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Abstract. Nonlinear forced oscillations of a vertical continuous rotor with distributed mass are discussed. The 
restoring force of the rotor has geometric stiffening nonlinearity due to the extension of the rotor center line. 
The possibility of the occurrence of nonlinear forced oscillations at various subcritical speeds and the shapes 
of resonance curves at the major critical speeds and at some subcritical speeds are investigated theoretically. 
Consequently, the following is clarified: (a) the shape of resonance curves at the major critical speed becomes 
a hard spring type, and (b) among various kinds of nonlinear forced oscillations, only some special kinds of 
combination resonances have possibility of occurrence. 
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1. Introduction 

In the analysis of  rotor vibrations, the following two theoretical models are often used. One 
is a concentrated mass system constituted of a disk and a massless shaft and the other is 
a distributed mass system constituted of a rotor with a constant diameter. In the theoretical 
analysis of nonlinear resonances hitherto, the former rotor model has been mainly used. 
However, the latter model is more suitable for the analyses of, for example, a two-pole 
generator rotor system which has almost a constant cross section and a shaft which has many 
similar disks along its axis. In the following, we call the latter model a continuous rotor. 

Bolotin analyzed oscillations in an unsymmetrical continuous rotor with directional dif- 
ference in stiffness, considering nonlinearity due to the geometric stiffening effect [1]. Shaw 
et al. investigated the stability [2, 3] and chaotic motions [4] of a continuous rotor system 
with geometric nonlinearity and internal damping. They obtained theoretically the resonance 
curves of  a hard spring type in the neighborhood of a major critical speed. Nonlinear forced 
oscillations, such as subharmonic resonances and combination resonances, occur when some 
specific relation holds between the rotating speed and the natural frequencies. As a continuous 
rotor has an infinite number of  natural frequencies, many kinds of such nonlinear subresonance 
may occur in addition to the resonance at the major critical speeds. In addition, geometric 
nonlinearity may have its own characteristics different from the clearance type nonlinearity 
discussed by many researchers. 

In this study, we consider a continuous rotor with gyroscopic moment, rotatory inertia 
and geometric nonlinearity. Transverse shear effects are ignored. We analyze nonlinear forced 
oscillations [5] which have the possibility of occurrence in a concentrated mass model with 
quadratic and cubic nonlinearity. Particular attentions are paid to the possibility of occurrence, 
the shape of resonance curves, and the stability of steady-state oscillations. When the rotor is 
slender, the natural frequency of the forward whirling mode is almost equal to the absolute 
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Figure 1. Rotor and coordinates. 

value of that of the backward whirling mode and the relation of one-to-one internal resonance 
holds. However, as we can show that the effect of this internal resonance does not appear in 
such a system with only symmetrical nonlinearity, we will not consider it here. 

These theoretical results are confirmed by experiments. 

2. Equations of Motion and Natural Frequencies 

2.1. EQUATIONS OF MOTION 

Figure 1 shows the theoretical model of an elastic continuous rotor. Both ends of the rotor are 
supported simply. As the rotor is supported vertically, the gravitational force is not considered 
in the analysis. The rectangular coordinate system O-zys is fixed in space and O-{~lS rotates 
at the same angular velocity co as the rotor. The s-axis coincides with the shaft center line. The 
rotor has an unbalance e(e~, %) whose magnitude and angular direction change as a function 
of s. The rotor is supposed to be slender and shear deformation is neglected. The deflections 
in Ox- and Oy-directions at time t are denoted by u(s, t) and v (s, t). The equations of motion 
are given by 

EiO4u .02u 
Os 4 + pA 

pAd2 ( 04u 03v ) Ou 
16 \Os20t a + 2co O ~  +e -~  

21 Os 2 k, OsJ + ~ ds=pAw2(e~c°swt-ensinwt) '  
o 

(1) 
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EA O2v / { (Ou) 2 + (Ov)2~ 
21 082 \ & J  \ & J  J ds=pAc°2(e~sinc°t+e~c°swt)' (2) 

