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Abstract. This paper investigates pitch motion and in orbital plane elastic vibration of a spacecraft with a 
flexible beam type appendage undergoing prescribed slew maneuver. The governing equations are transformed 
into a standard quasi-Iinear form, and then solved by Butenin's variation of parameters approach, Validity of the 
analytical solutions is assessed over a range of system parameters and initial conditions by comparing them with 
the results of numerical integration. The results show that they are very good approximations and provide extensive 
insight into the dynamical response of the system. 
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1. I n t r o d u c t i o n  

During various spacecraft missions, slew maneuvers are involved for reorienting directional 
antennas, solar panels for optimum production of power, telescopes aiming at distant galaxies, 
and other scientific instruments. Manipulators or robots mounted on the spacecraft have 
slew maneuvers, too. Slewing motion is likely to cause elastic vibrations and to disturb 
librational motion. Therefore the dynamics of libration and elastic vibration during slewing of 
appendages have received considerable attention. Turner and Junkins studied the large angle, 
single axis rotational maneuver of flexible spacecraft [1]. Mah and Modi [2] investigated the 
dynamical response during slewing and translational maneuvers of the Space Station based 
MRMS. Bainum and Li, studied the rapid in-plane maneuver of the flexible orbiting SCOLE 
[3J. Meirovitch and associates, have studied the retarget maneuver and control of flexible 
spacecraft [4-8]. 

As can be expected, the governing equations of such complex systems are nonautonomous, 
highly nonlinear and coupled and they do not admit of any known closed form solution. They 
are thus generally solved numerically. Approximate analytical solutions, if able to capture the 
essence of the problem, often provide better physical appreciation and insight into the system 
behavior. It can thus complement numerical analysis of complex problems in a useful way. 
To that end, Modi et  al. have studied dynamics of spacecraft with two beam-type appendages 
[9, 10] using the K-B [11] and Butenin's method [12]. Modi and Misra [13] have presented 
an approximate analytical solution for a tethered satellite system during deployment and 
retrieval. Kalaycioglu and Misra [ 14] obtained the approximate analytical solution of flexible 
appendages during deployment too. 
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Fig. 1. A satellite with a beam-type slewing appendage undergoing planar motion. 

This paper investigates dynamics of spacecraft wi'~h a beam-type appendage free to undergo 
librational and vibrational motions in the orbital plane during a prescribed slew maneuver. 
The governing equations are first transformed to conform to the standard nonlinear form and 
then solved by Butenin's variation of parameters method. Validity of the analytical solutions 
is assessed over a range of system parameters and initial conditions by comparing it with 
the results obtained by numerical integration of the exact equations of motion and the results 
show good correlation. 

2. System Description 

A spacecraft consisting of a tri-axial rigid central body and a beam-type appendage having 
prescribed slewing maneuver, as shown in Figure 1, is investigated. It has the following 
features: 

• A circular orbit around the earth. 
• The mass and inertia of the beam is much smaller than that of the central body. 
• The beam is attached to one of the principal axes at the mass centre of the central body 

by a pin hinge permitting prescribed slew maneuver about it. The beam is much wider 
in the pin direction than in the direction normal to the pin, thus the elastic vibration is 
likely to occur in the same plane of the slew. 

• The scope of this investigation includes pitch motion and elastic vibration of the beam 
in the orbital plane. Yaw and roll arc assumed to be quiescent initially. 

The inertial coordinate system O - Xo, Iio, Zo has its origin at the earth centre. An orbiting 
frame C - X,  Y, Z is located at the instantaneous centre of mass of the system with the X-axis 
along the local vertical, the Y-axis along the local horizontal, and the Z-axis perpendicular to 
the orbital plane. There are also body fixed frames oi - xi, Yi, zi (i = 0, 1) with their origins 
at the center of mass of the central body and at the pin position for the appendage. At the 
instantaneous mass centre of the spacecraft, 'system frame' C - zc, yc, z~ is located with x~, 
yc, z~ parallel to xo, Yo and Zo respectively. 

The librational motion of the spacecraft is described by a set of three orientation angles A, 
~b, % which defines motion of the system frame C - xc, Yc, zc w.r.t, the orbital frame C - X, 
Y, Z. Modified Euler angles (Bryant Angles), as shown in Figure 2, are used in this study. 
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Fig. 2. Modified Euler angles (Bryant Angles). 

Since only the planar motion, i.e. the motion of the spacecraft occurring in the orbital plane, is 
investigated, A and ~ as well as their derivatives are assumed to be zero; therefore ~p is about 
the orbit normal, and represents the pitch. 

As for the elastic vibration of the beam, only the transverse vibration is considered, the 
longitudinal and torsional vibrations as well as foreshortening effects are purposely neglected. 
Further complication of the problem, it is felt, will mask appreciation of the influence of slew 
maneuver on pitch and elastic vibration which is the main objective of this investigation. 

