G the shearing modulus, 
A the section area, and I the moment of inertia. In addition we consider the kinetic energy 
formulated as 

1 (pAr.  h + Did32). (23) 

Here p defines an adequately defined density. At this stage it is useful to simplify the notation 
by introducing the force and strain vectors 

n = , ¢ = (24) 
n13 U13 (u, o3) ' 

where it is understood that the relations (13), (14) have to be employed. The stored energy 
function is written in decoupled form as ~ = ~1 (e) + ~b2(n). From the numerical point of 
view and in order to avoid locking phenomena and to construct robust finite elements, it is 
useful to convert that part of the internal energy related to the strains ¢ into the complementary 
one ~(n)  using a Legendre transformation. The latter reads 

~bl (6) + ~(n)  = n .  ¢. (25) 

After these preparations we are in a situation to formulate a D'Alembert-like principle to 
provide a basis for the finite element formulation in the next section: 

~T : ~tint + dWex t = 0, (26) 

where 3~int, ~Wext denote the internal and the external virtual work, respectively. Explicitly 
we have using (25) 

/(@1 (~)-~- ~)2( /~) )as  = f (n-  s -  ~ ( n ) +  ~ 2 ( t ~ ) ) d s ,  (27)  t~'in t 
B B 

C~Wext = I (p" ~U + M~o3) ds + (p. 8u + M .  &O)lo/3 . (28) 

/3 
Here, p and M describe the external forces and moments (possibly deformation and velocity 
dependent) in the field as well as at the boundaries of the rod which are denoted by aB. 
The forces are admitted to depend on the velocities to take into account possible dissipation. 
Making use of (23), (26-28) as well as applying Gauss theorem we end up with the variational 
form 

J(u ,  co, n, 6u, &o, 6n) = f p(Afi. 5u + I(h6o3) d8 
13 

/ [ 06(U,~)OU O~(U,W)Oo3 - ~ n -  e (u ,~v)  + n .  ~u + n .  &v 

13 

+ f ( p  6u + M6o3) ds + ( p  6u + M6o3)1o  
B 

=0. 

0~(n)0n all -[- 0~2 (°3------~)0o3 ~ ]  d8 

(29) 
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Note, that ~b2(w) means that t~ is replaced in ~b2 using (15). 

4. The Finite Element Approach 

In this section the finite element formulation of the theory presented above is developed 
on the ground of the functional (29). The finite element will be of the hybrid type, that is 
the components of n are eliminated at the element level. A two-node element with linear 
kinematical fields and constant force n (normal and shear components) is considered. 

Geometric quantities describing the geometry of the rod are considered exactly at the 
Gauss integration points. All kinematical fields are interpolated using linear interpolation 
functions. The procedure is standard, hence details are omitted. The interpolation procedure 
is documented in the relation 

u } = Erie, 
03 

(30) 

where u e denotes the degrees of freedom of the element and E is then a 3 x 6 matrix which 
depends on the shape functions. 

We assume a constant interpolation for n which is discontinuous over the elements and can 
be eliminated at the element level. The interpolation yields 

{sl} 
n ( ~ ) =  $2 ' n = D S  e. (31) 

Here, & ,  $2, . . .  are some constants determining the force field within the element which are 
gathered in the vector S e. D is then a 2 x 2 matrix. The stress interpolations used guarantee, as 
intensive numerical experiments show, that the numerical solutions are free of ill-conditioning 
in the range of thin rods which is well known as locking phenomena. 

For the numerical integration, two Gaussian integration points are used (full numerical 
integration). 

5. The Solution Procedure 

We denote all degrees of freedom of the rod (u and co) by u. The elaboration of the functional 
(29) by introducing the interpolation functions and carrying out the numerical integration 
leads to the following set of algebraic and ordinary differential equations: 

N N 

Aes e = ~-~ be(u) 

1 1 

(32) 

N N 

~-~jM~/U + Ceil ¢ + B~(u)S ¢ + KCu ¢] = ~ q¢(u). 
1 1 

(33) 

