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ABSTRACT

A model is constructed to analyze adhesive bond failure at the tip of an interface crack. The model is
based on the assumption that there are zones of bounded cohesive tensile and shear stresses near a crack
tip. Within the context of certain broad a-priori assumptions on the distributions of certain stress and
displacement components in the cohesive zones, the requirement that all stresses in the two materials
remain bounded provides a method to compute the specific details for these zones. It is assumed that
bond failure occurs when the extension of the bond fiber at the crack tip exceeds a critical value. For an
interface crack in a uniform tension field computations for two alternate formulations suggest that this
failure criterion is independent of the precise distribution of the cohesive stresses, but rather depends only
upon their averaged values. Combined loading with a dominant tensile component has also been
analyzed. If the critical extension of bond fibers and the maximum value of the cohesive tensile stress are
known, the model provides the maximum allowable interface stresses for given crack dimension and
material parameters.

1. Introduction

The work presented here has two primary goals: first to establish a relatively simple
model for the analysis of bond stresses and deformations near an interface crack
between two materials and secondly, to establish a criterion for propagation of an
interface crack. The understanding of the failure mechanism for interface cracks has
important practical use in numerous engineering applications.

From the analytical point of view, the general character of the fields of stresses
and displacements near the tip of an interface crack depends on the manner in which
the conditions change from the interface bond to the crack faces. Usually it is
assumed that a single point of singularity (the crack tip) forms the transition from
continuous stresses and displacements ahead of the crack tip (perfect bond) to
traction-free conditions on the crack faces. Unfortunately a single point of transition
gives rise to oscillatory singularities in the stress field. Furthermore, there will be a
wrinkling of the materials near the crack tip causing them to overlap in a small
vicinity near the tip. This feature of the interface crack has been pointed out by
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England [1] and by Malyshev and Salganik [2]. For an interface crack in a tensile
field, Comninou [3] has only recently removed these undesirable aspects of the
solution by introducing three regions in solving the problem of an interface crack.
One region is a fully bonded one in which stresses and displacements are continuous,
a very small region at the crack tip is treated as in a contact problem, preserving
continuity of normal displacements while specifying zero shear, and finally, there is
the region of the loaded (or stress-free) crack faces. The solution obtained in this
manner is satisfactory from many standpoints and it does not lead to a contradictory
solution having overlapping crack faces. From a physical standpoint it has the
drawback that the contact zone is about 107 to 1077 times the length of the crack
which is probably small enough to violate assumptions concerning the use of a
continuum model. If one considers an interface crack in shear, the problem becomes
still considerably more complicated. This is due to the fact that the jumps in the
normal displacements are antisymmetric about the origin so that a relatively large
portion of the crack will overlap. Comninou [4] has also considered this problem and
established a solution similar to the previous one. However, in this case one of the
contact zones is about half the size of the crack, while the other is less than 1077
times the crack length. It should be noted that Comninou has again assumed that all
contact zones are free of shear stresses. Generally this is not true in the actual case,
but the introduction of some type of friction mechanism would introduce mathemati-
cal complications as well as questions of a physical nature since the friction
mechanism would be conjectural.

A model that may be more realistic for interface cracks is one in which the bond
in a small zone near the crack tip is allowed to yield under the high stresses that are
to be expected near an interface flaw. Since this yielding may be assumed to take
place in an infinitesimally thin zone (the interface) it can very conveniently be
related to an appropriate distribution of cohesive tractions, which is then defined by
the nature of the adhesive bond. For a homogeneous solid such a cohesive tractions
model has been discussed by Barenblatt [5], with the basic idea that through the use
of a zone of cohesive forces, the singularity at the crack tip can be eliminated. A
similar idea was previously used by Dugdale [6], who considered all stresses in the
line of the crack to be bounded by a maximum yield stress in tension and through
this mechanism was able to determine the size of the yield zones. This same idea was
also applied by Bilby, Cottrell, and Swinden [7] to cracks using concepts from
dislocation theory. These authors postulated a failure criterion that depended upon
the value of the crack opening displacement at the tip of the crack. It should be
noted that the above criteria have been applied to cracks in a single material where
the loading mechanism is either mode I (Barenblatt, Dugdale) or mode III (Bilby,
Cottrell, and Swinden).

The formulation for the model discussed here is as follows: either normal or
tangential cohesive stresses are introduced (see Figure 1) in regions a <x <L, and
—L,<x<-—a; regions x>L, and x<-—L,; have continuous displacements and
stresses; and stresses corresponding to the external loads are prescribed in |x|<a.
Since the cohesive zones are small transition zones it is convenient to prescribe
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Figure 1. Geometry and coordinate system for the inter-
face crack.

either (a): a distribution of cohesive normal stresses (CNS) and a tangential interface
separation of prescribed general form (CNS formulation), or (b): a distribution of
cohesive shear stresses (CSS) and a normal interface separation of prescribed form
(CSS formulation). By prescribing the conditions in the cohesive zones according to
(a) or (b), oscillatory singularities do not occur. In addition it is required that there
will not be singularities of other kinds. The latter condition is met if the stresses are
continuous over the entire region of the interface crack. Thus, we require that the
normal stress and tangential interface separation (CNS formulation) and the shear
stress and normal interface separation (CSS formulation) possess sufficient continuity
by suitable restriction of the quantities in the cohesive zones. In this paper such
continuity is achieved by taking triangular distributions of cohesive stresses and
smooth interface separations with one adjustable parameter.

As fracture criterion we adopt that the elongation of the bond fiber at the trailing
edge of the cohesive zone (which corresponds to the crack opening displacement at
that point) must exceed a critical value for propagation of the crack. For the case of
tension it is shown that (when properly normalized) the crack opening displacement
has the same value for the CNS formulation (a) and the CSS formulation (b).

In Section 2 the problem of the interface crack with cohesive zones in a tensile
field is formulated, for the case that normal cohesive stresses and tangential interface
separations are specified in the cohesive zone. The governing integral equations are
solved and the lengths of the cohesive zones as well as the constant in the
distribution of the interface separation are computed. The CSS formulation and
solution are presented in Section 4. Numerical results for both the CNS and CSS
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formulations are given in Section 5. The case of pure shear loading is briefly
discussed in Section 6, but is not pursued in detail. Combined loading with a
dominant tensile component is analysed in Section 7 for the CNS formulation.
Numerical results for that case are presented in Section 8, and the results are
discussed in some detail.