The vibratory displacement of a mass element on the beam is represented by admissible 
modal functions associated with time-varying generalized coordinates, 

o o  

= (1) 
j = l  

Since the mass of the central body is much larger than that of the appendage, it is reasonable 
to use the modes of a cantilever beam to represent the deformation of the appendage. The 
vibrational response in the second mode is at least two orders of magnitude smaller than that 
of the fundamental mode; for the same reason as mentioned above, only the first mode of a 
cantilever beam is taken: 

~l (~)  = cosh(Al~) - cos(Al~) - a~{sinh(A~) - sin(Al~)} (0 < ~ _< 1) (2) 

with Aj = 1.8751 ~r I = 0.7341. 

3. The Equations of Motion 

The governing equations are derived from the Lagrange equation: 

d OT OT OV 
+ = Qi ,  (3) 

dt 0(t.i Oq~ Oq~ 

where T and V are the kinetic and potential energy respectively; qi represents a generalized 
coordinate with qx = A, q2 = eft, q3 = ~,  and q4 = u(t), with u(t) representing the transverse 
displacement of the beam. Qi is the corresponding generalized force. 
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The kinetic energy of the system takes the following form: 

T = 1 M- J.(a  P .L+ + 

+ (Qk + &o) • (~ + ~ r l  " r i  dml  - M/~o  • o , (4) 

where M is the total mass of the spacecraft; J ,  its instantaneous inertia tensor and G its 
relative angular momentum w.r.t, the system frame C - xe, Ye, Zc due to slew and transverse 
vibration of the beam. f~k is the angular velocity of the orbital motion of the spacecraft; and 
&o, the angular velocity of libration of the central body. The notation (o) implies time rate 
of change w.r.t, the system frame. Noting that/~o is the vector from the mass center of the 

O 

spacecraft to that of the central body, it is understandable that Ro describes movement of the 
center of mass of the spacecraft due to its deformation. 

In expression (4), the first term represents the kinetic energy contribution due to motion of 
the spacecraft as a point mass. The second term is the kinetic energy of the rotational motion 
of the spacecraft as a rigid body about its mass center C. The last term is that due to relative 
motions, including slew and vibration. The third term represents the kinetic energy due to 
coupling between the rotational motion and relative motions. 

The potential energy of the system has two contributions: gravitational potential energy; 
and elastic strain energy. The gravitational potential energy is given by: 

K M  2~3c (tr. J -3 i  • ~ • i), (5) 
g9-- Pc 

where ' K '  is the gravitational constant of the earth; ~, the unit vector along tic. 
The strain energy of transverse vibration of a beam is: 

vs dz, (6) -7 t, Oz2 ) t, oz2 ) 

where Elxx ,  ELvv are the bending rigidity of the beam about the y and x axis, respectively. 
For the particular case under consideration, the strain energy takes the form 

Vs = ~ ku 2, (7) 

with 

L 
1 

(8) 

and u is the ratio of half the tip deflection over the length of the beam. 
Using Lagrange's equation and differentiating the kinetic energy and potential energy, and 

converting the independent variable from time to the true anomaly according to the following 
relations: 

d d d2 = f~2 d2 
dt - 12 dO ; dt ~ dO 2' (9) 
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the governing equations during slew are obtained as follows: 

A' = 0 (10) 

qS' = 0 (11) 

-2 -~  ( l+e~cos~-{~91,~s in~)  W"+ V ~z/32+ ] -+e  ~L .Jo3+{e3 e2+ l + e  

{ 1 (/3'~t sin c~ - c°s a )}  a"  + eel {3{t 2(1 + e) 

eet {/3, s i n a u ' + ( / 3 1 c o s a u + s i n o e ) a ' }  ( l + g / +  @ )  
l + e  

-~-23 J02 - J01 q- -i-77e (1 + {zcosa - {#3, u sin a )  

+ {e2({3 cos 2c~ - {4 sin 2au) } sin 2~b 

+~e{z (/31ucosa+sina)+el({3sin2c~+eaCOS2aU) cos2~b = 0 (12) 

" fl--L-~ since{1.5 + c~' + c,'~,' + 2zb' + ~//2} Jr- el640~ Jr- T ~- e 

3 {  /3, sin a }  cos 2~/~ + ~ { te4s in2a+  1 + e  

3 {  /31 cosa}  sin2~b = 0, (13) + ~ ele4cos2oe+ 1 +---7 

where e = ml/mo; el = IlL; rv = ~x/-@ra,; Joi = Joi/(moL2), i = 1,2,3; and 

1 e e~l 
{3 = ~ -- 4(1 + e ) '  {4 ~--- /32 2( l  -Jr- ¢) 

/31 and/32 are integrals of the shape function of equation (2): 

/0' /0' /3l = ~1(~) d~ = 0.7830 /32 = {~l({)  d~ = 0.5688. 

Equations (10) and (11 ) show that yaw and roll are not excited by pitch and elastic vibration 
in the orbital plane if they are initially quiescent. 