The upper index e denotes quantities defined at the element level. N is the number of 
elements involved. A e, M e, C e, K e are quadratic matrices. A e is constant by the linearity 
of the constitutive equations (20), (21) and has the dimension 2 x 2, M ~ represents the mass 
matrix and has the dimension 6 x 6, and C ~ is the damping matrix stemming from velocity 
dependent forces, where we assume the linear relation between damping forces and velocities, 
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the damping coefficient will be denoted d. Hence, C e is constant and has the dimension 6 x 6 
too. The vector b e depends in a nonlinear fashion on the kinematical field u. The nonlinearity 
has a purely geometric source and reflects the nonlinear relations (13, 14). The matrix K stems 
from the bending stiffness. It is constant due to the linearity of relation (15). The matrix B e is 
nonquadratic. It has the dimension 2 x 6. Furthermore, the relation holds 

0b e(u) _ BeT(u)" (34) 
Ou 

The solution procedure goes as follows. Since the unknowns S e are assumed to be discon- 
tinuous over the elements, equation (32) can be solved at the element level 

S e = Ae- lbe(u)  (35) 

which can be introduced in (33) to eliminate S e. The resulting nonlinear equation reads 

N 
~-'~jMe/i e + ceti e + BeAe-lbe(u) + Keu e] = ~ qe(u) (36) 

N 1 

which can be written in the standard form at the global level 

M/i + Cti + k(u) = 0. (37) 

k is the vector of all nodal internal and external forces which depends nonlinearily on the 
kinematical field u. 

Let n denote a converged time step with the known solution Un and fin, n + 1 the next time 
step with the unknown solution un+l and A T  the time increment. The solution of the above 
nonlinear ordinary differential equation is accomplished by using an implicit mid-point rule 

M (kn+ l  - f in)  
\ A T  + C t i n + ( 1 / 2 )  + k(un+(1/2))  = 0.  (38) 

With the following approximations 

Un+l = u~ + Au, (39) 

Au 
U n + ( 1 / 2  ) = U n + - ~  , (40) 

Au 
tin+(l/2) - A T '  (41) 

U n + ( l / 2 )  - -  2 ' (42) 

equation (38) can be rewritten as 

M 2 A u - - ~ t i n  + C  A u + k  u n + ~ A u  = 0 .  (43) 

The last relation constitutes a nonlinear equation for Au which is solved using Newton's 
method. 
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Figure I. The excited buckled beam model with the used data in the FE-calculations. 

6. Numerical Examples 

In the following, nonlinear oscillations of a buckled beam (excited harmonically by a trans- 
verse, constant load) as well as nonlinear oscillations of shallow arches (excited harmonically 
by a concentrated load) will be discussed in detail including chaotic motions. 

6.1. THE HARMONICALLY EXCITED BUCKLED BEAM 

A beam (10 length units) is subjected to an axial load, P ,  greater than its Euler buckling 
load which results in an axial displacement Au  = 0.11. It is fixed in simple supports which 
restricts its axial motion. A transverse, constant load distribution of the form f = F cos(wt) 
was then applied. The model is shown in Figure 1. 

In varying the forcing amplitude and forcing frequency the buckled beam can undergo 
chaotic vibrations of different types. 

• Due to soft-spring characteristics the buckled beam may exhibit period-doubling cascades 
to chaos in one of the potential wells. 



a) 

b) 

c) 

soo 

2oo 

10o 

o 

- ioo  

-2oo 

-,%., 
2 .01 

D ~ P U C E M E N T  x 

"POINO,~E.SGEr ~. 

o!, °I . . . .  

°'o., .T,:.,o+ -- I 

0.15 

0.1 

0 . ~  

0 i i i i i 

TIMEr 

64~¢I 10000 15000 20000 28000 ~ 0 0 0  
TIMEr 

4OO 

2OO 

tO0 

0 

-I00 

-20¢ 

-SO0 
-O.S 

tl , J j  :: ~I~ .e: Y s' 

:'L ~ < J  ..+~ ~~" 

-04  -0~ .0.1 -0,I 0 0.1 0.2 0.~I 0.4 
~ P L A C E M E N T  x 

0,5 

0.4 

o,s 

0 2  

0.1 

~ o 

-0.2 

-0.4 

Chaotic Motion of Geometrically Exact Rods 197 

soo 

5oo 

3oo 

f ~  

0 

-1oo 

-2oo 

-3oo 

- 4 0 % s  t 

] 
! i 
i 

J a 

. . . . .  ,, L 
~ P L A C ~ M E N T  x 

L o., 

i ° 
-o,1 

41.2 1 

-0.4 

o 5ooo Io~£~ 15ooo 2o0+o 2t~0o¢ d~O~¢ 
T IMEt  

Figure 2. Poincar6 plots and (x, t)-diagrams by varying F from (0.4-2). Chaotic motions in the transition zone 
between the small orbit and the large one interrupted by an odd-period motion. (a) Small orbit around the right 
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• The beam may vibrate chaotically in an irregular manner between the equilibrium posi- 
tions. This can happen either because of the symmetry of the two potential wells with 
soft-spring characteristics, or due to period-doubling cascades of the globally odd sub- 
harmonic oscillations. 

