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Approximate solutions to a nonlinear diffusion equation

J.R. KING
Department of Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180-3590, USA

Received 17 June 1987; accepted 22 September 1987

Abstract. Approximate similarity solutions to the porous-medium equation, c, = V (c'Vc), are obtained in one
and two dimensions. The problems considered arise in the modelling of dopant diffusion in semiconductors, the
two-dimensional problems corresponding to diffusion under a mask edge.

1. Introduction

Dopant may be introduced into a semiconductor by various means, including ion-implantation
followed by diffusion and by the diffusion of the dopant into the material from a source at
the semiconductor surface. In the former process the total amount of dopant is fixed,
whereas the latter may be modelled by a constant concentration boundary condition on the
semiconductor surface (see, for example, Ghandhi [10]).

At fairly high concentrations the diffusivity of many dopants is known to be well represented
by

D(c) = Docm (1.1)

where Do and m are constants. Examples include: m = 1 for arsenic and boron in silicon (see
Sze [22]); m = 2 for phosphorus in silicon (see Sze [22]); m = 2 or 3 for zinc in gallium
arsenide (see Luque et al. [18]).

It should be noted that (1.1) is an accurate description of the diffusion coefficient only at
high concentrations, the diffusivity remaining bounded away from zero as c drops. Hence
the results of this paper based on (1.1) should be regarded as giving the first term in an outer
expansion for the concentration. The models of Weisberg and Blanc [27] and Luque et al.
[18] for zinc diffusion in gallium arsenide may be written in non-dimensional form as

Ct, = ((C + m)cx)x,

with E 1. In an inner region of low concentration occurring near x = s(t; e) (which is
determined by matching) we rescale as follows:

C = EP, = s + EmZ,

to obtain

e p, - sp = ((1 + pm)p),
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so that, writing

P = Po + o(l), s = so + o(),

we have

Inp + P = -S z .

For a detailed analysis of the case m = 1, see King [14]. The usually assumed diffusion
coefficient for arsenic leads to an algebraically more complicated problem, but a similar
analysis holds (see King [15]). Because the inner region is asymptotically narrow this analysis
carries over to higher dimensions.

In this paper we first consider one-dimensional similarity solutions corresponding to
constant surface concentration. The initial concentration is taken to be zero everywhere
which accurately models many of the constant-source diffusions in semiconductor fabrication,
as well as having other physical applications. We obtain asymptotic results for small and
large m, and a power-series solution for general m. Since the instantaneous-source similarity
solution (relevant to the diffusion of implanted dopant) is available in closed form (see
Barenblatt [3]) we need not discuss it here.

Secondly we consider both constant- and instantaneous-source problems in two dimensions
corresponding to diffusion under a mask edge (a common process in semiconductor fabri-
cation). In this case explicit solutions are available only in the limits of small and large m,
but useful qualitative information may be obtained from these solutions.

2. One-dimensional similarity solutions

We consider the problem

c, = Do(cjc,),,

at t = O: c = 0,
(2.1)

at x = 0: c = co,

asx-- +o: c = 0.

No closed-form solution to (2.1) is available, although it is easy to prove the following
result for the centre of mass:

xcdx = D t.+l
m+1

Problem (2.1) has been studied numerically for m = 1, 2 and 3 by Weisberg and Blanc
[27]. Approximation procedures have been suggested by Tuck [25] and by Anderson and
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Lisak [2], and approximate solutions have been proposed for arsenic by Nakajima et al. [19]
and for boron by Fair [9]. Our purpose here is to propose more systematic (and simpler)
procedures for obtaining approximate solutions to (2.1).

We introduce the variables

t = x/(Doco't)"2 , u = (C/Co)r

to obtain the free-boundary problem

- u = uu,, + -_ ,

at = 0: u = 1, (2.2)

m
at = 0: u = 0, u, = - 2 '0

where J0 must be found as part of the solution.
We now reduce (2.2) to an initial-value problem by introducing

= 1 - /lo, v = u/(1m),

and obtain

m ,vv; + v = (1 - )v,

at = 0: v = 0, v, = 1/2. (2.3)

10 is then given by

1o = (mv(1))-1/ 2. (2.4)

Clearly such a procedure will work for more general similarity solutions to the porous
medium equation.