2. Pressure loading-CNS formulation

In this section a line crack in the interface between two bonded half-planes is
considered. The faces of the crack are subjected to uniform pressures o, It follows
from superposition considerations that the solution applies to an interface crack in a
uniform tensile field which is directed normal to the interface. We assume that
yielding in the interface is resisted by cohesive tractions similar to the ones
introduced by Dugdale and by Bilby, Cottrell, and Swinden. The geometry and
coordinate system for such an interface crack are shown in Figure la, where the
crack length is given by 2a and the cohesive zones by L, —a and L, —a. The material
constants are ; and k; where j=1, 2, refers to the upper and lower haif-planes,
respectively, and k =3 —4v (plane strain) or (3—»)/(1+v) (plane stress), where v is
Poisson’s ratio. Because of symmetry we have L,=L,= L. This symmetry will not
hold in Sections 7 and 8.
The boundary conditions for the present problem are

|x|<a,y=0: g, =0=—0y; Ohy=02,=0 (2.1a,b)
a<hl<Ly=0: al=ot=TZ 9 2.2)
d
oy (W u)=—A0—x?/L?)"” (2.3)
|x|>L,y=0: us=uz; ul=u? (2.4a,b)
|x|>0,y=0: gl=0a2; i =02, (2.5a,b)

where superscripts “1” and “2” refer to the upper and lower half-plane, respec-
tively. The stresses and displacements are denoted by o,, 0y, 0,,, and u,, u,, respec-
tively. The uniform tension is introduced into the boundary conditions as a compres-
sive stress o, applied to the faces of the crack; o, is assumed to act on the crack
face, |x|<a, and in the cohesive zones, a <|x|< L. The cohesive tractions, which are
tensile, are assumed to be linear and have a maximum amplitude T at x = +L, (see
equation (2.2)). The tangential interface separation is given in the form shown in
equation (2.3), which eliminates all singularities at x =+L. The constant A is as yet
undetermined and will be found from the condition that there are no singularities at
x = =%a. The present problem is called CNS because the form of the normal cohesive
tractions is prescribed for the case of applied normal loading, in addition the form of
the tangential displacement jumps is prescribed. In a subsequent section the CSS
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problem will be solved. In that case for the applied normal loading the forms of
cohesive shear tractions and the normal displacement jumps will be prescribed.

It is convenient to represent displacements and stresses in the form of Fourier
transforms as follows:

i Fi *®
2= | 17216 y1G© +106+ D s @
F2&yID;(£)te e ™D d¢ (2.6)

20 = s | o+ 1) s (9228516, + [0~ D2 e yID, ()

X e Ty gg (2.7)

i :Fl ” —iéx , FlEly
o=y | EIE NGO+ HD@)e e dg 2.8)
ol =Gy | EFHCO+ ATl D @ e dg 2.9)

i

1
o= | 61 GO +F2 58 O+ &yIDy (O e e g

(2.10)

Here the upper sign applies for the upper half-plane (j = 1), and the lower sign for
the lower half-plane (j=2). The functions C;(¢) and D;(¢) are as yet unknown
functions of £ Because of the symmetry of the problem, Egs. (2.6)-(2.10) can be
written as Fourier sine or cosine transforms (e.g. u,, u, become sine and cosine
transforms respectively). Through the use of boundary conditions (2.5a,b), functions
Cy(¢€) and D,(£) can be eliminated in favor of C,(¢£) and D,(&); the remaining
boundary conditions lead to the following integral equations:

a\1z [ o, |x|<a (2.11)
<;> LgCl(g)cos(gx)d§={UO_T___I£c|—a’ a<l|x|<L
—a

1/2 o
(%) L§D1(§)sin(§x) d¢=0, lx|<a (2.12)

(£>1/2 1 L (ks +1)+ Ty + DIC,(&)+[(x; — 1)

T 4,

—T(e;—1)ID(é)} cos (éx) dé =0,  |x|>L (2.13)

1/2 b
-(2) [ = D-Tta-11CA® +ox + D+ T+ 1]
K1do

w

|x|>L

2.14
AQ1-x?*L?»"?, a<|x|<L @.14)

D,(&)} sin (&x) dé = {(f
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If we define

Ci(&€) =aM(&)+ BN(&) sgn (£) (2.15)

D,(&)=—-BM(&)sgn (§)—aN(§) (2.16)
where

o _Kl_l_F(Kz—l)

% (k1D + ) 2.17)

B _ ki +14T(,+1)

w (ky +D)(1+x,D) (2.18)
and

F = p‘l/“’Z (219)

Then the boundary conditions will yield a set of coupled pairs of dual integral
equations for the unknown functions, M and N, as given below:

1/2 L M(&)sin (&x) dE=0, |x|>L (2.20)
1/2 L N(€) cos (&x) dE=0, lx|>L (2.21)
1/2 9

L M(&) sin (&) dé = —A(1—x?/L?HY2, a<|x|<L (2.22)
2)" [ teM@+an(engsin @0 de=0,  xl<a (2.23)

N2 = gy, |x|<a
(:;) J; [aM(&)+ BN(£)]J£ cos (éx) dE= { o= T |£Cl— a, a<lxl<L (2.24)

-a

We note that equations (2.20)-(2.24) provide two equations each for the regions,
lx| < a(crack), a <|x|< L(cohesive zone), |x|> L(perfect bond). The next step in the
procedure is to solve equations (2.20)—(2.24) by representing them in the form of
singular integral equations. Therefore, define the dislocation densities, b,(x) and
bz(x) in terms of the following integral transforms:

1/2
L EN() sin (&x) dé = —by () H(L —|x)) (2.25)

L EM(£) cos (&) dé = bo(x)H(L — x) (2.26)

where H is the Heaviside function and

EM(¢) = L b,(t) cos (&) dt (2.27)