• Transient chaos between the regular motions. 
Figure 2 shows Poincar~ plots and displacement-time diagrams for the nonlinear oscil- 

lations of the beam by varying the forcing amplitude F between (0.4-2) while the forcing 
frequency w was fixed to 3.5E3. The distance of the Poincar6 sections was taken to equal 
the forcing period; recall that a Poincar~ plot is the projection of (x, J:, t)-trajectory points 
for certain ts onto the (x, k)-plane. Ten linear finite elements were used. Mid-displacements 
and mid-velocities are plotted next after the high frequency motions have died out due to 
dissipation: (2a) F = 0.4, (2b) F = 0.6, (2c) F = 0.7, (2d) F = 0.9, (2e) F = 1.5, 
(20  F = 2.0. 

Figure 3 shows phase portraits with their corresponding Poincar~ sections and the doubling 
of figures which lead to various chaotic motions by changing the forcing frequency between 
(3.4E3-4.2E3) while the forcing amplitude was fixed to 0.7: (3a) w = 4.2E3, (3b) co = 4.05E3, 
(c) co = 4.0E3, (3d) co = 3.6E3, (3e) co = 3.55E3, (3f) co = 3.4E3. 

Again ten finite elements were used to model the beam. In order to have a comparison with 
a low dimensional analysis one must take a low number of elements to model the beam, but it 
must be noticed that the use of different number of elements (less than ten) produces different 
dynamical responses of the beam. This point will be discussed in detail in the next example. 

Figure 4 shows Poincar6 sections of globally chaotic motions around all equilibrium 
positions resulting from the period-doubling mechanism of the three-period motion. Here 
the forcing amplitude was fixed to 0.7, the forcing frequencies took the following values: 
(4a) co = 3.500E3, (4b) co = 3.480E3, (4c) co = 3.465E3, (4d) co = 3.460E3, (4e) co = 
3.450E3, (4f) co = 3.430E3, (4g) w = 3.420E3, (4h) co = 3.400E3. 

A three-period motion is visualized through three points in the Poincar6 sections (Fig- 
ure 4a), by reducing w the period of the motion doubles to 6, 12, 24 (Figures 4b, 4c, and 4d). 
The period-doubling mechanism continues and one get chaotic motions around each point in 
the Poincar6 section, until finally a globally chaotic motion results (Figure 4h). 

Figure 5 shows Poincar6 sections to visualize the period-doubling cascades to chaos due 
to soft-spring characteristics around one of the equilibrium positions (locally chaotic). The 
forcing frequency was changed between (4.0E3-4.3E3) while the forcing amplitude was 
fixed to 0.7: (5a) co = 4.30E3, (5b) w = 4.20E3, (5c) co = 4.15E3, (5d) w = 4.12E3, 
(5e) co = 4.05E3, (5f) co = 4.00E3. 

6.2. CHAOTIC MOTION OF SHALLOW ARCHES 

Finite element simulations of the nonlinear dynamics of simply supported and clamped shallow 
arches are considered in this section. 

The first example is a simply supported shallow arch having its hysteresis region of the 
statically calculated displacement-load diagram around zero, thus a preloading of the arch is 
not needed. Otherwise a preloading of the arch by a constant load lets us reach a region of more 
than one equilibrium position. The main differences to the buckled Euler beam are: (1) the 
potential of the equilibrium positions of the arch is in general not symmetric and includes 
even and odd nonlinearities, and (2) inertial stress distributions are absent. A point excitation 
is assumed to act in the middle of the arch. The model with its corresponding data is illustrated 
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Figure 4. Period-doubling of the three-period motion leading to a global chaotic motion. (a) Three-period motion. 
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(g) Chaos due to the period-doubling. (h) Globally chaotic. 
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c) 
G E O M E T R I C  DATA 
Element-length bl = 17.522408 
Startpoint X0 = 593.27371 

Radius R = 400 

SYSTEM P A R A M E T E R  
Young's Modulus E = 2E7 
Damping d = 6E-3 
Density p = 7.5E-5 
Arch cross-section A = 1 

Excitation freq. w = 1000 

T I ME I N T E G R A T I O N  
Methode Midpoint rule 
Time Increment dt = 1E-5 

B I F U R C A T I O N  P A R A M E T E R  
0 < F ~ PCri~ 

b) 
Load-Displacement-Curve 

P 

Per1 ~ ~ ?  