After slewing, since a is fixed at a f, ee' and a"  vanish, and the equations become simpler: 

~* - - - / 3 1  s ina fu ' ( l  + '~/,') +-~- elfl2+ l + {  l + e  

+ ~ o% - 30, + ; 7 7 ( 1  + e, c o s ~  - ~,/3~Lsin~i) 

+ ee~(e.~ cos 2af  - {4 sin2afu)} sin 2V, 

/ + -~ee, - f -~e ( f lucosa f  + sinoef) + el(e3 s in2af  + ~4cos2oef~z) cos2g, = 0 (14) 
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l+e/ +g/1 
+ el 2 + /31 s i n a f { 1 . 5 + 2 ~  1+~b ~2} 

-~%u 1 + e 

3 {  /31 sin o~f } cos 2~b + ~ ele4sin2oef + 1 + e 

3 {  /3, cos a f  } sin 2~tp = 0. + ~ ele4 cos 2ctf + 1 + e (15) 

4. Transformation of Equations 

Equations (12-15) are non-autonomous, non-linear and coupled. The variation of parameter 
method is intended for differential equations with small nonlinearities and almost-constant 
coefficients, i.e.: 

1. The dependent variables and their first derivatives are small; 
2. The coefficients in the equations are either constants or vary slowly over a small range. 

The source of the non-autonomous coefficients and terms in the equations of motion is the 
slew maneuver. The time history of the slew maneuver is taken to be sinusoidal, so that both 
the angular velocity and the angular acceleration vanish at the beginning and the end of the 
slew maneuver: 

a = a o + ~  0 - ~ s i n \ ~ - - ~  j j .  (16) 

It can be seen by examining equations (12, 13) that, condition (2) is satisfied if the slewing 
range A a  and the slewing 'time' A0 are not large, in this investigation, Act is taken to be 
30 °, and A0 is in the interval of 50 - 10 °. 

To satisfy the first condition, the dependent variables should vary around 'zero' equilibria. 
The equilibrium of ~b may not be zero because of the orientation change of the beam with 
respect to the central body, Hence it is assumed that: ~b -- ~b0 + ~, where ~b0 is a constant angle 
representing the equilibrium and ~ is the new variable replacing ~b. To determine ~0 during 
slewing, set the 'average gravitational moment' (with the small terms having 'u '  ignored) to 
be zero. Then 

1-~ sl-i-n~ + ee~e3sin 2a 
= (17) tan 2Wo L2 - JOl + + + .2e3cos2 ' 

where the overline represents average value of the function beneath it during slewing and are 
calculated by: 

1 
sinc~ = Aa{COSao-COSaf}  (18) 

1 
cos a -- A a  {sin a f  - sin s0}. (19) 

To determine ~b0 after slewing, formula (17) is still applicable, only that: 

sin c~ = sin ay, cos a = cos c~f. (20) 
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Butenin's Method deals with equations of form: 

C21 C22 u tt -~- C23 C24 u 

-- -- •i [ Dli] sin(wi0 + 7i) + [ f(O'~'~//'~/r'u'u') J 
Dzi ~ [ 9(0, ~, @,u, u') ' (21) 

In equation (21), all the entries in the inertia matrix and stiffness matrix are constants. The 
frequency wi, the initial phase 7/and amplitude Dji, D2i of forcing terms are constants too. 
The functions f and g have small values. To solve equations (12-15), the first step is to 
transform them into the form of equation (21). 

Equations (l 2) and (13) are transformed first. 
The entries of the inertia matrix are easy to obtain except for C~1. To get a close value for 

Clt, the term involving 'u' in the coefficient of ~b"(= ~") is put into the function f;  and the 
average value of cos c~ is taken. Therefore, 

E 
el ,  = J03 + EE~E~ + i - ~  (1 + E,c-VCa) 

EEl { ill(1 --EQ)} 
G2 = T ct92+ 1~-~ 

C21 - I + E  

C22 • ~E/ 1 - 1 +  . 

Entries for the stiffness matrix are included in the terms involving sin 2~b and cos 2g,, 
except C24. Using the following formulas: 

sin 2~b = sin 2gJ0 cos 2~ + cos 2~b0 sin 2~ 

cos 2~, = cos 2~b0 cos 2~ - sin 2~b 0 sin 2~ (23) 

and 

1 - 2~; 2 sin2~ ~ 2~ - ~ 3  (24) cos2~ 

terms involving sin 2~b and cos 2~/, in equation (12) become: 

3 J7o2 - ~Jol + sin 2~o + sin(2Oo + ct) 

ee2e3 sin 2(0o + ~)} (l - 2~ 2) + 

3 f EEl ~ / 
+ 2 / ] - ~ e  ~'1 cos(2~b0 + ct) + Ee2e4 cos 2(~bo + oe), u(1 - 2~ 2) 

+ 3 Jo, - o~03 + F 7 7  cos 2 ,0  + F 7 7  c o s ~ v 0  + ~) 

- 3 ~--~e~,l sin(2~/,o + ct) + Ee2e4 sin 2(g'o + o~) ~u. (25) 
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Terms involving sin 2~b and cos 2~b in equation (13) become: 

3 {  /51 sin(2~bo+a)+eleasin2(~bo+a)}(l_2(b2) 