EN(E) = —(;)1 " J; b,(t) sin (&t) dt (2.28)
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Substituting for M and N (equations (2.27), (2.28)) and noting that equations
(2.20), (2.21) are automatically satisfied, one finds the following singular integral
equations for the remaining equations, (2.22)—(2.24):

, |xl<a
B (F a7 -
abs(x) T .[L t—x {UO—T—-———lxl a, a<|x|<L (2.29)
L—a
L obhyt)d
abl(x)+§ LL —i—(_t)Tt=0, lxl<a (2.30)
by(x)=—A(1—-x*/L*Y, a<l|x|<L (2.31)

Physical quantities can be readily obtained. From the definition of dislocation
densities

% (ul=u?) = by()[H(x+ L)~ H(x— L)] (2.32)
= (u}—u3) = by([H(x + L)~ H(x — L] (2.33)

the actual displacement jumps across the crack can be calculated by a simple
quadrature. The stresses along the entire interface —o<<x <o, y =0 are given as

L
ol=02=—ab,(x) +§ J ——b;(_t)xdt (2.34)
—L
L
(r,lcy=0'§y=ab1(x)+§j bi—(_t)xit (2.35)
—L

They will be put into a more explicit form in the next section.
Equations (2.29)—~(2.31) can be put into dimensionless form by making the
following substitutions

f=x/L, a=a/L, T=Tlo,
Ezszz/O'O: 51:Bb1/0'0> A = ABjay,

B=a/B (Dundurs’ constant) (2.36)

For the sake of convenience the notation (~) is dropped and subsequent equations
will be in dimensionless form and can be returned to dimensional form through the
use of equations (2.36). Equations (2.29)-(2.31) become

1 1, lx|<a
Bby(x)—— M= { Ix|—a 2.37)
Tl t—x 1-T——, a<|x|<1
1—-a
1 [ by(t)dt
Bbl(x)+; £1 —j—(_);c——=0, lx|<a (2.38)
bo(x)=—A(1—x?»)V2, a<l|x|<1 (2.39)

Solutions will be sought for which b,(x1) and b,(+a) are bounded.
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3. CNS formulation-solution of integral equations

To prepare equations (2.37)-(2.39) for numerical solution it is essential to write
them as a single singular integral equation. Thus, write equation (2.37) as

1 J‘l by(t)dt |x|—a

=) Tix —Bbz(x)—1+H(|x|—a)T1— (3.1)

where for by(t) to be bounded at ¢t ==+1, we require the following condition to be
satisfied:

EJl by(x) dx 2T
), 1-x»Y2 7(1-a)

[(1-a®»"?—acosta]l-1=0 (3.2)

A bounded solution to equation (3.1) can be written (see, e.g. Muskhelishvili [8]) as

. B(—=sH)" (! b,(x) dx T
bl(s)_ i I—l (1_x2)1/2(x_‘S)—7T(1—'a)
x [(s—a)ln 1—as +[(1|a_f3(1_82)]1/2 F(s+a)in 1+as+[(1|a—f3(1—32)]1/2]
Is|<1 (3.3)

Substituting for b;(s) in equation (2.38) and rearranging the terms, we obtain

1J’1 {1_62[1—s2]1/2}b2(x)dx_ BT

Tl 1—x2 xX—Ss _,n.(l_a)
[(s_a) In 1—as+[(1—a2)(1—32)]1/2+(s+a) In 1+as+[(1_a2)(1_sz)]1/2]
a—s a+s

ls|l<a (3.4

which along with equation (2.39) provides the desired singular integral equation. In
addition, since the total slip must vanish, we have

1
1 j b,(s)ds=0 3.5)
w g
Equations (3.2), (3.5) permit the determination of two of the three parameters 7, a,
and A. In practice, T, the maximum cohesive stress normalized with respect to the
applied loading, is given; the other two parameters, a and A, can be obtained from
the solution to the problem. However, since the problem is nonlinear in a, for
convenience in the numerical calculations we prescribe a, and sotve for b,(x), T and
A.

To prepare the problem for numerical analysis we note that the function b,(s) can
be expressed in the following form:

fs)—AQQ—-a*»"?, [s|<a

-A(1—sH)Y?, a<l|s|<1 (3-6)

ba(s)= |

For continuity of b,(s), the function, f(s), must vanish at s = +a, and it will be shown
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later that this does indeed happen. Equation (2.39) is automatically satisfied, and
equation (3.4) yields

1 Jd f(x*) dx* {1_32 [1~82]1/2}=AF(S)+TG(S), Is], Ix|<a (3.7

Tl x*—s* 1—x2
where

a+ts

F&=—{la-s"~1-a"11-g9n

1—as+[(1-a®)(1-s]"
1+as+[(1-ad)(1-s)]7

a—s

+[B2(1—a»?+(1-s»)"]In
2 PNV IO St -1
—B*(1—5s*)"*1n —2scos 'ap (3.8)
1+s

1—as+[(1—a?)(1—s)]"
a-s

__ B _
G(s)—w(l—a)[(s a)ln

1+as+[(1-a*»)(1-s)]"

+(s+
(s+a)in P

] (3.9)

and
s*=yg/a, x*=xla (3.10)

We note that the right-hand side of equation (3.7) iS bounded and continuous and
equation (3.7) can be rewritten as
1-g° I fx*) dx* | B2 I 1-[(1-59)/(1 - x)]*2

* *
x™) dx
T ), x*-s* w1, x*—g* fx®

= AF(s)+ TG(s) ls*|<1  (3.11)

Equation (3.11) is a singular integral equation of the first kind since the kernel in the
second integral is bounded. Bounded solutions for f(x*) do exist since the consis-
tency condition is automatically satisfied. (We note that F(s), G(s) and the second
integral on the left of (3.7) are all antisymmetric in s. Furthermore, f(x™*) is an even
function in x*, due to the symmetry of the problem.)