Pcri, = 616 
Stable Equilibria: 
zz = O, z3 = 2.98 

Unstable Saddle-point: 
z~ = 2.05 

Figure 6. The geometry, the data, and the load-displacement diagram of the simply supported shallow arch. 

in Figure 6. Since the two stable static equilibria z~ and z3 are sinks in the dynamical case 
(i.e. having complex eigenvalues with negative real parts in the linearized motion of the low 
dimensional Galerkin projection), the unstable point z2 is of saddle type; i.e. having stable 
and unstable manifolds where the unstable ones end into the stable equilibria zl and z3 (see 
Figure 6b). A harmonic excitation would convert the stable and unstable equilibrium positions 
into stable and unstable cycles having stable and unstable nonlinear manifolds [2, 3, 24]. A 
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Figure 7. Chaot ic  attractor; Poincar6 sect ion with the corresponding (z - t ) -  and (v - x)-plots .  F = 360, f requency 
= 1000. 

low dimensional Melnikov analysis that finds the touch of the stable and unstable manifolds 
(homoclinic point) causing Horseshoe-like dynamics and chaotic motion (see, e.g., [25]) in 
the case of the shallow arch can be found in [12, 13]. 

Through varying the forcing amplitude of a harmonically point-excitation different kinds of 
nonlinear vibrations (Figure 7, chaotic vibration) can exist for a large scale. Period-doubling 
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Figure 10. The geometry of the clamped shallow arch and its corresponding load-displacement diagram. 
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Figure 11. Modulated motion of the arch (quasi-periodic). 

POINCARE-section 

of odd and even subharmonics are possible. Even the coexistence of two different period- 
doubling cascades which lead to various chaotic motions can be observed; one of them is local 
around one equilibrium position and the other one is global around all equilibria (Figure 8). 

The threshold force of the chaotic motion can be varied with the number of the used modes 
which approximate the motion [5, 18]. Figure 9 shows the influence of the number of the used 
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Chaotic Motion o f  Geometrically Exact  Rods 211 

finite elements in the calculation on the start point of a chaotic motion. For more than ten 
elements the chaotic motion became robust. 

The second example is a clamped shallow arch (Figure 10) which has just one equilibrium 
position. For a specific set of parameters a second mode enters the dynamics, and due to 
resonance and coupling of  modes the resultant motion is a modulated one. (Here quasi-periodic 
motion visualized through a ring in the Poincar6 section; the frequencies are incommensurable 
(Figure 11).) The period-doubling of the second mode is also possible (Figure 12) which may 
end up into a chaotic modulated motion. 

7. Concluding Remarks 

In this paper the nonlinear dynamics and chaotic motion of geometrically exact rods and arches, 
modeled directly as a one-dimensional nonlinear manifold (Cosserat line), are considered. The 
finite element method is applied for the numerical simulation. The configuration space of the 
rod consists of displacements and rotations. A hybrid finite element was developed in order 
to avoid ill-conditioning and locking phenomena. For the time integration the symplectic 
midpoint-rule has been used. 

Basic advantages of the approach are the natural coupling of rotations and the possible 
use of a large number of modes where the influence of the passive modes are considered in 
a natural way. It was shown that the inclusion of higher order modes by the use of sufficient 
number of finite elements does influence the threshold force and the fine structure of the 
chaotic attractor. 

The present approach can be generalized to encompass geometrically exact shells. First 
steps in this direction are made in [16, 17]. The significance of the approach lies in the act 
that the standard Galerkin method, which seems to work well for one-dimensional structures, 
may fail in complicated structures explicitly shells where the passive modes have remarkable 
contribution to shell dynamics and buckling and may influence the post critical behavior of 
the shell as well. 

Here, the time integration scheme becomes of special interest. Recent promising devel- 
opments are the consideration of what is called energy-momentum preserving integration 
schemes [20, 21]. The methods, however, must be modified in order to be applicable to non- 
linear configuration spaces. These aspects and the dynamics of geometrically exact shells are 
addressed in [18] to which the reader is referred. 
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