0 

where I is the length of the shaft, d the diameter, A the cross-sectional area, p the density,/i7 
Young's modulus, I the second moment of area and c the external damping coefficient per 
unit length. The linear equations of motion corresponding to equations (1) and (2) are given 
by Eshleman [6] and the nonlinear terms in equations (1) and (2) are in the same form as those 
obtained by Bolotin [1] and Shaw et al. [2]. By introducing an appropriate unbalance e0, we 
adopt the following dimensionless quantities 

u v 8 e~ err 

e0 e0 l ' eO e0 

.t(=,yt), 
7 16/2 ' 

cl47 Ae2 (3) 
- 7r4E I ,  a =  21 

In the following, the bars in the dimensionless quantities are omitted for simplicity. Introducing 
a complex value z = u + iv, we get the equation of motion in the dimensionless form 

1 047-, 02;d N ( 04Z _. 032; "~ 02; 
+ \ ) + 

I 

7r 4 082 ~ -~S ds = w2[e~(s) + ien(s)]e iw, (4) 
0 

where ~, is a complex conjugate of z. 

2.2. NATURAL FREQUENCIES 

Let a natural frequency of the corresponding linear undamped system be p. As the rotor 
becomes slender, the gyroscopic effect is small (n - 0). Under this condition the mode shapes 
can be expressed approximately by 

qOn(8 ) = sin unrcs, (5) 

where vn = n (n = 1,2, . . . ) .  Therefore, the solution of free oscillation is represented by [7] 

Z(S, t) = Z sin vnTrse ipt. (6) 

The natural frequencies p are given by the roots of the frequency equations 

Gn(p) = v 4 + 2~v2wp - (1 + ~v2)p 2 = 0. (7) 

For each value of u,z, this equation has two roots Pfn and Pbn. The positive one Pfn is a 
natural frequency of forward whirling motion and the negative one Pbr~ is that of backward 
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Figure 2. Relation between natural frequencies Pfn, Pb~ and rotating speed co. 

whirling motion. An example of such natural frequencies is shown in Figure 2. In this figure, 
in order to represent the infinite range (0, co) by a finite length a, the scale transformation 

= ax/(a + x) is adopted, where z is the original scale length and ~ is the length in the 
figure [8]. 

2.3. DERIVATION OF ORDINARY DIFFERENTIAL EQUATIONS 

It is assumed that the deflections are developed by the eigenfunctions ~Pn (s) as follows 

o O  OO 

~(~,t) = ~ ~n(t)~n(~), ~(~,t) = ~ ~(t)~(~). (8) 
n=l  n= l  

It is also assumed that the unbalances are developed in the same way as follows 

OO OO 

e¢(s) = ~ a,~pn(s), %(s) = ~ bn~Pn(S). (9) 
n=l  n= l  

Substituting these equations into equation (4) and using the orthogonality of eigenfunctions, 
we get the following nonlinear ordinary differential equations for modal amplitudes u~ and 
V n • 

~4 
j = l  

= co2(an coswt - b~ sinwt), (10) 

oo 2 

(1 + ~.~)~ + c+n - 2 ~  + ~ + ~ v ~  E ~ (~5 + v~) 
j = l  
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= co2(ansincot+bncoscot)  (n = 1 ,2 , . . . ) .  (11) 

In the following analyses, we will solve these equations by the harmonic balance method. 

3. Main Resonances [Pfn] 

In Figure 2, the cross point of the natural frequency curve Pfn and the straight line p = co 
gives the major critical speed cof,~ for the n-th mode. In the following, we adopt the symbol 
[kpfm + Ipfn + ' "  '] (k, 1 = 4-1, 4-2, . . . )  to denote the resonance which occurs at the rotating 
speed where the relation co = kp fm + lpfn +" • " holds. Let the solutions of the main resonances 
Loln] be 

Un = Pcos(cot  + /3), Vn = Psin(cot + /3). (12) 

Substituting these expressions into equations (lO) and (1 l) under the assumption that P and 
/3 change slowly and equating the coefficients of the terms with frequency co in both sides, we 
get 

2coP~ = Gn(co)P + (1/2)oeU4n P3 - co2(an cos/3 + bn sin/3), (13) 

2co /5 = -e,  coP - co 2 ( a n sin/3 - bn cos/3). (14) 