Substituting equation (3.6) into conditions (3.2) and (3.5) allow them to be written

as
1 * *
Ba ﬁx)Td):flz—ﬁ{(1—012)1’zsin_1a+(1—a)}—1
a ), (1—-x% T

4 2T
w(l—a)

[1—a®*?—acos™'a]=0 (3.12)

and

ﬁj f(x®) dx*—é[a(l—a2)1’2+cos_1a]=0 (3.13)
w41 o
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Equations (3.11), (3.12) and (3.13) are now ready for numerical analysis and they
can be discretized as follows:

3 f(x?)Zsi(l—xTz)”z[ _B(-a’s)V

= AF(as?
£ QN+ DGP-sP) (1—a2x’£‘2)”2] (@)

+ TG (as¥) k=1,2,...N (3.14)

[(1-a®Y?sin'a+(1—a)]-1

260§ fGHL-x1)">_2Ap
AIN+1.2 (1-a2x®72 g

+ (fTa) [(1—-a*'*-acosta]=0 (3.15)
m(l—
N
21\2111 Y. fei(1 -2 2 [a(1 - a2+ cos a] = 0 (3.16)
i=1 ™
where
X% = cos 2;11, i=1,2,...N (3.17)
sﬁ=cos%_+0i5—), k=1,2,...N (3.18)

Equations (3.14)—(3.18) provide the basis by which the unknown quantities can be
calculated, i.e. the function, f(x), and parameters, T and A. We also note that the
problem is nonlinear in the parameter a.

The physical quantities to be determined are the displacement slopes and the
stresses in the cohesive zone. From the former the displacements may be calculated
by a direct quadrature. The displacement slopes are given by the following equa-
tions.

by(s)=BU —:2)“2 J’l f(x%) dx* _E;i‘ {[(1 gy

|, (1—a2x*)12 x* g%

a+s

2121 1—as+[(1- az)(l - 52)]1/2

(1 212
(1-s% ]h’ 1+as+[(1—a)(1=s)]"

+(1-a
a—s

1—s
. — a2)1/2
(1=5% 1nl—l—s}

T N 1—as+[(1-a®(1—s»]"?
_w(l—a)[(s a)In la—s|
1+as+[(1—-ad( -sH]"?
+(s+a)ln ot } (3.19)
_[f&H-AA—-aH?, |x|<a
bZ(x)_{ —A(L-x)", a<[|x|<1 (3.20)



Loss of adhesion at the tip of an interface crack 407

The stresses in the cohesive zone can be written as follows:

o |s|—a

?._—y=—1+Tm a<l|s|<1 (3.21)
0
o 1 [H L [1-s]" f(x® dx* A  aap
o, T J:l {1 s [1—x2] } x*—x* 7 {[(1 s
—(1-a®"*)(1- 8% 1n Zi‘: +[B(1— a2

1—as+[(1-a»(1-sH)]?
1+as+[(1-a®>(1—s>]V?

+(1_s2)1/2] In _62(1_s2)1/2

1—as+[(1-a®»(1-sH)]?
la— s

1-s _ T8 [
XIn——-— ay—————|[(s—a)l
1n1+s 25 cos a} d—a) (s—a)ln

1+as+[(1—a?)(1- s2)]1’2]

+(s+
(s+a)ln a+s|

(3.22)

4. Pressure loading-CSS formulation and solution

The CSS formulation differs from the CNS formulation only in the manner in which
the boundary conditions are prescribed in the zone of cohesive stresses. In the CSS
formulation the tangential shear stress and the normal interface separation are
prescribed in this region.

The boundary conditions for the CSS formulation are given by equation (2.1a,b),
(2.4a,b) and (2.5a,b), while equations (2.2) and (2.3) are replaced by

a<|x|<L,y=0: oL, =aZ,=sgn (x)Slel__: 4.1
d
— (w3~ u3) = —B(1-x*/L?)" sgn (x) (4.2)

Here, S is the maximum value of the shear cohesive stress (linear for a <|x|< L) and
B is a constant to be determined.

We now follow the same procedure as was used in the solution for the CNS
formulation. For convenience, the same notation is used for the definition of integral
transforms given by equations (2.15), (2.16), and (2.27), (2.28), and for the disloca-
tion densities, equations (2.32), (2.33). If the same steps are performed, with the
difference in boundary conditions noted for the cohesive zone, equations (4.1) and
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(4.2), then the following singular integral equations result.

1 (* by(t)dt
g [ 201 i<a 43
b.(x) =—sgn (x)B(1—x*)"?, a<l|xl<1 4.4)
1 0, Ix|<a
Bbl(x)+l I ba(n df_ |x | 4.5)
Ly t—x gn(x)S , a<l|x|<1

Equations (4.3) and (4.4) can be combined to yield
1(t) dt J‘1 [ 1 1 ]
- b +—= 2 1/2 +
[ -1+ [(a-ora e .
0<|x|<a (4.6)
The conditions that b;(% a) is bounded and that the slip is single valued lead to the

following equations:

“ by(x)d
SJ: (722(_36—)12)%5+%{K[(l—az)l’z]—E[(l—az)”z]}—1=O 4.7)

L Jl ba(x) dx =0 (4.8)
o

-1

Where K(-) and E(-) are complete elliptic integrals of the first and second kinds,
respectively. The bounded solution to equation (4.6) is

= B2 oun Ia b,(x) dx
b, (s) - (a*—s%) . (@ —x2)"P(x—s)
B . aae Il[l"tz ]1/2 [ 1 1 ]
i _ 11 - |
’n'(a s%) A 2—qz X P dt |s| a (4.9)

When equation (4.9) is put into equation (4.5) the problem is reduced to the singular
integral equation given next:

lJ’l b,(t) dt_ B*(a’—s?)'"? J"‘ b,(t) dt
m B w —a (

., t—s a?—t)Y2(t—s)

B N J'1<1—t2)1/2[ 1 1 ]
+E - - <
'TI'B(a Sy . \1*—a? t—s t+s e lsl<a

=sgn (s)[BB(l—s2)1’2+Slls|_——aa], a<l|s|<1l (4.10)

Equation (4.10) is subject to conditions (4.7) and (4.8).