+ 3 { l__~e cos(2~b0 + ce)+ ege4 cos 2(!bo + c~, } ( ~ _  ~ 3 )  . (26, 

Thus, the stiffness constants Cl3, C14, and C23 are obtained as the coefficients of ~ and u 
in equations (25) and (26). It is obtained that: 

Ci3 = 3 Jo2 - .Jol + ~ cos2~'o + "i-$-7~cos(2% + a) + ee2e3cos2(% + o~) 

3{ .FT 7; ,cos(2Wo } C14 = ~ + c~) + ee2eacos 2(~b0 + a) 

C23 = 3 { 1-~ecos(2ga0 + a) + ere, cos 2(zb0 + a)  } 

C24 = 0.5e17 "2. (27) 

For other parts in expressions (25), (26) mad what is left in equations (12) and (13), terms 
without dependent variables are treated as forcing terms; oonlinear terms of ~b and u as well 
as terms involving V~' and u' are included in the functions f and 9. 

Now determining forcing components. From equation (16), 

a = A - - ~  1 - c o s  0 c~ - A0  ~ s i n  0 . (28) 

Since A0/2rr << 1, a ,.~ a0 + (Ac~/A0)0; thus 

sin a ~ sin 0 + ao cos a ~ cos 0 + c~0 . (29) 

Collecting and arranging forcing terms in equations (12) and (13) and applying trigono- 
metric formulas, seven forcing components are identified. Their frequencies, initial phases 
and amplitudes are: 

w3 = 0 73 = 2g'o 
034 : £XOA---'a~ 74 : Ct0 

o05 = ~00 75 ---- 0 
W6 = ~Aa 76 = 2gaO + aO 

607 ---- 2~24:X+OAa 77 = 2(~bO -4- CZO) 

w'9 -- A0 "g9 = --c~O 

(30) 

DI3 --- - 3  2 - 0 7 0 1 + ~  D23 = 0 

"-m-A'~('~3-A~ ---& 20A+ A~ ) Dla = l+~ X-g \- - 4 Ao ] D2,¢ = 1+~ X-g 
__2_ 2wAa 

D15 = - e e  l e3 ~ D25 ----- - e l e 4  Ao 2 
3 ,ee I D26 = 3 ~1 016 : --g l+e - - 2  l+e 

D I 7  : --23-eg/293 D27 = - -3£ le4  

DI8 = - l+e/x---g ~ - ~ + ~  D28 = ~I+EA~ 

( ) ! eft_ Aa t + Aa ~ D29 = - -  f f  ] -- A ~  Pi9 : 2 t+e A--g t,o ~o I+,Sg" 

(31) 
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The frequencies Aa/AO and 27r/A0 are attributed to the orientation change of the beam 
w.r.t, the central body and the inertia force respectively, caused by the slew maneuver. Other 
frequencies are combinations of them. 

Finally, f(O, ~, ~//, ~/,", u, u') and g(O, ~/~, ~//, u, u') are: 

eel sin(2~/,o+Oe)+Ee~e4sin2(¢o+O')}@u : 3 i--@--TE/~1 

+ 3 g ,  - J0~ + ]--77 sin 2¢0 + 1 +e  

+ 3 ~ ] -77/~  cos(2~o + ~) + ~ cos2(,~,o + ~) ~,'~ 

{ (  ( ) fez cos(2~bo+O~,+ee2e~cos2(~o+Oj}.~3 +2  g 2 - J o 1 + ~  cos 24,o+ l + e  

+ e 2 sin oeoe'~' + 1--7-Teet/3, 1 + T cos act' + ~ sin + sin oe~" 

, ( o , )  , 

+ i 7 7 . , k  1 + 5 + 4'' sin~,' + i-TT,~/~ cos~.'V3',~ (32) 

31 sin(2~bo + a) + (l~54 sin 2(¢0 + o 0 } z/;2 = 3  ~ 7  e 

{ ~I cos(etbo+a)+e,c4cos2(~o+C~)}~3 + 2  I+E  

/31 sin a(2~/';' + a'~/,' + 2}'2). 
l + e  

By the same method, equations (14) and (15) for motion after slewing are transformed 
into: 

] ic* [ i t .  C~l C12 [ 72@.J f -l- 13 
C~I C~2 C~3 24 It 

f*(o,¢,¢,,,o",~,~') ] g*( O, ~,, ~/,', u, ,~') 

where 

(34) 

C~i = 

Oh= 

C{3= 

C~4: 

C~3= 

c5 

D~3 

(33) 

c 
.,%3 + - 3 4  + F77{1  + ~,cos~:} 

C12 C~I --- C2! C2" 2 = C22 (35) 

3 Jo2-gOl+i-~ cos2¢o+i--~cos~vo+~)+~re3cos2(~o+~I) 

~ . ~ q  cos(2¢0 + o~f)+ ee~e4 cos 2(~bo + o~y) (36) 