By putting t5 = /) = 0, we get the steady-state solutions P = P0 and/3 = /3o. In this 
paper, the subscript 0 in the variables for amplitudes and phases denotes their steady-state 
solutions. The stability of these steady-state solutions can be determined by investigating 
the eigenvalues of the differential equations which are given by considering small variations 
from these steady-state solutions [9]. Resonance curves are shown in Figure 3. The solid and 
broken lines represent the stable and unstable solutions, respectively. Resonance curves for 
three different diameters are drawn. Due to the stiffening effect of geometric nonlinearity, 
resonance curves become a hard spring type. As the rotor diameter d becomes smaller, the 
resonance curves incline more strongly. This is because the coefficient o~ of the nonlinear 
term in equation (4) is inversely proportional to the double multiplication of d. Here, we must 
remember that this figure does not reveal the difference of inclination correctly because the 
rotating speeds are normalized so as to bring the resonance point the value 1 and this scale 
transformation changes the inclination of these resonance curves. Small circles © in Figure 3 
are the results of simulation calculated by equations (10) and (l 1). The approximate solutions 
agree well with these numerical solutions. 

4. The Subharmonic  Resonances of Order  1/3[3pfn] 

We assume the solutions of the subharmonic resonance of order 1/3 in the neighborhood of 
critical speeds co = 3pfn as follows 

Un = Rcos(cofnt  + 6) + Pcos(cot +/3),  (15) 

vn = R sin(co/nt + 6) + P sin(cot +/3). (16) 

Substituting these solutions into equations (10) and (11) and equating the coefficients of 
the terms with frequency cofr~ in the right-hand and left-hand sides, we get the following 
differential equations for R and 6 

A f n R ~  = R[Cn(cofn) + Olnn(R 2 + 2p2)], (17) 
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Figure 3. Resonance curves of a main resonance ~Ofl), 

A f n R  = -ccofnR, (18) 

where Wfn = (1/3)w, OLnn = ( l/2)aU 4, Afn = 2[(1 + t~u~)cofn --/~/)2CO], As the steady-state 
solution P0 and/3o of the harmonic.component, we adopt the solution of the corresponding 
undamped linear system. If we put R = 3 = 0 in these equations, algebraic equations for the 
steady-state solutions are obtained. In this case, only a trivial solution R0 = 0 is obtained and 
this means that the subharmonic resonance [3pfn] does not occur. 

5. Combination Resonances [2p f m --  Pbn] 

In the neighborhood of the rotating speed coo where the relationship co = 2 p f  m - Pbn (m, n 
are integers) holds, the vibration components whose frequencies are almost equal to P fro and 
Pbn, respectively, may appear predominantly in addition to the harmonic component with the 
frequency w. This oscillation is called a combination resonance or a summed-and-differential 
harmonic oscillation of the type [2pf m - Pbn]. The solutions are expressed as follows 

u m =  R:m cos O:m + P~ cos(cot + tim), (19) 

Vm = R im  sinOym + P m  sin(cot + tim), (20) 

Un = Rbn COS Obn + Pn COS(cot + fin), (21) 

Vn = Rbn sinObn + Pn sin(cot + fin), (22) 

where Ofm and Obn represent the total phase angles corresponding to cofm and cobn, respectively. 
The frequencies of the first terms are given by Ofm or Obn. In the accuracy of the order O(e°), 
these frequencies are given by 

O:m = CO:m = (P:mO/COO)CO, bbn = cobn = (Vbn0/co0)co, (23) 

w h e r e  P f m O  and PbnO are the values of P fro and Pbn at the rotating speed w0. The frequencies 
given by equations (23) are known. 