The numerical solution to these equations can be obtained in a manner similar to
that described in Section 3. The unknowns to be solved for are b,(t), B, and S for a
prescribed value of a. Equation (4.10) is put into discrete form by use of the
Gauss—Chebyshev integration scheme as exploited by Erdogan and Gupta [9]. Thus,
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let
b, = b,(t;) (4.11)
where
i
= i=1.... 4.12
t cos2N+1, i=1, ,N ( )
and
w(k—0.5)
= —_— =1,... 4.1
S, = COS NI’ k=1,...N (4.13)

Equation (4.10) can thus be written as

N
28, i (1-)12 Zl b,G;(si) +BI(s), s.<a
L%k ¥ pom i) )=
+1.59 7" st -
2N+L= s 33(1—sz)1/2+ssl"T;, a<s,<l k=1,....N (4.14)

Here
Ba* =571 & fi(x)—fils)

(s) = 4.15
Gi(s) N L ooy 4.15)
x; = a cos [7(j —3)/2N], ji=1,...,N (4.16)

where f;(x) are the functions used for interpolation, i.e.
N
b,(x)= ), bfi(x), 4.17)
i=1
and
_ sin 2N(6; —6) sin 2N(6, + 0)]
filx)= 2N+1 [ sin(6,—0)  sin(6,+0) (4.18)
_im "
Gi_ZN—I—l’ 0 =cos 'x 4.19)
and
_B(aZ_SZ)llz J-l [ 1_t2 ]1/2 [ 1 _ 1 ]
Is)= o . L?—a? t—s t+s dt, (4.20)

We note that equation (4.20) is not easily evaluated in the form shown and
additional preparation is required for efficient numerical analysis (see Appendix I).
Conditions (4.7) and (4.8) become

Zb[ Zf,(x,)]+B {K[(1-a*)"]- E[(1-a®)"*}}=1 (4.21)

= ]_1

MZ

b,(1—-)'"?=0 (4.22)

I
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From the indicated numerical technique given by equations (4.14)-(4.22) it is
possible to obtain the desired quantities b,(t;), for values of ¢, given by equations
(4.12), B, and S for given values of a and B. From these values the dislocation
density, b(t), can be found from the equation

_B(a®—s?)'" J“ by(x)—by(s)  dx

T x—s (a®—x)72
b — B(a2_s2)1/2 1 1—t2 1/2 1 1 .
[ [ e e
T . \{T—a t—s t+s
~B(1—-s*)"2sgn(s) a<|s|<1
The stresses are given as
gy-—{ -1, Is|<a (4.24)
g, B ([® by(x)—by(s) dx :
0 —1—sgn (S)(sz—az)l/2 [_J_a 2 x—s2 (az_xz)l/z
i __421\1/2
+§j (i t2> ( 1 _1 )dt], |s|>a
Tl \t\"—a t—s t+s
0, lsl<a
Toy |s|—a (4.25)
oy S T2 sgn (s), a<ls|<1 '

5. Numerical results for pressure loading

It is instructive at this point to obtain numerical results for the problem of uniform
pressure loading. Since the calculation of bond failure under given applied loading is
of major physical importance, the determination of a suitable failure criterion is the
primary goal. The preceding sections have introduced cohesive stress zones at the tip
of the crack by the CNS and CSS formulations, for which the boundary conditions
differed only in the region of the bond in which cohesive stresses were assumed,
a <|x|<L. If the two models are consistent, then whatever failure criterion is used,
the same prediction of failure of the bond should hold for both foundations. This
requirement is verified through calculation of numerical results.

First, some of the physical quantities will be calculated. Figure 2 shows the normal
crack opening displacement for 8 = 0.1 for the CNS formulation. The loading is such
that the length of the cohesive zone is about 5% of the length of the crack. From this
figure it can be seen that there is no abrupt change of curvature in the crack opening
displacement so that no singularities in the stresses will be present at the transition
points. For these same values of B and o, the shear stress distribution in the
cohesive zone is plotted in Figure 3. Although the crack opening displacement and
shear stress distribution might vary in magnitude due to the different values of B and
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Figure 2. Crack opening displacements including
separation in cohesive zone (8 =.1).
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o, their form usually remained the same. Results of a similar nature are to be found
for the CSS formulation. However, the CSS formulation exhibits normal and shear
stress distributions in the cohesive zones that are roughly the reverse of those for the

CNS formulation.

Figure 4 shows a plot of the extent of the cohesive zone compared with the crack
length, (L —a)/a, given as a function of the applied loading, o,/6,, where o, has
been normalized with respect to the average value of the normal cohesive stress, &,.

Oyy
%o

o] 1 1

B=1
L/a=1.1l

1.000 1.025 1.050 1LO75

x/a

1.100

Figure 3. Shear stress distribution in the

cohesive zone (8 =0.1).



412
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Figure 4. Comparison of the sizes of
cohesive zones between CNS and CSS
formulation.

We note that &, is given by the following expression:

.1
STIL-a

L
j (o, +0p)dx (=3T for CNS formulation)

J. D. Achenbach et al.

(5.1

and that the average cohesive stress is calculated for the case where the crack is
opened by a uniform tension of g, at y==%. As the loading is increased the
difference in size between the two cohesive zones for the CNS and CSS formulations
becomes larger. It appears from the figure that if the same ratio of L/a is taken for
the CNS and CSS problems &, will be larger for the CSS problem than for the CNS
problem. Therefore, the size of the cohesive zone would not appear to be a good

quantity to use as a failure criterion.

Several other criteria were considered for the prediction of failure of the bond, but

4 ./
| /
Ur /
o J
/ e CNS

ra a CSS

VE /./
A

0, /5y

Figure 5. Crack tip opening displacement u,.(8 =0.1).
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only the one finally used will be mentioned here. It should be noted that the problem
is basically nonlinear and that the traction and displacement in the cohesive zone will
have components of Mode I and II present. The most reasonable form of failure
criterion appeared to be the total interface separation at the trailing edge of the
cohesive zone, i.e. at x =+a. This displacement jump is a quantity in which the
normal and tangential components of the interface separation are added vectorially.
It is physically realistic to postulate a fibre at the trailing edge of the cohesive zone
that is stretched until a certain critical value is reached at which point it breaks. For
both the CNS and the CSS formulation Figure 5 shows the relationship between i,
(where fiy = Bur/d,), where uy is the vector sum of the normal and tangential crack
opening displacements at x = +a. From the figure it can be seen that the results for
both formulations plot on the same curve. Thus, one has confidence that whichever
formulation CNS or CSS, is used in the analysis, the results will be the same if the
criterion for bond failure of a maximum interface separation at the trailing edge of
the cohesive zone is postulated. In the sequel when the combined problem is solved,
the solution technique for the CNS formulation only will be used.