{ fll cos(2~/,o+Oq)+ele4cos2(~bo+Ozf)} 3 i 7 -  7 
= 0.5elf 2 

_ 3{  /5, sin(2~b0+c~f)+ele4sin2(~,0+af)} - - ~  39j 
2(1 + E) sin af (37) 
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+3 { eel 
~ / ~ 1 S ~ n ( 2 / ~ O  + OZf) + ee2e4 sin 2(~¢o + c~f)} @u 

f ~el ~ } + 3/. F T ~ ,  cos(e~o + as) + ,4e4cosa(~o + ~f) ~2~ 

eel cos(2~bo + o~f) + ee2e3 cos2(~o + o~/)} ~3 
+ i - ~  

E @¢%t 

3T77 
{ /31 cos(2~bo+o@+ete4cos2(~bo+Ozy)}(b 3 +2 i-77 

_/3____!_.1 sinc~r(2~, +~,2). 
l + e  

(38) 

(39) 

5. Solution of Equations of Motion 

The equations of motion during slewing are solved first. To do so, first solve the linearized 
equation with f and 9 ignored. The solution is: 

9 [ Ali ] sin(wiO + 7i), (40) 
i=3 3 

where 

COp = 

0.) v = 

A l i  = 

A2i = 

1 {C11C24 --{- C13C22 _ C12C23 _ C14C21 
2(C11C22 - C12C21) 

- {(C12C23 + C 1 4 C 2 1  - C l l C 2 4  - C13C22) 2 

- 4(C,, (222 - C12C2, )(C,3C24 - 014(723 ) }0.5 } }1/2 

l {CllC24 -t- C13C22 - C12C23 - C14C21 
2(Cll  C22 - C12C21 ) 

-~- {(C12C23 -~ C14C21 -- C11C24 - C13C22) 2 

- 4(C1, C22 - C,zC2, )(C,3C:z4 - C14C23 )} 0.5 } }l/2 

014 -- ~v2C12 C23 -- 032(721 
C13 - ~v2Cl l  c~v - - C 2 4  - @ C 2 2  

~-~/det [ Dli C'14 --  W ? C l 2  ] 
• [D2i C24 aj2C22j 

~_det[C13-W2Cll Dli] 
i C23 (..02 C21 D2i 

(41) 

(42) 

(43) 

(44) 

(45) 
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with 

[ C 1 3 -  cu2Cll C14 -- CU2C12 ] 
Ai = det C23 CU]C21 C24 co]C22 ' 

As to the nonlinear system (21), it is assumed that the forced vibration remains the same, 
while the amplitudes and phases of free vibrations vary slowly with 0. 

It is also assumed that ~0' and u' take the form of the amplitudes and phases being constants. 
This assumption produces two equations for Ap(O), A~(O) and 7~(0), 7~v(0). Substituting 
expression (40) into equation (21) produces another two equations. These four algebraic 
linear equations are written as: 

sin rl ~p sin r2 c~p cos r2 
~v sin rt sin r2 cos r2 
CUp COS T 1 cuvOgp COS T 2 --CUvO~p sin T 2 

CdpOg v COS T 1 --CUr sin r2 

t 

Cl  IC22 - 612C21 

COS T I 

og v COS T l 

-cup sin rl 
--CUpO~ v sin T 1 c0 v COS T 2 

0 
0 

C 2 2 f  - Cl2g  

C119 - C21f 

,4;(0) 
A,,(o)'r;(O) 
A'~(O) 
d~(O)7{,(O) 

(46) 

with rl = copO + %(0); and r2 = cur0 + %(0).  
Solving equation (46); 

1 
A'p(O) - /ka,,~{(C,22 + ctpC21)f - (C12 -1- ~pCll)g} cos 7-1 

1 
Ap(O)7~p(O) - Acu~p{(C,22+oepC21)f - ( C l a + C t p C l l ) 9 } s i n r  1 

1 
<(o) = + c~vc22)f - (Cll + ctvcle)g}cosr2 

1 
Av(O)~/'v(O ) acuv {(C21 +ctvC22)f - (Cll +Q,  Cl2)g}sinr2 

with 

(47) 

A = (C11C22 - C12C2l)(1 - O:pOZv). (48) 

Since the rates of change of Ap(O), A o (0), ~/p(O) and %(0) are small, the average values 
of the right sides of expressions (47) are taken. Calculating the following average values by 
formulas (18), (19) and trigonometric identities: 

FI = I__ f~xe f sinrl  dO F2 = A0 
F3 - I f~XO f sin rz dO F4 = 

G1 = ~ fo zx°gsinrl dO G2 = 
G3 = ~o Jo A°gsinr2dO G4 = 

1 xa f~o f cos q dO 

~o fo zx° f cos r:  dO 
fo ~° g c o s  ~-l dO 

1 fo~O S-O g cos r2 dO 

(49) 

then 

1 

Acu D 
A ;  ~ - - { ( C 2 2  q- ogpV21)F2 - (C12 q- o~pCll)G2} 
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1 
7; ~ AcopAp(O) {(C22 +CtpC21)F1 - (C12 -{-OZpCll)al} 