We now consider the asymptotic solution of (2.3) in the limits m -- 0 and m - + 0o, and
give a power-series solution for general m.

2.1. The limit m 0

It is well-known that for m = 0 (linear diffusion) the solution to (2.1) is given by

c = c erfc (1/2).

In this section we consider the case m < 1, a limit in which the porous medium equation
was first considered by Kath and Cohen [12]. We note that in order to obtain the first-order
term for c we must obtain v correct to O(m).
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Posing the expansion

v _ vO + my, + m2 v2 , (2.5)

we find

v = 1(1 -(1 -t)2)

Vl - - -(1 - (1 - )2)-4 ln(1 - ), (2.6)

V2 = (1 -(1- )2) + 1 (1 + I n (1 - - nl n (1 -( ).

Since the expansion (2.5) breaks down at 1 - = O(m /2) there is a boundary layer in
which we rescale:

= 1 - m'l/2, v = 4- m lnm + mw,

so that

w2 + (- m ln m + mw)w,, = -w,.

Posing w = wo + o(l), with q = ¼ In wo, we have

qoc = -2CqO,

so that

wo = 4 In (erfc ()) + (In - 1),

where the constant of integration has been determined by matching with (2.6).
(2.4) becomes

r0o 2m-/2(1 + m In m - m(ln - 1)).

In = 0(1) we have

VI/m {(4 (1 - - )2 )})/m exp - In (1 )

while in = 0(1)

Vl/m {4}l /ml1/2 m-l 2e-l/2 erfc (),
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so that a uniformly valid expression for c is given by

f - co(l - m2)/m(m/24)-(m 2 )/(I-m2) e 2 erfc (4), < m-1/2

= 0, 4 > m - 1/2

with 4 = tlr/,m'/2 1/2.
We finally note in this context that the approximation suggested by Anderson and

Lisak [2] for small m does not have compact support and is therefore of very limited
value.

2.2. The limit m - + oo

The limit in which m becomes large has been considered for constant total mass by Elliott
et al. [7], solutions being characterized by a "mesa" region in which c is almost uniform,
while outside the mesa c remains at almost its initial value. Similar behaviour occurs for the
constant-surface-concentration case.

Posing the regular expansion

1 1
V Vo + VI + V2,

we find

vo = /2,

v = - 2/2,

V2 = r2/4 + 3/24,

so that as m -+ oo

~C°o(l - //10)/m, / < t1o

-=0, 11 > o

where %o - (2/m)'i2.
Note that for tj < %i, c co until r becomes very close to %, when c drops rapidly to

zero.

2.3. General m

When m is neither large nor small, analytic progress seems possible only by means of a
power-series expansion about the point where c drops to zero. It turns out that for m = 0(1)
only a few terms in the expansion are non-negligible, so that a truncated expansion may be
expected to form a useful approximation to the true solution.
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Assuming

v - E an as - 0,
n=l

we obtain from (2.3) the recurrence relation

n-I

-(n + 1)(1 + mn)a,, - na, - Z (p + )(n + 1 + p(m - l))a,_p+ap+,
p=l

(2.7)

with a = 1/2.
Hence

4(m + 1)'

m
a3 = 12(2m + 1)(m + 1)2'

m(m + 3)
48(3m + 1)(2m + 1)(m + 1)3'

This series expansion may be shown to be consistent with the large and small m results of
the previous sections. The coefficients decay particularly quickly with n when m is large.
Particular cases include:

m = 1: V 12 - I + r3 + ' 4,

m = 2: v 1_ 1.24 + -20 + 4 4, (2.8)

m = 3: v) N : - 4 + 4182 + _3 64.m = 3: 2

In each of these cases the first three terms may be expected to give much better than 1%
accuracy for r E [0, 1]. We do not, however, have a convergence proof for the asymptotic
expansion.