For different values of B curves of the type shown in Figure 5 can now be
computed. Then, for specific values of a and B, and if the critical magnitude of
ur, (Ur),, and the maximum value of the cohesive stress, T, are known, (iir),, will
plot as a horizontal line. The intersection of the horizontal line with the correspond-
ing curve of the type shown in Figure 5 yields the critical value of o for the given
values of (ur),, T, a and B.

6. Shear loading

The case of uniform shear can be obtained from that of normal loading simply by a
redefinition of dislocation densities as shown in the Table 1. Thus, to find physical
quantities for shear loading one takes the entry in the normal loading column and
replaces it by the entry (in the same row) in the shear loading column.

The symmetry of the problem will cause the faces of the crack to overlap over half
of the crack length; in the practical case there will not be overlap, but instead, the
crack faces will contact each other.

For the present analysis shear will be introduced, but only in the presence of a
normal stress sufficiently large that overlap does not occur.

TABLE 1
Redefinition of dislocation densities for
shear loading

Normal loading Shear loading
b,(x) by(x)
bz (x) —b 1(x)
o /o, ~a,jo,

ay/ CGo o'xy/ Ty
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7. Combined loading—-CNS formulation

The failure criterion assumed in this paper is that bond failure occurs when the total
crack-tip interface separation exceeds a critical value. This criterion is very conve-
nient because it specifies failure on the basis of the critical magnitude of a single
quantity. As shown in Figure 5 numerical values for the crack-tip interface separa-
tion are the same for the CNS and CSS formulations. It is now reasonable to assume
that this is also true for combined loading, and hence in this section only the
CNS-formulation will be used.

The boundary conditions for the problem of combined loading no longer possess
the symmetry of the previous cases. For the present analysis the cohesive zones have
different lengths and the stresses present therein also have different magnitudes.
Furthermore, when the problems of normal and shear loadings are considered
simultaneously, there will be a range of loading parameters for which overlap may
occur at one of the crack tips. The problem of overlap can be treated mathematically
as a contact problem, as in a paper by Comninou [3], and the complications
introduced will not be too great. However, if contact is assumed in the overlap
region, then one should introduce friction. An analysis which includes friction is
beyond the scope of this paper. Thus we will only consider the case of combined
loading in a range of loading parameters for which the crack faces do not overlap.

For analytical convenience the origin of the xy-system is shifted from the midpoint
of the crack to the midpoint of the line element consisting of the crack and the
cohesive zones, see Figure 1(b). Thus the original crack is defined by —a,=x=a,,
where a,+a,=2a, and the leading edges of the cohesive zones are defined by
|x|=L. The boundary conditions at y =0 can now be stated as follows: :

—a;=x=<a,; O,=0;=—0C (7.1)
ol,=0%=—1 (7.2)
-x—a
—-L=x=-ay: a'§=0'3=TL_all—o' (7.3)
d
o (ur—u)=—-A,1-x*L>»"? (7.4)
x—a

a,=x=<L cr$=cr§=TL_az—o' (7.5)

d
P (ul-u®)=—-A,1—-x?*/L*>"? (7.6)
|x|> L: ur=ul; ur=u? (7.7a,b)
|x|=0:  ox=0%, oy=07 (7.8a,b)

Here, o and T represent the applied normal and shear stresses, and in the cohesive
zone the nonsymmetrical nature of the problem implies coefficients, A; and A,, are
different in the right- and left-hand zones, respectively. By using the exponential
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transforms, equations (2.6)—(2.10), together with the boundary conditions equations
(7.1)—(7.8), and by following a procedure almost identical to that of Section 2, we
can write the problem as one requiring the solution of the following equations in
terms of dislocation densities, b,(x) and b,(x)

[ —Xx—a;

1-T R —l<x<-a,
1_a1
1
Bbz(x)—lJ' %%—tit:i 1 -, <x<a, (7.9)
mJdq -
X—das
1-T—= <x<
L Tl—az’ a,<x<1
1
[3b1(Jc)+l J- b—igz;d—t= -, - <x<a, (7.10)
™ J -
bz(x) = _Al(l _x2)1/2 _1<x <_a1 (7.11)
by(x)=—A,(1—x?Y? a,<x<1 (7.12)
where, instead of equations (2.25) and (2.26),
1 L )
EM(&) ZW J b2(t)e"5t dt (7.13)
L
i L )
fN(f) =W J. bl(t)elgt dt (714)
-L

have been used to obtain equations (7.9) and (7.10). Two additional conditions that
must be satisfied by the dislocation densities are as follows:

1 Il by(x)dx=0 (7.15)
ko

ljl ba(x) dx =0 (7.16)
™y

Furthermore bi(+1) and b,(a,), b,(—a;) must all be bounded.
By regarding b,(x) as a known function, we solve equation (7.9) for b,(s) to obtain

1—g2)12 1
by(s)=—EL=5) L ( 1_222(;:,)2?;_s)—TG1(s) (7.17)
where
B 1 1+a1s+[(1—a%)(1—sz)]1’2_ _aap
Gl(s)_—ﬂ-(l—al) [(s+a1) In o] 1-s>V
1 3 1-a,s+[(1—a3)(1-s>]"?
X CcOS a1]+——~—~——w(1_a2) [(s a,)In las—s]

+(1—5s*)Y*cosa, (7.18)
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Substitution of equation (7.17) into equation (7.10) leads to

1 b2(x) dx

L[ n-gta-siia - 22 166, (s) =~
T

It is convenient to write b,(x) in the following form:

f(x)— ia [A,(1-ad)"*—A,(1-ad)*]x +a,A,(1-ad)'?
a,+a,
+a,A;(1—a)"?T} —a<x<a,
ba(x)= 2\1/2
_Al(l_x ) _“1<x<_a1