Vibrations of a Continuous Rotor 113 

5.1. CASE OF m = n 

This is the case that the order of forward whirling mode is the same as that of the backward 
whirling mode. We assume the solutions in the accuracy of order O(e) as follows 

Un = R f n  cos (cOfn t  + (~fn) ~- Rbn COS(a)bnt -~ ~bn) -~- Pn cos(wt + fin), (24) 

v n =- R fn  sin(wfnt + ~fn) + Rbn sin(wbnt + (~bn) -[- Pn sin(cot + f lu) ,  (25) 

where O fn = CO fnt  + ~ fn and Obn = CObnt + (~bn. The following relation holds in the accuracy 
of order O(e), 

20fn - Obn = 2(Win + ~fn) - (Wbn + ~bn) = w. (26) 

Substituting equations (24) and (25) into equations (10) and (11) and equating the coefficients 
of the terms with frequency Win or Wbn in the right-hand and left-hand sides, we get 

AynRfn~yn = RynGn(cOfn) + C~nn(R~n + 2R2n + 2p20)RIn 

Jr 2OlnnRfnRbnPno c o s ( 2 ~ f n  - (~bn -- t~nO), (27) 

A f ~ R f n  -- -ca) fnRf~ + 2o~nnRfnRbnPno sin(2~fn - 3bn -- ~3nO), (28) 

AbnRbn~bn = RbnGn(Wbn) + ~nn(ZR2In + R~n + 2p2no)Rbn 

+ OlnnR2fnPnO COS(2~fn - -  ~bn - - /~n0) ,  (29) 

Ab~-~b~ = --CWb~Rbn -- o~RZfuPnO sin(26fn - 6bn --/3~0), (30) 

where Afn = 2[(1 + ~U2n)Wfn - ~uZw], Abn = 2[(1 + nuZ)~bn -- ~uZw], and Pno and/3~o 
are the steady-state solutions in the accuracy of order.O(e °) for Pn and fin, respectively. The 
equations obtained by putting/~f,~ = Rbn = ~fn = ~bn =- 0 in equations (27)-(30) give the 
following two kinds of steady-state solutions Rf~o and Rb~o. 

(i) The case of Rfno = -RbnO = 0 (trivial solution) 

One is a trivial solution -Rfn0 = Rbno = 0. The stability of this solution can be investigated if 
equations (27)-(30) are expressed by the following new variables [9] 

Urn = Rfn  COS (~fn, Vfn -= Rfn  sin (~fn, 

Ubn = Rbn COS (~bn, Vbn =- Rbn sin dbn. (31) 

It is proved that this trivial solution is stable at any rotating speed. 

(ii) The case of  RfnO 7 ~ 0 and RbnO 7 ~ 0 

In this case, steady-state solutions exist even i f  ~fn and  ~bn are not zero. We know from 

equations (23) and (26) that the condition 2~f~ - ~bn ---- 0 is satisfied. Therefore, we introduce 
a new variable ¢ = 2~fn - ~bn and express equations (27)-(30) as follows: 

f~fn : [--CO)fnRfn Jr- 2°~nnRfnRbnPno sin(¢ - flnO)]/Afn, (32) 

J:~bn = [--CCObnRbn -- ~nnR2InPno sin(¢ - flnO)]/Abn, (33) 
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Figure  4. Resonance curves of a combination r e s o n a n c e  [ 2 p f l  - -  pbl]. 

(b = 2[Gn(cofn) + O~nn(R2fn + 2R~n + 2p2o) + 2annRbnPnOCOS(¢ - ~nO)]/Afn 

- [Cn(cobn) + o~nn(2R}n + R~n + 2p2o) 

+ O~nn(R2fn/_Rbn)PnO cos(¢ -- ~nO)]/Abn. (34) 

The steady-state solutions Rfn  = RfnO, Rbn = RbnO and ¢ = ¢0 are obtained by putting 

1)tfn = Rbn = ¢ = 0 in these equations. 
A result is shown in Figure 4. The trivial solution Rflo = Rbto = 0 is stable at any 

rotating speed. The resonance curves of the nontrivial solutions are a hard spring type and 
located apart from the trivial solution. It depends on the initial condition which one of these 
resonance curves appears. As the nonlinear coefficient a becomes large, the resonance curves 
incline more strongly. As the external damping coefficient e becomes large, the lower end of 
the resonance curve withdraws upward. 

The symbols © in Figure 4 represent results of numerical integration of equations (10) 
and (11), and the theoretical result agrees well with this numerical result. Figure 5 shows time 
histories obtained by numerical simulations and its spectrum distribution. 

5 . 2 .  C A S E  OF m • n 

In this case, only a trivial solution R fro 0 = RbnO = 0 is obtained. This means that the 
combination resonance [2p fro - Pbn]  whose forward and backward mode orders are different 
does not occur. 