1 
A'~ ~ -Aco-----~{(C21 q--CtvC22)F4 - ( e l  1 q-OlvC12)G4} 

t 1 {(621 -k- O~vC22) -+- CtvC22)F3 - (CII  4- ctvCl2)G3}. 
% Acov&(O) 

(50) 

Eventually, the approximate closed form solution for the system during slewing is found 
to be: 

(ApO+ Ap(0))[avl ]sin{(wp +7~)0  +Tp(0)} 

+ (A'vO + A~(0))[c~P] s i n { ( c o ' l  + 7:)0 + %(0)} 

+ E A2i i=3 
(51) 

where Ap (0), ~/p (0), Av (0) and 7v (0) are the initial conditions. 
Equation (34) for motion after slewing can be solved by the same method. The solution is: 

* [ 1,  ] sin{(@ + 7~*)0 + 7~} = Ap 0% 

(52) 

with 

A 13 = - D~3 C1"4 / (C~3 C2"4 - C2"3 C1"4) 
* * * * * * * 

A23 = C13D23/(C13C~4 - -  C~3C14 ). (53) 

* * and * * are calculated by formulas like (41), (42) and (43); Other parameters, cop, c% o~p, a v 
7~* and 77 and ap*, A~ are evaluated by formulas like (50), but Ap* and A~ vanish in this 
case; A v, 7~ and A~, % are determined by the values of state variables right after slewing. 

6. Results  and Discussion 

The validity of the closed form solutions (51) and (52) is assessed over a range of system 
parameters and initial conditions, through its comparison with the numerical solutions of the 
exact equations of motion as given by (12-15). As can be expected, the amount of information 
is literally enormous. For conciseness, only the results of eight test cases are presented here 
to help establish trends. 

For all these cases, components of the moment of inertia of the central body are: yaw - 
J01 = 0. I; roll - if02 = 0.5; pitch - J03 = 0.6. The ratio of the appendage mass to that of the 
central body is taken as 1 : 50. The length ration (et ----- l/L) is varied as 2 : 1, 3 : 1, and 5 : 1. 
In general, the duration of integration is 1/12 of an orbit. However, for the first four cases, the 
pitch response over the entire orbit was obtained. The analytical solutions are represented by 
lines, and the numerical results with dots. Except for Case 8, the two sets of results virtually 
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coincided and hence the dots are not visible. The detailed analytical solutions for the cases 
1-4 are also presented and the dominant vibration components during slewing are indicated 
by an underline. 

Case 1 may be taken as the reference. It represents slew of the beam-type appendage, with 
a stiffness of 60 cycles/orbit, through 30 ° as the spacecraft traverses 10 ° of the circular orbit. 
Initial conditions are all zero. The parameter affected by a change in a given case is indicated 
by an underline. Case 2 studies the effect of initial conditions, with all the other parameters 
held fixed at the values used in Case 1. Similarly, Case 3 assesses the influence of fast slew 
(6 ° per orbital degree), higher stiffness, and shorter appendage length; while Case 4 adds to 
this a pitch initial disturbance. Case 5 is similar to Case 2 except that the length ratio ez is 
larger. In Case 6, the initial orientation of the beam-type appendage with respect to the central 
body is 60 ° instead of 0 °. Case 7 shows that even if the slewing angle changes to 45 °, i.e. the 
slewing rate increases to 4.5 ° per orbital degree, the correlation between the response results 
continues to be quite good. Perhaps a demanding situation would be represented by faster 
slew of a beam with lower stiffness (compared to Case 4). This is shown in Case 8. A small 
discrepancy in the pitch response appears which increases with time. However, the vibrational 
response of the appendage continues to be predicted accurately. Even in this extreme situation, 
the response results would be considered sufficiently accurate during the initial design stage. 

The plots and the analytical solutions provide much information and insight into the 
behavior of the system; and the latter is a useful complement and explanation for the former. 
The following characteristics are indicated: 

• Slew maneuver excites both pitch motion and elastic vibration and the level of the motion 
excited depends on slewing 'time' and slewing angle as well as the mass and inertia ratio 
of the beam over the central body. 

• In the pitch response during slew, besides the free vibration at the pitch frequency, another 
dominant component is the one with frequence A ~ / A 0 ,  showing that the influence of 
slew on pitch is mainly due to the orientation change of the beam with respect to the 
central body. Furthermore, from equation (31) it can be seen that the amplitude of this 
component is proportional to Ac~/A0, which represents the angular velocity of the slew 
maneuver. If the slew maneuver is violent, the inertia force caused by slew maneuver is 
also an important factor affecting the pitch response. 

• It can be observed from the analytical solution that besides the free vibration, the term 
of the inertial force caused by slew dominates the vibration of the beam; implying that 
influence of slew on elastic vibration of the beam is mainly attributed to the inertial 
force. Moreover, the amplitude depends on Ac~/A02, i.e. the angular acceleration of the 
slew maneuver of the beam (equations (28) and (31)). The effect of the slew on elastic 
vibration also depends on the rigidity of the beam. A soft beam is easily affected by 
slew maneuver. This explains why the elastic vibration of the beam reaches the greatest 
amplitude in Case 8, 

• The response after the slew maneuver is a pure free vibration for both the pitch and the 
beam vibration. At the termination of the slew maneuver, the deformed state acts as an 
initial condition for the subsequent periodic motion of the system. 