—A(1—x»)? a,<x<1
Then, equation (7.19) becomes
1-g2 J"‘z f(x) dx+£3_2 J"‘2 1-[(1—sH/(1—xH]"

m X—Ss o X—Ss

f(x) dx =v(s)

—a,

where

v(s)=—7+TBG:(s)+ Ay y1(s)+ Azya(s)

yits) = (163 [(1= 57— 2222 (1= | may sl (1~

X (1—a?)"21n|a,—s|+B*1—s>"In|1+s|
+ BA(1—ad)(1-s)]'

a,+a,

+{(1—a?>)(1—sHTV?}—5 cos ta; + B>(1— a2)1/2_°_l;s
a,t+a,
g Lo s (A= ad) (1]
"Trass +[(1 —a)(I-s)]7
mya(s) =—(1— 32) (1 a3)"?Inla,+s|+(1- 32)[s+a1‘(1_
a,+a,

-1 _52)1/2] In|a,—s|—B*(1—5>?1In|1—s|

_Bd-ad)(1-s1"

a,t+a,

s+aq

+[(1—ad)(1-sH]"*}—s cos *a,+ B> (1-a3)'?

174z
1-a,s +[(1-ad)(1-57)]'”
1+a;s+[(1-ad)(1-57)]"

X1n

Dislocation density b;(x) can be expressed in terms of f(x) as

_ By_popn (" _fWdx B
buls) =2 (1= [ s = a9~ 1O

-8

a+a

(sin"la,+sin"la,)—(1—s*)"?In{1+a;ss

a%)l/Z

(sin"'a,+sin"ta)+(1—sHY2In{l—a,s

(7.19)

(7.20)

(7.21)

(7.22)

(7.23)

(7.24)

(7.25)
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where

a;+s 1-s
L ——A,In
1+s a,—s§

vi(8) = {—A1 In

A(1-a))?-A(1-a3)’”?

[sin_1a1 +sina,

a;+a,
s 1—a,s +[(1-5s*)(1—ad)]?
(1—-s%)12 a,—s
. s N 1+a1s+[(1—s2)(1—a%)]1/2]
(1—-s2)2 a;+s

a, A,(1—a2)V?+a,A(1—-adH)t? 1
a,+a, (1-s%H12

[ 1—a,s+[1—s>(1—-ad)]"? 1+a;s+[(1-5>)1-ad)]'”?
X! —~1In +In

a,—S§ a,+s

417

e

(7.26)

The condition of boundedness for b,(+1) and b,(—1) yields for equation (7.9)

B J‘l b,(x) dx +_1_" [(l—a%)”z—al cos la,
1 (1_x2)1/2 o 1_‘a1
+(1 —a%)*?—aq, cos_laz] -1
]. _a2 B

v

which can be further reduced to

E J’“z M+E (A101+A202)+I Q3= 1
v ™

ar | o, (1_x2)1/2
where
1 _
Q=" et a)(l-a)+[(1-aD(1-ad "~ (1-a)

+a,(1—a?)"*(sin"*a, +sin"'a,)}

1
Q= [(a;+a,)(1-ay)+[(1—-a3)(1—aD]*~(1-a3)

+a,(1—a3)*(sina; +sin"'a,)]

1
Q;= [(1—a®¥2—q, cos_lal]+1 1

_ a2\1/2 -1
1 a, i [(1—a3) a, cos ‘a,]

(7.27)

(7.28)

(7.29)

(7.30)

(7.31)
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Condition (7.16) leads to

%’J : f(x) dx+Q,A;+QsA,=0 (7.32)
where

Q,= “‘él; [(cos™"a, +ax(1—a?)'?] (7.33)

Qs= —51; [(cos 'a+as(1—a3)*"?] (7.34)

Through the use of equation (7.20) and

o1 1 1
1 x dx l J- by(t) dt= __1_ j by(t) dt (7.35)
_ t—X T

—1

ml, Vi-x*nw

condition (7.15) implies

[ x) dx T
% ] (31(:{.5332)1/2—1_% (A1QG+AZQ7)+; QS =0 (736)
where
1, 1 2V1/2( i —1 P
Qe="5 (a?- 1)__*2(a1+a ){—(1—a1) (sin"'a; +sin""ay)
2
+H1-a)"a,(1-ad)"*+a,(1-ad)"?]-2a,(1-a})"”
x[(1=-a)"?—(1-ad)""]} (7.37)
Q= —% (1-a3) —2(a—1+a5 {(1-a?)*(sin""a, +sin™" a,)
1 2
~(1-a3)[ay(1-a3)'"?+a,(1—a?)*?]
—2a,(1-a3)"?[(1-a3)"* - (1-aD)""]} (7.38)
- 1 o2 1

Q=31 ay [a,(1—aD)*—cos"a,]

+2(1—1a3 [cos™ta,—a,(1—a3)'?] (7.39)

2.

The condition of boundedness for f(—a;) and f(a,), together with equation (7.21)
yields

L= y(s) ds B[
™ ‘[—al [(a;—s)a,+9)]'* = Ll f(x) dx
1 (% 1-— [(1 — Sz)/(l _ x2)]1/2 ds )
{ - j xX—s [(a,—s)a,+ S)]llz} =0 (7.40)

—a,

Equation (7.21), together with subsidiary conditions, equations (7.28), (7.32), {7.36),
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and (7.40), can then be solved for f(x) and four of the six parameters (i.e., 7, T, a,,
a,, A, A,). For the present analysis as in Section 3 it is convenient to specify a,, a,,
to solve for f(x) and the remaining four parameters, 7, T, A;, A,. Once these
quantities are determined, then b;(x) can be calculated from equation (7.25).

8. Numerical results for combined loading

For the presentation of the results, the applied stresses for combined loading have
been normalized with respect to the average normal stress in the cohesive zone, i.e.,

G =al3T, F=14T (8.1a,b)

In the computational scheme it is convenient to specify a,, a,, and B, and to
compute the corresponding values of 7, T, A,, and A,. This procedure produces the
curves shown in Figures 6-8. Each point on a curve a,/L is constant (a,/L is
constant) corresponds to unique values of &, T and a,/L(a,/L). For prescribed &, 7
the corresponding a,/L and a,/L can now be found by interpolation from the curves
shown in Figures 6-8. The curves in Figures 6-8 are cut off at values of 7 which
separate the cases of contact and no contact. Thus, for small &, the shear stress T
cannot be very high.