6.  Combination Resonances ~ f l  ~- P fro -- Pbn] 

In the neighborhood of the rotating speed w = Pfz + Pyre - Pbn, the combination resonance 
~Ofl q- Pfm - -  Pbn]  may occur. In this case, the frequencies of vibration components are almost 
equal to Pft, P fro and Pbn, respectively. Similar to equations (23) in the previous section, 
we represent these frequencies by coil, cofm and cobn, in the accuracy of O(e°). In these 
combination resonances, there exist the following two cases. 
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6.1. CASE OF 1 = • OR m = 

Here, we suppose that the relation I = n holds. The solutions in the accuracy of O(e) are 
written as follows 

um = R:m cos(co:rot + d:ra) + Pm cos(cot + tim), (35) 

Vm = R fm  sin(wfmt + (~fm) Jr- Pm sin(cot +/3m), (36) 

Un ~- R S n  COS(COfnt -'I- 6Sn) -~- Rbn COS(cobnt ~- (~bn) -~- Pn cos(cot +/3,n), (37 )  

Vn = R/n  sin(cofnt + 65n) + t~bn sin(aJbn~ @ (~bn) -t- Pn sin(cot + fin)- (38) 

The resonance curves are obtained in the same way as Section 5.1. In the analysis, the variable 
~) : (~frn -v (~fn -- ~bn is adopted fo r  the  phase angle. 

By the approximate analysis for the steady-state solutions, a trivial solution R f m  0 = 
RfnO = RbnO = 0 and nontrivial solutions are obtained. An example of resonance curves is 
shown in Figure 6. 
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Table 1. Summary of the theoretical analysis. 

Kinds Linear Nonlinear 

Main resonance p],~ Occur Occur 

2 p f n  × * 

Subharmonic -2pb~ x 
resonance 3py~ x 

-3pbn  x 

Combination 
resonance 

P f m  + P i n  × 

p f r a  - -  Pbn  × 

- - P b m  - -  P b n  × 

2py,~ + P f n  × 

2p y ,~ - Pbn Occur** 
P y r e  - -  2 p b n  × 

-- 2pbm -- Pbn x 

P.f t  + P f ro  + p . f n  × 

P f l  + P f ro  - -  P b n  Occur*** 

P f l  - -  P b m  - -  P b n  X 

- -Pbt  - -  P b m  - -  P b n  X 

* Symbol x means a case that only the steady-state solution with 
zero-amplitude exists, in other words, this kind of oscillation does 
not occur. 
**This kind of oscillation occurs when m = n. 
***This kind of oscillation occurs when I = n or m = n. 

6.2. CASE OF l ¢ n AND m 7~ n 

In this case, there exists only a trivial solution R y t o  = -Rim0 = -RbnO = 0. This means that 

this kind of  combinat ion resonances does not occur. 

7. Summary of Theoretical Analysis of Various Kinds of Nonlinear Resonances 

We per formed the similar analyses of  the nonlinear forced oscillations which have possibili ty 
to occur  in a concentrated mass sys tem with quadratic and cubic nonlinearities [5]. The results 

are summar ized  in Table 1. F rom this table we know the following characteristics: 

(a) The main resonances at the major  critical speeds appear  in both linear and nonlinear 

systems.  

(b) Subharmonic  resonances do not occur. 
(c) A m o n g  various kinds of  combinat ion resonances, only two kinds of  them occur. 

8. Experiments 

8.1. EXPERIMENTAL SET-UP 

Figure 7 shows the experimental  set-up. A uniform elastic rotor with circular cross section 
is supported vertically. Experiments  were performed for two different rotors. They have the 
same length I = 800 m m  (this length is the distance between the centers o f  the upper  and the 
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set-up: (a) rotor system and (b) details of the bearing and the pedestal. 

lower bearings) but the different diameters d = 10 mm and 4 ram. Both ends of the shaft are 
supported simply by double row self-aligning ball bearings (#1200). As shown in Figure 7(b), 
the lower bearing is settled in the bearing box which is movable in the vertical direction in the 
bearing pedestal. The initial tension in the rotor is adjusted by changing the position of this 
bearing box. Geometric nonlinearity appeared in the restoring forces of the rotor due to the 
elongation of the shaft center line. 