Of particular importance in semiconductor applications is the value of r10 since this
determines the position of the n-p junction where the net dopant concentration changes
type. From (2.8) we obtain (correct to three decimal places):

mn o rWB

1 1.616 1.616
2 1.090 1.092
3 0.871 0.872
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The final column gives the numerical values obtained by Weisberg and Blanc [27]. In each
case 10 is given correct to two significant figures by just two terms of the power series. For
m = 2.5 we obtain 10 x 0.963, indicating that the interpolated estimate of 0.940 used by
Luque et al. [18] is somewhat in error.

3. Two-dimensional diffusions

Important steps in the fabrication of many integrated circuits involve the diffusion of dopant
under a mask, which is a fully two-dimensional process. Further background to the processes,
together with constant- and instantaneous-source solutions for linear diffusion, are given in
Kennedy and O'Brien [13]. Numerical solutions to the time-dependent problem for the full
diffusion coefficients for arsenic and boron, together with experimental work, are given in
Warner and Wilson [26]. Another reference for numerical work is Tielert [23], while Sheng
and Marcus [21] give experimental observations.

3.1. Constant-source solutions

In this section we consider processes which may be modelled by the following boundary-
value problem

c, = V (D(c)Vc),

on y = 0, x > 0: c = O,

ony = 0,x < 0: cy = 0,

as y + o or x -o: c 0, (3.1)

asx- +o: cx - 0,

at t = 0: c= 0.

Here y = 0 is the silicon surface, with x < 0 covered by a diffusion mask which is impervious
to dopant, while x > 0 is held at constant concentration.

It was noted by Warner and Wilson [26] that the solution to (3.1) is self-similar. However,
they did not appear to recognize that in the high-concentration limit (D - Doc") not only
may the time-dependence be taken out of the problem but (for given m) all the process
parameters may be scaled out.

To achieve this we introduce similarity variables

ml/2x m1/2y

2(Doit) l/2' '1 2(Do o't)'2'

and define

g - (C/Co) m
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to obtain

-2(g + rig,) = mg(ge + g,,) + g + g,

on = 0, 5 > 0: g = 1,

on = 0, 5 < 0: g, = 0,

on t = G(): g = 0, g + g = -2(g + r1g), (3.2)

as + ooor r - co: g -0,

as 5 - + oo: g, - 0,

where t/ = G() denotes the free boundary.
Further analytic progress to (3.2) does not seem to be possible for general m and we shall

restrict the discussion here to the limits of small and large m.

3.1.1. Linear diffusion (m = 0)
For D Do we define

x y C
22(Dot ) l '2( =Dt) t)' co

so that

-2(q4 + tq,) = q¢~ + q,,

on = 0, > 0: q = 1,

on = 0, 5 < 0: q, = 0, (3.3)

as /- + o or 5 - -oo: q 0,

as + oo: q - erfc ().

The linear case corresponds to dopant diffusion at low concentrations and has been solved
in this context by Kennedy and O'Brien [13] and Cherednichenko et al. [5] (see also Townsend
and Strachan [24]). The same problem has also occurred and been solved in other contexts
- it is one of the heat-conduction problems discussed by Jaeger [11], and has arisen in models
of electrochemical transport (Oldham [20]), random walks (Boersma and Wiegel [4]), and
etching (Kuiken [17]).

In the next section we shall require an asymptotic result of Boersma and Wiegel [4], namely

1 cos 0/2 -2, for -0 (3r4)
12 r e as r- c, for 0 < 0 < ,(3.4)

where = -r cos , = r sin O.
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3.1.2. The limit m - 0
We now consider the case m 1 and pose

g = go + o(1),

G = Go + o(1), as m --*0.

Hence (3.2) gives

g& + gO = -2(4goe + ngo0),

on = 0, > 0: go = 1,

on = 0, < 0: go, = 0,

on = G0(): go = 0.

Using Charpit's equations (see, for example, Chester [6]) we may derive:

1 - 2, r < 1,4 5> 0,

go = 1 - 2 _ 12, 21 + 2 < 1, < 0,

0, otherwise,

and

1, 54> 0,

Go = {(1- _2)'/2, 1 < < 0.