It can be easily shown from the directions of the applied loads that the crack-
opening displacement at x = a, is larger than the one at x =—a;. Once the parame-
ters a,/L, a,/L, A, and A, have been determined, for given é, & and T, the total
interface separation

ur =[(Au. )’ + (Au,)*]"? (8.2)

Figure 6. The extent of the cohesive
zones for combined loading (8 = 0.1).
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Figure 7. The extent of the cohesive zones for combined
loading (B =0.3).

at the critical crack tip x = a, can be calculated. It is then possible to plot curves in
the &7-plane corresponding to specified values of iy, where ity = Bug/3(a;+a,)T.
Sets of such curves are shown in Figures 9-11.

For a given critical value of u; (which defines the crack propagation criterion),
Figures 9-11 show the domains of allowable applied stresses in the o7-plane. These
domains are bounded by 7 =0, @iy = (fiy ) and the curve representing the maximum
allowable 7 for which contact will not occur. As stated earlier, the case of contact of

.2

Figure 8. The extent of the cohesive zones for combined loading

(8=0.5).
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1.0

Figure 9. Contours for constant crack tip
opening displacement u; for combined
loading (8 =0.1).

the crack faces requires special considerations which are beyond the scope of this
paper. It can be seen that the magnitude of 7/¢ for which contact does not occur
depends on B, with smaller values of B allowing a larger value of 7/G without
crack-face contact.

For a number of specific points which are indicated in Figure 9, the lengths of the
cohesive zones have been tabulated in Table 2.

Al

Figure 10. Contours for constant crack tip opening displacement
ur for combined loading (8 =0.3).
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Figure 11. Contours for constant crack tip opening displacement

ur for combined loading (8 = 0.5).

9. Conclusions

J. D. Achenbach et al.

The goal of the present work is to construct a model for adhesive bond failure at the
tip of an interface crack. The model is based on the assumption that there are
bounded normal and tangential cohesive stresses in a zone near the tip of the crack.
In the specification of such zones it is required that all stresses in the two materials
are bounded.

The model chosen is seen to provide the following results which tend to make it
attractive from the point of view of applications:

(a) The criterion for failure of the adhesive bond, i.e. that the bond fiber at the
crack tip which is the crack opening displacement at that point is not to exceed a
maximum, seems to be independent of the distribution of cohesive stresses, but

TABLE 2

Cohesive zones at points defined in Figure 9

Point L-a, L-a Point L-a, L-a, Point L-a, L-a,
1,+a, a,+a, a,t+a, a;ta, a;ta, a;+a,

1 0.021  0.021 11 0.005  0.042 20 0.092 0.135
2 0.005 0.015 12 0.125  0.125 21 0.058 0.111
3 0.003  0.010 13 0.090 0.114 22 0.028 0.089
4 0.043  0.043 14 0.058  0.098 23 0.270 0.270
5 0.027  0.037 15 0.027 0.071 24 0.222  0.259
6 0.005  0.026 16 0.005 0.053 25 0.175 0.224
7 0.004  0.020 17 0.185  0.185 26 0.133  0.200
8 0.088  0.088 18 0.170  0.190 27 0.095 0.171
9 0.056 0.073 19 0.129 0.161 28 0.067 - 0.145

10 0.027  0.057




Loss of adhesion at the tip of an interface crack 423

rather depends only upon their average values. This is seen in Figure 5, where two
models (CNS and CSS) are used to determine the crack tip opening displacement.
The resulting curves are essentially the same.

(b) The relative size of the cohesive zones, when compared with the crack length,
tends to be of a magnitude that is reasonable from a physical standpoint. As can be
seen from Figures 6-8 and from Table 2, the size of the cohesive zones ranges from
1% of the crack length to about 30% of the crack length. For an adhesive bond in
which the bond has considerably less strength than the two solids these values seem
consistent. One should be cautious, however; the specification of the dislocation
density as given by equation (2.3) may be too severe for large cohesive zones and
thus the length of the cohesive zone may have to be restricted to a value smaller
than 30%, say perhaps 10%.

(c) We note from Figures 10-12 that the curves are broken off when contact on
the crack faces will begin to occur. As the shear stress is increased relative to the
normal stress the left-hand cohesive zone becomes smaller when compared with the
right-hand one. If the curves were continued into the region when overlap occurs,
then the nature of the problem would be changed in that one of the regions would
have to include contact between the two crack faces. Since this contact should
include friction, it was felt that considerations of this effect are beyond the scope of
this analysis.

To conclude we observe that it appears that interface crack problems can be
solved with the introduction of cohesive zones at the crack tips. Such zones extend
from about 1% to about 10% of the crack length, and they involve both normal and
shear tractions. A reasonable quantity to consider for specification of bond failure is
the maximum extension of the bond fiber at the crack tip. For uniform tension this
quantity is consistent for two alternate formulations, and for combined loading the
numerical results also seem to be very reasonable.
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Appendix

To evaluate the integral in equation (4.18),

=_B_ 2_ 21/2[1[1_t2]1/2( 1 . 1 )
Its) w(a s , LP—a? t—s t+s dt,
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we let u =2, then
Bs [1 Jq [1 u]l/z du J'l [1—u]1/2 du u—|S|]
1(s) = P8 231/2 —
() fn-( ) |s a u—s> Jo lu—a’l u—s> uls|
1 2 du 1 (*71-u ]1/2 du
_ 2_ iz | L —
B sgn (s)(a*—s?) [ J- [ ] 5 J;z [u—a2 u-+|s|u'

o™
=B sen ()@= [(3225) " -1

The integral, (J(s)) can be evaluated by substituting u=1-a*p+i(1+a® Then

J(S)Z%Jql [%;_z]mg(p)d Z 2N+1 (p:)

where
()_1—a2 1 —co 2mi
Bt sla™®  PTO%oNT
Thus

I(s) = B sgn (s){(1—s*)"*—(a®—s?)"[1+T(s)]}
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