8.2. EXPERIMENTAL RESULTS 

Resonance curves at the major critical speed are shown in Figure 8. Figures 8(a) and (b) are 
the cases of the rotors whose diameters are d = 10 mm and 4 mm, respectively. As the rotor 
becomes more slender, the inclination of the resonance curve becomes more apparent. We can 
find clearly a hysteresis phenomenon and jump phenomena in Figure 8(b). 

Experimental results on the combination resonance [2pfl - Pbt] obtained by the rotor of 
d = 4 rnm are shown in Figure 9. Figure 9(a) shows resonance curves for the amplitudes 
R f l  and Rbl and Figure 9(b) shows the frequencies 0fl  and 0bt and the rotating speed w. 
The data Oft and 0bl are almost on the lines passing through the origin and the relationship 
2@1 -- 0bl = CO holds. 

9. Comparison with the Results of Concentrated Mass Systems 

In the previous paper [5], nonlinear resonances in a concentrated mass rotor system where a 
disc was mounted on a massless elastic shaft were investigated. The system has four degrees 
of freedom and natural frequencies are denoted by Pf l ,  P f2, Pbl, Pb2 (P f2 > P f l  > Pbl > Pb2). 
The following results were obtained [5]. 

(a) The nonlinear spring characteristics represented by the quadratic and cubic nonlinear- 
ities are divided into the isotropic component N(0)  and the anisotropic components N(1), 
N(2), N(3) and N(4). The planar distribution of the potential energy of the component N(0) 
does not depend on the direction. However, those of the components N(1), N(2), N(3) and 
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Figure 8. Resonance  curves of  a main resonance ~ofl] (experimental results): (a) case of  d = 10 m m  and (b) case 
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N(4) depend on the direction and its magnitude changes 1, 2, 3 and 4 times periodically, 
respectively, when the direction changes from 0 to 27r with keeping the magnitude of the 
deflection and the inclination constant. 

(b) The kinds of nonlinear resonance occurring in a rotor system depend on the kinds of 
these nonlinear components in the system. 

(c) If only the isotropic component N(0) exists, the combination resonances [2pym -Pbn] 
and [Pyre + Pfn - Pbn] (m, n = 1,2) have a possibility to occur and other kinds of nonlinear 
resonances do not occur. 

The result obtained in this paper is qualitatively the same as that obtained in a concentrat- 
ed mass system with only the isotropic nonlinear component N(0). Remembering that the 
geometric nonlinearity treated in this paper is isotropic, this conclusion is understood. 

10. Conclusions 

Concerning nonlinear resonances of a continuous rotor with geometric nonlinearity, the fol- 
lowing results were obtained. 

(1) If the movement of the bearings in the direction along the bearing center line is 
constrained, the geometric nonlinearity appears in the restoring force of the rotor. As the rotor 
becomes more slender, this geometric nonlinearity becomes apparent and, as a result, the 
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resonance curves at the major critical speeds and those of  combination resonances are a hard 
spring type. These characteristics are similar to the case of  a nonrotating beam. 

(2) Combination resonances [2pfn - Pbn] and [P fro + P f n  - Pbn] occur. 
(3) Subharmonic resonances [2pfn], [--2pbn], [3pfn], [--3pbn], and combination resonances 

[p:m + p:n], [p:m - pbn], [ -Pb~ -- Pbn] [2p:~ + P:n], [2p:m - Pbn('~ ¢ '~)], [P:,~ -- 2pbn], 
[--2pbm -- Pbn], [pfl + P y r e  + Pfn] ,  [Pfl + Pfra -- Pbn(l  ~£ n , m  ~ n)], [Pit -- Pbm -- Pbn] and 
[--Pbl -- Pbm -- Pbn] do not appear. 

(4) In experiments, resonance curves at the major critical speeds were a hard spring type. 
The inclination of  this resonance curve of  a rotor with 4 mm diameter was more apparent 
than that with 10 mm diameter. Among various combination resonances due to symmetrical 
nonlinearity, only the resonance [2pfl  - Pbl] was observed. 
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