At higher orders we require boundary layers at = 0, and at ?I = 0 for 5 < 0. There are
five regions to consider and we have the following results (writing X = m- /2, y = m- /211):

(i) > 0, = 0(1), = 0(1):

g 1 - I
2 + m mln m + m( 2 - In - 2 In ),

G 1 + ¼m In m + m(1 - In ); (3.5)

(ii) > 0, = 0(1), Y = 0(1):

g I1 + m In (erfc (Y));

(iii) X = 0(1), Y = 0(1):

g 1 + m ln q,
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where q is the solution to (3.3);

(iv) X =0(1), ,q = 0(1):

g - 1 - ?2 + rm In m + mgo*,

where go* satisfies

-2(Xgo*x - g*) = (1 - 2)(g*xx - 2) + g*x2;

(v) < 0, = 0(1), 17 = 0(1):

g .1 -r2 + m In m + m r2 2 n r + In (,2OS 0/2 ,

and the free boundary is given by

r = R(O) - 1 +I mlnm + {1 + In (2cos 0/2 (3.6)

where 5 = -r cos 0, = r sin 0 and we have made use of (3.4) in performing the matching.
Of particular importance in semiconductor applications is the aspect ratio of the free

boundary defined by

R(O)
G(oo)'

which is the ratio of lateral to vertical junction depths. The lateral junction depth determines
the channel length (which is the distance between the source and drain of a MOSFET, a
common semiconductor device (see, for example, Sze [22])).

From (3.5) and (3.6) we obtain

a - 1 + ¼mln m + m(l - ln(2r)) asm -0, (3.7)

which is consistent with observations (see Ghandhi [10]) that a decreases with increasing
nonlinearity.

3.1.3. The limit m - oo
For large m we pose

g = go + o(1) as m co,

and obtain

go, + go = O.
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Laplace's equation arises for the limit m -- oo of the porous medium in general situations
in which the concentration is held constant on part of the boundary. This is in contrast to
constant-total-mass problems where a source term arises due to the changing height of the
mesa, leading to a Poisson equation (see Elliott et al. [7]).

It turns out that this limit may be solved explicitly following the introduction of a Baiocchi
transformation. We first return to the time-dependent problem for general m and introduce

u = c/co , = x/(Dc)I 2 , = y(DocO)1 T

and define the moving boundary to be t = o(, 9). Next we introduce the Kirchhoffvariable

1
v - Um+ l,

m+ 1

and the Baiocchi transformation

w = I v(i,9, t')dt'

(note that a similar procedure applies to more general D(c) for which the solution has a
moving boundary).

In general w satisfies

((m + )w,)'/(m+) = w~. + Wg)
(3.8)

on t = o: w = w, = 0,

and for the case discussed here we have in addition

on0 = O,x > 0: w = t,
m+l

on =0, < : w = 0.

We now introduce similarity variables

1
= m/2/(2t/ 2), 1 = m'/29/(2tl/2 ), w = ---- t W(, ?),

so that

4 (m + ) (W - - W,)1/(m+') = 4 + ,

on ? = 0, > 0: W = 1,
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on =0, <O: W, = 0,

on F(, ) = O: W = Wn = 0,

where F(r, 'i) = 0 denotes the free boundary.
Writing

W = W + o(1), F = Fo + o(l), asmm oo,

we then obtain

Wo + Wo, = 4,

on = 0, . > 0: W = 1,

on = 0, < : WO, = 0,

as - + oo or -oo: W - 0, (3.9)

(1 - /1)2, 0 < r < 1/,
as + oo: WO

on Fo(, 1) = 0: WO = WO = 0.

Problem (3.9) is one of a class of problems which may be solved explicitly (see King and
Howison [16] for detailss.

Introducing

1 1 Wo
+ = 2w4, -r2- w,

q may easily be obtained as a function of and f. Writing

z = +i i, q = +io,

we obtain

( 2(1 +qt tan-' q)).

In order to evaluate the concentration we require

WO = 2 2 + Re q2 - (q + (q2
- 1) tan-' q))

7C ' rj
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so that

u Re (tan- l' q)

The free boundary is given by

= -a + (- tanh- l N/2i

so that the aspect ratio is

a - z 0.637. (3.10)

It seems likely that 2/x is a lower bound on a for all m.