• It can be observed from the plots that the librational response is modulated by the high 
frequency contribution from the beam vibration. Strength of the modulation depends 
on the mass and the inertia ratio of the beam over the central body as well as the 
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Fig. 3. The pitch and vibrational response during the slew maneuver under the nominal conditions. 

amplitude of  the beam vibration. While the pitch motion hardly affects beam vibration. 

This observation is substantiated by the solution after slew shown in cases 1-4. 

• Slew maneuver  changes the ellipsoid of  inertia of  the spacecraft; and the pitch motion 
after the maneuver  is around the new equilibrium. 

Case 1. 

¢ = 0 . 0 2  A 0 = 1 0  ° ~ b ( 0 ) = 0  ° u ( 0 ) = 0 . 0  r ' ~ = 6 0  
¢ 1 = 3 . 0  A s + 3 0  ° ~ b ' ( 0 ) = 0 . 0  u ' ( 0 ) = 0 . 0  c~0- -0  ° 

During slewing: 

~# = (0.02970 + 0.0639) sin(1.46690 + 2 . 9 8 2 6 ) -  0.0102 sin(66.02120 - 0.0002) 
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U 

-0 .1138  sin(3.00060) + 0.0175 sin(3.00060 - 0.0823) 

+0.0109 sin(36.00680) + 0.0036 sin(6.00110 - 0,0823) 

+0.0015 sin(33.00620) + 0.0015 sin(39.00740) - 0.0084 

-0.0003(0.02970 + 0.0639) sin(1.46690 + 2.9826) 

+0,0216 sin(66.02120 - 0.0002) 

-0 .0010  sin(3.00060) - 0.0002 sin(3.00060 - 0.0823) 

-0 .0424  sin(36.00680) - 0,0004 sin(6.00110 - 0.0923) 

+0.0007 sin(33.00620) + 0.0022 sin(39.00740). 

After slewing: 

~h = -0 .0798  + 0.0190sin(1.44310 + 1.0589) - 0.0021 sin(66.06030 - 7.3535) 

u = -0 .0005 + 0.0213 sin(66.06030 - 7.3535). 

Case 2. 

e + 0 . 0 2  A 0 =  10 ° ~ p ( 0 ) = 5 . 7  ° u ( 0 ) = 0 . 1  r o = 6 0  

~ ---- 3 . 0  / X .  _-- 30  ° ¢ ' ( 0 )  = 0 .0  ~ ' (0 )  = 0 . 0  s o  = 0 ° 

During slewing: 

-0 .0084  + (0.00370 + 0.1375) sin(1.53970 + 2.0548) 

-0.0995(0.00070 + 0.1023) sin(66.02540 + 1.3585) - 0,1138 sin(3.00060) 

+0.0109 sin(36.00680) + 0.0015 sin(33.00620) + 0.0015 sin(39.00740) 

+0.0175 sin(3.00060 - 0.0823) + 0.0036 sin(6.00110 - 0.0823) 

-0.0003(0.00370 + 0.1375) sin(1.53970 + 2.0548) 

+(0.00070 + 0.1023) sin(66.02540 + 1.3585) + 0.0010 sin(3.00060) 

-0 .0424  sin(36.00680) + 0.0007 sin(33.00620) + 0.0022 sin(39.00740) 

-0 .0002  sin(3.00060 - 0.0823) - 0.0004 sin(6.00110 - 0.0823). 

After slewing: 

= -0 .0798  + 0.1257 sin(1.43760 + 1.4557) - 0.0082 sin(66.06040 - 11.1283) 

u = -0 .0005 + 0.0821 sin(66.06040 - 11.1283). 

Case 3. 

= 0 . 0 2 / x o  = 5 ° ~ , ( 0 )  = 0 o ~ ( 0 )  = 0 . 0  ~v = 1 2 0  

e~ = 2 . 0  A a = 3 0  ° ~/,t(O)=O.O u'(O) =0 .0  o~o=0 ° 

During slewing: 

= -0 .0029  + (0.06060 + 0.0595) sin(1.4200 + 3.0898) 

-0 .0551( -0 .00010  + 0.0246) sin(127.70) - 0.0558 sin(5.9980) 
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Fig. 4. Effect of the initial pitch and appendage disturbances on the system response as compared to Case 

U 

+0.0057  sin(71.970) + 0.0011 sin(65.970) + G.0011 sin(77.970) 

+0 .0025  sin(5.9980 - 0.0471) + 0 0 0 0 4  sin(12.000 - 0.0471) 

- 0 . 0 0 0 1  (0.06060 + 0.0595) sin(1.4200 + 3.0898) 

+ ( - 0 . 0 0 0 1 0  + 0.0246) sin(127.70) - 0.0006 sin(5.9980) 

- 0 . 0 4 6 1  sin(71.970) + 0.0007 sin(65.970) + 0.0018 sin(V7.970) 

- 0 . 0 0 0 1  sin(5.9980 - 0.0471) - 0.0001 sin(12.000 - 0.0471). 