3.2. Instantaneous-source solutions

We now consider the following problem, relevent to diffusion from a narrow implant close
to the silicon surface:

c, = Do((cmcx)x + (c'c,)),

ony=0: c = 0,

asy-* +ooorx - -oo: c- 0, (3.11)

as x + o: Cx - 0,

at t = 0: c = Qb(y)H(x).

Here y = 0, x > 0 denotes a mask to the implantation of dopant atoms, H is the Heaviside
step function and Q is the dose in a cross-section far away from the mask.

The solution to (3.11) is expressed terms of the similarity variables

x y

DO12 a tl(m+2) r = D 1/2 a tl/(m+2) ' C = a21 mt-l(m+2)dllm(, ),

where a is given by

Q (m + /m

2 r( 3 m + 2 a(m+G)/m((m + 2))
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Then d satisfies

m 1 1d- 2 - + (d + d,,) = d(d + d,,) + -(d2 + d,2),
m+- m+2 m

on = 0: d, = 0,

on = G(d): d= 0, d + d,2 m (d, + d,), (3.12)

as ? + oo or -oo: d 0,

as + o, < 1: d (1 - 2),
2(m + 2)

where ?r = G(r) denotes the free boundary. For given m all process parameters have again
been scaled out.

3.2.1. The limit m 0
For small m we must introduce

g = m-'d,

and again using Charpit's equations and defining X = m-' 24 we obtain the following
regions:

(i) > 0. = 0(1):

g ¼(1 - 2) _ 8(1 - 2),

G- 1;

(ii) X = 0(1):

g (l - 12) + mgO*

where go satisfies

-l(Xg*x - /go) = (1 - 12 )gxx + Pr2 + g.

In this case there is no boundary layer for small r1, but go* satisfies

go* In q as ? - 0

where q = ½e-'/2erfc X. This result enables us to match into r < O.
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(iii) < 0, = 0(1):

g ¼ (1 - r) + m n m + m( - ln (rcos0)- - n2 ),

R(O) 1 + m In m + m(1 - 2 In (cos 0) - 2 In 2/).

where r = -r cos 0, 1 = r sin 0. Also

R(O)
a G(o) - 1 + m In m + m( - 2 In 2/-). (3.13)

3.2.2. The limit m -- oo
Writing do = do + o(l), (3.11) becomes do4 + do, = -1. We now introduce

u = c/a2t" i = x/(D} 2a), 9 = y/(D/2a).

As in Section 3.1.3 we write

v= ' uM' +1 w =I v(, t')dt'

so that w again satisfies (3.8). In this case the extra conditions are

on =0,:R> 0: =- (m (- 2) (m )
2 2(m + 2)) r(3m + 2'

on =0,2 < 0: w = 0.

We now introduce similarity variables

= /t
1/ (m + 2)

, 1 = )tl(m+
2
), W = tl/(m+

2
) W(, 1i),

so that

m --{- 1/(((m+2)(W - W4- 1W)) = W + ,.,

( , m + 2 1)

on = 0, > O: W = ( m / 2)) (m )
2 \2(m + 2)3m + 2)
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on e = 0, < 0:

on -+ -o or - + oo: W 0,

as - +co: lm + 2( m \(m+l)/m
W )-I 2(m (1 -_2)(m+l)/m

I/2 I m m l

2/ 2(m + 2 m-) 2 (2 m)

W = Wn = 0,

where B is the incomplete Beta function (see Abramowitz and Stegun
F(,, r/) = 0 denotes the free boundary.

We now write

[1], p. 263) and

W = WO + o(1), F = F + o(1), as m- oo,

and obtain

WOU4 + WOq = 1,

on 'r = 0, > 0:

on = 0, < 0:

WO = -1,

wo = 0,

as - - oo or - + oo: W -0,

as -, +oo:

on Fo({, r7) = 0:

Wo 2(1 _- 2),

WO = WOn = 0.

(3.15) could be obtained directly from the formulation of Elliott et al. [7] for general
constant-total-mass problems for the porous-medium equation in the limit m - oo.

Again jt can easily be obtained as a function of

= Wo(, and ¢ = 11- W,

and we find

z = -- In(1 + e- "4)
7[

W, = 0,

(3.14)

on F(,, ir) = 0:

(3.15)
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where

z = + i, q = i + i/.

Hence

=1 12 + 2 Re (q n (1 + e-) + L(e-q))

and

U t- l/(m+2 ) (1 - -- 2 Re (L(e-q))) 

where

L(o) = n (o' + 1) dco' = -f(o + 1),

and f is the dilogarithm (see Abramowitz and Stegun [1], p. 1004).
L = Re (L) is easily calculated from

0 < r < 1: L(re'0 ) = (-1 ) m + l ms (with - < 0 < I),

7r
2 02

r= 1: L = -
12 4'

r > 1: 2 02 2 r-m cos mO
r > 1: L ln2 r - + --- (- n 22 2 6 Z (,1)m+6

These series converge most slowly near r = 1, where the expressions

n2 02
0 r: L = 12- 4+ ln (2 cosI 0)(r- 1)

(- 1)"+l

+ m + 1 (a, - In (2 cos ½0))(r - 1)m+ l ,

8= 7t: L - + (In 1) +

may be used. Here

kO
cos -

am =
k=l k(2 cos O0 )k

(so that a., = In (2 cos 0) for -27r/3 < 0 < 27r/3).

69



70 J.R. King

The free boundary is given by

2
- In (2 cos m), (3.16)

7

so that a ~ (2 In 2)/7t t 0.441.
We again expect this to be a lower bound for all m. Since (3.13) and (3.16) are smaller than

(3.7) and (3.10) respectively, this work strongly indicates that for all m the aspect ratio is
smaller for the instantaneous-source problem than for the constant-source problem.

3.2.3. Integral invariants
In practice the initial data corresponding to an implant is clearly not given by a b-function,
but the similarity solution discussed in this section gives the large-time behaviour for fairly
general initial data. The first two terms in the large-time expansion will take the form

C - a2/mt-1/ (m+2 ) dlm( 1, 2) + D ( dm(, )) (3.17)

where x0 is a constant. The second term in this expansion simply represents a shift in the
origin of x and may be eliminated by replacing 5 by

D/2a tl/(m+2)

It is therefore useful to have a relationship which determines the value of xO in terms of the
initial data.

We now introduce

I°(t) = fo _ (c - c*H(x))dxdy,

where c - c*(y, t) as x - + oo. It is straightforward to show that

dt= 0,

so that (3.17) implies

xo = Io(O)/Q

where Q = Jo c* dy; in other words the origin of x should be chosen so that

I0 _0.

Introducing

I = o O X(c - c*H(x))dxdy
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it is also straightforward (using

xV (C'Vc) = V (x mVc 1 cm+X)

where x is the unit vector in the x direction) to show that

d 1
dI = m +1 o C*m+' dy,

a relationship which may be used to give some indication of the extent of lateral diffusion.

4. Discussion

In this paper we have obtained approximate similarity solutions to the porous-medium
equation in one and two-dimensions.

The results of Section 2 include a power-series solution for the one-dimensional constant-
source problem. For m = 0(1) the terms of this series rapidly become negligible, though for
small m convergence is slow close to = 1, as would be expected from the boundary-layer
behaviour which occurs for small m. Such approximate (rather than numerical) solutions are
desirable not only because they reveal trends and avoid the need for interpolation, but also
because they are easily manipulated in order to obtain the dependence on the processing
conditions of various quantities which are important in device operation (see Fair [8]) and
because they facilitate the construction of uniformly valid expansions for cases in which (1.1)
describes only the first-order term in one region of a singular perturbation problem (see King
[15]). The approximation given here has the further advantage that its accuracy can easily
be improved by taking more terms in series.

In Section 3 we considered physically important two-dimensional situations in which the
problem for m = 0(1) requires numerical solution, which is not discussed here. However,
the limiting cases considered, while not of direct practical relevance, not only provide useful
test cases for numerical schemes but also give a fair amount of qualitative information.
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