After slewing: 

~b = - 0 . 0 4 5 3  + 0.013 sin(1.4380 + 0.8995) - 0.0018 sin(127.70 - 7.1555) 

u = - 0 . 0 0 0 2  + 0.0320 sin(127.70 - 7.1555). 
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Fig. 5. Influence of faster slew of the appendage, with higher stiffness and shorter length, on the system response. 

Case 4. 

= 0 . 0 2  A 0 = 5  ° f ( 0 ) = 5 . 7  ° u ( 0 ) = 0 . 1  r v =  120 
c ] = 2 . 0  A c ~ = 3 0  ° ~ , ' (0 )=0 .0  u~(0)--0.0 ~ o = 0  ° 

During slewing: 

~/, = -0.0029 + (0.01510 + 0.1238) sin(1.6870 + 2.0715) 

0.00551 (0.00040 + 0.1030) sin(127.70 + 1.3295) - 0.0558 sin(5.9980) 

+0.0057 sin(71.970) + 0.0011 sin(65.970) + 0.0011 sin(77.970) 

+0.0025 sin(5.9980 - 0.00471) + 0.0004 sin(12.000 - 0.0471) 

u = -0.0001(0.01510 + 0.1238) sin(1.6870 + 2.0715) 
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Fig. 6. Effect of the initial pitch and appendage disturbances on the system response as compared to Case 3 

+(0 .00040  + 0.1030) sin(127.70 + 1.3295) - 0.0006 sin(5.9980) 

- 0 . 0 4 6 1  sin(71.970) + 0.0007 sin(65.970) + 0 .00 t8  sin(77.970) 

- 0 . 0 0 0 1  sin(5.9980 - 0.0471 ) - 0.0001 sin( 12.000 - 0.0471 ). 

After slewing: 

--- - 0 . 0 4 5 3  + 0.1157 sin(1.43320 + 1.4599) - 0.0043 sin(127.70 - 11.2645) 

= - 0 . 0 0 0 2  + 0.0783 sin(127.70 - 11.2645). 

Case 5. 

+ 0 . 0 2  ~ 0  - -  10 o ~ ( 0 )  = 5 .7  ° ~ ( 0 )  - -  0.1 T~ = 60  

, ,  - -  5 . 0  ~ = 30  ° ¢ ' ( 0 )  = 0 . 0  ~ ' ( 0 )  = 0 . 0  ~o  = 0 ° 
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Fig, 7. System response during the nominal slew of the beam with its length much longer then that of the central 
body, 

Case 6. 

c = 0 . 0 2  A 0 =  10 ° ~ ( 0 ) = 0  ° u ( 0 ) = 0 . 1  rv = 6 0  

cl = 3 . 0  A n = 3 0  ° ~ ' ( 0 ) = 0 . 0  u ' ( 0 ) = 0 . 0  a 0 = 6 0  ° 

Case 7. 

c = 0 . 0 2  A 0 =  10 ° ~ /~(0)=5 .7  ° u ( 0 ) = 0 . 1  r~ = 6 0  

c 1 = 3 . 0  A n = 4 5  ° z//(0) = 0 . 0  u ' ( 0 ) = 0 . 0  a 0 = 0  ° 

CcIse 8. 

c = 0 . 0 2  A 0 = 5  ° Z / , ( 0 ) = 5 . 7  ° u ( 0 ) = 0 . 1  r , = 6 0  

ez = 3 . 0  A n = 3 0  ° ¢ / ( 0 ) = 0 . 0  u ~ ( 0 ) = 0 . 0  n o = 0  ° 
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Fig, 8. System response during the slew maneuver of the beam which initially has an 60 ° offset with respect to the 
central body. 
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Fig. 9. Effect of a larger slewing magnitude and higher slewing rate on the system response, 
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Fig. 10. System response during the faster slew maneuver of the beam with lower stiffness. 

7. Conclusions 

This paper investigates the planar dynamics of a spacecraft with a flexible beam-type appendage 
undergoing slew maneuver. The nonlinear, nonautonomous and coupled equations for pitch 
motion of the whole system and elastic vibration of the beam in the orbital plane are solved 
by the variation of parameters method suggested by Butenin. The objective is to study the 
effects of slew maneuvers on the system response through approximate analytical solutions 
which provide comparisons to the results obtained by numerical integration. To do so, the 
original governing equations of motion are first transformed into a standard quasi-linear form 
by careful expansion of the nonlinear terms and truncating the series at an appropriate order 
depending on their relative magnitude. Up to eight vibration components were identified and 
hence the analytical results are of relatively high accuracy. The analytical solution, substanti- 
ated by the numerical results, provides better understanding into the system performance and 
allows for predictions, particularly those concerning the influence of the slew maneuvers on 
the system response. 
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